1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Mellanox BlueField I2C bus driver
4 *
5 * Copyright (C) 2020 Mellanox Technologies, Ltd.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/string.h>
20
21 /* Defines what functionality is present. */
22 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
23 (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
24
25 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
26 (I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | \
27 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
28 I2C_FUNC_SMBUS_PROC_CALL)
29
30 #define MLXBF_I2C_FUNC_ALL \
31 (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
32 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
33
34 #define MLXBF_I2C_SMBUS_MAX 3
35
36 /* Shared resources info in BlueField platforms. */
37
38 #define MLXBF_I2C_COALESCE_TYU_ADDR 0x02801300
39 #define MLXBF_I2C_COALESCE_TYU_SIZE 0x010
40
41 #define MLXBF_I2C_GPIO_TYU_ADDR 0x02802000
42 #define MLXBF_I2C_GPIO_TYU_SIZE 0x100
43
44 #define MLXBF_I2C_COREPLL_TYU_ADDR 0x02800358
45 #define MLXBF_I2C_COREPLL_TYU_SIZE 0x008
46
47 #define MLXBF_I2C_COREPLL_YU_ADDR 0x02800c30
48 #define MLXBF_I2C_COREPLL_YU_SIZE 0x00c
49
50 #define MLXBF_I2C_SHARED_RES_MAX 3
51
52 /*
53 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
54 * refer to their respective offsets relative to the corresponding
55 * memory-mapped region whose addresses are specified in either the DT or
56 * the ACPI tables or above.
57 */
58
59 /*
60 * SMBus Master core clock frequency. Timing configurations are
61 * strongly dependent on the core clock frequency of the SMBus
62 * Master. Default value is set to 400MHz.
63 */
64 #define MLXBF_I2C_TYU_PLL_OUT_FREQ (400 * 1000 * 1000)
65 /* Reference clock for Bluefield - 156 MHz. */
66 #define MLXBF_I2C_PLL_IN_FREQ (156 * 1000 * 1000)
67
68 /* Constant used to determine the PLL frequency. */
69 #define MLNXBF_I2C_COREPLL_CONST 16384
70
71 /* PLL registers. */
72 #define MLXBF_I2C_CORE_PLL_REG0 0x0
73 #define MLXBF_I2C_CORE_PLL_REG1 0x4
74 #define MLXBF_I2C_CORE_PLL_REG2 0x8
75
76 /* OR cause register. */
77 #define MLXBF_I2C_CAUSE_OR_EVTEN0 0x14
78 #define MLXBF_I2C_CAUSE_OR_CLEAR 0x18
79
80 /* Arbiter Cause Register. */
81 #define MLXBF_I2C_CAUSE_ARBITER 0x1c
82
83 /*
84 * Cause Status flags. Note that those bits might be considered
85 * as interrupt enabled bits.
86 */
87
88 /* Transaction ended with STOP. */
89 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED BIT(0)
90 /* Master arbitration lost. */
91 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
92 /* Unexpected start detected. */
93 #define MLXBF_I2C_CAUSE_UNEXPECTED_START BIT(2)
94 /* Unexpected stop detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP BIT(3)
96 /* Wait for transfer continuation. */
97 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA BIT(4)
98 /* Failed to generate STOP. */
99 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED BIT(5)
100 /* Failed to generate START. */
101 #define MLXBF_I2C_CAUSE_PUT_START_FAILED BIT(6)
102 /* Clock toggle completed. */
103 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE BIT(7)
104 /* Transfer timeout occurred. */
105 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT BIT(8)
106 /* Master busy bit reset. */
107 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL BIT(9)
108
109 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK GENMASK(9, 0)
110
111 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
112 (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
113 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
114 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
115 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
116 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
117 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
118 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
119
120 /*
121 * Slave cause status flags. Note that those bits might be considered
122 * as interrupt enabled bits.
123 */
124
125 /* Write transaction received successfully. */
126 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS BIT(0)
127 /* Read transaction received, waiting for response. */
128 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
129 /* Slave busy bit reset. */
130 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL BIT(18)
131
132 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK GENMASK(20, 0)
133
134 /* Cause coalesce registers. */
135 #define MLXBF_I2C_CAUSE_COALESCE_0 0x00
136 #define MLXBF_I2C_CAUSE_COALESCE_1 0x04
137 #define MLXBF_I2C_CAUSE_COALESCE_2 0x08
138
139 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT MLXBF_I2C_SMBUS_MAX
140 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT 1
141
142 /* Functional enable register. */
143 #define MLXBF_I2C_GPIO_0_FUNC_EN_0 0x28
144 /* Force OE enable register. */
145 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN 0x30
146 /*
147 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
148 * SDA/SCL lines:
149 *
150 * SMBUS GW0 -> bits[26:25]
151 * SMBUS GW1 -> bits[28:27]
152 * SMBUS GW2 -> bits[30:29]
153 */
154 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
155
156 /* Note that gw_id can be 0,1 or 2. */
157 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
158 (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
159
160 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
161 ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
162
163 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
164 ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
165
166 /* SMBus timing parameters. */
167 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH 0x00
168 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE 0x04
169 #define MLXBF_I2C_SMBUS_TIMER_THOLD 0x08
170 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP 0x0c
171 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA 0x10
172 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF 0x14
173 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT 0x18
174
175 enum {
176 MLXBF_I2C_TIMING_100KHZ = 100000,
177 MLXBF_I2C_TIMING_400KHZ = 400000,
178 MLXBF_I2C_TIMING_1000KHZ = 1000000,
179 };
180
181 /*
182 * Defines SMBus operating frequency and core clock frequency.
183 * According to ADB files, default values are compliant to 100KHz SMBus
184 * @ 400MHz core clock. The driver should be able to calculate core
185 * frequency based on PLL parameters.
186 */
187 #define MLXBF_I2C_COREPLL_FREQ MLXBF_I2C_TYU_PLL_OUT_FREQ
188
189 /* Core PLL TYU configuration. */
190 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK GENMASK(12, 0)
191 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK GENMASK(3, 0)
192 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK GENMASK(5, 0)
193
194 #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT 3
195 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16
196 #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT 20
197
198 /* Core PLL YU configuration. */
199 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK GENMASK(25, 0)
200 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK GENMASK(3, 0)
201 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK GENMASK(5, 0)
202
203 #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT 0
204 #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT 1
205 #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT 26
206
207 /* Core PLL frequency. */
208 static u64 mlxbf_i2c_corepll_frequency;
209
210 /* SMBus Master GW. */
211 #define MLXBF_I2C_SMBUS_MASTER_GW 0x200
212 /* Number of bytes received and sent. */
213 #define MLXBF_I2C_SMBUS_RS_BYTES 0x300
214 /* Packet error check (PEC) value. */
215 #define MLXBF_I2C_SMBUS_MASTER_PEC 0x304
216 /* Status bits (ACK/NACK/FW Timeout). */
217 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
218 /* SMbus Master Finite State Machine. */
219 #define MLXBF_I2C_SMBUS_MASTER_FSM 0x310
220
221 /*
222 * When enabled, the master will issue a stop condition in case of
223 * timeout while waiting for FW response.
224 */
225 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
226
227 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
228 #define MLXBF_I2C_MASTER_LOCK_BIT BIT(31) /* Lock bit. */
229 #define MLXBF_I2C_MASTER_BUSY_BIT BIT(30) /* Busy bit. */
230 #define MLXBF_I2C_MASTER_START_BIT BIT(29) /* Control start. */
231 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT BIT(28) /* Control write phase. */
232 #define MLXBF_I2C_MASTER_CTL_READ_BIT BIT(19) /* Control read phase. */
233 #define MLXBF_I2C_MASTER_STOP_BIT BIT(3) /* Control stop. */
234
235 #define MLXBF_I2C_MASTER_ENABLE \
236 (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
237 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
238
239 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
240 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
241
242 #define MLXBF_I2C_MASTER_ENABLE_READ \
243 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
244
245 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT 12 /* Slave address shift. */
246 #define MLXBF_I2C_MASTER_WRITE_SHIFT 21 /* Control write bytes shift. */
247 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT 20 /* Send PEC byte shift. */
248 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT 11 /* Parse expected bytes shift. */
249 #define MLXBF_I2C_MASTER_READ_SHIFT 4 /* Control read bytes shift. */
250
251 /* SMBus master GW Data descriptor. */
252 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR 0x280
253 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE 0x80 /* Size in bytes. */
254
255 /* Maximum bytes to read/write per SMBus transaction. */
256 #define MLXBF_I2C_MASTER_DATA_R_LENGTH MLXBF_I2C_MASTER_DATA_DESC_SIZE
257 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
258
259 /* All bytes were transmitted. */
260 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE BIT(0)
261 /* NACK received. */
262 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV BIT(1)
263 /* Slave's byte count >128 bytes. */
264 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR BIT(2)
265 /* Timeout occurred. */
266 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT BIT(3)
267
268 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK GENMASK(3, 0)
269
270 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
271 (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
272 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
273 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
274
275 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK BIT(31)
276 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK BIT(15)
277
278 /* SMBus slave GW. */
279 #define MLXBF_I2C_SMBUS_SLAVE_GW 0x400
280 /* Number of bytes received and sent from/to master. */
281 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
282 /* Packet error check (PEC) value. */
283 #define MLXBF_I2C_SMBUS_SLAVE_PEC 0x504
284 /* SMBus slave Finite State Machine (FSM). */
285 #define MLXBF_I2C_SMBUS_SLAVE_FSM 0x510
286 /*
287 * Should be set when all raised causes handled, and cleared by HW on
288 * every new cause.
289 */
290 #define MLXBF_I2C_SMBUS_SLAVE_READY 0x52c
291
292 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
293 #define MLXBF_I2C_SLAVE_BUSY_BIT BIT(30) /* Busy bit. */
294 #define MLXBF_I2C_SLAVE_WRITE_BIT BIT(29) /* Control write enable. */
295
296 #define MLXBF_I2C_SLAVE_ENABLE \
297 (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
298
299 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
300 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT 21 /* Send PEC byte shift. */
301
302 /* SMBus slave GW Data descriptor. */
303 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR 0x480
304 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE 0x80 /* Size in bytes. */
305
306 /* SMbus slave configuration registers. */
307 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG 0x514
308 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT 16
309 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT 7
310 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK GENMASK(6, 0)
311
312 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
313 ((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
314
315 /*
316 * Timeout is given in microsends. Note also that timeout handling is not
317 * exact.
318 */
319 #define MLXBF_I2C_SMBUS_TIMEOUT (300 * 1000) /* 300ms */
320
321 /* Encapsulates timing parameters. */
322 struct mlxbf_i2c_timings {
323 u16 scl_high; /* Clock high period. */
324 u16 scl_low; /* Clock low period. */
325 u8 sda_rise; /* Data rise time. */
326 u8 sda_fall; /* Data fall time. */
327 u8 scl_rise; /* Clock rise time. */
328 u8 scl_fall; /* Clock fall time. */
329 u16 hold_start; /* Hold time after (REPEATED) START. */
330 u16 hold_data; /* Data hold time. */
331 u16 setup_start; /* REPEATED START condition setup time. */
332 u16 setup_stop; /* STOP condition setup time. */
333 u16 setup_data; /* Data setup time. */
334 u16 pad; /* Padding. */
335 u16 buf; /* Bus free time between STOP and START. */
336 u16 thigh_max; /* Thigh max. */
337 u32 timeout; /* Detect clock low timeout. */
338 };
339
340 enum {
341 MLXBF_I2C_F_READ = BIT(0),
342 MLXBF_I2C_F_WRITE = BIT(1),
343 MLXBF_I2C_F_NORESTART = BIT(3),
344 MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
345 MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
346 MLXBF_I2C_F_SMBUS_PEC = BIT(6),
347 MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
348 };
349
350 struct mlxbf_i2c_smbus_operation {
351 u32 flags;
352 u32 length; /* Buffer length in bytes. */
353 u8 *buffer;
354 };
355
356 #define MLXBF_I2C_SMBUS_OP_CNT_1 1
357 #define MLXBF_I2C_SMBUS_OP_CNT_2 2
358 #define MLXBF_I2C_SMBUS_OP_CNT_3 3
359 #define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
360
361 struct mlxbf_i2c_smbus_request {
362 u8 slave;
363 u8 operation_cnt;
364 struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
365 };
366
367 struct mlxbf_i2c_resource {
368 void __iomem *io;
369 struct resource *params;
370 struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
371 u8 type;
372 };
373
374 /* List of chip resources that are being accessed by the driver. */
375 enum {
376 MLXBF_I2C_SMBUS_RES,
377 MLXBF_I2C_MST_CAUSE_RES,
378 MLXBF_I2C_SLV_CAUSE_RES,
379 MLXBF_I2C_COALESCE_RES,
380 MLXBF_I2C_COREPLL_RES,
381 MLXBF_I2C_GPIO_RES,
382 MLXBF_I2C_END_RES,
383 };
384
385 /* Helper macro to define an I2C resource parameters. */
386 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
387 { \
388 .start = (addr), \
389 .end = (addr) + (size) - 1, \
390 .name = (str) \
391 }
392
393 static struct resource mlxbf_i2c_coalesce_tyu_params =
394 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
395 MLXBF_I2C_COALESCE_TYU_SIZE,
396 "COALESCE_MEM");
397 static struct resource mlxbf_i2c_corepll_tyu_params =
398 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
399 MLXBF_I2C_COREPLL_TYU_SIZE,
400 "COREPLL_MEM");
401 static struct resource mlxbf_i2c_corepll_yu_params =
402 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
403 MLXBF_I2C_COREPLL_YU_SIZE,
404 "COREPLL_MEM");
405 static struct resource mlxbf_i2c_gpio_tyu_params =
406 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
407 MLXBF_I2C_GPIO_TYU_SIZE,
408 "GPIO_MEM");
409
410 static struct mutex mlxbf_i2c_coalesce_lock;
411 static struct mutex mlxbf_i2c_corepll_lock;
412 static struct mutex mlxbf_i2c_gpio_lock;
413
414 /* Mellanox BlueField chip type. */
415 enum mlxbf_i2c_chip_type {
416 MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
417 MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
418 };
419
420 struct mlxbf_i2c_chip_info {
421 enum mlxbf_i2c_chip_type type;
422 /* Chip shared resources that are being used by the I2C controller. */
423 struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
424
425 /* Callback to calculate the core PLL frequency. */
426 u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
427 };
428
429 struct mlxbf_i2c_priv {
430 const struct mlxbf_i2c_chip_info *chip;
431 struct i2c_adapter adap;
432 struct mlxbf_i2c_resource *smbus;
433 struct mlxbf_i2c_resource *mst_cause;
434 struct mlxbf_i2c_resource *slv_cause;
435 struct mlxbf_i2c_resource *coalesce;
436 u64 frequency; /* Core frequency in Hz. */
437 int bus; /* Physical bus identifier. */
438 int irq;
439 struct i2c_client *slave;
440 };
441
442 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
443 [MLXBF_I2C_CHIP_TYPE_1] = {
444 .params = &mlxbf_i2c_coalesce_tyu_params,
445 .lock = &mlxbf_i2c_coalesce_lock,
446 .type = MLXBF_I2C_COALESCE_RES
447 },
448 {}
449 };
450
451 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
452 [MLXBF_I2C_CHIP_TYPE_1] = {
453 .params = &mlxbf_i2c_corepll_tyu_params,
454 .lock = &mlxbf_i2c_corepll_lock,
455 .type = MLXBF_I2C_COREPLL_RES
456 },
457 [MLXBF_I2C_CHIP_TYPE_2] = {
458 .params = &mlxbf_i2c_corepll_yu_params,
459 .lock = &mlxbf_i2c_corepll_lock,
460 .type = MLXBF_I2C_COREPLL_RES,
461 }
462 };
463
464 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
465 [MLXBF_I2C_CHIP_TYPE_1] = {
466 .params = &mlxbf_i2c_gpio_tyu_params,
467 .lock = &mlxbf_i2c_gpio_lock,
468 .type = MLXBF_I2C_GPIO_RES
469 },
470 {}
471 };
472
473 static u8 mlxbf_i2c_bus_count;
474
475 static struct mutex mlxbf_i2c_bus_lock;
476
477 /* Polling frequency in microseconds. */
478 #define MLXBF_I2C_POLL_FREQ_IN_USEC 200
479
480 #define MLXBF_I2C_SHIFT_0 0
481 #define MLXBF_I2C_SHIFT_8 8
482 #define MLXBF_I2C_SHIFT_16 16
483 #define MLXBF_I2C_SHIFT_24 24
484
485 #define MLXBF_I2C_MASK_8 GENMASK(7, 0)
486 #define MLXBF_I2C_MASK_16 GENMASK(15, 0)
487
488 #define MLXBF_I2C_FREQUENCY_1GHZ 1000000000
489
490 /*
491 * Function to poll a set of bits at a specific address; it checks whether
492 * the bits are equal to zero when eq_zero is set to 'true', and not equal
493 * to zero when eq_zero is set to 'false'.
494 * Note that the timeout is given in microseconds.
495 */
mlxbf_smbus_poll(void __iomem * io,u32 addr,u32 mask,bool eq_zero,u32 timeout)496 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
497 bool eq_zero, u32 timeout)
498 {
499 u32 bits;
500
501 timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
502
503 do {
504 bits = readl(io + addr) & mask;
505 if (eq_zero ? bits == 0 : bits != 0)
506 return eq_zero ? 1 : bits;
507 udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
508 } while (timeout-- != 0);
509
510 return 0;
511 }
512
513 /*
514 * SW must make sure that the SMBus Master GW is idle before starting
515 * a transaction. Accordingly, this function polls the Master FSM stop
516 * bit; it returns false when the bit is asserted, true if not.
517 */
mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv * priv)518 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
519 {
520 u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
521 u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
522 u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
523
524 if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
525 return true;
526
527 return false;
528 }
529
mlxbf_i2c_smbus_transaction_success(u32 master_status,u32 cause_status)530 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
531 u32 cause_status)
532 {
533 /*
534 * When transaction ended with STOP, all bytes were transmitted,
535 * and no NACK received, then the transaction ended successfully.
536 * On the other hand, when the GW is configured with the stop bit
537 * de-asserted then the SMBus expects the following GW configuration
538 * for transfer continuation.
539 */
540 if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
541 ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
542 (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
543 !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
544 return true;
545
546 return false;
547 }
548
549 /*
550 * Poll SMBus master status and return transaction status,
551 * i.e. whether succeeded or failed. I2C and SMBus fault codes
552 * are returned as negative numbers from most calls, with zero
553 * or some positive number indicating a non-fault return.
554 */
mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv * priv)555 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
556 {
557 u32 master_status_bits;
558 u32 cause_status_bits;
559
560 /*
561 * GW busy bit is raised by the driver and cleared by the HW
562 * when the transaction is completed. The busy bit is a good
563 * indicator of transaction status. So poll the busy bit, and
564 * then read the cause and master status bits to determine if
565 * errors occurred during the transaction.
566 */
567 mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
568 MLXBF_I2C_MASTER_BUSY_BIT, true,
569 MLXBF_I2C_SMBUS_TIMEOUT);
570
571 /* Read cause status bits. */
572 cause_status_bits = readl(priv->mst_cause->io +
573 MLXBF_I2C_CAUSE_ARBITER);
574 cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
575
576 /*
577 * Parse both Cause and Master GW bits, then return transaction status.
578 */
579
580 master_status_bits = readl(priv->smbus->io +
581 MLXBF_I2C_SMBUS_MASTER_STATUS);
582 master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
583
584 if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
585 cause_status_bits))
586 return 0;
587
588 /*
589 * In case of timeout on GW busy, the ISR will clear busy bit but
590 * transaction ended bits cause will not be set so the transaction
591 * fails. Then, we must check Master GW status bits.
592 */
593 if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
594 (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
595 MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
596 return -EIO;
597
598 if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
599 return -EAGAIN;
600
601 return -ETIMEDOUT;
602 }
603
mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv * priv,const u8 * data,u8 length,u32 addr)604 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
605 const u8 *data, u8 length, u32 addr)
606 {
607 u8 offset, aligned_length;
608 u32 data32;
609
610 aligned_length = round_up(length, 4);
611
612 /*
613 * Copy data bytes from 4-byte aligned source buffer.
614 * Data copied to the Master GW Data Descriptor MUST be shifted
615 * left so the data starts at the MSB of the descriptor registers
616 * as required by the underlying hardware. Enable byte swapping
617 * when writing data bytes to the 32 * 32-bit HW Data registers
618 * a.k.a Master GW Data Descriptor.
619 */
620 for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
621 data32 = *((u32 *)(data + offset));
622 iowrite32be(data32, priv->smbus->io + addr + offset);
623 }
624 }
625
mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv * priv,u8 * data,u8 length,u32 addr)626 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
627 u8 *data, u8 length, u32 addr)
628 {
629 u32 data32, mask;
630 u8 byte, offset;
631
632 mask = sizeof(u32) - 1;
633
634 /*
635 * Data bytes in the Master GW Data Descriptor are shifted left
636 * so the data starts at the MSB of the descriptor registers as
637 * set by the underlying hardware. Enable byte swapping while
638 * reading data bytes from the 32 * 32-bit HW Data registers
639 * a.k.a Master GW Data Descriptor.
640 */
641
642 for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
643 data32 = ioread32be(priv->smbus->io + addr + offset);
644 *((u32 *)(data + offset)) = data32;
645 }
646
647 if (!(length & mask))
648 return;
649
650 data32 = ioread32be(priv->smbus->io + addr + offset);
651
652 for (byte = 0; byte < (length & mask); byte++) {
653 data[offset + byte] = data32 & GENMASK(7, 0);
654 data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
655 }
656 }
657
mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv * priv,u8 slave,u8 len,u8 block_en,u8 pec_en,bool read)658 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
659 u8 len, u8 block_en, u8 pec_en, bool read)
660 {
661 u32 command;
662
663 /* Set Master GW control word. */
664 if (read) {
665 command = MLXBF_I2C_MASTER_ENABLE_READ;
666 command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
667 } else {
668 command = MLXBF_I2C_MASTER_ENABLE_WRITE;
669 command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
670 }
671 command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
672 command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
673 command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
674
675 /* Clear status bits. */
676 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
677 /* Set the cause data. */
678 writel(~0x0, priv->smbus->io + MLXBF_I2C_CAUSE_OR_CLEAR);
679 /* Zero PEC byte. */
680 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
681 /* Zero byte count. */
682 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
683
684 /* GW activation. */
685 writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
686
687 /*
688 * Poll master status and check status bits. An ACK is sent when
689 * completing writing data to the bus (Master 'byte_count_done' bit
690 * is set to 1).
691 */
692 return mlxbf_i2c_smbus_check_status(priv);
693 }
694
695 static int
mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv * priv,struct mlxbf_i2c_smbus_request * request)696 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
697 struct mlxbf_i2c_smbus_request *request)
698 {
699 u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
700 u8 op_idx, data_idx, data_len, write_len, read_len;
701 struct mlxbf_i2c_smbus_operation *operation;
702 u8 read_en, write_en, block_en, pec_en;
703 u8 slave, flags, addr;
704 u8 *read_buf;
705 int ret = 0;
706
707 if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
708 return -EINVAL;
709
710 read_buf = NULL;
711 data_idx = 0;
712 read_en = 0;
713 write_en = 0;
714 write_len = 0;
715 read_len = 0;
716 block_en = 0;
717 pec_en = 0;
718 slave = request->slave & GENMASK(6, 0);
719 addr = slave << 1;
720
721 /* First of all, check whether the HW is idle. */
722 if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
723 return -EBUSY;
724
725 /* Set first byte. */
726 data_desc[data_idx++] = addr;
727
728 for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
729 operation = &request->operation[op_idx];
730 flags = operation->flags;
731
732 /*
733 * Note that read and write operations might be handled by a
734 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
735 * then write command byte and set the optional SMBus specific
736 * bits such as block_en and pec_en. These bits MUST be
737 * submitted by the first operation only.
738 */
739 if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
740 block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
741 pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
742 }
743
744 if (flags & MLXBF_I2C_F_WRITE) {
745 write_en = 1;
746 write_len += operation->length;
747 memcpy(data_desc + data_idx,
748 operation->buffer, operation->length);
749 data_idx += operation->length;
750 }
751 /*
752 * We assume that read operations are performed only once per
753 * SMBus transaction. *TBD* protect this statement so it won't
754 * be executed twice? or return an error if we try to read more
755 * than once?
756 */
757 if (flags & MLXBF_I2C_F_READ) {
758 read_en = 1;
759 /* Subtract 1 as required by HW. */
760 read_len = operation->length - 1;
761 read_buf = operation->buffer;
762 }
763 }
764
765 /* Set Master GW data descriptor. */
766 data_len = write_len + 1; /* Add one byte of the slave address. */
767 /*
768 * Note that data_len cannot be 0. Indeed, the slave address byte
769 * must be written to the data registers.
770 */
771 mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
772 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
773
774 if (write_en) {
775 ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
776 pec_en, 0);
777 if (ret)
778 return ret;
779 }
780
781 if (read_en) {
782 /* Write slave address to Master GW data descriptor. */
783 mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
784 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
785 ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
786 pec_en, 1);
787 if (!ret) {
788 /* Get Master GW data descriptor. */
789 mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
790 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
791
792 /* Get data from Master GW data descriptor. */
793 memcpy(read_buf, data_desc, read_len + 1);
794 }
795
796 /*
797 * After a read operation the SMBus FSM ps (present state)
798 * needs to be 'manually' reset. This should be removed in
799 * next tag integration.
800 */
801 writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
802 priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
803 }
804
805 return ret;
806 }
807
808 /* I2C SMBus protocols. */
809
810 static void
mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request * request,u8 read)811 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
812 u8 read)
813 {
814 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
815
816 request->operation[0].length = 0;
817 request->operation[0].flags = MLXBF_I2C_F_WRITE;
818 request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
819 }
820
mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request * request,u8 * data,bool read,bool pec_check)821 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
822 u8 *data, bool read, bool pec_check)
823 {
824 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
825
826 request->operation[0].length = 1;
827 request->operation[0].length += pec_check;
828
829 request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
830 request->operation[0].flags |= read ?
831 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
832 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
833
834 request->operation[0].buffer = data;
835 }
836
837 static void
mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,bool read,bool pec_check)838 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
839 u8 *command, u8 *data, bool read, bool pec_check)
840 {
841 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
842
843 request->operation[0].length = 1;
844 request->operation[0].flags =
845 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
846 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
847 request->operation[0].buffer = command;
848
849 request->operation[1].length = 1;
850 request->operation[1].length += pec_check;
851 request->operation[1].flags = read ?
852 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
853 request->operation[1].buffer = data;
854 }
855
856 static void
mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,bool read,bool pec_check)857 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
858 u8 *command, u8 *data, bool read, bool pec_check)
859 {
860 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
861
862 request->operation[0].length = 1;
863 request->operation[0].flags =
864 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
865 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
866 request->operation[0].buffer = command;
867
868 request->operation[1].length = 2;
869 request->operation[1].length += pec_check;
870 request->operation[1].flags = read ?
871 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
872 request->operation[1].buffer = data;
873 }
874
875 static void
mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,u8 * data_len,bool read,bool pec_check)876 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
877 u8 *command, u8 *data, u8 *data_len, bool read,
878 bool pec_check)
879 {
880 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
881
882 request->operation[0].length = 1;
883 request->operation[0].flags =
884 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
885 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
886 request->operation[0].buffer = command;
887
888 /*
889 * As specified in the standard, the max number of bytes to read/write
890 * per block operation is 32 bytes. In Golan code, the controller can
891 * read up to 128 bytes and write up to 127 bytes.
892 */
893 request->operation[1].length =
894 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
895 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
896 request->operation[1].flags = read ?
897 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
898 /*
899 * Skip the first data byte, which corresponds to the number of bytes
900 * to read/write.
901 */
902 request->operation[1].buffer = data + 1;
903
904 *data_len = request->operation[1].length;
905
906 /* Set the number of byte to read. This will be used by userspace. */
907 if (read)
908 data[0] = *data_len;
909 }
910
mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,u8 * data_len,bool read,bool pec_check)911 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
912 u8 *command, u8 *data, u8 *data_len,
913 bool read, bool pec_check)
914 {
915 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
916
917 request->operation[0].length = 1;
918 request->operation[0].flags =
919 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
920 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
921 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
922 request->operation[0].buffer = command;
923
924 request->operation[1].length =
925 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
926 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
927 request->operation[1].flags = read ?
928 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
929 request->operation[1].buffer = data + 1;
930
931 *data_len = request->operation[1].length;
932
933 /* Set the number of bytes to read. This will be used by userspace. */
934 if (read)
935 data[0] = *data_len;
936 }
937
938 static void
mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,bool pec_check)939 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
940 u8 *command, u8 *data, bool pec_check)
941 {
942 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
943
944 request->operation[0].length = 1;
945 request->operation[0].flags =
946 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
947 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
948 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
949 request->operation[0].buffer = command;
950
951 request->operation[1].length = 2;
952 request->operation[1].flags = MLXBF_I2C_F_WRITE;
953 request->operation[1].buffer = data;
954
955 request->operation[2].length = 3;
956 request->operation[2].flags = MLXBF_I2C_F_READ;
957 request->operation[2].buffer = data;
958 }
959
960 static void
mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,u8 * data_len,bool pec_check)961 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
962 u8 *command, u8 *data, u8 *data_len,
963 bool pec_check)
964 {
965 u32 length;
966
967 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
968
969 request->operation[0].length = 1;
970 request->operation[0].flags =
971 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
972 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
973 request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
974 request->operation[0].buffer = command;
975
976 length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
977 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
978
979 request->operation[1].length = length - pec_check;
980 request->operation[1].flags = MLXBF_I2C_F_WRITE;
981 request->operation[1].buffer = data;
982
983 request->operation[2].length = length;
984 request->operation[2].flags = MLXBF_I2C_F_READ;
985 request->operation[2].buffer = data;
986
987 *data_len = length; /* including PEC byte. */
988 }
989
990 /* Initialization functions. */
991
mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv * priv,u8 type)992 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
993 {
994 return priv->chip->type == type;
995 }
996
997 static struct mlxbf_i2c_resource *
mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv * priv,u8 type)998 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
999 {
1000 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1001 struct mlxbf_i2c_resource *res;
1002 u8 res_idx = 0;
1003
1004 for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1005 res = chip->shared_res[res_idx];
1006 if (res && res->type == type)
1007 return res;
1008 }
1009
1010 return NULL;
1011 }
1012
mlxbf_i2c_init_resource(struct platform_device * pdev,struct mlxbf_i2c_resource ** res,u8 type)1013 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1014 struct mlxbf_i2c_resource **res,
1015 u8 type)
1016 {
1017 struct mlxbf_i2c_resource *tmp_res;
1018 struct device *dev = &pdev->dev;
1019
1020 if (!res || *res || type >= MLXBF_I2C_END_RES)
1021 return -EINVAL;
1022
1023 tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1024 GFP_KERNEL);
1025 if (!tmp_res)
1026 return -ENOMEM;
1027
1028 tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1029 if (!tmp_res->params) {
1030 devm_kfree(dev, tmp_res);
1031 return -EIO;
1032 }
1033
1034 tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1035 if (IS_ERR(tmp_res->io)) {
1036 devm_kfree(dev, tmp_res);
1037 return PTR_ERR(tmp_res->io);
1038 }
1039
1040 tmp_res->type = type;
1041
1042 *res = tmp_res;
1043
1044 return 0;
1045 }
1046
mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv * priv,u64 nanoseconds,bool minimum)1047 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1048 bool minimum)
1049 {
1050 u64 frequency;
1051 u32 ticks;
1052
1053 /*
1054 * Compute ticks as follow:
1055 *
1056 * Ticks
1057 * Time = --------- x 10^9 => Ticks = Time x Frequency x 10^-9
1058 * Frequency
1059 */
1060 frequency = priv->frequency;
1061 ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1062 /*
1063 * The number of ticks is rounded down and if minimum is equal to 1
1064 * then add one tick.
1065 */
1066 if (minimum)
1067 ticks++;
1068
1069 return ticks;
1070 }
1071
mlxbf_i2c_set_timer(struct mlxbf_i2c_priv * priv,u64 nsec,bool opt,u32 mask,u8 shift)1072 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1073 u32 mask, u8 shift)
1074 {
1075 u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1076
1077 return val;
1078 }
1079
mlxbf_i2c_set_timings(struct mlxbf_i2c_priv * priv,const struct mlxbf_i2c_timings * timings)1080 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1081 const struct mlxbf_i2c_timings *timings)
1082 {
1083 u32 timer;
1084
1085 timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1086 false, MLXBF_I2C_MASK_16,
1087 MLXBF_I2C_SHIFT_0);
1088 timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1089 false, MLXBF_I2C_MASK_16,
1090 MLXBF_I2C_SHIFT_16);
1091 writel(timer, priv->smbus->io +
1092 MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1093
1094 timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1095 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1096 timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1097 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1098 timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1099 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1100 timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1101 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1102 writel(timer, priv->smbus->io +
1103 MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1104
1105 timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1106 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1107 timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1108 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1109 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1110
1111 timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1112 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1113 timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1114 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1115 writel(timer, priv->smbus->io +
1116 MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1117
1118 timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1119 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1120 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1121
1122 timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1123 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1124 timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1125 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1126 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1127
1128 timer = timings->timeout;
1129 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1130 }
1131
1132 enum mlxbf_i2c_timings_config {
1133 MLXBF_I2C_TIMING_CONFIG_100KHZ,
1134 MLXBF_I2C_TIMING_CONFIG_400KHZ,
1135 MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1136 };
1137
1138 /*
1139 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1140 * bus frequency, it is impacted by the time it takes the driver to
1141 * complete data transmission before transaction abort.
1142 */
1143 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1144 [MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1145 .scl_high = 4810,
1146 .scl_low = 5000,
1147 .hold_start = 4000,
1148 .setup_start = 4800,
1149 .setup_stop = 4000,
1150 .setup_data = 250,
1151 .sda_rise = 50,
1152 .sda_fall = 50,
1153 .scl_rise = 50,
1154 .scl_fall = 50,
1155 .hold_data = 300,
1156 .buf = 20000,
1157 .thigh_max = 5000,
1158 .timeout = 106500
1159 },
1160 [MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1161 .scl_high = 1011,
1162 .scl_low = 1300,
1163 .hold_start = 600,
1164 .setup_start = 700,
1165 .setup_stop = 600,
1166 .setup_data = 100,
1167 .sda_rise = 50,
1168 .sda_fall = 50,
1169 .scl_rise = 50,
1170 .scl_fall = 50,
1171 .hold_data = 300,
1172 .buf = 20000,
1173 .thigh_max = 5000,
1174 .timeout = 106500
1175 },
1176 [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1177 .scl_high = 600,
1178 .scl_low = 1300,
1179 .hold_start = 600,
1180 .setup_start = 600,
1181 .setup_stop = 600,
1182 .setup_data = 100,
1183 .sda_rise = 50,
1184 .sda_fall = 50,
1185 .scl_rise = 50,
1186 .scl_fall = 50,
1187 .hold_data = 300,
1188 .buf = 20000,
1189 .thigh_max = 5000,
1190 .timeout = 106500
1191 }
1192 };
1193
mlxbf_i2c_init_timings(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1194 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1195 struct mlxbf_i2c_priv *priv)
1196 {
1197 enum mlxbf_i2c_timings_config config_idx;
1198 struct device *dev = &pdev->dev;
1199 u32 config_khz;
1200
1201 int ret;
1202
1203 ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1204 if (ret < 0)
1205 config_khz = MLXBF_I2C_TIMING_100KHZ;
1206
1207 switch (config_khz) {
1208 default:
1209 /* Default settings is 100 KHz. */
1210 pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1211 config_khz);
1212 fallthrough;
1213 case MLXBF_I2C_TIMING_100KHZ:
1214 config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1215 break;
1216
1217 case MLXBF_I2C_TIMING_400KHZ:
1218 config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1219 break;
1220
1221 case MLXBF_I2C_TIMING_1000KHZ:
1222 config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1223 break;
1224 }
1225
1226 mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1227
1228 return 0;
1229 }
1230
mlxbf_i2c_get_gpio(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1231 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1232 struct mlxbf_i2c_priv *priv)
1233 {
1234 struct mlxbf_i2c_resource *gpio_res;
1235 struct device *dev = &pdev->dev;
1236 struct resource *params;
1237 resource_size_t size;
1238
1239 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1240 if (!gpio_res)
1241 return -EPERM;
1242
1243 /*
1244 * The GPIO region in TYU space is shared among I2C busses.
1245 * This function MUST be serialized to avoid racing when
1246 * claiming the memory region and/or setting up the GPIO.
1247 */
1248 lockdep_assert_held(gpio_res->lock);
1249
1250 /* Check whether the memory map exist. */
1251 if (gpio_res->io)
1252 return 0;
1253
1254 params = gpio_res->params;
1255 size = resource_size(params);
1256
1257 if (!devm_request_mem_region(dev, params->start, size, params->name))
1258 return -EFAULT;
1259
1260 gpio_res->io = devm_ioremap(dev, params->start, size);
1261 if (!gpio_res->io) {
1262 devm_release_mem_region(dev, params->start, size);
1263 return -ENOMEM;
1264 }
1265
1266 return 0;
1267 }
1268
mlxbf_i2c_release_gpio(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1269 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1270 struct mlxbf_i2c_priv *priv)
1271 {
1272 struct mlxbf_i2c_resource *gpio_res;
1273 struct device *dev = &pdev->dev;
1274 struct resource *params;
1275
1276 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1277 if (!gpio_res)
1278 return 0;
1279
1280 mutex_lock(gpio_res->lock);
1281
1282 if (gpio_res->io) {
1283 /* Release the GPIO resource. */
1284 params = gpio_res->params;
1285 devm_iounmap(dev, gpio_res->io);
1286 devm_release_mem_region(dev, params->start,
1287 resource_size(params));
1288 }
1289
1290 mutex_unlock(gpio_res->lock);
1291
1292 return 0;
1293 }
1294
mlxbf_i2c_get_corepll(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1295 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1296 struct mlxbf_i2c_priv *priv)
1297 {
1298 struct mlxbf_i2c_resource *corepll_res;
1299 struct device *dev = &pdev->dev;
1300 struct resource *params;
1301 resource_size_t size;
1302
1303 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1304 MLXBF_I2C_COREPLL_RES);
1305 if (!corepll_res)
1306 return -EPERM;
1307
1308 /*
1309 * The COREPLL region in TYU space is shared among I2C busses.
1310 * This function MUST be serialized to avoid racing when
1311 * claiming the memory region.
1312 */
1313 lockdep_assert_held(corepll_res->lock);
1314
1315 /* Check whether the memory map exist. */
1316 if (corepll_res->io)
1317 return 0;
1318
1319 params = corepll_res->params;
1320 size = resource_size(params);
1321
1322 if (!devm_request_mem_region(dev, params->start, size, params->name))
1323 return -EFAULT;
1324
1325 corepll_res->io = devm_ioremap(dev, params->start, size);
1326 if (!corepll_res->io) {
1327 devm_release_mem_region(dev, params->start, size);
1328 return -ENOMEM;
1329 }
1330
1331 return 0;
1332 }
1333
mlxbf_i2c_release_corepll(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1334 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1335 struct mlxbf_i2c_priv *priv)
1336 {
1337 struct mlxbf_i2c_resource *corepll_res;
1338 struct device *dev = &pdev->dev;
1339 struct resource *params;
1340
1341 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1342 MLXBF_I2C_COREPLL_RES);
1343
1344 mutex_lock(corepll_res->lock);
1345
1346 if (corepll_res->io) {
1347 /* Release the CorePLL resource. */
1348 params = corepll_res->params;
1349 devm_iounmap(dev, corepll_res->io);
1350 devm_release_mem_region(dev, params->start,
1351 resource_size(params));
1352 }
1353
1354 mutex_unlock(corepll_res->lock);
1355
1356 return 0;
1357 }
1358
mlxbf_i2c_init_master(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1359 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1360 struct mlxbf_i2c_priv *priv)
1361 {
1362 struct mlxbf_i2c_resource *gpio_res;
1363 struct device *dev = &pdev->dev;
1364 u32 config_reg;
1365 int ret;
1366
1367 /* This configuration is only needed for BlueField 1. */
1368 if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1369 return 0;
1370
1371 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1372 if (!gpio_res)
1373 return -EPERM;
1374
1375 /*
1376 * The GPIO region in TYU space is shared among I2C busses.
1377 * This function MUST be serialized to avoid racing when
1378 * claiming the memory region and/or setting up the GPIO.
1379 */
1380
1381 mutex_lock(gpio_res->lock);
1382
1383 ret = mlxbf_i2c_get_gpio(pdev, priv);
1384 if (ret < 0) {
1385 dev_err(dev, "Failed to get gpio resource");
1386 mutex_unlock(gpio_res->lock);
1387 return ret;
1388 }
1389
1390 /*
1391 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1392 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1393 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1394 * instead of HW_OE.
1395 * For now, we do not reset the GPIO state when the driver is removed.
1396 * First, it is not necessary to disable the bus since we are using
1397 * the same busses. Then, some busses might be shared among Linux and
1398 * platform firmware; disabling the bus might compromise the system
1399 * functionality.
1400 */
1401 config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1402 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1403 config_reg);
1404 writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1405
1406 config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1407 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1408 config_reg);
1409 writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1410
1411 mutex_unlock(gpio_res->lock);
1412
1413 return 0;
1414 }
1415
mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource * corepll_res)1416 static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1417 {
1418 u64 core_frequency, pad_frequency;
1419 u8 core_od, core_r;
1420 u32 corepll_val;
1421 u16 core_f;
1422
1423 pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1424
1425 corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1426
1427 /* Get Core PLL configuration bits. */
1428 core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) &
1429 MLXBF_I2C_COREPLL_CORE_F_TYU_MASK;
1430 core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) &
1431 MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK;
1432 core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) &
1433 MLXBF_I2C_COREPLL_CORE_R_TYU_MASK;
1434
1435 /*
1436 * Compute PLL output frequency as follow:
1437 *
1438 * CORE_F + 1
1439 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1440 * (CORE_R + 1) * (CORE_OD + 1)
1441 *
1442 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1443 * and PadFrequency, respectively.
1444 */
1445 core_frequency = pad_frequency * (++core_f);
1446 core_frequency /= (++core_r) * (++core_od);
1447
1448 return core_frequency;
1449 }
1450
mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource * corepll_res)1451 static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1452 {
1453 u32 corepll_reg1_val, corepll_reg2_val;
1454 u64 corepll_frequency, pad_frequency;
1455 u8 core_od, core_r;
1456 u32 core_f;
1457
1458 pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1459
1460 corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1461 corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1462
1463 /* Get Core PLL configuration bits */
1464 core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) &
1465 MLXBF_I2C_COREPLL_CORE_F_YU_MASK;
1466 core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) &
1467 MLXBF_I2C_COREPLL_CORE_R_YU_MASK;
1468 core_od = rol32(corepll_reg2_val, MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) &
1469 MLXBF_I2C_COREPLL_CORE_OD_YU_MASK;
1470
1471 /*
1472 * Compute PLL output frequency as follow:
1473 *
1474 * CORE_F / 16384
1475 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1476 * (CORE_R + 1) * (CORE_OD + 1)
1477 *
1478 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1479 * and PadFrequency, respectively.
1480 */
1481 corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST;
1482 corepll_frequency /= (++core_r) * (++core_od);
1483
1484 return corepll_frequency;
1485 }
1486
mlxbf_i2c_calculate_corepll_freq(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1487 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1488 struct mlxbf_i2c_priv *priv)
1489 {
1490 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1491 struct mlxbf_i2c_resource *corepll_res;
1492 struct device *dev = &pdev->dev;
1493 u64 *freq = &priv->frequency;
1494 int ret;
1495
1496 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1497 MLXBF_I2C_COREPLL_RES);
1498 if (!corepll_res)
1499 return -EPERM;
1500
1501 /*
1502 * First, check whether the TYU core Clock frequency is set.
1503 * The TYU core frequency is the same for all I2C busses; when
1504 * the first device gets probed the frequency is determined and
1505 * stored into a globally visible variable. So, first of all,
1506 * check whether the frequency is already set. Here, we assume
1507 * that the frequency is expected to be greater than 0.
1508 */
1509 mutex_lock(corepll_res->lock);
1510 if (!mlxbf_i2c_corepll_frequency) {
1511 if (!chip->calculate_freq) {
1512 mutex_unlock(corepll_res->lock);
1513 return -EPERM;
1514 }
1515
1516 ret = mlxbf_i2c_get_corepll(pdev, priv);
1517 if (ret < 0) {
1518 dev_err(dev, "Failed to get corePLL resource");
1519 mutex_unlock(corepll_res->lock);
1520 return ret;
1521 }
1522
1523 mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1524 }
1525 mutex_unlock(corepll_res->lock);
1526
1527 *freq = mlxbf_i2c_corepll_frequency;
1528
1529 return 0;
1530 }
1531
mlxbf_slave_enable(struct mlxbf_i2c_priv * priv,u8 addr)1532 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1533 {
1534 u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1535 u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1536 bool avail, disabled;
1537
1538 disabled = false;
1539 avail = false;
1540
1541 if (!priv)
1542 return -EPERM;
1543
1544 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1545 slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1546
1547 /*
1548 * Read the slave registers. There are 4 * 32-bit slave registers.
1549 * Each slave register can hold up to 4 * 8-bit slave configuration
1550 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1551 */
1552 for (reg = 0; reg < reg_cnt; reg++) {
1553 slave_reg = readl(priv->smbus->io +
1554 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1555 /*
1556 * Each register holds 4 slave addresses. So, we have to keep
1557 * the byte order consistent with the value read in order to
1558 * update the register correctly, if needed.
1559 */
1560 slave_reg_tmp = slave_reg;
1561 for (byte = 0; byte < 4; byte++) {
1562 addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1563
1564 /*
1565 * Mark the first available slave address slot, i.e. its
1566 * enabled bit should be unset. This slot might be used
1567 * later on to register our slave.
1568 */
1569 if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1570 avail = true;
1571 reg_avail = reg;
1572 byte_avail = byte;
1573 slave_reg_avail = slave_reg;
1574 }
1575
1576 /*
1577 * Parse slave address bytes and check whether the
1578 * slave address already exists and it's enabled,
1579 * i.e. most significant bit is set.
1580 */
1581 if ((addr_tmp & slave_addr_mask) == addr) {
1582 if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1583 return 0;
1584 disabled = true;
1585 break;
1586 }
1587
1588 /* Parse next byte. */
1589 slave_reg_tmp >>= 8;
1590 }
1591
1592 /* Exit the loop if the slave address is found. */
1593 if (disabled)
1594 break;
1595 }
1596
1597 if (!avail && !disabled)
1598 return -EINVAL; /* No room for a new slave address. */
1599
1600 if (avail && !disabled) {
1601 reg = reg_avail;
1602 byte = byte_avail;
1603 /* Set the slave address. */
1604 slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1605 slave_reg_avail |= addr << (byte * 8);
1606 slave_reg = slave_reg_avail;
1607 }
1608
1609 /* Enable the slave address and update the register. */
1610 slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1611 writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1612 reg * 0x4);
1613
1614 return 0;
1615 }
1616
mlxbf_slave_disable(struct mlxbf_i2c_priv * priv)1617 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1618 {
1619 u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1620 u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1621 struct i2c_client *client = priv->slave;
1622 bool exist;
1623
1624 exist = false;
1625
1626 addr = client->addr;
1627 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1628 slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1629
1630 /*
1631 * Read the slave registers. There are 4 * 32-bit slave registers.
1632 * Each slave register can hold up to 4 * 8-bit slave configuration
1633 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1634 */
1635 for (reg = 0; reg < reg_cnt; reg++) {
1636 slave_reg = readl(priv->smbus->io +
1637 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1638
1639 /* Check whether the address slots are empty. */
1640 if (slave_reg == 0)
1641 continue;
1642
1643 /*
1644 * Each register holds 4 slave addresses. So, we have to keep
1645 * the byte order consistent with the value read in order to
1646 * update the register correctly, if needed.
1647 */
1648 slave_reg_tmp = slave_reg;
1649 slave_byte = 0;
1650 while (slave_reg_tmp != 0) {
1651 addr_tmp = slave_reg_tmp & slave_addr_mask;
1652 /*
1653 * Parse slave address bytes and check whether the
1654 * slave address already exists.
1655 */
1656 if (addr_tmp == addr) {
1657 exist = true;
1658 break;
1659 }
1660
1661 /* Parse next byte. */
1662 slave_reg_tmp >>= 8;
1663 slave_byte += 1;
1664 }
1665
1666 /* Exit the loop if the slave address is found. */
1667 if (exist)
1668 break;
1669 }
1670
1671 if (!exist)
1672 return 0; /* Slave is not registered, nothing to do. */
1673
1674 /* Cleanup the slave address slot. */
1675 slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1676 writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1677 reg * 0x4);
1678
1679 return 0;
1680 }
1681
mlxbf_i2c_init_coalesce(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1682 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1683 struct mlxbf_i2c_priv *priv)
1684 {
1685 struct mlxbf_i2c_resource *coalesce_res;
1686 struct resource *params;
1687 resource_size_t size;
1688 int ret = 0;
1689
1690 /*
1691 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1692 * resource in the next generations of BlueField.
1693 */
1694 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1695 coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1696 MLXBF_I2C_COALESCE_RES);
1697 if (!coalesce_res)
1698 return -EPERM;
1699
1700 /*
1701 * The Cause Coalesce group in TYU space is shared among
1702 * I2C busses. This function MUST be serialized to avoid
1703 * racing when claiming the memory region.
1704 */
1705 lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1706
1707 /* Check whether the memory map exist. */
1708 if (coalesce_res->io) {
1709 priv->coalesce = coalesce_res;
1710 return 0;
1711 }
1712
1713 params = coalesce_res->params;
1714 size = resource_size(params);
1715
1716 if (!request_mem_region(params->start, size, params->name))
1717 return -EFAULT;
1718
1719 coalesce_res->io = ioremap(params->start, size);
1720 if (!coalesce_res->io) {
1721 release_mem_region(params->start, size);
1722 return -ENOMEM;
1723 }
1724
1725 priv->coalesce = coalesce_res;
1726
1727 } else {
1728 ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1729 MLXBF_I2C_COALESCE_RES);
1730 }
1731
1732 return ret;
1733 }
1734
mlxbf_i2c_release_coalesce(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1735 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1736 struct mlxbf_i2c_priv *priv)
1737 {
1738 struct mlxbf_i2c_resource *coalesce_res;
1739 struct device *dev = &pdev->dev;
1740 struct resource *params;
1741 resource_size_t size;
1742
1743 coalesce_res = priv->coalesce;
1744
1745 if (coalesce_res->io) {
1746 params = coalesce_res->params;
1747 size = resource_size(params);
1748 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1749 mutex_lock(coalesce_res->lock);
1750 iounmap(coalesce_res->io);
1751 release_mem_region(params->start, size);
1752 mutex_unlock(coalesce_res->lock);
1753 } else {
1754 devm_release_mem_region(dev, params->start, size);
1755 }
1756 }
1757
1758 return 0;
1759 }
1760
mlxbf_i2c_init_slave(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1761 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1762 struct mlxbf_i2c_priv *priv)
1763 {
1764 struct device *dev = &pdev->dev;
1765 u32 int_reg;
1766 int ret;
1767
1768 /* Reset FSM. */
1769 writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1770
1771 /*
1772 * Enable slave cause interrupt bits. Drive
1773 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1774 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1775 * masters issue a Read and Write, respectively. But, clear all
1776 * interrupts first.
1777 */
1778 writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1779 int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1780 int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1781 writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1782
1783 /* Finally, set the 'ready' bit to start handling transactions. */
1784 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1785
1786 /* Initialize the cause coalesce resource. */
1787 ret = mlxbf_i2c_init_coalesce(pdev, priv);
1788 if (ret < 0) {
1789 dev_err(dev, "failed to initialize cause coalesce\n");
1790 return ret;
1791 }
1792
1793 return 0;
1794 }
1795
mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv * priv,bool * read,bool * write)1796 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1797 bool *write)
1798 {
1799 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1800 u32 coalesce0_reg, cause_reg;
1801 u8 slave_shift, is_set;
1802
1803 *write = false;
1804 *read = false;
1805
1806 slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1807 MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1808 priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1809
1810 coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1811 is_set = coalesce0_reg & (1 << slave_shift);
1812
1813 if (!is_set)
1814 return false;
1815
1816 /* Check the source of the interrupt, i.e. whether a Read or Write. */
1817 cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1818 if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1819 *read = true;
1820 else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1821 *write = true;
1822
1823 /* Clear cause bits. */
1824 writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1825
1826 return true;
1827 }
1828
mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv * priv,u32 timeout)1829 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1830 u32 timeout)
1831 {
1832 u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1833 u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1834
1835 if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1836 return true;
1837
1838 return false;
1839 }
1840
1841 /* Send byte to 'external' smbus master. */
mlxbf_smbus_irq_send(struct mlxbf_i2c_priv * priv,u8 recv_bytes)1842 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1843 {
1844 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1845 u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1846 struct i2c_client *slave = priv->slave;
1847 u32 control32, data32;
1848 int ret;
1849
1850 if (!slave)
1851 return -EINVAL;
1852
1853 addr = 0;
1854 byte = 0;
1855 desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1856
1857 /*
1858 * Read bytes received from the external master. These bytes should
1859 * be located in the first data descriptor register of the slave GW.
1860 * These bytes are the slave address byte and the internal register
1861 * address, if supplied.
1862 */
1863 if (recv_bytes > 0) {
1864 data32 = ioread32be(priv->smbus->io +
1865 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1866
1867 /* Parse the received bytes. */
1868 switch (recv_bytes) {
1869 case 2:
1870 byte = (data32 >> 8) & GENMASK(7, 0);
1871 fallthrough;
1872 case 1:
1873 addr = (data32 & GENMASK(7, 0)) >> 1;
1874 }
1875
1876 /* Check whether it's our slave address. */
1877 if (slave->addr != addr)
1878 return -EINVAL;
1879 }
1880
1881 /*
1882 * I2C read transactions may start by a WRITE followed by a READ.
1883 * Indeed, most slave devices would expect the internal address
1884 * following the slave address byte. So, write that byte first,
1885 * and then, send the requested data bytes to the master.
1886 */
1887 if (recv_bytes > 1) {
1888 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1889 value = byte;
1890 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1891 &value);
1892 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1893
1894 if (ret < 0)
1895 return ret;
1896 }
1897
1898 /*
1899 * Now, send data to the master; currently, the driver supports
1900 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1901 * hardware can send up to 128 bytes per transfer. That is the
1902 * size of its data registers.
1903 */
1904 i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1905
1906 for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1907 data_desc[byte_cnt] = value;
1908 i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1909 }
1910
1911 /* Send a stop condition to the backend. */
1912 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1913
1914 /* Handle the actual transfer. */
1915
1916 /* Set the number of bytes to write to master. */
1917 write_size = (byte_cnt - 1) & 0x7f;
1918
1919 /* Write data to Slave GW data descriptor. */
1920 mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1921 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1922
1923 pec_en = 0; /* Disable PEC since it is not supported. */
1924
1925 /* Prepare control word. */
1926 control32 = MLXBF_I2C_SLAVE_ENABLE;
1927 control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1928 control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1929
1930 writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1931
1932 /*
1933 * Wait until the transfer is completed; the driver will wait
1934 * until the GW is idle, a cause will rise on fall of GW busy.
1935 */
1936 mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1937
1938 /* Release the Slave GW. */
1939 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1940 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1941 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1942
1943 return 0;
1944 }
1945
1946 /* Receive bytes from 'external' smbus master. */
mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv * priv,u8 recv_bytes)1947 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1948 {
1949 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1950 struct i2c_client *slave = priv->slave;
1951 u8 value, byte, addr;
1952 int ret = 0;
1953
1954 if (!slave)
1955 return -EINVAL;
1956
1957 /* Read data from Slave GW data descriptor. */
1958 mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1959 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1960
1961 /* Check whether its our slave address. */
1962 addr = data_desc[0] >> 1;
1963 if (slave->addr != addr)
1964 return -EINVAL;
1965
1966 /*
1967 * Notify the slave backend; another I2C master wants to write data
1968 * to us. This event is sent once the slave address and the write bit
1969 * is detected.
1970 */
1971 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1972
1973 /* Send the received data to the slave backend. */
1974 for (byte = 1; byte < recv_bytes; byte++) {
1975 value = data_desc[byte];
1976 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1977 &value);
1978 if (ret < 0)
1979 break;
1980 }
1981
1982 /* Send a stop condition to the backend. */
1983 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1984
1985 /* Release the Slave GW. */
1986 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1987 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1988 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1989
1990 return ret;
1991 }
1992
mlxbf_smbus_irq(int irq,void * ptr)1993 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
1994 {
1995 struct mlxbf_i2c_priv *priv = ptr;
1996 bool read, write, irq_is_set;
1997 u32 rw_bytes_reg;
1998 u8 recv_bytes;
1999
2000 /*
2001 * Read TYU interrupt register and determine the source of the
2002 * interrupt. Based on the source of the interrupt one of the
2003 * following actions are performed:
2004 * - Receive data and send response to master.
2005 * - Send data and release slave GW.
2006 *
2007 * Handle read/write transaction only. CRmaster and Iarp requests
2008 * are ignored for now.
2009 */
2010 irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2011 if (!irq_is_set || (!read && !write)) {
2012 /* Nothing to do here, interrupt was not from this device. */
2013 return IRQ_NONE;
2014 }
2015
2016 /*
2017 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2018 * bytes from/to master. These are defined by 8-bits each. If the lower
2019 * 8 bits are set, then the master expect to read N bytes from the
2020 * slave, if the higher 8 bits are sent then the slave expect N bytes
2021 * from the master.
2022 */
2023 rw_bytes_reg = readl(priv->smbus->io +
2024 MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2025 recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2026
2027 /*
2028 * For now, the slave supports 128 bytes transfer. Discard remaining
2029 * data bytes if the master wrote more than
2030 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2031 * data descriptor.
2032 *
2033 * Note that we will never expect to transfer more than 128 bytes; as
2034 * specified in the SMBus standard, block transactions cannot exceed
2035 * 32 bytes.
2036 */
2037 recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2038 MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2039
2040 if (read)
2041 mlxbf_smbus_irq_send(priv, recv_bytes);
2042 else
2043 mlxbf_smbus_irq_recv(priv, recv_bytes);
2044
2045 return IRQ_HANDLED;
2046 }
2047
2048 /* Return negative errno on error. */
mlxbf_i2c_smbus_xfer(struct i2c_adapter * adap,u16 addr,unsigned short flags,char read_write,u8 command,int size,union i2c_smbus_data * data)2049 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2050 unsigned short flags, char read_write,
2051 u8 command, int size,
2052 union i2c_smbus_data *data)
2053 {
2054 struct mlxbf_i2c_smbus_request request = { 0 };
2055 struct mlxbf_i2c_priv *priv;
2056 bool read, pec;
2057 u8 byte_cnt;
2058
2059 request.slave = addr;
2060
2061 read = (read_write == I2C_SMBUS_READ);
2062 pec = flags & I2C_FUNC_SMBUS_PEC;
2063
2064 switch (size) {
2065 case I2C_SMBUS_QUICK:
2066 mlxbf_i2c_smbus_quick_command(&request, read);
2067 dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2068 break;
2069
2070 case I2C_SMBUS_BYTE:
2071 mlxbf_i2c_smbus_byte_func(&request,
2072 read ? &data->byte : &command, read,
2073 pec);
2074 dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2075 read ? "read" : "write", addr);
2076 break;
2077
2078 case I2C_SMBUS_BYTE_DATA:
2079 mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2080 read, pec);
2081 dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2082 read ? "read" : "write", command, addr);
2083 break;
2084
2085 case I2C_SMBUS_WORD_DATA:
2086 mlxbf_i2c_smbus_data_word_func(&request, &command,
2087 (u8 *)&data->word, read, pec);
2088 dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2089 read ? "read" : "write", command, addr);
2090 break;
2091
2092 case I2C_SMBUS_I2C_BLOCK_DATA:
2093 byte_cnt = data->block[0];
2094 mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2095 &byte_cnt, read, pec);
2096 dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2097 read ? "read" : "write", byte_cnt, command, addr);
2098 break;
2099
2100 case I2C_SMBUS_BLOCK_DATA:
2101 byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2102 mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2103 &byte_cnt, read, pec);
2104 dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2105 read ? "read" : "write", byte_cnt, command, addr);
2106 break;
2107
2108 case I2C_FUNC_SMBUS_PROC_CALL:
2109 mlxbf_i2c_smbus_process_call_func(&request, &command,
2110 (u8 *)&data->word, pec);
2111 dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2112 command, addr);
2113 break;
2114
2115 case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2116 byte_cnt = data->block[0];
2117 mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2118 data->block, &byte_cnt,
2119 pec);
2120 dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2121 byte_cnt, addr);
2122 break;
2123
2124 default:
2125 dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2126 size);
2127 return -EOPNOTSUPP;
2128 }
2129
2130 priv = i2c_get_adapdata(adap);
2131
2132 return mlxbf_i2c_smbus_start_transaction(priv, &request);
2133 }
2134
mlxbf_i2c_reg_slave(struct i2c_client * slave)2135 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2136 {
2137 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2138 int ret;
2139
2140 if (priv->slave)
2141 return -EBUSY;
2142
2143 /*
2144 * Do not support ten bit chip address and do not use Packet Error
2145 * Checking (PEC).
2146 */
2147 if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2148 return -EAFNOSUPPORT;
2149
2150 ret = mlxbf_slave_enable(priv, slave->addr);
2151 if (ret < 0)
2152 return ret;
2153
2154 priv->slave = slave;
2155
2156 return 0;
2157 }
2158
mlxbf_i2c_unreg_slave(struct i2c_client * slave)2159 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2160 {
2161 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2162 int ret;
2163
2164 WARN_ON(!priv->slave);
2165
2166 /* Unregister slave, i.e. disable the slave address in hardware. */
2167 ret = mlxbf_slave_disable(priv);
2168 if (ret < 0)
2169 return ret;
2170
2171 priv->slave = NULL;
2172
2173 return 0;
2174 }
2175
mlxbf_i2c_functionality(struct i2c_adapter * adap)2176 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2177 {
2178 return MLXBF_I2C_FUNC_ALL;
2179 }
2180
2181 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2182 [MLXBF_I2C_CHIP_TYPE_1] = {
2183 .type = MLXBF_I2C_CHIP_TYPE_1,
2184 .shared_res = {
2185 [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2186 [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2187 [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2188 },
2189 .calculate_freq = mlxbf_calculate_freq_from_tyu
2190 },
2191 [MLXBF_I2C_CHIP_TYPE_2] = {
2192 .type = MLXBF_I2C_CHIP_TYPE_2,
2193 .shared_res = {
2194 [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2195 },
2196 .calculate_freq = mlxbf_calculate_freq_from_yu
2197 }
2198 };
2199
2200 static const struct i2c_algorithm mlxbf_i2c_algo = {
2201 .smbus_xfer = mlxbf_i2c_smbus_xfer,
2202 .functionality = mlxbf_i2c_functionality,
2203 .reg_slave = mlxbf_i2c_reg_slave,
2204 .unreg_slave = mlxbf_i2c_unreg_slave,
2205 };
2206
2207 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2208 .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2209 .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2210 };
2211
2212 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2213 {
2214 .compatible = "mellanox,i2c-mlxbf1",
2215 .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2216 },
2217 {
2218 .compatible = "mellanox,i2c-mlxbf2",
2219 .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2220 },
2221 {},
2222 };
2223
2224 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2225
2226 #ifdef CONFIG_ACPI
2227 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2228 { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2229 { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2230 {},
2231 };
2232
2233 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2234
mlxbf_i2c_acpi_probe(struct device * dev,struct mlxbf_i2c_priv * priv)2235 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2236 {
2237 const struct acpi_device_id *aid;
2238 struct acpi_device *adev;
2239 unsigned long bus_id = 0;
2240 const char *uid;
2241 int ret;
2242
2243 if (acpi_disabled)
2244 return -ENOENT;
2245
2246 adev = ACPI_COMPANION(dev);
2247 if (!adev)
2248 return -ENXIO;
2249
2250 aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2251 if (!aid)
2252 return -ENODEV;
2253
2254 priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2255
2256 uid = acpi_device_uid(adev);
2257 if (!uid || !(*uid)) {
2258 dev_err(dev, "Cannot retrieve UID\n");
2259 return -ENODEV;
2260 }
2261
2262 ret = kstrtoul(uid, 0, &bus_id);
2263 if (!ret)
2264 priv->bus = bus_id;
2265
2266 return ret;
2267 }
2268 #else
mlxbf_i2c_acpi_probe(struct device * dev,struct mlxbf_i2c_priv * priv)2269 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2270 {
2271 return -ENOENT;
2272 }
2273 #endif /* CONFIG_ACPI */
2274
mlxbf_i2c_of_probe(struct device * dev,struct mlxbf_i2c_priv * priv)2275 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2276 {
2277 const struct of_device_id *oid;
2278 int bus_id = -1;
2279
2280 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2281 oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2282 if (!oid)
2283 return -ENODEV;
2284
2285 priv->chip = oid->data;
2286
2287 bus_id = of_alias_get_id(dev->of_node, "i2c");
2288 if (bus_id >= 0)
2289 priv->bus = bus_id;
2290 }
2291
2292 if (bus_id < 0) {
2293 dev_err(dev, "Cannot get bus id");
2294 return bus_id;
2295 }
2296
2297 return 0;
2298 }
2299
mlxbf_i2c_probe(struct platform_device * pdev)2300 static int mlxbf_i2c_probe(struct platform_device *pdev)
2301 {
2302 struct device *dev = &pdev->dev;
2303 struct mlxbf_i2c_priv *priv;
2304 struct i2c_adapter *adap;
2305 int irq, ret;
2306
2307 priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2308 if (!priv)
2309 return -ENOMEM;
2310
2311 ret = mlxbf_i2c_acpi_probe(dev, priv);
2312 if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2313 ret = mlxbf_i2c_of_probe(dev, priv);
2314
2315 if (ret < 0)
2316 return ret;
2317
2318 ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2319 MLXBF_I2C_SMBUS_RES);
2320 if (ret < 0) {
2321 dev_err(dev, "Cannot fetch smbus resource info");
2322 return ret;
2323 }
2324
2325 ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2326 MLXBF_I2C_MST_CAUSE_RES);
2327 if (ret < 0) {
2328 dev_err(dev, "Cannot fetch cause master resource info");
2329 return ret;
2330 }
2331
2332 ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2333 MLXBF_I2C_SLV_CAUSE_RES);
2334 if (ret < 0) {
2335 dev_err(dev, "Cannot fetch cause slave resource info");
2336 return ret;
2337 }
2338
2339 adap = &priv->adap;
2340 adap->owner = THIS_MODULE;
2341 adap->class = I2C_CLASS_HWMON;
2342 adap->algo = &mlxbf_i2c_algo;
2343 adap->quirks = &mlxbf_i2c_quirks;
2344 adap->dev.parent = dev;
2345 adap->dev.of_node = dev->of_node;
2346 adap->nr = priv->bus;
2347
2348 snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2349 i2c_set_adapdata(adap, priv);
2350
2351 /* Read Core PLL frequency. */
2352 ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2353 if (ret < 0) {
2354 dev_err(dev, "cannot get core clock frequency\n");
2355 /* Set to default value. */
2356 priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2357 }
2358
2359 /*
2360 * Initialize master.
2361 * Note that a physical bus might be shared among Linux and firmware
2362 * (e.g., ATF). Thus, the bus should be initialized and ready and
2363 * bus initialization would be unnecessary. This requires additional
2364 * knowledge about physical busses. But, since an extra initialization
2365 * does not really hurt, then keep the code as is.
2366 */
2367 ret = mlxbf_i2c_init_master(pdev, priv);
2368 if (ret < 0) {
2369 dev_err(dev, "failed to initialize smbus master %d",
2370 priv->bus);
2371 return ret;
2372 }
2373
2374 mlxbf_i2c_init_timings(pdev, priv);
2375
2376 mlxbf_i2c_init_slave(pdev, priv);
2377
2378 irq = platform_get_irq(pdev, 0);
2379 ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2380 IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2381 dev_name(dev), priv);
2382 if (ret < 0) {
2383 dev_err(dev, "Cannot get irq %d\n", irq);
2384 return ret;
2385 }
2386
2387 priv->irq = irq;
2388
2389 platform_set_drvdata(pdev, priv);
2390
2391 ret = i2c_add_numbered_adapter(adap);
2392 if (ret < 0)
2393 return ret;
2394
2395 mutex_lock(&mlxbf_i2c_bus_lock);
2396 mlxbf_i2c_bus_count++;
2397 mutex_unlock(&mlxbf_i2c_bus_lock);
2398
2399 return 0;
2400 }
2401
mlxbf_i2c_remove(struct platform_device * pdev)2402 static int mlxbf_i2c_remove(struct platform_device *pdev)
2403 {
2404 struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2405 struct device *dev = &pdev->dev;
2406 struct resource *params;
2407
2408 params = priv->smbus->params;
2409 devm_release_mem_region(dev, params->start, resource_size(params));
2410
2411 params = priv->mst_cause->params;
2412 devm_release_mem_region(dev, params->start, resource_size(params));
2413
2414 params = priv->slv_cause->params;
2415 devm_release_mem_region(dev, params->start, resource_size(params));
2416
2417 /*
2418 * Release shared resources. This should be done when releasing
2419 * the I2C controller.
2420 */
2421 mutex_lock(&mlxbf_i2c_bus_lock);
2422 if (--mlxbf_i2c_bus_count == 0) {
2423 mlxbf_i2c_release_coalesce(pdev, priv);
2424 mlxbf_i2c_release_corepll(pdev, priv);
2425 mlxbf_i2c_release_gpio(pdev, priv);
2426 }
2427 mutex_unlock(&mlxbf_i2c_bus_lock);
2428
2429 devm_free_irq(dev, priv->irq, priv);
2430
2431 i2c_del_adapter(&priv->adap);
2432
2433 return 0;
2434 }
2435
2436 static struct platform_driver mlxbf_i2c_driver = {
2437 .probe = mlxbf_i2c_probe,
2438 .remove = mlxbf_i2c_remove,
2439 .driver = {
2440 .name = "i2c-mlxbf",
2441 .of_match_table = mlxbf_i2c_dt_ids,
2442 #ifdef CONFIG_ACPI
2443 .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2444 #endif /* CONFIG_ACPI */
2445 },
2446 };
2447
mlxbf_i2c_init(void)2448 static int __init mlxbf_i2c_init(void)
2449 {
2450 mutex_init(&mlxbf_i2c_coalesce_lock);
2451 mutex_init(&mlxbf_i2c_corepll_lock);
2452 mutex_init(&mlxbf_i2c_gpio_lock);
2453
2454 mutex_init(&mlxbf_i2c_bus_lock);
2455
2456 return platform_driver_register(&mlxbf_i2c_driver);
2457 }
2458 module_init(mlxbf_i2c_init);
2459
mlxbf_i2c_exit(void)2460 static void __exit mlxbf_i2c_exit(void)
2461 {
2462 platform_driver_unregister(&mlxbf_i2c_driver);
2463
2464 mutex_destroy(&mlxbf_i2c_bus_lock);
2465
2466 mutex_destroy(&mlxbf_i2c_gpio_lock);
2467 mutex_destroy(&mlxbf_i2c_corepll_lock);
2468 mutex_destroy(&mlxbf_i2c_coalesce_lock);
2469 }
2470 module_exit(mlxbf_i2c_exit);
2471
2472 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2473 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2474 MODULE_LICENSE("GPL v2");
2475