1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * BTF-to-C type converter.
5 *
6 * Copyright (c) 2019 Facebook
7 */
8
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <errno.h>
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include <linux/kernel.h>
17 #include "btf.h"
18 #include "hashmap.h"
19 #include "libbpf.h"
20 #include "libbpf_internal.h"
21
22 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
23 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
24
pfx(int lvl)25 static const char *pfx(int lvl)
26 {
27 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
28 }
29
30 enum btf_dump_type_order_state {
31 NOT_ORDERED,
32 ORDERING,
33 ORDERED,
34 };
35
36 enum btf_dump_type_emit_state {
37 NOT_EMITTED,
38 EMITTING,
39 EMITTED,
40 };
41
42 /* per-type auxiliary state */
43 struct btf_dump_type_aux_state {
44 /* topological sorting state */
45 enum btf_dump_type_order_state order_state: 2;
46 /* emitting state used to determine the need for forward declaration */
47 enum btf_dump_type_emit_state emit_state: 2;
48 /* whether forward declaration was already emitted */
49 __u8 fwd_emitted: 1;
50 /* whether unique non-duplicate name was already assigned */
51 __u8 name_resolved: 1;
52 /* whether type is referenced from any other type */
53 __u8 referenced: 1;
54 };
55
56 struct btf_dump {
57 const struct btf *btf;
58 const struct btf_ext *btf_ext;
59 btf_dump_printf_fn_t printf_fn;
60 struct btf_dump_opts opts;
61 int ptr_sz;
62 bool strip_mods;
63 int last_id;
64
65 /* per-type auxiliary state */
66 struct btf_dump_type_aux_state *type_states;
67 size_t type_states_cap;
68 /* per-type optional cached unique name, must be freed, if present */
69 const char **cached_names;
70 size_t cached_names_cap;
71
72 /* topo-sorted list of dependent type definitions */
73 __u32 *emit_queue;
74 int emit_queue_cap;
75 int emit_queue_cnt;
76
77 /*
78 * stack of type declarations (e.g., chain of modifiers, arrays,
79 * funcs, etc)
80 */
81 __u32 *decl_stack;
82 int decl_stack_cap;
83 int decl_stack_cnt;
84
85 /* maps struct/union/enum name to a number of name occurrences */
86 struct hashmap *type_names;
87 /*
88 * maps typedef identifiers and enum value names to a number of such
89 * name occurrences
90 */
91 struct hashmap *ident_names;
92 };
93
str_hash_fn(const void * key,void * ctx)94 static size_t str_hash_fn(const void *key, void *ctx)
95 {
96 return str_hash(key);
97 }
98
str_equal_fn(const void * a,const void * b,void * ctx)99 static bool str_equal_fn(const void *a, const void *b, void *ctx)
100 {
101 return strcmp(a, b) == 0;
102 }
103
btf_name_of(const struct btf_dump * d,__u32 name_off)104 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
105 {
106 return btf__name_by_offset(d->btf, name_off);
107 }
108
btf_dump_printf(const struct btf_dump * d,const char * fmt,...)109 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
110 {
111 va_list args;
112
113 va_start(args, fmt);
114 d->printf_fn(d->opts.ctx, fmt, args);
115 va_end(args);
116 }
117
118 static int btf_dump_mark_referenced(struct btf_dump *d);
119 static int btf_dump_resize(struct btf_dump *d);
120
btf_dump__new(const struct btf * btf,const struct btf_ext * btf_ext,const struct btf_dump_opts * opts,btf_dump_printf_fn_t printf_fn)121 struct btf_dump *btf_dump__new(const struct btf *btf,
122 const struct btf_ext *btf_ext,
123 const struct btf_dump_opts *opts,
124 btf_dump_printf_fn_t printf_fn)
125 {
126 struct btf_dump *d;
127 int err;
128
129 d = calloc(1, sizeof(struct btf_dump));
130 if (!d)
131 return ERR_PTR(-ENOMEM);
132
133 d->btf = btf;
134 d->btf_ext = btf_ext;
135 d->printf_fn = printf_fn;
136 d->opts.ctx = opts ? opts->ctx : NULL;
137 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
138
139 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
140 if (IS_ERR(d->type_names)) {
141 err = PTR_ERR(d->type_names);
142 d->type_names = NULL;
143 goto err;
144 }
145 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
146 if (IS_ERR(d->ident_names)) {
147 err = PTR_ERR(d->ident_names);
148 d->ident_names = NULL;
149 goto err;
150 }
151
152 err = btf_dump_resize(d);
153 if (err)
154 goto err;
155
156 return d;
157 err:
158 btf_dump__free(d);
159 return ERR_PTR(err);
160 }
161
btf_dump_resize(struct btf_dump * d)162 static int btf_dump_resize(struct btf_dump *d)
163 {
164 int err, last_id = btf__get_nr_types(d->btf);
165
166 if (last_id <= d->last_id)
167 return 0;
168
169 if (btf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
170 sizeof(*d->type_states), last_id + 1))
171 return -ENOMEM;
172 if (btf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
173 sizeof(*d->cached_names), last_id + 1))
174 return -ENOMEM;
175
176 if (d->last_id == 0) {
177 /* VOID is special */
178 d->type_states[0].order_state = ORDERED;
179 d->type_states[0].emit_state = EMITTED;
180 }
181
182 /* eagerly determine referenced types for anon enums */
183 err = btf_dump_mark_referenced(d);
184 if (err)
185 return err;
186
187 d->last_id = last_id;
188 return 0;
189 }
190
btf_dump__free(struct btf_dump * d)191 void btf_dump__free(struct btf_dump *d)
192 {
193 int i;
194
195 if (IS_ERR_OR_NULL(d))
196 return;
197
198 free(d->type_states);
199 if (d->cached_names) {
200 /* any set cached name is owned by us and should be freed */
201 for (i = 0; i <= d->last_id; i++) {
202 if (d->cached_names[i])
203 free((void *)d->cached_names[i]);
204 }
205 }
206 free(d->cached_names);
207 free(d->emit_queue);
208 free(d->decl_stack);
209 hashmap__free(d->type_names);
210 hashmap__free(d->ident_names);
211
212 free(d);
213 }
214
215 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
216 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
217
218 /*
219 * Dump BTF type in a compilable C syntax, including all the necessary
220 * dependent types, necessary for compilation. If some of the dependent types
221 * were already emitted as part of previous btf_dump__dump_type() invocation
222 * for another type, they won't be emitted again. This API allows callers to
223 * filter out BTF types according to user-defined criterias and emitted only
224 * minimal subset of types, necessary to compile everything. Full struct/union
225 * definitions will still be emitted, even if the only usage is through
226 * pointer and could be satisfied with just a forward declaration.
227 *
228 * Dumping is done in two high-level passes:
229 * 1. Topologically sort type definitions to satisfy C rules of compilation.
230 * 2. Emit type definitions in C syntax.
231 *
232 * Returns 0 on success; <0, otherwise.
233 */
btf_dump__dump_type(struct btf_dump * d,__u32 id)234 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
235 {
236 int err, i;
237
238 if (id > btf__get_nr_types(d->btf))
239 return -EINVAL;
240
241 err = btf_dump_resize(d);
242 if (err)
243 return err;
244
245 d->emit_queue_cnt = 0;
246 err = btf_dump_order_type(d, id, false);
247 if (err < 0)
248 return err;
249
250 for (i = 0; i < d->emit_queue_cnt; i++)
251 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
252
253 return 0;
254 }
255
256 /*
257 * Mark all types that are referenced from any other type. This is used to
258 * determine top-level anonymous enums that need to be emitted as an
259 * independent type declarations.
260 * Anonymous enums come in two flavors: either embedded in a struct's field
261 * definition, in which case they have to be declared inline as part of field
262 * type declaration; or as a top-level anonymous enum, typically used for
263 * declaring global constants. It's impossible to distinguish between two
264 * without knowning whether given enum type was referenced from other type:
265 * top-level anonymous enum won't be referenced by anything, while embedded
266 * one will.
267 */
btf_dump_mark_referenced(struct btf_dump * d)268 static int btf_dump_mark_referenced(struct btf_dump *d)
269 {
270 int i, j, n = btf__get_nr_types(d->btf);
271 const struct btf_type *t;
272 __u16 vlen;
273
274 for (i = d->last_id + 1; i <= n; i++) {
275 t = btf__type_by_id(d->btf, i);
276 vlen = btf_vlen(t);
277
278 switch (btf_kind(t)) {
279 case BTF_KIND_INT:
280 case BTF_KIND_ENUM:
281 case BTF_KIND_FWD:
282 break;
283
284 case BTF_KIND_VOLATILE:
285 case BTF_KIND_CONST:
286 case BTF_KIND_RESTRICT:
287 case BTF_KIND_PTR:
288 case BTF_KIND_TYPEDEF:
289 case BTF_KIND_FUNC:
290 case BTF_KIND_VAR:
291 d->type_states[t->type].referenced = 1;
292 break;
293
294 case BTF_KIND_ARRAY: {
295 const struct btf_array *a = btf_array(t);
296
297 d->type_states[a->index_type].referenced = 1;
298 d->type_states[a->type].referenced = 1;
299 break;
300 }
301 case BTF_KIND_STRUCT:
302 case BTF_KIND_UNION: {
303 const struct btf_member *m = btf_members(t);
304
305 for (j = 0; j < vlen; j++, m++)
306 d->type_states[m->type].referenced = 1;
307 break;
308 }
309 case BTF_KIND_FUNC_PROTO: {
310 const struct btf_param *p = btf_params(t);
311
312 for (j = 0; j < vlen; j++, p++)
313 d->type_states[p->type].referenced = 1;
314 break;
315 }
316 case BTF_KIND_DATASEC: {
317 const struct btf_var_secinfo *v = btf_var_secinfos(t);
318
319 for (j = 0; j < vlen; j++, v++)
320 d->type_states[v->type].referenced = 1;
321 break;
322 }
323 default:
324 return -EINVAL;
325 }
326 }
327 return 0;
328 }
329
btf_dump_add_emit_queue_id(struct btf_dump * d,__u32 id)330 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
331 {
332 __u32 *new_queue;
333 size_t new_cap;
334
335 if (d->emit_queue_cnt >= d->emit_queue_cap) {
336 new_cap = max(16, d->emit_queue_cap * 3 / 2);
337 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
338 if (!new_queue)
339 return -ENOMEM;
340 d->emit_queue = new_queue;
341 d->emit_queue_cap = new_cap;
342 }
343
344 d->emit_queue[d->emit_queue_cnt++] = id;
345 return 0;
346 }
347
348 /*
349 * Determine order of emitting dependent types and specified type to satisfy
350 * C compilation rules. This is done through topological sorting with an
351 * additional complication which comes from C rules. The main idea for C is
352 * that if some type is "embedded" into a struct/union, it's size needs to be
353 * known at the time of definition of containing type. E.g., for:
354 *
355 * struct A {};
356 * struct B { struct A x; }
357 *
358 * struct A *HAS* to be defined before struct B, because it's "embedded",
359 * i.e., it is part of struct B layout. But in the following case:
360 *
361 * struct A;
362 * struct B { struct A *x; }
363 * struct A {};
364 *
365 * it's enough to just have a forward declaration of struct A at the time of
366 * struct B definition, as struct B has a pointer to struct A, so the size of
367 * field x is known without knowing struct A size: it's sizeof(void *).
368 *
369 * Unfortunately, there are some trickier cases we need to handle, e.g.:
370 *
371 * struct A {}; // if this was forward-declaration: compilation error
372 * struct B {
373 * struct { // anonymous struct
374 * struct A y;
375 * } *x;
376 * };
377 *
378 * In this case, struct B's field x is a pointer, so it's size is known
379 * regardless of the size of (anonymous) struct it points to. But because this
380 * struct is anonymous and thus defined inline inside struct B, *and* it
381 * embeds struct A, compiler requires full definition of struct A to be known
382 * before struct B can be defined. This creates a transitive dependency
383 * between struct A and struct B. If struct A was forward-declared before
384 * struct B definition and fully defined after struct B definition, that would
385 * trigger compilation error.
386 *
387 * All this means that while we are doing topological sorting on BTF type
388 * graph, we need to determine relationships between different types (graph
389 * nodes):
390 * - weak link (relationship) between X and Y, if Y *CAN* be
391 * forward-declared at the point of X definition;
392 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
393 *
394 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
395 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
396 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
397 * Weak/strong relationship is determined recursively during DFS traversal and
398 * is returned as a result from btf_dump_order_type().
399 *
400 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
401 * but it is not guaranteeing that no extraneous forward declarations will be
402 * emitted.
403 *
404 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
405 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
406 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
407 * entire graph path, so depending where from one came to that BTF type, it
408 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
409 * once they are processed, there is no need to do it again, so they are
410 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
411 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
412 * in any case, once those are processed, no need to do it again, as the
413 * result won't change.
414 *
415 * Returns:
416 * - 1, if type is part of strong link (so there is strong topological
417 * ordering requirements);
418 * - 0, if type is part of weak link (so can be satisfied through forward
419 * declaration);
420 * - <0, on error (e.g., unsatisfiable type loop detected).
421 */
btf_dump_order_type(struct btf_dump * d,__u32 id,bool through_ptr)422 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
423 {
424 /*
425 * Order state is used to detect strong link cycles, but only for BTF
426 * kinds that are or could be an independent definition (i.e.,
427 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
428 * func_protos, modifiers are just means to get to these definitions.
429 * Int/void don't need definitions, they are assumed to be always
430 * properly defined. We also ignore datasec, var, and funcs for now.
431 * So for all non-defining kinds, we never even set ordering state,
432 * for defining kinds we set ORDERING and subsequently ORDERED if it
433 * forms a strong link.
434 */
435 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
436 const struct btf_type *t;
437 __u16 vlen;
438 int err, i;
439
440 /* return true, letting typedefs know that it's ok to be emitted */
441 if (tstate->order_state == ORDERED)
442 return 1;
443
444 t = btf__type_by_id(d->btf, id);
445
446 if (tstate->order_state == ORDERING) {
447 /* type loop, but resolvable through fwd declaration */
448 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
449 return 0;
450 pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
451 return -ELOOP;
452 }
453
454 switch (btf_kind(t)) {
455 case BTF_KIND_INT:
456 tstate->order_state = ORDERED;
457 return 0;
458
459 case BTF_KIND_PTR:
460 err = btf_dump_order_type(d, t->type, true);
461 tstate->order_state = ORDERED;
462 return err;
463
464 case BTF_KIND_ARRAY:
465 return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
466
467 case BTF_KIND_STRUCT:
468 case BTF_KIND_UNION: {
469 const struct btf_member *m = btf_members(t);
470 /*
471 * struct/union is part of strong link, only if it's embedded
472 * (so no ptr in a path) or it's anonymous (so has to be
473 * defined inline, even if declared through ptr)
474 */
475 if (through_ptr && t->name_off != 0)
476 return 0;
477
478 tstate->order_state = ORDERING;
479
480 vlen = btf_vlen(t);
481 for (i = 0; i < vlen; i++, m++) {
482 err = btf_dump_order_type(d, m->type, false);
483 if (err < 0)
484 return err;
485 }
486
487 if (t->name_off != 0) {
488 err = btf_dump_add_emit_queue_id(d, id);
489 if (err < 0)
490 return err;
491 }
492
493 tstate->order_state = ORDERED;
494 return 1;
495 }
496 case BTF_KIND_ENUM:
497 case BTF_KIND_FWD:
498 /*
499 * non-anonymous or non-referenced enums are top-level
500 * declarations and should be emitted. Same logic can be
501 * applied to FWDs, it won't hurt anyways.
502 */
503 if (t->name_off != 0 || !tstate->referenced) {
504 err = btf_dump_add_emit_queue_id(d, id);
505 if (err)
506 return err;
507 }
508 tstate->order_state = ORDERED;
509 return 1;
510
511 case BTF_KIND_TYPEDEF: {
512 int is_strong;
513
514 is_strong = btf_dump_order_type(d, t->type, through_ptr);
515 if (is_strong < 0)
516 return is_strong;
517
518 /* typedef is similar to struct/union w.r.t. fwd-decls */
519 if (through_ptr && !is_strong)
520 return 0;
521
522 /* typedef is always a named definition */
523 err = btf_dump_add_emit_queue_id(d, id);
524 if (err)
525 return err;
526
527 d->type_states[id].order_state = ORDERED;
528 return 1;
529 }
530 case BTF_KIND_VOLATILE:
531 case BTF_KIND_CONST:
532 case BTF_KIND_RESTRICT:
533 return btf_dump_order_type(d, t->type, through_ptr);
534
535 case BTF_KIND_FUNC_PROTO: {
536 const struct btf_param *p = btf_params(t);
537 bool is_strong;
538
539 err = btf_dump_order_type(d, t->type, through_ptr);
540 if (err < 0)
541 return err;
542 is_strong = err > 0;
543
544 vlen = btf_vlen(t);
545 for (i = 0; i < vlen; i++, p++) {
546 err = btf_dump_order_type(d, p->type, through_ptr);
547 if (err < 0)
548 return err;
549 if (err > 0)
550 is_strong = true;
551 }
552 return is_strong;
553 }
554 case BTF_KIND_FUNC:
555 case BTF_KIND_VAR:
556 case BTF_KIND_DATASEC:
557 d->type_states[id].order_state = ORDERED;
558 return 0;
559
560 default:
561 return -EINVAL;
562 }
563 }
564
565 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
566 const struct btf_type *t);
567
568 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
569 const struct btf_type *t);
570 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
571 const struct btf_type *t, int lvl);
572
573 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
574 const struct btf_type *t);
575 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
576 const struct btf_type *t, int lvl);
577
578 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
579 const struct btf_type *t);
580
581 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
582 const struct btf_type *t, int lvl);
583
584 /* a local view into a shared stack */
585 struct id_stack {
586 const __u32 *ids;
587 int cnt;
588 };
589
590 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
591 const char *fname, int lvl);
592 static void btf_dump_emit_type_chain(struct btf_dump *d,
593 struct id_stack *decl_stack,
594 const char *fname, int lvl);
595
596 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
597 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
598 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
599 const char *orig_name);
600
btf_dump_is_blacklisted(struct btf_dump * d,__u32 id)601 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
602 {
603 const struct btf_type *t = btf__type_by_id(d->btf, id);
604
605 /* __builtin_va_list is a compiler built-in, which causes compilation
606 * errors, when compiling w/ different compiler, then used to compile
607 * original code (e.g., GCC to compile kernel, Clang to use generated
608 * C header from BTF). As it is built-in, it should be already defined
609 * properly internally in compiler.
610 */
611 if (t->name_off == 0)
612 return false;
613 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
614 }
615
616 /*
617 * Emit C-syntax definitions of types from chains of BTF types.
618 *
619 * High-level handling of determining necessary forward declarations are handled
620 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
621 * declarations/definitions in C syntax are handled by a combo of
622 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
623 * corresponding btf_dump_emit_*_{def,fwd}() functions.
624 *
625 * We also keep track of "containing struct/union type ID" to determine when
626 * we reference it from inside and thus can avoid emitting unnecessary forward
627 * declaration.
628 *
629 * This algorithm is designed in such a way, that even if some error occurs
630 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
631 * that doesn't comply to C rules completely), algorithm will try to proceed
632 * and produce as much meaningful output as possible.
633 */
btf_dump_emit_type(struct btf_dump * d,__u32 id,__u32 cont_id)634 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
635 {
636 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
637 bool top_level_def = cont_id == 0;
638 const struct btf_type *t;
639 __u16 kind;
640
641 if (tstate->emit_state == EMITTED)
642 return;
643
644 t = btf__type_by_id(d->btf, id);
645 kind = btf_kind(t);
646
647 if (tstate->emit_state == EMITTING) {
648 if (tstate->fwd_emitted)
649 return;
650
651 switch (kind) {
652 case BTF_KIND_STRUCT:
653 case BTF_KIND_UNION:
654 /*
655 * if we are referencing a struct/union that we are
656 * part of - then no need for fwd declaration
657 */
658 if (id == cont_id)
659 return;
660 if (t->name_off == 0) {
661 pr_warn("anonymous struct/union loop, id:[%u]\n",
662 id);
663 return;
664 }
665 btf_dump_emit_struct_fwd(d, id, t);
666 btf_dump_printf(d, ";\n\n");
667 tstate->fwd_emitted = 1;
668 break;
669 case BTF_KIND_TYPEDEF:
670 /*
671 * for typedef fwd_emitted means typedef definition
672 * was emitted, but it can be used only for "weak"
673 * references through pointer only, not for embedding
674 */
675 if (!btf_dump_is_blacklisted(d, id)) {
676 btf_dump_emit_typedef_def(d, id, t, 0);
677 btf_dump_printf(d, ";\n\n");
678 }
679 tstate->fwd_emitted = 1;
680 break;
681 default:
682 break;
683 }
684
685 return;
686 }
687
688 switch (kind) {
689 case BTF_KIND_INT:
690 /* Emit type alias definitions if necessary */
691 btf_dump_emit_missing_aliases(d, id, t);
692
693 tstate->emit_state = EMITTED;
694 break;
695 case BTF_KIND_ENUM:
696 if (top_level_def) {
697 btf_dump_emit_enum_def(d, id, t, 0);
698 btf_dump_printf(d, ";\n\n");
699 }
700 tstate->emit_state = EMITTED;
701 break;
702 case BTF_KIND_PTR:
703 case BTF_KIND_VOLATILE:
704 case BTF_KIND_CONST:
705 case BTF_KIND_RESTRICT:
706 btf_dump_emit_type(d, t->type, cont_id);
707 break;
708 case BTF_KIND_ARRAY:
709 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
710 break;
711 case BTF_KIND_FWD:
712 btf_dump_emit_fwd_def(d, id, t);
713 btf_dump_printf(d, ";\n\n");
714 tstate->emit_state = EMITTED;
715 break;
716 case BTF_KIND_TYPEDEF:
717 tstate->emit_state = EMITTING;
718 btf_dump_emit_type(d, t->type, id);
719 /*
720 * typedef can server as both definition and forward
721 * declaration; at this stage someone depends on
722 * typedef as a forward declaration (refers to it
723 * through pointer), so unless we already did it,
724 * emit typedef as a forward declaration
725 */
726 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
727 btf_dump_emit_typedef_def(d, id, t, 0);
728 btf_dump_printf(d, ";\n\n");
729 }
730 tstate->emit_state = EMITTED;
731 break;
732 case BTF_KIND_STRUCT:
733 case BTF_KIND_UNION:
734 tstate->emit_state = EMITTING;
735 /* if it's a top-level struct/union definition or struct/union
736 * is anonymous, then in C we'll be emitting all fields and
737 * their types (as opposed to just `struct X`), so we need to
738 * make sure that all types, referenced from struct/union
739 * members have necessary forward-declarations, where
740 * applicable
741 */
742 if (top_level_def || t->name_off == 0) {
743 const struct btf_member *m = btf_members(t);
744 __u16 vlen = btf_vlen(t);
745 int i, new_cont_id;
746
747 new_cont_id = t->name_off == 0 ? cont_id : id;
748 for (i = 0; i < vlen; i++, m++)
749 btf_dump_emit_type(d, m->type, new_cont_id);
750 } else if (!tstate->fwd_emitted && id != cont_id) {
751 btf_dump_emit_struct_fwd(d, id, t);
752 btf_dump_printf(d, ";\n\n");
753 tstate->fwd_emitted = 1;
754 }
755
756 if (top_level_def) {
757 btf_dump_emit_struct_def(d, id, t, 0);
758 btf_dump_printf(d, ";\n\n");
759 tstate->emit_state = EMITTED;
760 } else {
761 tstate->emit_state = NOT_EMITTED;
762 }
763 break;
764 case BTF_KIND_FUNC_PROTO: {
765 const struct btf_param *p = btf_params(t);
766 __u16 vlen = btf_vlen(t);
767 int i;
768
769 btf_dump_emit_type(d, t->type, cont_id);
770 for (i = 0; i < vlen; i++, p++)
771 btf_dump_emit_type(d, p->type, cont_id);
772
773 break;
774 }
775 default:
776 break;
777 }
778 }
779
btf_is_struct_packed(const struct btf * btf,__u32 id,const struct btf_type * t)780 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
781 const struct btf_type *t)
782 {
783 const struct btf_member *m;
784 int align, i, bit_sz;
785 __u16 vlen;
786
787 align = btf__align_of(btf, id);
788 /* size of a non-packed struct has to be a multiple of its alignment*/
789 if (align && t->size % align)
790 return true;
791
792 m = btf_members(t);
793 vlen = btf_vlen(t);
794 /* all non-bitfield fields have to be naturally aligned */
795 for (i = 0; i < vlen; i++, m++) {
796 align = btf__align_of(btf, m->type);
797 bit_sz = btf_member_bitfield_size(t, i);
798 if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
799 return true;
800 }
801
802 /*
803 * if original struct was marked as packed, but its layout is
804 * naturally aligned, we'll detect that it's not packed
805 */
806 return false;
807 }
808
chip_away_bits(int total,int at_most)809 static int chip_away_bits(int total, int at_most)
810 {
811 return total % at_most ? : at_most;
812 }
813
btf_dump_emit_bit_padding(const struct btf_dump * d,int cur_off,int m_off,int m_bit_sz,int align,int lvl)814 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
815 int cur_off, int m_off, int m_bit_sz,
816 int align, int lvl)
817 {
818 int off_diff = m_off - cur_off;
819 int ptr_bits = d->ptr_sz * 8;
820
821 if (off_diff <= 0)
822 /* no gap */
823 return;
824 if (m_bit_sz == 0 && off_diff < align * 8)
825 /* natural padding will take care of a gap */
826 return;
827
828 while (off_diff > 0) {
829 const char *pad_type;
830 int pad_bits;
831
832 if (ptr_bits > 32 && off_diff > 32) {
833 pad_type = "long";
834 pad_bits = chip_away_bits(off_diff, ptr_bits);
835 } else if (off_diff > 16) {
836 pad_type = "int";
837 pad_bits = chip_away_bits(off_diff, 32);
838 } else if (off_diff > 8) {
839 pad_type = "short";
840 pad_bits = chip_away_bits(off_diff, 16);
841 } else {
842 pad_type = "char";
843 pad_bits = chip_away_bits(off_diff, 8);
844 }
845 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
846 off_diff -= pad_bits;
847 }
848 }
849
btf_dump_emit_struct_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)850 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
851 const struct btf_type *t)
852 {
853 btf_dump_printf(d, "%s %s",
854 btf_is_struct(t) ? "struct" : "union",
855 btf_dump_type_name(d, id));
856 }
857
btf_dump_emit_struct_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)858 static void btf_dump_emit_struct_def(struct btf_dump *d,
859 __u32 id,
860 const struct btf_type *t,
861 int lvl)
862 {
863 const struct btf_member *m = btf_members(t);
864 bool is_struct = btf_is_struct(t);
865 int align, i, packed, off = 0;
866 __u16 vlen = btf_vlen(t);
867
868 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
869
870 btf_dump_printf(d, "%s%s%s {",
871 is_struct ? "struct" : "union",
872 t->name_off ? " " : "",
873 btf_dump_type_name(d, id));
874
875 for (i = 0; i < vlen; i++, m++) {
876 const char *fname;
877 int m_off, m_sz;
878
879 fname = btf_name_of(d, m->name_off);
880 m_sz = btf_member_bitfield_size(t, i);
881 m_off = btf_member_bit_offset(t, i);
882 align = packed ? 1 : btf__align_of(d->btf, m->type);
883
884 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
885 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
886 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
887
888 if (m_sz) {
889 btf_dump_printf(d, ": %d", m_sz);
890 off = m_off + m_sz;
891 } else {
892 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
893 off = m_off + m_sz * 8;
894 }
895 btf_dump_printf(d, ";");
896 }
897
898 /* pad at the end, if necessary */
899 if (is_struct) {
900 align = packed ? 1 : btf__align_of(d->btf, id);
901 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
902 lvl + 1);
903 }
904
905 if (vlen)
906 btf_dump_printf(d, "\n");
907 btf_dump_printf(d, "%s}", pfx(lvl));
908 if (packed)
909 btf_dump_printf(d, " __attribute__((packed))");
910 }
911
912 static const char *missing_base_types[][2] = {
913 /*
914 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
915 * SIMD intrinsics. Alias them to standard base types.
916 */
917 { "__Poly8_t", "unsigned char" },
918 { "__Poly16_t", "unsigned short" },
919 { "__Poly64_t", "unsigned long long" },
920 { "__Poly128_t", "unsigned __int128" },
921 };
922
btf_dump_emit_missing_aliases(struct btf_dump * d,__u32 id,const struct btf_type * t)923 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
924 const struct btf_type *t)
925 {
926 const char *name = btf_dump_type_name(d, id);
927 int i;
928
929 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
930 if (strcmp(name, missing_base_types[i][0]) == 0) {
931 btf_dump_printf(d, "typedef %s %s;\n\n",
932 missing_base_types[i][1], name);
933 break;
934 }
935 }
936 }
937
btf_dump_emit_enum_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)938 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
939 const struct btf_type *t)
940 {
941 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
942 }
943
btf_dump_emit_enum_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)944 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
945 const struct btf_type *t,
946 int lvl)
947 {
948 const struct btf_enum *v = btf_enum(t);
949 __u16 vlen = btf_vlen(t);
950 const char *name;
951 size_t dup_cnt;
952 int i;
953
954 btf_dump_printf(d, "enum%s%s",
955 t->name_off ? " " : "",
956 btf_dump_type_name(d, id));
957
958 if (vlen) {
959 btf_dump_printf(d, " {");
960 for (i = 0; i < vlen; i++, v++) {
961 name = btf_name_of(d, v->name_off);
962 /* enumerators share namespace with typedef idents */
963 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
964 if (dup_cnt > 1) {
965 btf_dump_printf(d, "\n%s%s___%zu = %u,",
966 pfx(lvl + 1), name, dup_cnt,
967 (__u32)v->val);
968 } else {
969 btf_dump_printf(d, "\n%s%s = %u,",
970 pfx(lvl + 1), name,
971 (__u32)v->val);
972 }
973 }
974 btf_dump_printf(d, "\n%s}", pfx(lvl));
975 }
976 }
977
btf_dump_emit_fwd_def(struct btf_dump * d,__u32 id,const struct btf_type * t)978 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
979 const struct btf_type *t)
980 {
981 const char *name = btf_dump_type_name(d, id);
982
983 if (btf_kflag(t))
984 btf_dump_printf(d, "union %s", name);
985 else
986 btf_dump_printf(d, "struct %s", name);
987 }
988
btf_dump_emit_typedef_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)989 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
990 const struct btf_type *t, int lvl)
991 {
992 const char *name = btf_dump_ident_name(d, id);
993
994 /*
995 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
996 * pointing to VOID. This generates warnings from btf_dump() and
997 * results in uncompilable header file, so we are fixing it up here
998 * with valid typedef into __builtin_va_list.
999 */
1000 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1001 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1002 return;
1003 }
1004
1005 btf_dump_printf(d, "typedef ");
1006 btf_dump_emit_type_decl(d, t->type, name, lvl);
1007 }
1008
btf_dump_push_decl_stack_id(struct btf_dump * d,__u32 id)1009 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1010 {
1011 __u32 *new_stack;
1012 size_t new_cap;
1013
1014 if (d->decl_stack_cnt >= d->decl_stack_cap) {
1015 new_cap = max(16, d->decl_stack_cap * 3 / 2);
1016 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1017 if (!new_stack)
1018 return -ENOMEM;
1019 d->decl_stack = new_stack;
1020 d->decl_stack_cap = new_cap;
1021 }
1022
1023 d->decl_stack[d->decl_stack_cnt++] = id;
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * Emit type declaration (e.g., field type declaration in a struct or argument
1030 * declaration in function prototype) in correct C syntax.
1031 *
1032 * For most types it's trivial, but there are few quirky type declaration
1033 * cases worth mentioning:
1034 * - function prototypes (especially nesting of function prototypes);
1035 * - arrays;
1036 * - const/volatile/restrict for pointers vs other types.
1037 *
1038 * For a good discussion of *PARSING* C syntax (as a human), see
1039 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1040 * Ch.3 "Unscrambling Declarations in C".
1041 *
1042 * It won't help with BTF to C conversion much, though, as it's an opposite
1043 * problem. So we came up with this algorithm in reverse to van der Linden's
1044 * parsing algorithm. It goes from structured BTF representation of type
1045 * declaration to a valid compilable C syntax.
1046 *
1047 * For instance, consider this C typedef:
1048 * typedef const int * const * arr[10] arr_t;
1049 * It will be represented in BTF with this chain of BTF types:
1050 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1051 *
1052 * Notice how [const] modifier always goes before type it modifies in BTF type
1053 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1054 * the right of pointers, but to the left of other types. There are also other
1055 * quirks, like function pointers, arrays of them, functions returning other
1056 * functions, etc.
1057 *
1058 * We handle that by pushing all the types to a stack, until we hit "terminal"
1059 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1060 * top of a stack, modifiers are handled differently. Array/function pointers
1061 * have also wildly different syntax and how nesting of them are done. See
1062 * code for authoritative definition.
1063 *
1064 * To avoid allocating new stack for each independent chain of BTF types, we
1065 * share one bigger stack, with each chain working only on its own local view
1066 * of a stack frame. Some care is required to "pop" stack frames after
1067 * processing type declaration chain.
1068 */
btf_dump__emit_type_decl(struct btf_dump * d,__u32 id,const struct btf_dump_emit_type_decl_opts * opts)1069 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1070 const struct btf_dump_emit_type_decl_opts *opts)
1071 {
1072 const char *fname;
1073 int lvl, err;
1074
1075 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1076 return -EINVAL;
1077
1078 err = btf_dump_resize(d);
1079 if (err)
1080 return -EINVAL;
1081
1082 fname = OPTS_GET(opts, field_name, "");
1083 lvl = OPTS_GET(opts, indent_level, 0);
1084 d->strip_mods = OPTS_GET(opts, strip_mods, false);
1085 btf_dump_emit_type_decl(d, id, fname, lvl);
1086 d->strip_mods = false;
1087 return 0;
1088 }
1089
btf_dump_emit_type_decl(struct btf_dump * d,__u32 id,const char * fname,int lvl)1090 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1091 const char *fname, int lvl)
1092 {
1093 struct id_stack decl_stack;
1094 const struct btf_type *t;
1095 int err, stack_start;
1096
1097 stack_start = d->decl_stack_cnt;
1098 for (;;) {
1099 t = btf__type_by_id(d->btf, id);
1100 if (d->strip_mods && btf_is_mod(t))
1101 goto skip_mod;
1102
1103 err = btf_dump_push_decl_stack_id(d, id);
1104 if (err < 0) {
1105 /*
1106 * if we don't have enough memory for entire type decl
1107 * chain, restore stack, emit warning, and try to
1108 * proceed nevertheless
1109 */
1110 pr_warn("not enough memory for decl stack:%d", err);
1111 d->decl_stack_cnt = stack_start;
1112 return;
1113 }
1114 skip_mod:
1115 /* VOID */
1116 if (id == 0)
1117 break;
1118
1119 switch (btf_kind(t)) {
1120 case BTF_KIND_PTR:
1121 case BTF_KIND_VOLATILE:
1122 case BTF_KIND_CONST:
1123 case BTF_KIND_RESTRICT:
1124 case BTF_KIND_FUNC_PROTO:
1125 id = t->type;
1126 break;
1127 case BTF_KIND_ARRAY:
1128 id = btf_array(t)->type;
1129 break;
1130 case BTF_KIND_INT:
1131 case BTF_KIND_ENUM:
1132 case BTF_KIND_FWD:
1133 case BTF_KIND_STRUCT:
1134 case BTF_KIND_UNION:
1135 case BTF_KIND_TYPEDEF:
1136 goto done;
1137 default:
1138 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1139 btf_kind(t), id);
1140 goto done;
1141 }
1142 }
1143 done:
1144 /*
1145 * We might be inside a chain of declarations (e.g., array of function
1146 * pointers returning anonymous (so inlined) structs, having another
1147 * array field). Each of those needs its own "stack frame" to handle
1148 * emitting of declarations. Those stack frames are non-overlapping
1149 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1150 * handle this set of nested stacks, we create a view corresponding to
1151 * our own "stack frame" and work with it as an independent stack.
1152 * We'll need to clean up after emit_type_chain() returns, though.
1153 */
1154 decl_stack.ids = d->decl_stack + stack_start;
1155 decl_stack.cnt = d->decl_stack_cnt - stack_start;
1156 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1157 /*
1158 * emit_type_chain() guarantees that it will pop its entire decl_stack
1159 * frame before returning. But it works with a read-only view into
1160 * decl_stack, so it doesn't actually pop anything from the
1161 * perspective of shared btf_dump->decl_stack, per se. We need to
1162 * reset decl_stack state to how it was before us to avoid it growing
1163 * all the time.
1164 */
1165 d->decl_stack_cnt = stack_start;
1166 }
1167
btf_dump_emit_mods(struct btf_dump * d,struct id_stack * decl_stack)1168 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1169 {
1170 const struct btf_type *t;
1171 __u32 id;
1172
1173 while (decl_stack->cnt) {
1174 id = decl_stack->ids[decl_stack->cnt - 1];
1175 t = btf__type_by_id(d->btf, id);
1176
1177 switch (btf_kind(t)) {
1178 case BTF_KIND_VOLATILE:
1179 btf_dump_printf(d, "volatile ");
1180 break;
1181 case BTF_KIND_CONST:
1182 btf_dump_printf(d, "const ");
1183 break;
1184 case BTF_KIND_RESTRICT:
1185 btf_dump_printf(d, "restrict ");
1186 break;
1187 default:
1188 return;
1189 }
1190 decl_stack->cnt--;
1191 }
1192 }
1193
btf_dump_drop_mods(struct btf_dump * d,struct id_stack * decl_stack)1194 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1195 {
1196 const struct btf_type *t;
1197 __u32 id;
1198
1199 while (decl_stack->cnt) {
1200 id = decl_stack->ids[decl_stack->cnt - 1];
1201 t = btf__type_by_id(d->btf, id);
1202 if (!btf_is_mod(t))
1203 return;
1204 decl_stack->cnt--;
1205 }
1206 }
1207
btf_dump_emit_name(const struct btf_dump * d,const char * name,bool last_was_ptr)1208 static void btf_dump_emit_name(const struct btf_dump *d,
1209 const char *name, bool last_was_ptr)
1210 {
1211 bool separate = name[0] && !last_was_ptr;
1212
1213 btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1214 }
1215
btf_dump_emit_type_chain(struct btf_dump * d,struct id_stack * decls,const char * fname,int lvl)1216 static void btf_dump_emit_type_chain(struct btf_dump *d,
1217 struct id_stack *decls,
1218 const char *fname, int lvl)
1219 {
1220 /*
1221 * last_was_ptr is used to determine if we need to separate pointer
1222 * asterisk (*) from previous part of type signature with space, so
1223 * that we get `int ***`, instead of `int * * *`. We default to true
1224 * for cases where we have single pointer in a chain. E.g., in ptr ->
1225 * func_proto case. func_proto will start a new emit_type_chain call
1226 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1227 * don't want to prepend space for that last pointer.
1228 */
1229 bool last_was_ptr = true;
1230 const struct btf_type *t;
1231 const char *name;
1232 __u16 kind;
1233 __u32 id;
1234
1235 while (decls->cnt) {
1236 id = decls->ids[--decls->cnt];
1237 if (id == 0) {
1238 /* VOID is a special snowflake */
1239 btf_dump_emit_mods(d, decls);
1240 btf_dump_printf(d, "void");
1241 last_was_ptr = false;
1242 continue;
1243 }
1244
1245 t = btf__type_by_id(d->btf, id);
1246 kind = btf_kind(t);
1247
1248 switch (kind) {
1249 case BTF_KIND_INT:
1250 btf_dump_emit_mods(d, decls);
1251 name = btf_name_of(d, t->name_off);
1252 btf_dump_printf(d, "%s", name);
1253 break;
1254 case BTF_KIND_STRUCT:
1255 case BTF_KIND_UNION:
1256 btf_dump_emit_mods(d, decls);
1257 /* inline anonymous struct/union */
1258 if (t->name_off == 0)
1259 btf_dump_emit_struct_def(d, id, t, lvl);
1260 else
1261 btf_dump_emit_struct_fwd(d, id, t);
1262 break;
1263 case BTF_KIND_ENUM:
1264 btf_dump_emit_mods(d, decls);
1265 /* inline anonymous enum */
1266 if (t->name_off == 0)
1267 btf_dump_emit_enum_def(d, id, t, lvl);
1268 else
1269 btf_dump_emit_enum_fwd(d, id, t);
1270 break;
1271 case BTF_KIND_FWD:
1272 btf_dump_emit_mods(d, decls);
1273 btf_dump_emit_fwd_def(d, id, t);
1274 break;
1275 case BTF_KIND_TYPEDEF:
1276 btf_dump_emit_mods(d, decls);
1277 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1278 break;
1279 case BTF_KIND_PTR:
1280 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1281 break;
1282 case BTF_KIND_VOLATILE:
1283 btf_dump_printf(d, " volatile");
1284 break;
1285 case BTF_KIND_CONST:
1286 btf_dump_printf(d, " const");
1287 break;
1288 case BTF_KIND_RESTRICT:
1289 btf_dump_printf(d, " restrict");
1290 break;
1291 case BTF_KIND_ARRAY: {
1292 const struct btf_array *a = btf_array(t);
1293 const struct btf_type *next_t;
1294 __u32 next_id;
1295 bool multidim;
1296 /*
1297 * GCC has a bug
1298 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1299 * which causes it to emit extra const/volatile
1300 * modifiers for an array, if array's element type has
1301 * const/volatile modifiers. Clang doesn't do that.
1302 * In general, it doesn't seem very meaningful to have
1303 * a const/volatile modifier for array, so we are
1304 * going to silently skip them here.
1305 */
1306 btf_dump_drop_mods(d, decls);
1307
1308 if (decls->cnt == 0) {
1309 btf_dump_emit_name(d, fname, last_was_ptr);
1310 btf_dump_printf(d, "[%u]", a->nelems);
1311 return;
1312 }
1313
1314 next_id = decls->ids[decls->cnt - 1];
1315 next_t = btf__type_by_id(d->btf, next_id);
1316 multidim = btf_is_array(next_t);
1317 /* we need space if we have named non-pointer */
1318 if (fname[0] && !last_was_ptr)
1319 btf_dump_printf(d, " ");
1320 /* no parentheses for multi-dimensional array */
1321 if (!multidim)
1322 btf_dump_printf(d, "(");
1323 btf_dump_emit_type_chain(d, decls, fname, lvl);
1324 if (!multidim)
1325 btf_dump_printf(d, ")");
1326 btf_dump_printf(d, "[%u]", a->nelems);
1327 return;
1328 }
1329 case BTF_KIND_FUNC_PROTO: {
1330 const struct btf_param *p = btf_params(t);
1331 __u16 vlen = btf_vlen(t);
1332 int i;
1333
1334 /*
1335 * GCC emits extra volatile qualifier for
1336 * __attribute__((noreturn)) function pointers. Clang
1337 * doesn't do it. It's a GCC quirk for backwards
1338 * compatibility with code written for GCC <2.5. So,
1339 * similarly to extra qualifiers for array, just drop
1340 * them, instead of handling them.
1341 */
1342 btf_dump_drop_mods(d, decls);
1343 if (decls->cnt) {
1344 btf_dump_printf(d, " (");
1345 btf_dump_emit_type_chain(d, decls, fname, lvl);
1346 btf_dump_printf(d, ")");
1347 } else {
1348 btf_dump_emit_name(d, fname, last_was_ptr);
1349 }
1350 btf_dump_printf(d, "(");
1351 /*
1352 * Clang for BPF target generates func_proto with no
1353 * args as a func_proto with a single void arg (e.g.,
1354 * `int (*f)(void)` vs just `int (*f)()`). We are
1355 * going to pretend there are no args for such case.
1356 */
1357 if (vlen == 1 && p->type == 0) {
1358 btf_dump_printf(d, ")");
1359 return;
1360 }
1361
1362 for (i = 0; i < vlen; i++, p++) {
1363 if (i > 0)
1364 btf_dump_printf(d, ", ");
1365
1366 /* last arg of type void is vararg */
1367 if (i == vlen - 1 && p->type == 0) {
1368 btf_dump_printf(d, "...");
1369 break;
1370 }
1371
1372 name = btf_name_of(d, p->name_off);
1373 btf_dump_emit_type_decl(d, p->type, name, lvl);
1374 }
1375
1376 btf_dump_printf(d, ")");
1377 return;
1378 }
1379 default:
1380 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1381 kind, id);
1382 return;
1383 }
1384
1385 last_was_ptr = kind == BTF_KIND_PTR;
1386 }
1387
1388 btf_dump_emit_name(d, fname, last_was_ptr);
1389 }
1390
1391 /* return number of duplicates (occurrences) of a given name */
btf_dump_name_dups(struct btf_dump * d,struct hashmap * name_map,const char * orig_name)1392 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1393 const char *orig_name)
1394 {
1395 size_t dup_cnt = 0;
1396
1397 hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1398 dup_cnt++;
1399 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1400
1401 return dup_cnt;
1402 }
1403
btf_dump_resolve_name(struct btf_dump * d,__u32 id,struct hashmap * name_map)1404 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1405 struct hashmap *name_map)
1406 {
1407 struct btf_dump_type_aux_state *s = &d->type_states[id];
1408 const struct btf_type *t = btf__type_by_id(d->btf, id);
1409 const char *orig_name = btf_name_of(d, t->name_off);
1410 const char **cached_name = &d->cached_names[id];
1411 size_t dup_cnt;
1412
1413 if (t->name_off == 0)
1414 return "";
1415
1416 if (s->name_resolved)
1417 return *cached_name ? *cached_name : orig_name;
1418
1419 dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1420 if (dup_cnt > 1) {
1421 const size_t max_len = 256;
1422 char new_name[max_len];
1423
1424 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1425 *cached_name = strdup(new_name);
1426 }
1427
1428 s->name_resolved = 1;
1429 return *cached_name ? *cached_name : orig_name;
1430 }
1431
btf_dump_type_name(struct btf_dump * d,__u32 id)1432 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1433 {
1434 return btf_dump_resolve_name(d, id, d->type_names);
1435 }
1436
btf_dump_ident_name(struct btf_dump * d,__u32 id)1437 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1438 {
1439 return btf_dump_resolve_name(d, id, d->ident_names);
1440 }
1441