1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2  *
3  * Copyright 2016-2020 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABS_H_
9 #define HABANALABS_H_
10 
11 #include <linux/types.h>
12 #include <linux/ioctl.h>
13 
14 /*
15  * Defines that are asic-specific but constitutes as ABI between kernel driver
16  * and userspace
17  */
18 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
19 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
20 
21 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		48
22 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		24
23 /*
24  * Goya queue Numbering
25  *
26  * The external queues (PCI DMA channels) MUST be before the internal queues
27  * and each group (PCI DMA channels and internal) must be contiguous inside
28  * itself but there can be a gap between the two groups (although not
29  * recommended)
30  */
31 
32 enum goya_queue_id {
33 	GOYA_QUEUE_ID_DMA_0 = 0,
34 	GOYA_QUEUE_ID_DMA_1 = 1,
35 	GOYA_QUEUE_ID_DMA_2 = 2,
36 	GOYA_QUEUE_ID_DMA_3 = 3,
37 	GOYA_QUEUE_ID_DMA_4 = 4,
38 	GOYA_QUEUE_ID_CPU_PQ = 5,
39 	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
40 	GOYA_QUEUE_ID_TPC0 = 7,
41 	GOYA_QUEUE_ID_TPC1 = 8,
42 	GOYA_QUEUE_ID_TPC2 = 9,
43 	GOYA_QUEUE_ID_TPC3 = 10,
44 	GOYA_QUEUE_ID_TPC4 = 11,
45 	GOYA_QUEUE_ID_TPC5 = 12,
46 	GOYA_QUEUE_ID_TPC6 = 13,
47 	GOYA_QUEUE_ID_TPC7 = 14,
48 	GOYA_QUEUE_ID_SIZE
49 };
50 
51 /*
52  * Gaudi queue Numbering
53  * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
54  * Except one CPU queue, all the rest are internal queues.
55  */
56 
57 enum gaudi_queue_id {
58 	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
59 	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
60 	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
61 	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
62 	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
63 	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
64 	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
65 	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
66 	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
67 	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
68 	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
69 	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
70 	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
71 	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
72 	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
73 	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
74 	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
75 	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
76 	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
77 	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
78 	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
79 	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* external */
80 	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* external */
81 	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* external */
82 	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* external */
83 	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
84 	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
85 	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
86 	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
87 	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
88 	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
89 	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
90 	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
91 	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
92 	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
93 	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
94 	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
95 	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
96 	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
97 	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
98 	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
99 	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
100 	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
101 	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
102 	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
103 	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
104 	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
105 	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
106 	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
107 	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
108 	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
109 	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
110 	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
111 	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
112 	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
113 	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
114 	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
115 	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
116 	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
117 	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
118 	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
119 	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
120 	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
121 	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
122 	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
123 	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
124 	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
125 	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
126 	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
127 	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
128 	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
129 	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
130 	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
131 	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
132 	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
133 	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
134 	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
135 	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
136 	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
137 	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
138 	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
139 	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
140 	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
141 	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
142 	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
143 	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
144 	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
145 	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
146 	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
147 	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
148 	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
149 	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
150 	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
151 	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
152 	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
153 	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
154 	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
155 	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
156 	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
157 	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
158 	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
159 	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
160 	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
161 	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
162 	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
163 	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
164 	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
165 	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
166 	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
167 	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
168 	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
169 	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
170 	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
171 	GAUDI_QUEUE_ID_SIZE
172 };
173 
174 /*
175  * Engine Numbering
176  *
177  * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
178  */
179 
180 enum goya_engine_id {
181 	GOYA_ENGINE_ID_DMA_0 = 0,
182 	GOYA_ENGINE_ID_DMA_1,
183 	GOYA_ENGINE_ID_DMA_2,
184 	GOYA_ENGINE_ID_DMA_3,
185 	GOYA_ENGINE_ID_DMA_4,
186 	GOYA_ENGINE_ID_MME_0,
187 	GOYA_ENGINE_ID_TPC_0,
188 	GOYA_ENGINE_ID_TPC_1,
189 	GOYA_ENGINE_ID_TPC_2,
190 	GOYA_ENGINE_ID_TPC_3,
191 	GOYA_ENGINE_ID_TPC_4,
192 	GOYA_ENGINE_ID_TPC_5,
193 	GOYA_ENGINE_ID_TPC_6,
194 	GOYA_ENGINE_ID_TPC_7,
195 	GOYA_ENGINE_ID_SIZE
196 };
197 
198 enum gaudi_engine_id {
199 	GAUDI_ENGINE_ID_DMA_0 = 0,
200 	GAUDI_ENGINE_ID_DMA_1,
201 	GAUDI_ENGINE_ID_DMA_2,
202 	GAUDI_ENGINE_ID_DMA_3,
203 	GAUDI_ENGINE_ID_DMA_4,
204 	GAUDI_ENGINE_ID_DMA_5,
205 	GAUDI_ENGINE_ID_DMA_6,
206 	GAUDI_ENGINE_ID_DMA_7,
207 	GAUDI_ENGINE_ID_MME_0,
208 	GAUDI_ENGINE_ID_MME_1,
209 	GAUDI_ENGINE_ID_MME_2,
210 	GAUDI_ENGINE_ID_MME_3,
211 	GAUDI_ENGINE_ID_TPC_0,
212 	GAUDI_ENGINE_ID_TPC_1,
213 	GAUDI_ENGINE_ID_TPC_2,
214 	GAUDI_ENGINE_ID_TPC_3,
215 	GAUDI_ENGINE_ID_TPC_4,
216 	GAUDI_ENGINE_ID_TPC_5,
217 	GAUDI_ENGINE_ID_TPC_6,
218 	GAUDI_ENGINE_ID_TPC_7,
219 	GAUDI_ENGINE_ID_NIC_0,
220 	GAUDI_ENGINE_ID_NIC_1,
221 	GAUDI_ENGINE_ID_NIC_2,
222 	GAUDI_ENGINE_ID_NIC_3,
223 	GAUDI_ENGINE_ID_NIC_4,
224 	GAUDI_ENGINE_ID_NIC_5,
225 	GAUDI_ENGINE_ID_NIC_6,
226 	GAUDI_ENGINE_ID_NIC_7,
227 	GAUDI_ENGINE_ID_NIC_8,
228 	GAUDI_ENGINE_ID_NIC_9,
229 	GAUDI_ENGINE_ID_SIZE
230 };
231 
232 enum hl_device_status {
233 	HL_DEVICE_STATUS_OPERATIONAL,
234 	HL_DEVICE_STATUS_IN_RESET,
235 	HL_DEVICE_STATUS_MALFUNCTION
236 };
237 
238 /* Opcode for management ioctl
239  *
240  * HW_IP_INFO            - Receive information about different IP blocks in the
241  *                         device.
242  * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
243  *                         occurred since the last hard reset.
244  * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
245  *                         specific context. This is relevant only for devices
246  *                         where the dram is managed by the kernel driver
247  * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
248  *                         internal engine.
249  * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
250  *                         require an open context.
251  * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
252  *                               over the last period specified by the user.
253  *                               The period can be between 100ms to 1s, in
254  *                               resolution of 100ms. The return value is a
255  *                               percentage of the utilization rate.
256  * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
257  *                               event occurred since the driver was loaded.
258  * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
259  *                               of the device in MHz. The maximum clock rate is
260  *                               configurable via sysfs parameter
261  * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
262  *                         operations performed on the device since the last
263  *                         time the driver was loaded.
264  * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
265  *                         for synchronization.
266  * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
267  * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
268  * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
269  * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
270  * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
271  */
272 #define HL_INFO_HW_IP_INFO		0
273 #define HL_INFO_HW_EVENTS		1
274 #define HL_INFO_DRAM_USAGE		2
275 #define HL_INFO_HW_IDLE			3
276 #define HL_INFO_DEVICE_STATUS		4
277 #define HL_INFO_DEVICE_UTILIZATION	6
278 #define HL_INFO_HW_EVENTS_AGGREGATE	7
279 #define HL_INFO_CLK_RATE		8
280 #define HL_INFO_RESET_COUNT		9
281 #define HL_INFO_TIME_SYNC		10
282 #define HL_INFO_CS_COUNTERS		11
283 #define HL_INFO_PCI_COUNTERS		12
284 #define HL_INFO_CLK_THROTTLE_REASON	13
285 #define HL_INFO_SYNC_MANAGER		14
286 #define HL_INFO_TOTAL_ENERGY		15
287 
288 #define HL_INFO_VERSION_MAX_LEN	128
289 #define HL_INFO_CARD_NAME_MAX_LEN	16
290 
291 struct hl_info_hw_ip_info {
292 	__u64 sram_base_address;
293 	__u64 dram_base_address;
294 	__u64 dram_size;
295 	__u32 sram_size;
296 	__u32 num_of_events;
297 	__u32 device_id; /* PCI Device ID */
298 	__u32 module_id; /* For mezzanine cards in servers (From OCP spec.) */
299 	__u32 reserved[2];
300 	__u32 cpld_version;
301 	__u32 psoc_pci_pll_nr;
302 	__u32 psoc_pci_pll_nf;
303 	__u32 psoc_pci_pll_od;
304 	__u32 psoc_pci_pll_div_factor;
305 	__u8 tpc_enabled_mask;
306 	__u8 dram_enabled;
307 	__u8 pad[2];
308 	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
309 	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
310 };
311 
312 struct hl_info_dram_usage {
313 	__u64 dram_free_mem;
314 	__u64 ctx_dram_mem;
315 };
316 
317 struct hl_info_hw_idle {
318 	__u32 is_idle;
319 	/*
320 	 * Bitmask of busy engines.
321 	 * Bits definition is according to `enum <chip>_enging_id'.
322 	 */
323 	__u32 busy_engines_mask;
324 
325 	/*
326 	 * Extended Bitmask of busy engines.
327 	 * Bits definition is according to `enum <chip>_enging_id'.
328 	 */
329 	__u64 busy_engines_mask_ext;
330 };
331 
332 struct hl_info_device_status {
333 	__u32 status;
334 	__u32 pad;
335 };
336 
337 struct hl_info_device_utilization {
338 	__u32 utilization;
339 	__u32 pad;
340 };
341 
342 struct hl_info_clk_rate {
343 	__u32 cur_clk_rate_mhz;
344 	__u32 max_clk_rate_mhz;
345 };
346 
347 struct hl_info_reset_count {
348 	__u32 hard_reset_cnt;
349 	__u32 soft_reset_cnt;
350 };
351 
352 struct hl_info_time_sync {
353 	__u64 device_time;
354 	__u64 host_time;
355 };
356 
357 /**
358  * struct hl_info_pci_counters - pci counters
359  * @rx_throughput: PCI rx throughput KBps
360  * @tx_throughput: PCI tx throughput KBps
361  * @replay_cnt: PCI replay counter
362  */
363 struct hl_info_pci_counters {
364 	__u64 rx_throughput;
365 	__u64 tx_throughput;
366 	__u64 replay_cnt;
367 };
368 
369 #define HL_CLK_THROTTLE_POWER	0x1
370 #define HL_CLK_THROTTLE_THERMAL	0x2
371 
372 /**
373  * struct hl_info_clk_throttle - clock throttling reason
374  * @clk_throttling_reason: each bit represents a clk throttling reason
375  */
376 struct hl_info_clk_throttle {
377 	__u32 clk_throttling_reason;
378 };
379 
380 /**
381  * struct hl_info_energy - device energy information
382  * @total_energy_consumption: total device energy consumption
383  */
384 struct hl_info_energy {
385 	__u64 total_energy_consumption;
386 };
387 
388 /**
389  * struct hl_info_sync_manager - sync manager information
390  * @first_available_sync_object: first available sob
391  * @first_available_monitor: first available monitor
392  */
393 struct hl_info_sync_manager {
394 	__u32 first_available_sync_object;
395 	__u32 first_available_monitor;
396 };
397 
398 /**
399  * struct hl_info_cs_counters - command submission counters
400  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
401  * @parsing_drop_cnt: dropped due to error in packet parsing
402  * @queue_full_drop_cnt: dropped due to queue full
403  * @device_in_reset_drop_cnt: dropped due to device in reset
404  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
405  */
406 struct hl_cs_counters {
407 	__u64 out_of_mem_drop_cnt;
408 	__u64 parsing_drop_cnt;
409 	__u64 queue_full_drop_cnt;
410 	__u64 device_in_reset_drop_cnt;
411 	__u64 max_cs_in_flight_drop_cnt;
412 };
413 
414 struct hl_info_cs_counters {
415 	struct hl_cs_counters cs_counters;
416 	struct hl_cs_counters ctx_cs_counters;
417 };
418 
419 enum gaudi_dcores {
420 	HL_GAUDI_WS_DCORE,
421 	HL_GAUDI_WN_DCORE,
422 	HL_GAUDI_EN_DCORE,
423 	HL_GAUDI_ES_DCORE
424 };
425 
426 struct hl_info_args {
427 	/* Location of relevant struct in userspace */
428 	__u64 return_pointer;
429 	/*
430 	 * The size of the return value. Just like "size" in "snprintf",
431 	 * it limits how many bytes the kernel can write
432 	 *
433 	 * For hw_events array, the size should be
434 	 * hl_info_hw_ip_info.num_of_events * sizeof(__u32)
435 	 */
436 	__u32 return_size;
437 
438 	/* HL_INFO_* */
439 	__u32 op;
440 
441 	union {
442 		/* Dcore id for which the information is relevant.
443 		 * For Gaudi refer to 'enum gaudi_dcores'
444 		 */
445 		__u32 dcore_id;
446 		/* Context ID - Currently not in use */
447 		__u32 ctx_id;
448 		/* Period value for utilization rate (100ms - 1000ms, in 100ms
449 		 * resolution.
450 		 */
451 		__u32 period_ms;
452 	};
453 
454 	__u32 pad;
455 };
456 
457 /* Opcode to create a new command buffer */
458 #define HL_CB_OP_CREATE		0
459 /* Opcode to destroy previously created command buffer */
460 #define HL_CB_OP_DESTROY	1
461 
462 /* 2MB minus 32 bytes for 2xMSG_PROT */
463 #define HL_MAX_CB_SIZE		(0x200000 - 32)
464 
465 /* Indicates whether the command buffer should be mapped to the device's MMU */
466 #define HL_CB_FLAGS_MAP		0x1
467 
468 struct hl_cb_in {
469 	/* Handle of CB or 0 if we want to create one */
470 	__u64 cb_handle;
471 	/* HL_CB_OP_* */
472 	__u32 op;
473 	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
474 	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
475 	 */
476 	__u32 cb_size;
477 	/* Context ID - Currently not in use */
478 	__u32 ctx_id;
479 	/* HL_CB_FLAGS_* */
480 	__u32 flags;
481 };
482 
483 struct hl_cb_out {
484 	/* Handle of CB */
485 	__u64 cb_handle;
486 };
487 
488 union hl_cb_args {
489 	struct hl_cb_in in;
490 	struct hl_cb_out out;
491 };
492 
493 /*
494  * This structure size must always be fixed to 64-bytes for backward
495  * compatibility
496  */
497 struct hl_cs_chunk {
498 	union {
499 		/* For external queue, this represents a Handle of CB on the
500 		 * Host.
501 		 * For internal queue in Goya, this represents an SRAM or
502 		 * a DRAM address of the internal CB. In Gaudi, this might also
503 		 * represent a mapped host address of the CB.
504 		 *
505 		 * A mapped host address is in the device address space, after
506 		 * a host address was mapped by the device MMU.
507 		 */
508 		__u64 cb_handle;
509 
510 		/* Relevant only when HL_CS_FLAGS_WAIT is set.
511 		 * This holds address of array of u64 values that contain
512 		 * signal CS sequence numbers. The wait described by this job
513 		 * will listen on all those signals (wait event per signal)
514 		 */
515 		__u64 signal_seq_arr;
516 	};
517 
518 	/* Index of queue to put the CB on */
519 	__u32 queue_index;
520 
521 	union {
522 		/*
523 		 * Size of command buffer with valid packets
524 		 * Can be smaller then actual CB size
525 		 */
526 		__u32 cb_size;
527 
528 		/* Relevant only when HL_CS_FLAGS_WAIT is set.
529 		 * Number of entries in signal_seq_arr
530 		 */
531 		__u32 num_signal_seq_arr;
532 	};
533 
534 	/* HL_CS_CHUNK_FLAGS_* */
535 	__u32 cs_chunk_flags;
536 
537 	/* Align structure to 64 bytes */
538 	__u32 pad[11];
539 };
540 
541 /* SIGNAL and WAIT flags are mutually exclusive */
542 #define HL_CS_FLAGS_FORCE_RESTORE	0x1
543 #define HL_CS_FLAGS_SIGNAL		0x2
544 #define HL_CS_FLAGS_WAIT		0x4
545 
546 #define HL_CS_STATUS_SUCCESS		0
547 
548 #define HL_MAX_JOBS_PER_CS		512
549 
550 struct hl_cs_in {
551 
552 	/* this holds address of array of hl_cs_chunk for restore phase */
553 	__u64 chunks_restore;
554 
555 	/* holds address of array of hl_cs_chunk for execution phase */
556 	__u64 chunks_execute;
557 
558 	/* this holds address of array of hl_cs_chunk for store phase -
559 	 * Currently not in use
560 	 */
561 	__u64 chunks_store;
562 
563 	/* Number of chunks in restore phase array. Maximum number is
564 	 * HL_MAX_JOBS_PER_CS
565 	 */
566 	__u32 num_chunks_restore;
567 
568 	/* Number of chunks in execution array. Maximum number is
569 	 * HL_MAX_JOBS_PER_CS
570 	 */
571 	__u32 num_chunks_execute;
572 
573 	/* Number of chunks in restore phase array - Currently not in use */
574 	__u32 num_chunks_store;
575 
576 	/* HL_CS_FLAGS_* */
577 	__u32 cs_flags;
578 
579 	/* Context ID - Currently not in use */
580 	__u32 ctx_id;
581 };
582 
583 struct hl_cs_out {
584 	/*
585 	 * seq holds the sequence number of the CS to pass to wait ioctl. All
586 	 * values are valid except for 0 and ULLONG_MAX
587 	 */
588 	__u64 seq;
589 	/* HL_CS_STATUS_* */
590 	__u32 status;
591 	__u32 pad;
592 };
593 
594 union hl_cs_args {
595 	struct hl_cs_in in;
596 	struct hl_cs_out out;
597 };
598 
599 struct hl_wait_cs_in {
600 	/* Command submission sequence number */
601 	__u64 seq;
602 	/* Absolute timeout to wait in microseconds */
603 	__u64 timeout_us;
604 	/* Context ID - Currently not in use */
605 	__u32 ctx_id;
606 	__u32 pad;
607 };
608 
609 #define HL_WAIT_CS_STATUS_COMPLETED	0
610 #define HL_WAIT_CS_STATUS_BUSY		1
611 #define HL_WAIT_CS_STATUS_TIMEDOUT	2
612 #define HL_WAIT_CS_STATUS_ABORTED	3
613 #define HL_WAIT_CS_STATUS_INTERRUPTED	4
614 
615 struct hl_wait_cs_out {
616 	/* HL_WAIT_CS_STATUS_* */
617 	__u32 status;
618 	__u32 pad;
619 };
620 
621 union hl_wait_cs_args {
622 	struct hl_wait_cs_in in;
623 	struct hl_wait_cs_out out;
624 };
625 
626 /* Opcode to allocate device memory */
627 #define HL_MEM_OP_ALLOC			0
628 /* Opcode to free previously allocated device memory */
629 #define HL_MEM_OP_FREE			1
630 /* Opcode to map host and device memory */
631 #define HL_MEM_OP_MAP			2
632 /* Opcode to unmap previously mapped host and device memory */
633 #define HL_MEM_OP_UNMAP			3
634 
635 /* Memory flags */
636 #define HL_MEM_CONTIGUOUS	0x1
637 #define HL_MEM_SHARED		0x2
638 #define HL_MEM_USERPTR		0x4
639 
640 struct hl_mem_in {
641 	union {
642 		/* HL_MEM_OP_ALLOC- allocate device memory */
643 		struct {
644 			/* Size to alloc */
645 			__u64 mem_size;
646 		} alloc;
647 
648 		/* HL_MEM_OP_FREE - free device memory */
649 		struct {
650 			/* Handle returned from HL_MEM_OP_ALLOC */
651 			__u64 handle;
652 		} free;
653 
654 		/* HL_MEM_OP_MAP - map device memory */
655 		struct {
656 			/*
657 			 * Requested virtual address of mapped memory.
658 			 * The driver will try to map the requested region to
659 			 * this hint address, as long as the address is valid
660 			 * and not already mapped. The user should check the
661 			 * returned address of the IOCTL to make sure he got
662 			 * the hint address. Passing 0 here means that the
663 			 * driver will choose the address itself.
664 			 */
665 			__u64 hint_addr;
666 			/* Handle returned from HL_MEM_OP_ALLOC */
667 			__u64 handle;
668 		} map_device;
669 
670 		/* HL_MEM_OP_MAP - map host memory */
671 		struct {
672 			/* Address of allocated host memory */
673 			__u64 host_virt_addr;
674 			/*
675 			 * Requested virtual address of mapped memory.
676 			 * The driver will try to map the requested region to
677 			 * this hint address, as long as the address is valid
678 			 * and not already mapped. The user should check the
679 			 * returned address of the IOCTL to make sure he got
680 			 * the hint address. Passing 0 here means that the
681 			 * driver will choose the address itself.
682 			 */
683 			__u64 hint_addr;
684 			/* Size of allocated host memory */
685 			__u64 mem_size;
686 		} map_host;
687 
688 		/* HL_MEM_OP_UNMAP - unmap host memory */
689 		struct {
690 			/* Virtual address returned from HL_MEM_OP_MAP */
691 			__u64 device_virt_addr;
692 		} unmap;
693 	};
694 
695 	/* HL_MEM_OP_* */
696 	__u32 op;
697 	/* HL_MEM_* flags */
698 	__u32 flags;
699 	/* Context ID - Currently not in use */
700 	__u32 ctx_id;
701 	__u32 pad;
702 };
703 
704 struct hl_mem_out {
705 	union {
706 		/*
707 		 * Used for HL_MEM_OP_MAP as the virtual address that was
708 		 * assigned in the device VA space.
709 		 * A value of 0 means the requested operation failed.
710 		 */
711 		__u64 device_virt_addr;
712 
713 		/*
714 		 * Used for HL_MEM_OP_ALLOC. This is the assigned
715 		 * handle for the allocated memory
716 		 */
717 		__u64 handle;
718 	};
719 };
720 
721 union hl_mem_args {
722 	struct hl_mem_in in;
723 	struct hl_mem_out out;
724 };
725 
726 #define HL_DEBUG_MAX_AUX_VALUES		10
727 
728 struct hl_debug_params_etr {
729 	/* Address in memory to allocate buffer */
730 	__u64 buffer_address;
731 
732 	/* Size of buffer to allocate */
733 	__u64 buffer_size;
734 
735 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
736 	__u32 sink_mode;
737 	__u32 pad;
738 };
739 
740 struct hl_debug_params_etf {
741 	/* Address in memory to allocate buffer */
742 	__u64 buffer_address;
743 
744 	/* Size of buffer to allocate */
745 	__u64 buffer_size;
746 
747 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
748 	__u32 sink_mode;
749 	__u32 pad;
750 };
751 
752 struct hl_debug_params_stm {
753 	/* Two bit masks for HW event and Stimulus Port */
754 	__u64 he_mask;
755 	__u64 sp_mask;
756 
757 	/* Trace source ID */
758 	__u32 id;
759 
760 	/* Frequency for the timestamp register */
761 	__u32 frequency;
762 };
763 
764 struct hl_debug_params_bmon {
765 	/* Two address ranges that the user can request to filter */
766 	__u64 start_addr0;
767 	__u64 addr_mask0;
768 
769 	__u64 start_addr1;
770 	__u64 addr_mask1;
771 
772 	/* Capture window configuration */
773 	__u32 bw_win;
774 	__u32 win_capture;
775 
776 	/* Trace source ID */
777 	__u32 id;
778 	__u32 pad;
779 };
780 
781 struct hl_debug_params_spmu {
782 	/* Event types selection */
783 	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
784 
785 	/* Number of event types selection */
786 	__u32 event_types_num;
787 	__u32 pad;
788 };
789 
790 /* Opcode for ETR component */
791 #define HL_DEBUG_OP_ETR		0
792 /* Opcode for ETF component */
793 #define HL_DEBUG_OP_ETF		1
794 /* Opcode for STM component */
795 #define HL_DEBUG_OP_STM		2
796 /* Opcode for FUNNEL component */
797 #define HL_DEBUG_OP_FUNNEL	3
798 /* Opcode for BMON component */
799 #define HL_DEBUG_OP_BMON	4
800 /* Opcode for SPMU component */
801 #define HL_DEBUG_OP_SPMU	5
802 /* Opcode for timestamp (deprecated) */
803 #define HL_DEBUG_OP_TIMESTAMP	6
804 /* Opcode for setting the device into or out of debug mode. The enable
805  * variable should be 1 for enabling debug mode and 0 for disabling it
806  */
807 #define HL_DEBUG_OP_SET_MODE	7
808 
809 struct hl_debug_args {
810 	/*
811 	 * Pointer to user input structure.
812 	 * This field is relevant to specific opcodes.
813 	 */
814 	__u64 input_ptr;
815 	/* Pointer to user output structure */
816 	__u64 output_ptr;
817 	/* Size of user input structure */
818 	__u32 input_size;
819 	/* Size of user output structure */
820 	__u32 output_size;
821 	/* HL_DEBUG_OP_* */
822 	__u32 op;
823 	/*
824 	 * Register index in the component, taken from the debug_regs_index enum
825 	 * in the various ASIC header files
826 	 */
827 	__u32 reg_idx;
828 	/* Enable/disable */
829 	__u32 enable;
830 	/* Context ID - Currently not in use */
831 	__u32 ctx_id;
832 };
833 
834 /*
835  * Various information operations such as:
836  * - H/W IP information
837  * - Current dram usage
838  *
839  * The user calls this IOCTL with an opcode that describes the required
840  * information. The user should supply a pointer to a user-allocated memory
841  * chunk, which will be filled by the driver with the requested information.
842  *
843  * The user supplies the maximum amount of size to copy into the user's memory,
844  * in order to prevent data corruption in case of differences between the
845  * definitions of structures in kernel and userspace, e.g. in case of old
846  * userspace and new kernel driver
847  */
848 #define HL_IOCTL_INFO	\
849 		_IOWR('H', 0x01, struct hl_info_args)
850 
851 /*
852  * Command Buffer
853  * - Request a Command Buffer
854  * - Destroy a Command Buffer
855  *
856  * The command buffers are memory blocks that reside in DMA-able address
857  * space and are physically contiguous so they can be accessed by the device
858  * directly. They are allocated using the coherent DMA API.
859  *
860  * When creating a new CB, the IOCTL returns a handle of it, and the user-space
861  * process needs to use that handle to mmap the buffer so it can access them.
862  *
863  * In some instances, the device must access the command buffer through the
864  * device's MMU, and thus its memory should be mapped. In these cases, user can
865  * indicate the driver that such a mapping is required.
866  * The resulting device virtual address will be used internally by the driver,
867  * and won't be returned to user.
868  *
869  */
870 #define HL_IOCTL_CB		\
871 		_IOWR('H', 0x02, union hl_cb_args)
872 
873 /*
874  * Command Submission
875  *
876  * To submit work to the device, the user need to call this IOCTL with a set
877  * of JOBS. That set of JOBS constitutes a CS object.
878  * Each JOB will be enqueued on a specific queue, according to the user's input.
879  * There can be more then one JOB per queue.
880  *
881  * The CS IOCTL will receive three sets of JOBS. One set is for "restore" phase,
882  * a second set is for "execution" phase and a third set is for "store" phase.
883  * The JOBS on the "restore" phase are enqueued only after context-switch
884  * (or if its the first CS for this context). The user can also order the
885  * driver to run the "restore" phase explicitly
886  *
887  * There are two types of queues - external and internal. External queues
888  * are DMA queues which transfer data from/to the Host. All other queues are
889  * internal. The driver will get completion notifications from the device only
890  * on JOBS which are enqueued in the external queues.
891  *
892  * For jobs on external queues, the user needs to create command buffers
893  * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
894  * internal queues, the user needs to prepare a "command buffer" with packets
895  * on either the device SRAM/DRAM or the host, and give the device address of
896  * that buffer to the CS ioctl.
897  *
898  * This IOCTL is asynchronous in regard to the actual execution of the CS. This
899  * means it returns immediately after ALL the JOBS were enqueued on their
900  * relevant queues. Therefore, the user mustn't assume the CS has been completed
901  * or has even started to execute.
902  *
903  * Upon successful enqueue, the IOCTL returns a sequence number which the user
904  * can use with the "Wait for CS" IOCTL to check whether the handle's CS
905  * external JOBS have been completed. Note that if the CS has internal JOBS
906  * which can execute AFTER the external JOBS have finished, the driver might
907  * report that the CS has finished executing BEFORE the internal JOBS have
908  * actually finished executing.
909  *
910  * Even though the sequence number increments per CS, the user can NOT
911  * automatically assume that if CS with sequence number N finished, then CS
912  * with sequence number N-1 also finished. The user can make this assumption if
913  * and only if CS N and CS N-1 are exactly the same (same CBs for the same
914  * queues).
915  */
916 #define HL_IOCTL_CS			\
917 		_IOWR('H', 0x03, union hl_cs_args)
918 
919 /*
920  * Wait for Command Submission
921  *
922  * The user can call this IOCTL with a handle it received from the CS IOCTL
923  * to wait until the handle's CS has finished executing. The user will wait
924  * inside the kernel until the CS has finished or until the user-requested
925  * timeout has expired.
926  *
927  * If the timeout value is 0, the driver won't sleep at all. It will check
928  * the status of the CS and return immediately
929  *
930  * The return value of the IOCTL is a standard Linux error code. The possible
931  * values are:
932  *
933  * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
934  *             that the user process received
935  * ETIMEDOUT - The CS has caused a timeout on the device
936  * EIO       - The CS was aborted (usually because the device was reset)
937  * ENODEV    - The device wants to do hard-reset (so user need to close FD)
938  *
939  * The driver also returns a custom define inside the IOCTL which can be:
940  *
941  * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
942  * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
943  * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
944  *                                 (ETIMEDOUT)
945  * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
946  *                                 device was reset (EIO)
947  * HL_WAIT_CS_STATUS_INTERRUPTED - Waiting for the CS was interrupted (EINTR)
948  *
949  */
950 
951 #define HL_IOCTL_WAIT_CS			\
952 		_IOWR('H', 0x04, union hl_wait_cs_args)
953 
954 /*
955  * Memory
956  * - Map host memory to device MMU
957  * - Unmap host memory from device MMU
958  *
959  * This IOCTL allows the user to map host memory to the device MMU
960  *
961  * For host memory, the IOCTL doesn't allocate memory. The user is supposed
962  * to allocate the memory in user-space (malloc/new). The driver pins the
963  * physical pages (up to the allowed limit by the OS), assigns a virtual
964  * address in the device VA space and initializes the device MMU.
965  *
966  * There is an option for the user to specify the requested virtual address.
967  *
968  */
969 #define HL_IOCTL_MEMORY		\
970 		_IOWR('H', 0x05, union hl_mem_args)
971 
972 /*
973  * Debug
974  * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
975  *
976  * This IOCTL allows the user to get debug traces from the chip.
977  *
978  * Before the user can send configuration requests of the various
979  * debug/profile engines, it needs to set the device into debug mode.
980  * This is because the debug/profile infrastructure is shared component in the
981  * device and we can't allow multiple users to access it at the same time.
982  *
983  * Once a user set the device into debug mode, the driver won't allow other
984  * users to "work" with the device, i.e. open a FD. If there are multiple users
985  * opened on the device, the driver won't allow any user to debug the device.
986  *
987  * For each configuration request, the user needs to provide the register index
988  * and essential data such as buffer address and size.
989  *
990  * Once the user has finished using the debug/profile engines, he should
991  * set the device into non-debug mode, i.e. disable debug mode.
992  *
993  * The driver can decide to "kick out" the user if he abuses this interface.
994  *
995  */
996 #define HL_IOCTL_DEBUG		\
997 		_IOWR('H', 0x06, struct hl_debug_args)
998 
999 #define HL_COMMAND_START	0x01
1000 #define HL_COMMAND_END		0x07
1001 
1002 #endif /* HABANALABS_H_ */
1003