1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
4 *
5 * Copyright (C) 2005 James Chapman (ds1337 core)
6 * Copyright (C) 2006 David Brownell
7 * Copyright (C) 2009 Matthias Fuchs (rx8025 support)
8 * Copyright (C) 2012 Bertrand Achard (nvram access fixes)
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/bcd.h>
13 #include <linux/i2c.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/rtc/ds1307.h>
18 #include <linux/rtc.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/hwmon.h>
22 #include <linux/hwmon-sysfs.h>
23 #include <linux/clk-provider.h>
24 #include <linux/regmap.h>
25 #include <linux/watchdog.h>
26
27 /*
28 * We can't determine type by probing, but if we expect pre-Linux code
29 * to have set the chip up as a clock (turning on the oscillator and
30 * setting the date and time), Linux can ignore the non-clock features.
31 * That's a natural job for a factory or repair bench.
32 */
33 enum ds_type {
34 ds_1307,
35 ds_1308,
36 ds_1337,
37 ds_1338,
38 ds_1339,
39 ds_1340,
40 ds_1341,
41 ds_1388,
42 ds_3231,
43 m41t0,
44 m41t00,
45 m41t11,
46 mcp794xx,
47 rx_8025,
48 rx_8130,
49 last_ds_type /* always last */
50 /* rs5c372 too? different address... */
51 };
52
53 /* RTC registers don't differ much, except for the century flag */
54 #define DS1307_REG_SECS 0x00 /* 00-59 */
55 # define DS1307_BIT_CH 0x80
56 # define DS1340_BIT_nEOSC 0x80
57 # define MCP794XX_BIT_ST 0x80
58 #define DS1307_REG_MIN 0x01 /* 00-59 */
59 # define M41T0_BIT_OF 0x80
60 #define DS1307_REG_HOUR 0x02 /* 00-23, or 1-12{am,pm} */
61 # define DS1307_BIT_12HR 0x40 /* in REG_HOUR */
62 # define DS1307_BIT_PM 0x20 /* in REG_HOUR */
63 # define DS1340_BIT_CENTURY_EN 0x80 /* in REG_HOUR */
64 # define DS1340_BIT_CENTURY 0x40 /* in REG_HOUR */
65 #define DS1307_REG_WDAY 0x03 /* 01-07 */
66 # define MCP794XX_BIT_VBATEN 0x08
67 #define DS1307_REG_MDAY 0x04 /* 01-31 */
68 #define DS1307_REG_MONTH 0x05 /* 01-12 */
69 # define DS1337_BIT_CENTURY 0x80 /* in REG_MONTH */
70 #define DS1307_REG_YEAR 0x06 /* 00-99 */
71
72 /*
73 * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
74 * start at 7, and they differ a LOT. Only control and status matter for
75 * basic RTC date and time functionality; be careful using them.
76 */
77 #define DS1307_REG_CONTROL 0x07 /* or ds1338 */
78 # define DS1307_BIT_OUT 0x80
79 # define DS1338_BIT_OSF 0x20
80 # define DS1307_BIT_SQWE 0x10
81 # define DS1307_BIT_RS1 0x02
82 # define DS1307_BIT_RS0 0x01
83 #define DS1337_REG_CONTROL 0x0e
84 # define DS1337_BIT_nEOSC 0x80
85 # define DS1339_BIT_BBSQI 0x20
86 # define DS3231_BIT_BBSQW 0x40 /* same as BBSQI */
87 # define DS1337_BIT_RS2 0x10
88 # define DS1337_BIT_RS1 0x08
89 # define DS1337_BIT_INTCN 0x04
90 # define DS1337_BIT_A2IE 0x02
91 # define DS1337_BIT_A1IE 0x01
92 #define DS1340_REG_CONTROL 0x07
93 # define DS1340_BIT_OUT 0x80
94 # define DS1340_BIT_FT 0x40
95 # define DS1340_BIT_CALIB_SIGN 0x20
96 # define DS1340_M_CALIBRATION 0x1f
97 #define DS1340_REG_FLAG 0x09
98 # define DS1340_BIT_OSF 0x80
99 #define DS1337_REG_STATUS 0x0f
100 # define DS1337_BIT_OSF 0x80
101 # define DS3231_BIT_EN32KHZ 0x08
102 # define DS1337_BIT_A2I 0x02
103 # define DS1337_BIT_A1I 0x01
104 #define DS1339_REG_ALARM1_SECS 0x07
105
106 #define DS13XX_TRICKLE_CHARGER_MAGIC 0xa0
107
108 #define RX8025_REG_CTRL1 0x0e
109 # define RX8025_BIT_2412 0x20
110 #define RX8025_REG_CTRL2 0x0f
111 # define RX8025_BIT_PON 0x10
112 # define RX8025_BIT_VDET 0x40
113 # define RX8025_BIT_XST 0x20
114
115 #define RX8130_REG_ALARM_MIN 0x17
116 #define RX8130_REG_ALARM_HOUR 0x18
117 #define RX8130_REG_ALARM_WEEK_OR_DAY 0x19
118 #define RX8130_REG_EXTENSION 0x1c
119 #define RX8130_REG_EXTENSION_WADA BIT(3)
120 #define RX8130_REG_FLAG 0x1d
121 #define RX8130_REG_FLAG_VLF BIT(1)
122 #define RX8130_REG_FLAG_AF BIT(3)
123 #define RX8130_REG_CONTROL0 0x1e
124 #define RX8130_REG_CONTROL0_AIE BIT(3)
125 #define RX8130_REG_CONTROL1 0x1f
126 #define RX8130_REG_CONTROL1_INIEN BIT(4)
127 #define RX8130_REG_CONTROL1_CHGEN BIT(5)
128
129 #define MCP794XX_REG_CONTROL 0x07
130 # define MCP794XX_BIT_ALM0_EN 0x10
131 # define MCP794XX_BIT_ALM1_EN 0x20
132 #define MCP794XX_REG_ALARM0_BASE 0x0a
133 #define MCP794XX_REG_ALARM0_CTRL 0x0d
134 #define MCP794XX_REG_ALARM1_BASE 0x11
135 #define MCP794XX_REG_ALARM1_CTRL 0x14
136 # define MCP794XX_BIT_ALMX_IF BIT(3)
137 # define MCP794XX_BIT_ALMX_C0 BIT(4)
138 # define MCP794XX_BIT_ALMX_C1 BIT(5)
139 # define MCP794XX_BIT_ALMX_C2 BIT(6)
140 # define MCP794XX_BIT_ALMX_POL BIT(7)
141 # define MCP794XX_MSK_ALMX_MATCH (MCP794XX_BIT_ALMX_C0 | \
142 MCP794XX_BIT_ALMX_C1 | \
143 MCP794XX_BIT_ALMX_C2)
144
145 #define M41TXX_REG_CONTROL 0x07
146 # define M41TXX_BIT_OUT BIT(7)
147 # define M41TXX_BIT_FT BIT(6)
148 # define M41TXX_BIT_CALIB_SIGN BIT(5)
149 # define M41TXX_M_CALIBRATION GENMASK(4, 0)
150
151 #define DS1388_REG_WDOG_HUN_SECS 0x08
152 #define DS1388_REG_WDOG_SECS 0x09
153 #define DS1388_REG_FLAG 0x0b
154 # define DS1388_BIT_WF BIT(6)
155 # define DS1388_BIT_OSF BIT(7)
156 #define DS1388_REG_CONTROL 0x0c
157 # define DS1388_BIT_RST BIT(0)
158 # define DS1388_BIT_WDE BIT(1)
159 # define DS1388_BIT_nEOSC BIT(7)
160
161 /* negative offset step is -2.034ppm */
162 #define M41TXX_NEG_OFFSET_STEP_PPB 2034
163 /* positive offset step is +4.068ppm */
164 #define M41TXX_POS_OFFSET_STEP_PPB 4068
165 /* Min and max values supported with 'offset' interface by M41TXX */
166 #define M41TXX_MIN_OFFSET ((-31) * M41TXX_NEG_OFFSET_STEP_PPB)
167 #define M41TXX_MAX_OFFSET ((31) * M41TXX_POS_OFFSET_STEP_PPB)
168
169 struct ds1307 {
170 enum ds_type type;
171 unsigned long flags;
172 #define HAS_NVRAM 0 /* bit 0 == sysfs file active */
173 #define HAS_ALARM 1 /* bit 1 == irq claimed */
174 struct device *dev;
175 struct regmap *regmap;
176 const char *name;
177 struct rtc_device *rtc;
178 #ifdef CONFIG_COMMON_CLK
179 struct clk_hw clks[2];
180 #endif
181 };
182
183 struct chip_desc {
184 unsigned alarm:1;
185 u16 nvram_offset;
186 u16 nvram_size;
187 u8 offset; /* register's offset */
188 u8 century_reg;
189 u8 century_enable_bit;
190 u8 century_bit;
191 u8 bbsqi_bit;
192 irq_handler_t irq_handler;
193 const struct rtc_class_ops *rtc_ops;
194 u16 trickle_charger_reg;
195 u8 (*do_trickle_setup)(struct ds1307 *, u32,
196 bool);
197 /* Does the RTC require trickle-resistor-ohms to select the value of
198 * the resistor between Vcc and Vbackup?
199 */
200 bool requires_trickle_resistor;
201 /* Some RTC's batteries and supercaps were charged by default, others
202 * allow charging but were not configured previously to do so.
203 * Remember this behavior to stay backwards compatible.
204 */
205 bool charge_default;
206 };
207
208 static const struct chip_desc chips[last_ds_type];
209
ds1307_get_time(struct device * dev,struct rtc_time * t)210 static int ds1307_get_time(struct device *dev, struct rtc_time *t)
211 {
212 struct ds1307 *ds1307 = dev_get_drvdata(dev);
213 int tmp, ret;
214 const struct chip_desc *chip = &chips[ds1307->type];
215 u8 regs[7];
216
217 if (ds1307->type == rx_8130) {
218 unsigned int regflag;
219 ret = regmap_read(ds1307->regmap, RX8130_REG_FLAG, ®flag);
220 if (ret) {
221 dev_err(dev, "%s error %d\n", "read", ret);
222 return ret;
223 }
224
225 if (regflag & RX8130_REG_FLAG_VLF) {
226 dev_warn_once(dev, "oscillator failed, set time!\n");
227 return -EINVAL;
228 }
229 }
230
231 /* read the RTC date and time registers all at once */
232 ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
233 sizeof(regs));
234 if (ret) {
235 dev_err(dev, "%s error %d\n", "read", ret);
236 return ret;
237 }
238
239 dev_dbg(dev, "%s: %7ph\n", "read", regs);
240
241 /* if oscillator fail bit is set, no data can be trusted */
242 if (ds1307->type == m41t0 &&
243 regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
244 dev_warn_once(dev, "oscillator failed, set time!\n");
245 return -EINVAL;
246 }
247
248 tmp = regs[DS1307_REG_SECS];
249 switch (ds1307->type) {
250 case ds_1307:
251 case m41t0:
252 case m41t00:
253 case m41t11:
254 if (tmp & DS1307_BIT_CH)
255 return -EINVAL;
256 break;
257 case ds_1308:
258 case ds_1338:
259 if (tmp & DS1307_BIT_CH)
260 return -EINVAL;
261
262 ret = regmap_read(ds1307->regmap, DS1307_REG_CONTROL, &tmp);
263 if (ret)
264 return ret;
265 if (tmp & DS1338_BIT_OSF)
266 return -EINVAL;
267 break;
268 case ds_1340:
269 if (tmp & DS1340_BIT_nEOSC)
270 return -EINVAL;
271
272 ret = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
273 if (ret)
274 return ret;
275 if (tmp & DS1340_BIT_OSF)
276 return -EINVAL;
277 break;
278 case ds_1388:
279 ret = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &tmp);
280 if (ret)
281 return ret;
282 if (tmp & DS1388_BIT_OSF)
283 return -EINVAL;
284 break;
285 case mcp794xx:
286 if (!(tmp & MCP794XX_BIT_ST))
287 return -EINVAL;
288
289 break;
290 default:
291 break;
292 }
293
294 t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
295 t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
296 tmp = regs[DS1307_REG_HOUR] & 0x3f;
297 t->tm_hour = bcd2bin(tmp);
298 t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
299 t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
300 tmp = regs[DS1307_REG_MONTH] & 0x1f;
301 t->tm_mon = bcd2bin(tmp) - 1;
302 t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
303
304 if (regs[chip->century_reg] & chip->century_bit &&
305 IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
306 t->tm_year += 100;
307
308 dev_dbg(dev, "%s secs=%d, mins=%d, "
309 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
310 "read", t->tm_sec, t->tm_min,
311 t->tm_hour, t->tm_mday,
312 t->tm_mon, t->tm_year, t->tm_wday);
313
314 return 0;
315 }
316
ds1307_set_time(struct device * dev,struct rtc_time * t)317 static int ds1307_set_time(struct device *dev, struct rtc_time *t)
318 {
319 struct ds1307 *ds1307 = dev_get_drvdata(dev);
320 const struct chip_desc *chip = &chips[ds1307->type];
321 int result;
322 int tmp;
323 u8 regs[7];
324
325 dev_dbg(dev, "%s secs=%d, mins=%d, "
326 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
327 "write", t->tm_sec, t->tm_min,
328 t->tm_hour, t->tm_mday,
329 t->tm_mon, t->tm_year, t->tm_wday);
330
331 if (t->tm_year < 100)
332 return -EINVAL;
333
334 #ifdef CONFIG_RTC_DRV_DS1307_CENTURY
335 if (t->tm_year > (chip->century_bit ? 299 : 199))
336 return -EINVAL;
337 #else
338 if (t->tm_year > 199)
339 return -EINVAL;
340 #endif
341
342 regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
343 regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
344 regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
345 regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
346 regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
347 regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
348
349 /* assume 20YY not 19YY */
350 tmp = t->tm_year - 100;
351 regs[DS1307_REG_YEAR] = bin2bcd(tmp);
352
353 if (chip->century_enable_bit)
354 regs[chip->century_reg] |= chip->century_enable_bit;
355 if (t->tm_year > 199 && chip->century_bit)
356 regs[chip->century_reg] |= chip->century_bit;
357
358 switch (ds1307->type) {
359 case ds_1308:
360 case ds_1338:
361 regmap_update_bits(ds1307->regmap, DS1307_REG_CONTROL,
362 DS1338_BIT_OSF, 0);
363 break;
364 case ds_1340:
365 regmap_update_bits(ds1307->regmap, DS1340_REG_FLAG,
366 DS1340_BIT_OSF, 0);
367 break;
368 case ds_1388:
369 regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
370 DS1388_BIT_OSF, 0);
371 break;
372 case mcp794xx:
373 /*
374 * these bits were cleared when preparing the date/time
375 * values and need to be set again before writing the
376 * regsfer out to the device.
377 */
378 regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
379 regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
380 break;
381 default:
382 break;
383 }
384
385 dev_dbg(dev, "%s: %7ph\n", "write", regs);
386
387 result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
388 sizeof(regs));
389 if (result) {
390 dev_err(dev, "%s error %d\n", "write", result);
391 return result;
392 }
393
394 if (ds1307->type == rx_8130) {
395 /* clear Voltage Loss Flag as data is available now */
396 result = regmap_write(ds1307->regmap, RX8130_REG_FLAG,
397 ~(u8)RX8130_REG_FLAG_VLF);
398 if (result) {
399 dev_err(dev, "%s error %d\n", "write", result);
400 return result;
401 }
402 }
403
404 return 0;
405 }
406
ds1337_read_alarm(struct device * dev,struct rtc_wkalrm * t)407 static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
408 {
409 struct ds1307 *ds1307 = dev_get_drvdata(dev);
410 int ret;
411 u8 regs[9];
412
413 if (!test_bit(HAS_ALARM, &ds1307->flags))
414 return -EINVAL;
415
416 /* read all ALARM1, ALARM2, and status registers at once */
417 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
418 regs, sizeof(regs));
419 if (ret) {
420 dev_err(dev, "%s error %d\n", "alarm read", ret);
421 return ret;
422 }
423
424 dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
425 ®s[0], ®s[4], ®s[7]);
426
427 /*
428 * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
429 * and that all four fields are checked matches
430 */
431 t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
432 t->time.tm_min = bcd2bin(regs[1] & 0x7f);
433 t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
434 t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
435
436 /* ... and status */
437 t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
438 t->pending = !!(regs[8] & DS1337_BIT_A1I);
439
440 dev_dbg(dev, "%s secs=%d, mins=%d, "
441 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
442 "alarm read", t->time.tm_sec, t->time.tm_min,
443 t->time.tm_hour, t->time.tm_mday,
444 t->enabled, t->pending);
445
446 return 0;
447 }
448
ds1337_set_alarm(struct device * dev,struct rtc_wkalrm * t)449 static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
450 {
451 struct ds1307 *ds1307 = dev_get_drvdata(dev);
452 unsigned char regs[9];
453 u8 control, status;
454 int ret;
455
456 if (!test_bit(HAS_ALARM, &ds1307->flags))
457 return -EINVAL;
458
459 dev_dbg(dev, "%s secs=%d, mins=%d, "
460 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
461 "alarm set", t->time.tm_sec, t->time.tm_min,
462 t->time.tm_hour, t->time.tm_mday,
463 t->enabled, t->pending);
464
465 /* read current status of both alarms and the chip */
466 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
467 sizeof(regs));
468 if (ret) {
469 dev_err(dev, "%s error %d\n", "alarm write", ret);
470 return ret;
471 }
472 control = regs[7];
473 status = regs[8];
474
475 dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
476 ®s[0], ®s[4], control, status);
477
478 /* set ALARM1, using 24 hour and day-of-month modes */
479 regs[0] = bin2bcd(t->time.tm_sec);
480 regs[1] = bin2bcd(t->time.tm_min);
481 regs[2] = bin2bcd(t->time.tm_hour);
482 regs[3] = bin2bcd(t->time.tm_mday);
483
484 /* set ALARM2 to non-garbage */
485 regs[4] = 0;
486 regs[5] = 0;
487 regs[6] = 0;
488
489 /* disable alarms */
490 regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
491 regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
492
493 ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
494 sizeof(regs));
495 if (ret) {
496 dev_err(dev, "can't set alarm time\n");
497 return ret;
498 }
499
500 /* optionally enable ALARM1 */
501 if (t->enabled) {
502 dev_dbg(dev, "alarm IRQ armed\n");
503 regs[7] |= DS1337_BIT_A1IE; /* only ALARM1 is used */
504 regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
505 }
506
507 return 0;
508 }
509
ds1307_alarm_irq_enable(struct device * dev,unsigned int enabled)510 static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
511 {
512 struct ds1307 *ds1307 = dev_get_drvdata(dev);
513
514 if (!test_bit(HAS_ALARM, &ds1307->flags))
515 return -ENOTTY;
516
517 return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
518 DS1337_BIT_A1IE,
519 enabled ? DS1337_BIT_A1IE : 0);
520 }
521
do_trickle_setup_ds1339(struct ds1307 * ds1307,u32 ohms,bool diode)522 static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307, u32 ohms, bool diode)
523 {
524 u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
525 DS1307_TRICKLE_CHARGER_NO_DIODE;
526
527 setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
528
529 switch (ohms) {
530 case 250:
531 setup |= DS1307_TRICKLE_CHARGER_250_OHM;
532 break;
533 case 2000:
534 setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
535 break;
536 case 4000:
537 setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
538 break;
539 default:
540 dev_warn(ds1307->dev,
541 "Unsupported ohm value %u in dt\n", ohms);
542 return 0;
543 }
544 return setup;
545 }
546
do_trickle_setup_rx8130(struct ds1307 * ds1307,u32 ohms,bool diode)547 static u8 do_trickle_setup_rx8130(struct ds1307 *ds1307, u32 ohms, bool diode)
548 {
549 /* make sure that the backup battery is enabled */
550 u8 setup = RX8130_REG_CONTROL1_INIEN;
551 if (diode)
552 setup |= RX8130_REG_CONTROL1_CHGEN;
553
554 return setup;
555 }
556
rx8130_irq(int irq,void * dev_id)557 static irqreturn_t rx8130_irq(int irq, void *dev_id)
558 {
559 struct ds1307 *ds1307 = dev_id;
560 struct mutex *lock = &ds1307->rtc->ops_lock;
561 u8 ctl[3];
562 int ret;
563
564 mutex_lock(lock);
565
566 /* Read control registers. */
567 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
568 sizeof(ctl));
569 if (ret < 0)
570 goto out;
571 if (!(ctl[1] & RX8130_REG_FLAG_AF))
572 goto out;
573 ctl[1] &= ~RX8130_REG_FLAG_AF;
574 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
575
576 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
577 sizeof(ctl));
578 if (ret < 0)
579 goto out;
580
581 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
582
583 out:
584 mutex_unlock(lock);
585
586 return IRQ_HANDLED;
587 }
588
rx8130_read_alarm(struct device * dev,struct rtc_wkalrm * t)589 static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
590 {
591 struct ds1307 *ds1307 = dev_get_drvdata(dev);
592 u8 ald[3], ctl[3];
593 int ret;
594
595 if (!test_bit(HAS_ALARM, &ds1307->flags))
596 return -EINVAL;
597
598 /* Read alarm registers. */
599 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
600 sizeof(ald));
601 if (ret < 0)
602 return ret;
603
604 /* Read control registers. */
605 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
606 sizeof(ctl));
607 if (ret < 0)
608 return ret;
609
610 t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
611 t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
612
613 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
614 t->time.tm_sec = -1;
615 t->time.tm_min = bcd2bin(ald[0] & 0x7f);
616 t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
617 t->time.tm_wday = -1;
618 t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
619 t->time.tm_mon = -1;
620 t->time.tm_year = -1;
621 t->time.tm_yday = -1;
622 t->time.tm_isdst = -1;
623
624 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
625 __func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
626 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
627
628 return 0;
629 }
630
rx8130_set_alarm(struct device * dev,struct rtc_wkalrm * t)631 static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
632 {
633 struct ds1307 *ds1307 = dev_get_drvdata(dev);
634 u8 ald[3], ctl[3];
635 int ret;
636
637 if (!test_bit(HAS_ALARM, &ds1307->flags))
638 return -EINVAL;
639
640 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
641 "enabled=%d pending=%d\n", __func__,
642 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
643 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
644 t->enabled, t->pending);
645
646 /* Read control registers. */
647 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
648 sizeof(ctl));
649 if (ret < 0)
650 return ret;
651
652 ctl[0] &= RX8130_REG_EXTENSION_WADA;
653 ctl[1] &= ~RX8130_REG_FLAG_AF;
654 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
655
656 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
657 sizeof(ctl));
658 if (ret < 0)
659 return ret;
660
661 /* Hardware alarm precision is 1 minute! */
662 ald[0] = bin2bcd(t->time.tm_min);
663 ald[1] = bin2bcd(t->time.tm_hour);
664 ald[2] = bin2bcd(t->time.tm_mday);
665
666 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
667 sizeof(ald));
668 if (ret < 0)
669 return ret;
670
671 if (!t->enabled)
672 return 0;
673
674 ctl[2] |= RX8130_REG_CONTROL0_AIE;
675
676 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, ctl[2]);
677 }
678
rx8130_alarm_irq_enable(struct device * dev,unsigned int enabled)679 static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
680 {
681 struct ds1307 *ds1307 = dev_get_drvdata(dev);
682 int ret, reg;
683
684 if (!test_bit(HAS_ALARM, &ds1307->flags))
685 return -EINVAL;
686
687 ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, ®);
688 if (ret < 0)
689 return ret;
690
691 if (enabled)
692 reg |= RX8130_REG_CONTROL0_AIE;
693 else
694 reg &= ~RX8130_REG_CONTROL0_AIE;
695
696 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
697 }
698
mcp794xx_irq(int irq,void * dev_id)699 static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
700 {
701 struct ds1307 *ds1307 = dev_id;
702 struct mutex *lock = &ds1307->rtc->ops_lock;
703 int reg, ret;
704
705 mutex_lock(lock);
706
707 /* Check and clear alarm 0 interrupt flag. */
708 ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, ®);
709 if (ret)
710 goto out;
711 if (!(reg & MCP794XX_BIT_ALMX_IF))
712 goto out;
713 reg &= ~MCP794XX_BIT_ALMX_IF;
714 ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
715 if (ret)
716 goto out;
717
718 /* Disable alarm 0. */
719 ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
720 MCP794XX_BIT_ALM0_EN, 0);
721 if (ret)
722 goto out;
723
724 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
725
726 out:
727 mutex_unlock(lock);
728
729 return IRQ_HANDLED;
730 }
731
mcp794xx_read_alarm(struct device * dev,struct rtc_wkalrm * t)732 static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
733 {
734 struct ds1307 *ds1307 = dev_get_drvdata(dev);
735 u8 regs[10];
736 int ret;
737
738 if (!test_bit(HAS_ALARM, &ds1307->flags))
739 return -EINVAL;
740
741 /* Read control and alarm 0 registers. */
742 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
743 sizeof(regs));
744 if (ret)
745 return ret;
746
747 t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
748
749 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
750 t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
751 t->time.tm_min = bcd2bin(regs[4] & 0x7f);
752 t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
753 t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
754 t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
755 t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
756 t->time.tm_year = -1;
757 t->time.tm_yday = -1;
758 t->time.tm_isdst = -1;
759
760 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
761 "enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
762 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
763 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
764 !!(regs[6] & MCP794XX_BIT_ALMX_POL),
765 !!(regs[6] & MCP794XX_BIT_ALMX_IF),
766 (regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
767
768 return 0;
769 }
770
771 /*
772 * We may have a random RTC weekday, therefore calculate alarm weekday based
773 * on current weekday we read from the RTC timekeeping regs
774 */
mcp794xx_alm_weekday(struct device * dev,struct rtc_time * tm_alarm)775 static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
776 {
777 struct rtc_time tm_now;
778 int days_now, days_alarm, ret;
779
780 ret = ds1307_get_time(dev, &tm_now);
781 if (ret)
782 return ret;
783
784 days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
785 days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
786
787 return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
788 }
789
mcp794xx_set_alarm(struct device * dev,struct rtc_wkalrm * t)790 static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
791 {
792 struct ds1307 *ds1307 = dev_get_drvdata(dev);
793 unsigned char regs[10];
794 int wday, ret;
795
796 if (!test_bit(HAS_ALARM, &ds1307->flags))
797 return -EINVAL;
798
799 wday = mcp794xx_alm_weekday(dev, &t->time);
800 if (wday < 0)
801 return wday;
802
803 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
804 "enabled=%d pending=%d\n", __func__,
805 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
806 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
807 t->enabled, t->pending);
808
809 /* Read control and alarm 0 registers. */
810 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
811 sizeof(regs));
812 if (ret)
813 return ret;
814
815 /* Set alarm 0, using 24-hour and day-of-month modes. */
816 regs[3] = bin2bcd(t->time.tm_sec);
817 regs[4] = bin2bcd(t->time.tm_min);
818 regs[5] = bin2bcd(t->time.tm_hour);
819 regs[6] = wday;
820 regs[7] = bin2bcd(t->time.tm_mday);
821 regs[8] = bin2bcd(t->time.tm_mon + 1);
822
823 /* Clear the alarm 0 interrupt flag. */
824 regs[6] &= ~MCP794XX_BIT_ALMX_IF;
825 /* Set alarm match: second, minute, hour, day, date, month. */
826 regs[6] |= MCP794XX_MSK_ALMX_MATCH;
827 /* Disable interrupt. We will not enable until completely programmed */
828 regs[0] &= ~MCP794XX_BIT_ALM0_EN;
829
830 ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
831 sizeof(regs));
832 if (ret)
833 return ret;
834
835 if (!t->enabled)
836 return 0;
837 regs[0] |= MCP794XX_BIT_ALM0_EN;
838 return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
839 }
840
mcp794xx_alarm_irq_enable(struct device * dev,unsigned int enabled)841 static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
842 {
843 struct ds1307 *ds1307 = dev_get_drvdata(dev);
844
845 if (!test_bit(HAS_ALARM, &ds1307->flags))
846 return -EINVAL;
847
848 return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
849 MCP794XX_BIT_ALM0_EN,
850 enabled ? MCP794XX_BIT_ALM0_EN : 0);
851 }
852
m41txx_rtc_read_offset(struct device * dev,long * offset)853 static int m41txx_rtc_read_offset(struct device *dev, long *offset)
854 {
855 struct ds1307 *ds1307 = dev_get_drvdata(dev);
856 unsigned int ctrl_reg;
857 u8 val;
858
859 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
860
861 val = ctrl_reg & M41TXX_M_CALIBRATION;
862
863 /* check if positive */
864 if (ctrl_reg & M41TXX_BIT_CALIB_SIGN)
865 *offset = (val * M41TXX_POS_OFFSET_STEP_PPB);
866 else
867 *offset = -(val * M41TXX_NEG_OFFSET_STEP_PPB);
868
869 return 0;
870 }
871
m41txx_rtc_set_offset(struct device * dev,long offset)872 static int m41txx_rtc_set_offset(struct device *dev, long offset)
873 {
874 struct ds1307 *ds1307 = dev_get_drvdata(dev);
875 unsigned int ctrl_reg;
876
877 if ((offset < M41TXX_MIN_OFFSET) || (offset > M41TXX_MAX_OFFSET))
878 return -ERANGE;
879
880 if (offset >= 0) {
881 ctrl_reg = DIV_ROUND_CLOSEST(offset,
882 M41TXX_POS_OFFSET_STEP_PPB);
883 ctrl_reg |= M41TXX_BIT_CALIB_SIGN;
884 } else {
885 ctrl_reg = DIV_ROUND_CLOSEST(abs(offset),
886 M41TXX_NEG_OFFSET_STEP_PPB);
887 }
888
889 return regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL,
890 M41TXX_M_CALIBRATION | M41TXX_BIT_CALIB_SIGN,
891 ctrl_reg);
892 }
893
894 #ifdef CONFIG_WATCHDOG_CORE
ds1388_wdt_start(struct watchdog_device * wdt_dev)895 static int ds1388_wdt_start(struct watchdog_device *wdt_dev)
896 {
897 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
898 u8 regs[2];
899 int ret;
900
901 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
902 DS1388_BIT_WF, 0);
903 if (ret)
904 return ret;
905
906 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
907 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
908 if (ret)
909 return ret;
910
911 /*
912 * watchdog timeouts are measured in seconds. So ignore hundredths of
913 * seconds field.
914 */
915 regs[0] = 0;
916 regs[1] = bin2bcd(wdt_dev->timeout);
917
918 ret = regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
919 sizeof(regs));
920 if (ret)
921 return ret;
922
923 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
924 DS1388_BIT_WDE | DS1388_BIT_RST,
925 DS1388_BIT_WDE | DS1388_BIT_RST);
926 }
927
ds1388_wdt_stop(struct watchdog_device * wdt_dev)928 static int ds1388_wdt_stop(struct watchdog_device *wdt_dev)
929 {
930 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
931
932 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
933 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
934 }
935
ds1388_wdt_ping(struct watchdog_device * wdt_dev)936 static int ds1388_wdt_ping(struct watchdog_device *wdt_dev)
937 {
938 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
939 u8 regs[2];
940
941 return regmap_bulk_read(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
942 sizeof(regs));
943 }
944
ds1388_wdt_set_timeout(struct watchdog_device * wdt_dev,unsigned int val)945 static int ds1388_wdt_set_timeout(struct watchdog_device *wdt_dev,
946 unsigned int val)
947 {
948 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
949 u8 regs[2];
950
951 wdt_dev->timeout = val;
952 regs[0] = 0;
953 regs[1] = bin2bcd(wdt_dev->timeout);
954
955 return regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
956 sizeof(regs));
957 }
958 #endif
959
960 static const struct rtc_class_ops rx8130_rtc_ops = {
961 .read_time = ds1307_get_time,
962 .set_time = ds1307_set_time,
963 .read_alarm = rx8130_read_alarm,
964 .set_alarm = rx8130_set_alarm,
965 .alarm_irq_enable = rx8130_alarm_irq_enable,
966 };
967
968 static const struct rtc_class_ops mcp794xx_rtc_ops = {
969 .read_time = ds1307_get_time,
970 .set_time = ds1307_set_time,
971 .read_alarm = mcp794xx_read_alarm,
972 .set_alarm = mcp794xx_set_alarm,
973 .alarm_irq_enable = mcp794xx_alarm_irq_enable,
974 };
975
976 static const struct rtc_class_ops m41txx_rtc_ops = {
977 .read_time = ds1307_get_time,
978 .set_time = ds1307_set_time,
979 .read_alarm = ds1337_read_alarm,
980 .set_alarm = ds1337_set_alarm,
981 .alarm_irq_enable = ds1307_alarm_irq_enable,
982 .read_offset = m41txx_rtc_read_offset,
983 .set_offset = m41txx_rtc_set_offset,
984 };
985
986 static const struct chip_desc chips[last_ds_type] = {
987 [ds_1307] = {
988 .nvram_offset = 8,
989 .nvram_size = 56,
990 },
991 [ds_1308] = {
992 .nvram_offset = 8,
993 .nvram_size = 56,
994 },
995 [ds_1337] = {
996 .alarm = 1,
997 .century_reg = DS1307_REG_MONTH,
998 .century_bit = DS1337_BIT_CENTURY,
999 },
1000 [ds_1338] = {
1001 .nvram_offset = 8,
1002 .nvram_size = 56,
1003 },
1004 [ds_1339] = {
1005 .alarm = 1,
1006 .century_reg = DS1307_REG_MONTH,
1007 .century_bit = DS1337_BIT_CENTURY,
1008 .bbsqi_bit = DS1339_BIT_BBSQI,
1009 .trickle_charger_reg = 0x10,
1010 .do_trickle_setup = &do_trickle_setup_ds1339,
1011 .requires_trickle_resistor = true,
1012 .charge_default = true,
1013 },
1014 [ds_1340] = {
1015 .century_reg = DS1307_REG_HOUR,
1016 .century_enable_bit = DS1340_BIT_CENTURY_EN,
1017 .century_bit = DS1340_BIT_CENTURY,
1018 .do_trickle_setup = &do_trickle_setup_ds1339,
1019 .trickle_charger_reg = 0x08,
1020 .requires_trickle_resistor = true,
1021 .charge_default = true,
1022 },
1023 [ds_1341] = {
1024 .century_reg = DS1307_REG_MONTH,
1025 .century_bit = DS1337_BIT_CENTURY,
1026 },
1027 [ds_1388] = {
1028 .offset = 1,
1029 .trickle_charger_reg = 0x0a,
1030 },
1031 [ds_3231] = {
1032 .alarm = 1,
1033 .century_reg = DS1307_REG_MONTH,
1034 .century_bit = DS1337_BIT_CENTURY,
1035 .bbsqi_bit = DS3231_BIT_BBSQW,
1036 },
1037 [rx_8130] = {
1038 .alarm = 1,
1039 /* this is battery backed SRAM */
1040 .nvram_offset = 0x20,
1041 .nvram_size = 4, /* 32bit (4 word x 8 bit) */
1042 .offset = 0x10,
1043 .irq_handler = rx8130_irq,
1044 .rtc_ops = &rx8130_rtc_ops,
1045 .trickle_charger_reg = RX8130_REG_CONTROL1,
1046 .do_trickle_setup = &do_trickle_setup_rx8130,
1047 },
1048 [m41t0] = {
1049 .rtc_ops = &m41txx_rtc_ops,
1050 },
1051 [m41t00] = {
1052 .rtc_ops = &m41txx_rtc_ops,
1053 },
1054 [m41t11] = {
1055 /* this is battery backed SRAM */
1056 .nvram_offset = 8,
1057 .nvram_size = 56,
1058 .rtc_ops = &m41txx_rtc_ops,
1059 },
1060 [mcp794xx] = {
1061 .alarm = 1,
1062 /* this is battery backed SRAM */
1063 .nvram_offset = 0x20,
1064 .nvram_size = 0x40,
1065 .irq_handler = mcp794xx_irq,
1066 .rtc_ops = &mcp794xx_rtc_ops,
1067 },
1068 };
1069
1070 static const struct i2c_device_id ds1307_id[] = {
1071 { "ds1307", ds_1307 },
1072 { "ds1308", ds_1308 },
1073 { "ds1337", ds_1337 },
1074 { "ds1338", ds_1338 },
1075 { "ds1339", ds_1339 },
1076 { "ds1388", ds_1388 },
1077 { "ds1340", ds_1340 },
1078 { "ds1341", ds_1341 },
1079 { "ds3231", ds_3231 },
1080 { "m41t0", m41t0 },
1081 { "m41t00", m41t00 },
1082 { "m41t11", m41t11 },
1083 { "mcp7940x", mcp794xx },
1084 { "mcp7941x", mcp794xx },
1085 { "pt7c4338", ds_1307 },
1086 { "rx8025", rx_8025 },
1087 { "isl12057", ds_1337 },
1088 { "rx8130", rx_8130 },
1089 { }
1090 };
1091 MODULE_DEVICE_TABLE(i2c, ds1307_id);
1092
1093 #ifdef CONFIG_OF
1094 static const struct of_device_id ds1307_of_match[] = {
1095 {
1096 .compatible = "dallas,ds1307",
1097 .data = (void *)ds_1307
1098 },
1099 {
1100 .compatible = "dallas,ds1308",
1101 .data = (void *)ds_1308
1102 },
1103 {
1104 .compatible = "dallas,ds1337",
1105 .data = (void *)ds_1337
1106 },
1107 {
1108 .compatible = "dallas,ds1338",
1109 .data = (void *)ds_1338
1110 },
1111 {
1112 .compatible = "dallas,ds1339",
1113 .data = (void *)ds_1339
1114 },
1115 {
1116 .compatible = "dallas,ds1388",
1117 .data = (void *)ds_1388
1118 },
1119 {
1120 .compatible = "dallas,ds1340",
1121 .data = (void *)ds_1340
1122 },
1123 {
1124 .compatible = "dallas,ds1341",
1125 .data = (void *)ds_1341
1126 },
1127 {
1128 .compatible = "maxim,ds3231",
1129 .data = (void *)ds_3231
1130 },
1131 {
1132 .compatible = "st,m41t0",
1133 .data = (void *)m41t0
1134 },
1135 {
1136 .compatible = "st,m41t00",
1137 .data = (void *)m41t00
1138 },
1139 {
1140 .compatible = "st,m41t11",
1141 .data = (void *)m41t11
1142 },
1143 {
1144 .compatible = "microchip,mcp7940x",
1145 .data = (void *)mcp794xx
1146 },
1147 {
1148 .compatible = "microchip,mcp7941x",
1149 .data = (void *)mcp794xx
1150 },
1151 {
1152 .compatible = "pericom,pt7c4338",
1153 .data = (void *)ds_1307
1154 },
1155 {
1156 .compatible = "epson,rx8025",
1157 .data = (void *)rx_8025
1158 },
1159 {
1160 .compatible = "isil,isl12057",
1161 .data = (void *)ds_1337
1162 },
1163 {
1164 .compatible = "epson,rx8130",
1165 .data = (void *)rx_8130
1166 },
1167 { }
1168 };
1169 MODULE_DEVICE_TABLE(of, ds1307_of_match);
1170 #endif
1171
1172 #ifdef CONFIG_ACPI
1173 static const struct acpi_device_id ds1307_acpi_ids[] = {
1174 { .id = "DS1307", .driver_data = ds_1307 },
1175 { .id = "DS1308", .driver_data = ds_1308 },
1176 { .id = "DS1337", .driver_data = ds_1337 },
1177 { .id = "DS1338", .driver_data = ds_1338 },
1178 { .id = "DS1339", .driver_data = ds_1339 },
1179 { .id = "DS1388", .driver_data = ds_1388 },
1180 { .id = "DS1340", .driver_data = ds_1340 },
1181 { .id = "DS1341", .driver_data = ds_1341 },
1182 { .id = "DS3231", .driver_data = ds_3231 },
1183 { .id = "M41T0", .driver_data = m41t0 },
1184 { .id = "M41T00", .driver_data = m41t00 },
1185 { .id = "M41T11", .driver_data = m41t11 },
1186 { .id = "MCP7940X", .driver_data = mcp794xx },
1187 { .id = "MCP7941X", .driver_data = mcp794xx },
1188 { .id = "PT7C4338", .driver_data = ds_1307 },
1189 { .id = "RX8025", .driver_data = rx_8025 },
1190 { .id = "ISL12057", .driver_data = ds_1337 },
1191 { .id = "RX8130", .driver_data = rx_8130 },
1192 { }
1193 };
1194 MODULE_DEVICE_TABLE(acpi, ds1307_acpi_ids);
1195 #endif
1196
1197 /*
1198 * The ds1337 and ds1339 both have two alarms, but we only use the first
1199 * one (with a "seconds" field). For ds1337 we expect nINTA is our alarm
1200 * signal; ds1339 chips have only one alarm signal.
1201 */
ds1307_irq(int irq,void * dev_id)1202 static irqreturn_t ds1307_irq(int irq, void *dev_id)
1203 {
1204 struct ds1307 *ds1307 = dev_id;
1205 struct mutex *lock = &ds1307->rtc->ops_lock;
1206 int stat, ret;
1207
1208 mutex_lock(lock);
1209 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
1210 if (ret)
1211 goto out;
1212
1213 if (stat & DS1337_BIT_A1I) {
1214 stat &= ~DS1337_BIT_A1I;
1215 regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
1216
1217 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1218 DS1337_BIT_A1IE, 0);
1219 if (ret)
1220 goto out;
1221
1222 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
1223 }
1224
1225 out:
1226 mutex_unlock(lock);
1227
1228 return IRQ_HANDLED;
1229 }
1230
1231 /*----------------------------------------------------------------------*/
1232
1233 static const struct rtc_class_ops ds13xx_rtc_ops = {
1234 .read_time = ds1307_get_time,
1235 .set_time = ds1307_set_time,
1236 .read_alarm = ds1337_read_alarm,
1237 .set_alarm = ds1337_set_alarm,
1238 .alarm_irq_enable = ds1307_alarm_irq_enable,
1239 };
1240
frequency_test_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1241 static ssize_t frequency_test_store(struct device *dev,
1242 struct device_attribute *attr,
1243 const char *buf, size_t count)
1244 {
1245 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1246 bool freq_test_en;
1247 int ret;
1248
1249 ret = kstrtobool(buf, &freq_test_en);
1250 if (ret) {
1251 dev_err(dev, "Failed to store RTC Frequency Test attribute\n");
1252 return ret;
1253 }
1254
1255 regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL, M41TXX_BIT_FT,
1256 freq_test_en ? M41TXX_BIT_FT : 0);
1257
1258 return count;
1259 }
1260
frequency_test_show(struct device * dev,struct device_attribute * attr,char * buf)1261 static ssize_t frequency_test_show(struct device *dev,
1262 struct device_attribute *attr,
1263 char *buf)
1264 {
1265 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1266 unsigned int ctrl_reg;
1267
1268 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
1269
1270 return scnprintf(buf, PAGE_SIZE, (ctrl_reg & M41TXX_BIT_FT) ? "on\n" :
1271 "off\n");
1272 }
1273
1274 static DEVICE_ATTR_RW(frequency_test);
1275
1276 static struct attribute *rtc_freq_test_attrs[] = {
1277 &dev_attr_frequency_test.attr,
1278 NULL,
1279 };
1280
1281 static const struct attribute_group rtc_freq_test_attr_group = {
1282 .attrs = rtc_freq_test_attrs,
1283 };
1284
ds1307_add_frequency_test(struct ds1307 * ds1307)1285 static int ds1307_add_frequency_test(struct ds1307 *ds1307)
1286 {
1287 int err;
1288
1289 switch (ds1307->type) {
1290 case m41t0:
1291 case m41t00:
1292 case m41t11:
1293 err = rtc_add_group(ds1307->rtc, &rtc_freq_test_attr_group);
1294 if (err)
1295 return err;
1296 break;
1297 default:
1298 break;
1299 }
1300
1301 return 0;
1302 }
1303
1304 /*----------------------------------------------------------------------*/
1305
ds1307_nvram_read(void * priv,unsigned int offset,void * val,size_t bytes)1306 static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
1307 size_t bytes)
1308 {
1309 struct ds1307 *ds1307 = priv;
1310 const struct chip_desc *chip = &chips[ds1307->type];
1311
1312 return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
1313 val, bytes);
1314 }
1315
ds1307_nvram_write(void * priv,unsigned int offset,void * val,size_t bytes)1316 static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
1317 size_t bytes)
1318 {
1319 struct ds1307 *ds1307 = priv;
1320 const struct chip_desc *chip = &chips[ds1307->type];
1321
1322 return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
1323 val, bytes);
1324 }
1325
1326 /*----------------------------------------------------------------------*/
1327
ds1307_trickle_init(struct ds1307 * ds1307,const struct chip_desc * chip)1328 static u8 ds1307_trickle_init(struct ds1307 *ds1307,
1329 const struct chip_desc *chip)
1330 {
1331 u32 ohms, chargeable;
1332 bool diode = chip->charge_default;
1333
1334 if (!chip->do_trickle_setup)
1335 return 0;
1336
1337 if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
1338 &ohms) && chip->requires_trickle_resistor)
1339 return 0;
1340
1341 /* aux-voltage-chargeable takes precedence over the deprecated
1342 * trickle-diode-disable
1343 */
1344 if (!device_property_read_u32(ds1307->dev, "aux-voltage-chargeable",
1345 &chargeable)) {
1346 switch (chargeable) {
1347 case 0:
1348 diode = false;
1349 break;
1350 case 1:
1351 diode = true;
1352 break;
1353 default:
1354 dev_warn(ds1307->dev,
1355 "unsupported aux-voltage-chargeable value\n");
1356 break;
1357 }
1358 } else if (device_property_read_bool(ds1307->dev,
1359 "trickle-diode-disable")) {
1360 diode = false;
1361 }
1362
1363 return chip->do_trickle_setup(ds1307, ohms, diode);
1364 }
1365
1366 /*----------------------------------------------------------------------*/
1367
1368 #if IS_REACHABLE(CONFIG_HWMON)
1369
1370 /*
1371 * Temperature sensor support for ds3231 devices.
1372 */
1373
1374 #define DS3231_REG_TEMPERATURE 0x11
1375
1376 /*
1377 * A user-initiated temperature conversion is not started by this function,
1378 * so the temperature is updated once every 64 seconds.
1379 */
ds3231_hwmon_read_temp(struct device * dev,s32 * mC)1380 static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
1381 {
1382 struct ds1307 *ds1307 = dev_get_drvdata(dev);
1383 u8 temp_buf[2];
1384 s16 temp;
1385 int ret;
1386
1387 ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
1388 temp_buf, sizeof(temp_buf));
1389 if (ret)
1390 return ret;
1391 /*
1392 * Temperature is represented as a 10-bit code with a resolution of
1393 * 0.25 degree celsius and encoded in two's complement format.
1394 */
1395 temp = (temp_buf[0] << 8) | temp_buf[1];
1396 temp >>= 6;
1397 *mC = temp * 250;
1398
1399 return 0;
1400 }
1401
ds3231_hwmon_show_temp(struct device * dev,struct device_attribute * attr,char * buf)1402 static ssize_t ds3231_hwmon_show_temp(struct device *dev,
1403 struct device_attribute *attr, char *buf)
1404 {
1405 int ret;
1406 s32 temp;
1407
1408 ret = ds3231_hwmon_read_temp(dev, &temp);
1409 if (ret)
1410 return ret;
1411
1412 return sprintf(buf, "%d\n", temp);
1413 }
1414 static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
1415 NULL, 0);
1416
1417 static struct attribute *ds3231_hwmon_attrs[] = {
1418 &sensor_dev_attr_temp1_input.dev_attr.attr,
1419 NULL,
1420 };
1421 ATTRIBUTE_GROUPS(ds3231_hwmon);
1422
ds1307_hwmon_register(struct ds1307 * ds1307)1423 static void ds1307_hwmon_register(struct ds1307 *ds1307)
1424 {
1425 struct device *dev;
1426
1427 if (ds1307->type != ds_3231)
1428 return;
1429
1430 dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
1431 ds1307,
1432 ds3231_hwmon_groups);
1433 if (IS_ERR(dev)) {
1434 dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
1435 PTR_ERR(dev));
1436 }
1437 }
1438
1439 #else
1440
ds1307_hwmon_register(struct ds1307 * ds1307)1441 static void ds1307_hwmon_register(struct ds1307 *ds1307)
1442 {
1443 }
1444
1445 #endif /* CONFIG_RTC_DRV_DS1307_HWMON */
1446
1447 /*----------------------------------------------------------------------*/
1448
1449 /*
1450 * Square-wave output support for DS3231
1451 * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
1452 */
1453 #ifdef CONFIG_COMMON_CLK
1454
1455 enum {
1456 DS3231_CLK_SQW = 0,
1457 DS3231_CLK_32KHZ,
1458 };
1459
1460 #define clk_sqw_to_ds1307(clk) \
1461 container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
1462 #define clk_32khz_to_ds1307(clk) \
1463 container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
1464
1465 static int ds3231_clk_sqw_rates[] = {
1466 1,
1467 1024,
1468 4096,
1469 8192,
1470 };
1471
ds1337_write_control(struct ds1307 * ds1307,u8 mask,u8 value)1472 static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
1473 {
1474 struct mutex *lock = &ds1307->rtc->ops_lock;
1475 int ret;
1476
1477 mutex_lock(lock);
1478 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1479 mask, value);
1480 mutex_unlock(lock);
1481
1482 return ret;
1483 }
1484
ds3231_clk_sqw_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1485 static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
1486 unsigned long parent_rate)
1487 {
1488 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1489 int control, ret;
1490 int rate_sel = 0;
1491
1492 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1493 if (ret)
1494 return ret;
1495 if (control & DS1337_BIT_RS1)
1496 rate_sel += 1;
1497 if (control & DS1337_BIT_RS2)
1498 rate_sel += 2;
1499
1500 return ds3231_clk_sqw_rates[rate_sel];
1501 }
1502
ds3231_clk_sqw_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)1503 static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
1504 unsigned long *prate)
1505 {
1506 int i;
1507
1508 for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
1509 if (ds3231_clk_sqw_rates[i] <= rate)
1510 return ds3231_clk_sqw_rates[i];
1511 }
1512
1513 return 0;
1514 }
1515
ds3231_clk_sqw_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1516 static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
1517 unsigned long parent_rate)
1518 {
1519 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1520 int control = 0;
1521 int rate_sel;
1522
1523 for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
1524 rate_sel++) {
1525 if (ds3231_clk_sqw_rates[rate_sel] == rate)
1526 break;
1527 }
1528
1529 if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
1530 return -EINVAL;
1531
1532 if (rate_sel & 1)
1533 control |= DS1337_BIT_RS1;
1534 if (rate_sel & 2)
1535 control |= DS1337_BIT_RS2;
1536
1537 return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
1538 control);
1539 }
1540
ds3231_clk_sqw_prepare(struct clk_hw * hw)1541 static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
1542 {
1543 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1544
1545 return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
1546 }
1547
ds3231_clk_sqw_unprepare(struct clk_hw * hw)1548 static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
1549 {
1550 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1551
1552 ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
1553 }
1554
ds3231_clk_sqw_is_prepared(struct clk_hw * hw)1555 static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
1556 {
1557 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1558 int control, ret;
1559
1560 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1561 if (ret)
1562 return ret;
1563
1564 return !(control & DS1337_BIT_INTCN);
1565 }
1566
1567 static const struct clk_ops ds3231_clk_sqw_ops = {
1568 .prepare = ds3231_clk_sqw_prepare,
1569 .unprepare = ds3231_clk_sqw_unprepare,
1570 .is_prepared = ds3231_clk_sqw_is_prepared,
1571 .recalc_rate = ds3231_clk_sqw_recalc_rate,
1572 .round_rate = ds3231_clk_sqw_round_rate,
1573 .set_rate = ds3231_clk_sqw_set_rate,
1574 };
1575
ds3231_clk_32khz_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1576 static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
1577 unsigned long parent_rate)
1578 {
1579 return 32768;
1580 }
1581
ds3231_clk_32khz_control(struct ds1307 * ds1307,bool enable)1582 static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
1583 {
1584 struct mutex *lock = &ds1307->rtc->ops_lock;
1585 int ret;
1586
1587 mutex_lock(lock);
1588 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
1589 DS3231_BIT_EN32KHZ,
1590 enable ? DS3231_BIT_EN32KHZ : 0);
1591 mutex_unlock(lock);
1592
1593 return ret;
1594 }
1595
ds3231_clk_32khz_prepare(struct clk_hw * hw)1596 static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
1597 {
1598 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1599
1600 return ds3231_clk_32khz_control(ds1307, true);
1601 }
1602
ds3231_clk_32khz_unprepare(struct clk_hw * hw)1603 static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
1604 {
1605 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1606
1607 ds3231_clk_32khz_control(ds1307, false);
1608 }
1609
ds3231_clk_32khz_is_prepared(struct clk_hw * hw)1610 static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
1611 {
1612 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1613 int status, ret;
1614
1615 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
1616 if (ret)
1617 return ret;
1618
1619 return !!(status & DS3231_BIT_EN32KHZ);
1620 }
1621
1622 static const struct clk_ops ds3231_clk_32khz_ops = {
1623 .prepare = ds3231_clk_32khz_prepare,
1624 .unprepare = ds3231_clk_32khz_unprepare,
1625 .is_prepared = ds3231_clk_32khz_is_prepared,
1626 .recalc_rate = ds3231_clk_32khz_recalc_rate,
1627 };
1628
1629 static struct clk_init_data ds3231_clks_init[] = {
1630 [DS3231_CLK_SQW] = {
1631 .name = "ds3231_clk_sqw",
1632 .ops = &ds3231_clk_sqw_ops,
1633 },
1634 [DS3231_CLK_32KHZ] = {
1635 .name = "ds3231_clk_32khz",
1636 .ops = &ds3231_clk_32khz_ops,
1637 },
1638 };
1639
ds3231_clks_register(struct ds1307 * ds1307)1640 static int ds3231_clks_register(struct ds1307 *ds1307)
1641 {
1642 struct device_node *node = ds1307->dev->of_node;
1643 struct clk_onecell_data *onecell;
1644 int i;
1645
1646 onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
1647 if (!onecell)
1648 return -ENOMEM;
1649
1650 onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
1651 onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
1652 sizeof(onecell->clks[0]), GFP_KERNEL);
1653 if (!onecell->clks)
1654 return -ENOMEM;
1655
1656 for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
1657 struct clk_init_data init = ds3231_clks_init[i];
1658
1659 /*
1660 * Interrupt signal due to alarm conditions and square-wave
1661 * output share same pin, so don't initialize both.
1662 */
1663 if (i == DS3231_CLK_SQW && test_bit(HAS_ALARM, &ds1307->flags))
1664 continue;
1665
1666 /* optional override of the clockname */
1667 of_property_read_string_index(node, "clock-output-names", i,
1668 &init.name);
1669 ds1307->clks[i].init = &init;
1670
1671 onecell->clks[i] = devm_clk_register(ds1307->dev,
1672 &ds1307->clks[i]);
1673 if (IS_ERR(onecell->clks[i]))
1674 return PTR_ERR(onecell->clks[i]);
1675 }
1676
1677 if (!node)
1678 return 0;
1679
1680 of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
1681
1682 return 0;
1683 }
1684
ds1307_clks_register(struct ds1307 * ds1307)1685 static void ds1307_clks_register(struct ds1307 *ds1307)
1686 {
1687 int ret;
1688
1689 if (ds1307->type != ds_3231)
1690 return;
1691
1692 ret = ds3231_clks_register(ds1307);
1693 if (ret) {
1694 dev_warn(ds1307->dev, "unable to register clock device %d\n",
1695 ret);
1696 }
1697 }
1698
1699 #else
1700
ds1307_clks_register(struct ds1307 * ds1307)1701 static void ds1307_clks_register(struct ds1307 *ds1307)
1702 {
1703 }
1704
1705 #endif /* CONFIG_COMMON_CLK */
1706
1707 #ifdef CONFIG_WATCHDOG_CORE
1708 static const struct watchdog_info ds1388_wdt_info = {
1709 .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
1710 .identity = "DS1388 watchdog",
1711 };
1712
1713 static const struct watchdog_ops ds1388_wdt_ops = {
1714 .owner = THIS_MODULE,
1715 .start = ds1388_wdt_start,
1716 .stop = ds1388_wdt_stop,
1717 .ping = ds1388_wdt_ping,
1718 .set_timeout = ds1388_wdt_set_timeout,
1719
1720 };
1721
ds1307_wdt_register(struct ds1307 * ds1307)1722 static void ds1307_wdt_register(struct ds1307 *ds1307)
1723 {
1724 struct watchdog_device *wdt;
1725 int err;
1726 int val;
1727
1728 if (ds1307->type != ds_1388)
1729 return;
1730
1731 wdt = devm_kzalloc(ds1307->dev, sizeof(*wdt), GFP_KERNEL);
1732 if (!wdt)
1733 return;
1734
1735 err = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &val);
1736 if (!err && val & DS1388_BIT_WF)
1737 wdt->bootstatus = WDIOF_CARDRESET;
1738
1739 wdt->info = &ds1388_wdt_info;
1740 wdt->ops = &ds1388_wdt_ops;
1741 wdt->timeout = 99;
1742 wdt->max_timeout = 99;
1743 wdt->min_timeout = 1;
1744
1745 watchdog_init_timeout(wdt, 0, ds1307->dev);
1746 watchdog_set_drvdata(wdt, ds1307);
1747 devm_watchdog_register_device(ds1307->dev, wdt);
1748 }
1749 #else
ds1307_wdt_register(struct ds1307 * ds1307)1750 static void ds1307_wdt_register(struct ds1307 *ds1307)
1751 {
1752 }
1753 #endif /* CONFIG_WATCHDOG_CORE */
1754
1755 static const struct regmap_config regmap_config = {
1756 .reg_bits = 8,
1757 .val_bits = 8,
1758 };
1759
ds1307_probe(struct i2c_client * client,const struct i2c_device_id * id)1760 static int ds1307_probe(struct i2c_client *client,
1761 const struct i2c_device_id *id)
1762 {
1763 struct ds1307 *ds1307;
1764 int err = -ENODEV;
1765 int tmp;
1766 const struct chip_desc *chip;
1767 bool want_irq;
1768 bool ds1307_can_wakeup_device = false;
1769 unsigned char regs[8];
1770 struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
1771 u8 trickle_charger_setup = 0;
1772
1773 ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
1774 if (!ds1307)
1775 return -ENOMEM;
1776
1777 dev_set_drvdata(&client->dev, ds1307);
1778 ds1307->dev = &client->dev;
1779 ds1307->name = client->name;
1780
1781 ds1307->regmap = devm_regmap_init_i2c(client, ®map_config);
1782 if (IS_ERR(ds1307->regmap)) {
1783 dev_err(ds1307->dev, "regmap allocation failed\n");
1784 return PTR_ERR(ds1307->regmap);
1785 }
1786
1787 i2c_set_clientdata(client, ds1307);
1788
1789 if (client->dev.of_node) {
1790 ds1307->type = (enum ds_type)
1791 of_device_get_match_data(&client->dev);
1792 chip = &chips[ds1307->type];
1793 } else if (id) {
1794 chip = &chips[id->driver_data];
1795 ds1307->type = id->driver_data;
1796 } else {
1797 const struct acpi_device_id *acpi_id;
1798
1799 acpi_id = acpi_match_device(ACPI_PTR(ds1307_acpi_ids),
1800 ds1307->dev);
1801 if (!acpi_id)
1802 return -ENODEV;
1803 chip = &chips[acpi_id->driver_data];
1804 ds1307->type = acpi_id->driver_data;
1805 }
1806
1807 want_irq = client->irq > 0 && chip->alarm;
1808
1809 if (!pdata)
1810 trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
1811 else if (pdata->trickle_charger_setup)
1812 trickle_charger_setup = pdata->trickle_charger_setup;
1813
1814 if (trickle_charger_setup && chip->trickle_charger_reg) {
1815 dev_dbg(ds1307->dev,
1816 "writing trickle charger info 0x%x to 0x%x\n",
1817 trickle_charger_setup, chip->trickle_charger_reg);
1818 regmap_write(ds1307->regmap, chip->trickle_charger_reg,
1819 trickle_charger_setup);
1820 }
1821
1822 #ifdef CONFIG_OF
1823 /*
1824 * For devices with no IRQ directly connected to the SoC, the RTC chip
1825 * can be forced as a wakeup source by stating that explicitly in
1826 * the device's .dts file using the "wakeup-source" boolean property.
1827 * If the "wakeup-source" property is set, don't request an IRQ.
1828 * This will guarantee the 'wakealarm' sysfs entry is available on the device,
1829 * if supported by the RTC.
1830 */
1831 if (chip->alarm && of_property_read_bool(client->dev.of_node,
1832 "wakeup-source"))
1833 ds1307_can_wakeup_device = true;
1834 #endif
1835
1836 switch (ds1307->type) {
1837 case ds_1337:
1838 case ds_1339:
1839 case ds_1341:
1840 case ds_3231:
1841 /* get registers that the "rtc" read below won't read... */
1842 err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
1843 regs, 2);
1844 if (err) {
1845 dev_dbg(ds1307->dev, "read error %d\n", err);
1846 goto exit;
1847 }
1848
1849 /* oscillator off? turn it on, so clock can tick. */
1850 if (regs[0] & DS1337_BIT_nEOSC)
1851 regs[0] &= ~DS1337_BIT_nEOSC;
1852
1853 /*
1854 * Using IRQ or defined as wakeup-source?
1855 * Disable the square wave and both alarms.
1856 * For some variants, be sure alarms can trigger when we're
1857 * running on Vbackup (BBSQI/BBSQW)
1858 */
1859 if (want_irq || ds1307_can_wakeup_device) {
1860 regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
1861 regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
1862 }
1863
1864 regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
1865 regs[0]);
1866
1867 /* oscillator fault? clear flag, and warn */
1868 if (regs[1] & DS1337_BIT_OSF) {
1869 regmap_write(ds1307->regmap, DS1337_REG_STATUS,
1870 regs[1] & ~DS1337_BIT_OSF);
1871 dev_warn(ds1307->dev, "SET TIME!\n");
1872 }
1873 break;
1874
1875 case rx_8025:
1876 err = regmap_bulk_read(ds1307->regmap,
1877 RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
1878 if (err) {
1879 dev_dbg(ds1307->dev, "read error %d\n", err);
1880 goto exit;
1881 }
1882
1883 /* oscillator off? turn it on, so clock can tick. */
1884 if (!(regs[1] & RX8025_BIT_XST)) {
1885 regs[1] |= RX8025_BIT_XST;
1886 regmap_write(ds1307->regmap,
1887 RX8025_REG_CTRL2 << 4 | 0x08,
1888 regs[1]);
1889 dev_warn(ds1307->dev,
1890 "oscillator stop detected - SET TIME!\n");
1891 }
1892
1893 if (regs[1] & RX8025_BIT_PON) {
1894 regs[1] &= ~RX8025_BIT_PON;
1895 regmap_write(ds1307->regmap,
1896 RX8025_REG_CTRL2 << 4 | 0x08,
1897 regs[1]);
1898 dev_warn(ds1307->dev, "power-on detected\n");
1899 }
1900
1901 if (regs[1] & RX8025_BIT_VDET) {
1902 regs[1] &= ~RX8025_BIT_VDET;
1903 regmap_write(ds1307->regmap,
1904 RX8025_REG_CTRL2 << 4 | 0x08,
1905 regs[1]);
1906 dev_warn(ds1307->dev, "voltage drop detected\n");
1907 }
1908
1909 /* make sure we are running in 24hour mode */
1910 if (!(regs[0] & RX8025_BIT_2412)) {
1911 u8 hour;
1912
1913 /* switch to 24 hour mode */
1914 regmap_write(ds1307->regmap,
1915 RX8025_REG_CTRL1 << 4 | 0x08,
1916 regs[0] | RX8025_BIT_2412);
1917
1918 err = regmap_bulk_read(ds1307->regmap,
1919 RX8025_REG_CTRL1 << 4 | 0x08,
1920 regs, 2);
1921 if (err) {
1922 dev_dbg(ds1307->dev, "read error %d\n", err);
1923 goto exit;
1924 }
1925
1926 /* correct hour */
1927 hour = bcd2bin(regs[DS1307_REG_HOUR]);
1928 if (hour == 12)
1929 hour = 0;
1930 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1931 hour += 12;
1932
1933 regmap_write(ds1307->regmap,
1934 DS1307_REG_HOUR << 4 | 0x08, hour);
1935 }
1936 break;
1937 case ds_1388:
1938 err = regmap_read(ds1307->regmap, DS1388_REG_CONTROL, &tmp);
1939 if (err) {
1940 dev_dbg(ds1307->dev, "read error %d\n", err);
1941 goto exit;
1942 }
1943
1944 /* oscillator off? turn it on, so clock can tick. */
1945 if (tmp & DS1388_BIT_nEOSC) {
1946 tmp &= ~DS1388_BIT_nEOSC;
1947 regmap_write(ds1307->regmap, DS1388_REG_CONTROL, tmp);
1948 }
1949 break;
1950 default:
1951 break;
1952 }
1953
1954 /* read RTC registers */
1955 err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
1956 sizeof(regs));
1957 if (err) {
1958 dev_dbg(ds1307->dev, "read error %d\n", err);
1959 goto exit;
1960 }
1961
1962 if (ds1307->type == mcp794xx &&
1963 !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
1964 regmap_write(ds1307->regmap, DS1307_REG_WDAY,
1965 regs[DS1307_REG_WDAY] |
1966 MCP794XX_BIT_VBATEN);
1967 }
1968
1969 tmp = regs[DS1307_REG_HOUR];
1970 switch (ds1307->type) {
1971 case ds_1340:
1972 case m41t0:
1973 case m41t00:
1974 case m41t11:
1975 /*
1976 * NOTE: ignores century bits; fix before deploying
1977 * systems that will run through year 2100.
1978 */
1979 break;
1980 case rx_8025:
1981 break;
1982 default:
1983 if (!(tmp & DS1307_BIT_12HR))
1984 break;
1985
1986 /*
1987 * Be sure we're in 24 hour mode. Multi-master systems
1988 * take note...
1989 */
1990 tmp = bcd2bin(tmp & 0x1f);
1991 if (tmp == 12)
1992 tmp = 0;
1993 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1994 tmp += 12;
1995 regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
1996 bin2bcd(tmp));
1997 }
1998
1999 if (want_irq || ds1307_can_wakeup_device) {
2000 device_set_wakeup_capable(ds1307->dev, true);
2001 set_bit(HAS_ALARM, &ds1307->flags);
2002 }
2003
2004 ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
2005 if (IS_ERR(ds1307->rtc))
2006 return PTR_ERR(ds1307->rtc);
2007
2008 if (ds1307_can_wakeup_device && !want_irq) {
2009 dev_info(ds1307->dev,
2010 "'wakeup-source' is set, request for an IRQ is disabled!\n");
2011 /* We cannot support UIE mode if we do not have an IRQ line */
2012 ds1307->rtc->uie_unsupported = 1;
2013 }
2014
2015 if (want_irq) {
2016 err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
2017 chip->irq_handler ?: ds1307_irq,
2018 IRQF_SHARED | IRQF_ONESHOT,
2019 ds1307->name, ds1307);
2020 if (err) {
2021 client->irq = 0;
2022 device_set_wakeup_capable(ds1307->dev, false);
2023 clear_bit(HAS_ALARM, &ds1307->flags);
2024 dev_err(ds1307->dev, "unable to request IRQ!\n");
2025 } else {
2026 dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
2027 }
2028 }
2029
2030 ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
2031 err = ds1307_add_frequency_test(ds1307);
2032 if (err)
2033 return err;
2034
2035 err = rtc_register_device(ds1307->rtc);
2036 if (err)
2037 return err;
2038
2039 if (chip->nvram_size) {
2040 struct nvmem_config nvmem_cfg = {
2041 .name = "ds1307_nvram",
2042 .word_size = 1,
2043 .stride = 1,
2044 .size = chip->nvram_size,
2045 .reg_read = ds1307_nvram_read,
2046 .reg_write = ds1307_nvram_write,
2047 .priv = ds1307,
2048 };
2049
2050 ds1307->rtc->nvram_old_abi = true;
2051 rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
2052 }
2053
2054 ds1307_hwmon_register(ds1307);
2055 ds1307_clks_register(ds1307);
2056 ds1307_wdt_register(ds1307);
2057
2058 return 0;
2059
2060 exit:
2061 return err;
2062 }
2063
2064 static struct i2c_driver ds1307_driver = {
2065 .driver = {
2066 .name = "rtc-ds1307",
2067 .of_match_table = of_match_ptr(ds1307_of_match),
2068 .acpi_match_table = ACPI_PTR(ds1307_acpi_ids),
2069 },
2070 .probe = ds1307_probe,
2071 .id_table = ds1307_id,
2072 };
2073
2074 module_i2c_driver(ds1307_driver);
2075
2076 MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
2077 MODULE_LICENSE("GPL");
2078