1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/sort.h>
10 #include <linux/debugfs.h>
11 #include <linux/ktime.h>
12 #include <linux/bits.h>
13
14 #include <drm/drm_crtc.h>
15 #include <drm/drm_flip_work.h>
16 #include <drm/drm_mode.h>
17 #include <drm/drm_probe_helper.h>
18 #include <drm/drm_rect.h>
19 #include <drm/drm_vblank.h>
20
21 #include "dpu_kms.h"
22 #include "dpu_hw_lm.h"
23 #include "dpu_hw_ctl.h"
24 #include "dpu_hw_dspp.h"
25 #include "dpu_crtc.h"
26 #include "dpu_plane.h"
27 #include "dpu_encoder.h"
28 #include "dpu_vbif.h"
29 #include "dpu_core_perf.h"
30 #include "dpu_trace.h"
31
32 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0
33 #define DPU_DRM_BLEND_OP_OPAQUE 1
34 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2
35 #define DPU_DRM_BLEND_OP_COVERAGE 3
36 #define DPU_DRM_BLEND_OP_MAX 4
37
38 /* layer mixer index on dpu_crtc */
39 #define LEFT_MIXER 0
40 #define RIGHT_MIXER 1
41
42 /* timeout in ms waiting for frame done */
43 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
44
45 #define CONVERT_S3_15(val) \
46 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
47
_dpu_crtc_get_kms(struct drm_crtc * crtc)48 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
49 {
50 struct msm_drm_private *priv = crtc->dev->dev_private;
51
52 return to_dpu_kms(priv->kms);
53 }
54
dpu_crtc_destroy(struct drm_crtc * crtc)55 static void dpu_crtc_destroy(struct drm_crtc *crtc)
56 {
57 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
58
59 DPU_DEBUG("\n");
60
61 if (!crtc)
62 return;
63
64 drm_crtc_cleanup(crtc);
65 kfree(dpu_crtc);
66 }
67
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,struct dpu_format * format)68 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
69 struct dpu_plane_state *pstate, struct dpu_format *format)
70 {
71 struct dpu_hw_mixer *lm = mixer->hw_lm;
72 uint32_t blend_op;
73 struct drm_format_name_buf format_name;
74
75 /* default to opaque blending */
76 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
77 DPU_BLEND_BG_ALPHA_BG_CONST;
78
79 if (format->alpha_enable) {
80 /* coverage blending */
81 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
82 DPU_BLEND_BG_ALPHA_FG_PIXEL |
83 DPU_BLEND_BG_INV_ALPHA;
84 }
85
86 lm->ops.setup_blend_config(lm, pstate->stage,
87 0xFF, 0, blend_op);
88
89 DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n",
90 drm_get_format_name(format->base.pixel_format, &format_name),
91 format->alpha_enable, blend_op);
92 }
93
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)94 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
95 {
96 struct dpu_crtc_state *crtc_state;
97 int lm_idx, lm_horiz_position;
98
99 crtc_state = to_dpu_crtc_state(crtc->state);
100
101 lm_horiz_position = 0;
102 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
103 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
104 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
105 struct dpu_hw_mixer_cfg cfg;
106
107 if (!lm_roi || !drm_rect_visible(lm_roi))
108 continue;
109
110 cfg.out_width = drm_rect_width(lm_roi);
111 cfg.out_height = drm_rect_height(lm_roi);
112 cfg.right_mixer = lm_horiz_position++;
113 cfg.flags = 0;
114 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
115 }
116 }
117
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer)118 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
119 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
120 {
121 struct drm_plane *plane;
122 struct drm_framebuffer *fb;
123 struct drm_plane_state *state;
124 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
125 struct dpu_plane_state *pstate = NULL;
126 struct dpu_format *format;
127 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
128 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
129
130 u32 flush_mask;
131 uint32_t stage_idx, lm_idx;
132 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
133 bool bg_alpha_enable = false;
134
135 drm_atomic_crtc_for_each_plane(plane, crtc) {
136 state = plane->state;
137 if (!state)
138 continue;
139
140 pstate = to_dpu_plane_state(state);
141 fb = state->fb;
142
143 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
144
145 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n",
146 crtc->base.id,
147 pstate->stage,
148 plane->base.id,
149 dpu_plane_pipe(plane) - SSPP_VIG0,
150 state->fb ? state->fb->base.id : -1);
151
152 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
153
154 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
155 bg_alpha_enable = true;
156
157 stage_idx = zpos_cnt[pstate->stage]++;
158 stage_cfg->stage[pstate->stage][stage_idx] =
159 dpu_plane_pipe(plane);
160 stage_cfg->multirect_index[pstate->stage][stage_idx] =
161 pstate->multirect_index;
162
163 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
164 state, pstate, stage_idx,
165 dpu_plane_pipe(plane) - SSPP_VIG0,
166 format->base.pixel_format,
167 fb ? fb->modifier : 0);
168
169 /* blend config update */
170 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
171 _dpu_crtc_setup_blend_cfg(mixer + lm_idx,
172 pstate, format);
173
174 mixer[lm_idx].flush_mask |= flush_mask;
175
176 if (bg_alpha_enable && !format->alpha_enable)
177 mixer[lm_idx].mixer_op_mode = 0;
178 else
179 mixer[lm_idx].mixer_op_mode |=
180 1 << pstate->stage;
181 }
182 }
183
184 _dpu_crtc_program_lm_output_roi(crtc);
185 }
186
187 /**
188 * _dpu_crtc_blend_setup - configure crtc mixers
189 * @crtc: Pointer to drm crtc structure
190 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)191 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
192 {
193 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
194 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
195 struct dpu_crtc_mixer *mixer = cstate->mixers;
196 struct dpu_hw_ctl *ctl;
197 struct dpu_hw_mixer *lm;
198 int i;
199
200 DPU_DEBUG("%s\n", dpu_crtc->name);
201
202 for (i = 0; i < cstate->num_mixers; i++) {
203 mixer[i].mixer_op_mode = 0;
204 mixer[i].flush_mask = 0;
205 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
206 mixer[i].lm_ctl->ops.clear_all_blendstages(
207 mixer[i].lm_ctl);
208 }
209
210 /* initialize stage cfg */
211 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
212
213 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
214
215 for (i = 0; i < cstate->num_mixers; i++) {
216 ctl = mixer[i].lm_ctl;
217 lm = mixer[i].hw_lm;
218
219 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
220
221 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
222 mixer[i].hw_lm->idx);
223
224 /* stage config flush mask */
225 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
226
227 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
228 mixer[i].hw_lm->idx - LM_0,
229 mixer[i].mixer_op_mode,
230 ctl->idx - CTL_0,
231 mixer[i].flush_mask);
232
233 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
234 &dpu_crtc->stage_cfg);
235 }
236 }
237
238 /**
239 * _dpu_crtc_complete_flip - signal pending page_flip events
240 * Any pending vblank events are added to the vblank_event_list
241 * so that the next vblank interrupt shall signal them.
242 * However PAGE_FLIP events are not handled through the vblank_event_list.
243 * This API signals any pending PAGE_FLIP events requested through
244 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
245 * @crtc: Pointer to drm crtc structure
246 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)247 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
248 {
249 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
250 struct drm_device *dev = crtc->dev;
251 unsigned long flags;
252
253 spin_lock_irqsave(&dev->event_lock, flags);
254 if (dpu_crtc->event) {
255 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
256 dpu_crtc->event);
257 trace_dpu_crtc_complete_flip(DRMID(crtc));
258 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
259 dpu_crtc->event = NULL;
260 }
261 spin_unlock_irqrestore(&dev->event_lock, flags);
262 }
263
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)264 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
265 {
266 struct drm_encoder *encoder;
267
268 /*
269 * TODO: This function is called from dpu debugfs and as part of atomic
270 * check. When called from debugfs, the crtc->mutex must be held to
271 * read crtc->state. However reading crtc->state from atomic check isn't
272 * allowed (unless you have a good reason, a big comment, and a deep
273 * understanding of how the atomic/modeset locks work (<- and this is
274 * probably not possible)). So we'll keep the WARN_ON here for now, but
275 * really we need to figure out a better way to track our operating mode
276 */
277 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
278
279 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
280 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
281 return dpu_encoder_get_intf_mode(encoder);
282
283 return INTF_MODE_NONE;
284 }
285
dpu_crtc_vblank_callback(struct drm_crtc * crtc)286 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
287 {
288 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
289
290 /* keep statistics on vblank callback - with auto reset via debugfs */
291 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
292 dpu_crtc->vblank_cb_time = ktime_get();
293 else
294 dpu_crtc->vblank_cb_count++;
295 drm_crtc_handle_vblank(crtc);
296 trace_dpu_crtc_vblank_cb(DRMID(crtc));
297 }
298
dpu_crtc_frame_event_work(struct kthread_work * work)299 static void dpu_crtc_frame_event_work(struct kthread_work *work)
300 {
301 struct dpu_crtc_frame_event *fevent = container_of(work,
302 struct dpu_crtc_frame_event, work);
303 struct drm_crtc *crtc = fevent->crtc;
304 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
305 unsigned long flags;
306 bool frame_done = false;
307
308 DPU_ATRACE_BEGIN("crtc_frame_event");
309
310 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
311 ktime_to_ns(fevent->ts));
312
313 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
314 | DPU_ENCODER_FRAME_EVENT_ERROR
315 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
316
317 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
318 /* ignore vblank when not pending */
319 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
320 /* release bandwidth and other resources */
321 trace_dpu_crtc_frame_event_done(DRMID(crtc),
322 fevent->event);
323 dpu_core_perf_crtc_release_bw(crtc);
324 } else {
325 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
326 fevent->event);
327 }
328
329 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE)
330 dpu_core_perf_crtc_update(crtc, 0, false);
331
332 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
333 | DPU_ENCODER_FRAME_EVENT_ERROR))
334 frame_done = true;
335 }
336
337 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
338 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
339 crtc->base.id, ktime_to_ns(fevent->ts));
340
341 if (frame_done)
342 complete_all(&dpu_crtc->frame_done_comp);
343
344 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
345 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
346 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
347 DPU_ATRACE_END("crtc_frame_event");
348 }
349
350 /*
351 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
352 * registers this API to encoder for all frame event callbacks like
353 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
354 * from different context - IRQ, user thread, commit_thread, etc. Each event
355 * should be carefully reviewed and should be processed in proper task context
356 * to avoid schedulin delay or properly manage the irq context's bottom half
357 * processing.
358 */
dpu_crtc_frame_event_cb(void * data,u32 event)359 static void dpu_crtc_frame_event_cb(void *data, u32 event)
360 {
361 struct drm_crtc *crtc = (struct drm_crtc *)data;
362 struct dpu_crtc *dpu_crtc;
363 struct msm_drm_private *priv;
364 struct dpu_crtc_frame_event *fevent;
365 unsigned long flags;
366 u32 crtc_id;
367
368 /* Nothing to do on idle event */
369 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
370 return;
371
372 dpu_crtc = to_dpu_crtc(crtc);
373 priv = crtc->dev->dev_private;
374 crtc_id = drm_crtc_index(crtc);
375
376 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
377
378 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
379 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
380 struct dpu_crtc_frame_event, list);
381 if (fevent)
382 list_del_init(&fevent->list);
383 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
384
385 if (!fevent) {
386 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
387 return;
388 }
389
390 fevent->event = event;
391 fevent->crtc = crtc;
392 fevent->ts = ktime_get();
393 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
394 }
395
dpu_crtc_complete_commit(struct drm_crtc * crtc)396 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
397 {
398 trace_dpu_crtc_complete_commit(DRMID(crtc));
399 _dpu_crtc_complete_flip(crtc);
400 }
401
_dpu_crtc_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)402 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
403 struct drm_crtc_state *state)
404 {
405 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
406 struct drm_display_mode *adj_mode = &state->adjusted_mode;
407 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
408 int i;
409
410 for (i = 0; i < cstate->num_mixers; i++) {
411 struct drm_rect *r = &cstate->lm_bounds[i];
412 r->x1 = crtc_split_width * i;
413 r->y1 = 0;
414 r->x2 = r->x1 + crtc_split_width;
415 r->y2 = adj_mode->vdisplay;
416
417 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
418 }
419 }
420
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)421 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
422 struct dpu_hw_pcc_cfg *cfg)
423 {
424 struct drm_color_ctm *ctm;
425
426 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
427
428 ctm = (struct drm_color_ctm *)state->ctm->data;
429
430 if (!ctm)
431 return;
432
433 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
434 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
435 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
436
437 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
438 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
439 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
440
441 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
442 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
443 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
444 }
445
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)446 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
447 {
448 struct drm_crtc_state *state = crtc->state;
449 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
450 struct dpu_crtc_mixer *mixer = cstate->mixers;
451 struct dpu_hw_pcc_cfg cfg;
452 struct dpu_hw_ctl *ctl;
453 struct dpu_hw_dspp *dspp;
454 int i;
455
456
457 if (!state->color_mgmt_changed)
458 return;
459
460 for (i = 0; i < cstate->num_mixers; i++) {
461 ctl = mixer[i].lm_ctl;
462 dspp = mixer[i].hw_dspp;
463
464 if (!dspp || !dspp->ops.setup_pcc)
465 continue;
466
467 if (!state->ctm) {
468 dspp->ops.setup_pcc(dspp, NULL);
469 } else {
470 _dpu_crtc_get_pcc_coeff(state, &cfg);
471 dspp->ops.setup_pcc(dspp, &cfg);
472 }
473
474 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl,
475 mixer[i].hw_dspp->idx);
476
477 /* stage config flush mask */
478 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
479
480 DPU_DEBUG("lm %d, ctl %d, flush mask 0x%x\n",
481 mixer[i].hw_lm->idx - DSPP_0,
482 ctl->idx - CTL_0,
483 mixer[i].flush_mask);
484 }
485 }
486
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_state)487 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
488 struct drm_crtc_state *old_state)
489 {
490 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
491 struct drm_encoder *encoder;
492
493 if (!crtc->state->enable) {
494 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n",
495 crtc->base.id, crtc->state->enable);
496 return;
497 }
498
499 DPU_DEBUG("crtc%d\n", crtc->base.id);
500
501 _dpu_crtc_setup_lm_bounds(crtc, crtc->state);
502
503 /* encoder will trigger pending mask now */
504 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
505 dpu_encoder_trigger_kickoff_pending(encoder);
506
507 /*
508 * If no mixers have been allocated in dpu_crtc_atomic_check(),
509 * it means we are trying to flush a CRTC whose state is disabled:
510 * nothing else needs to be done.
511 */
512 if (unlikely(!cstate->num_mixers))
513 return;
514
515 _dpu_crtc_blend_setup(crtc);
516
517 _dpu_crtc_setup_cp_blocks(crtc);
518
519 /*
520 * PP_DONE irq is only used by command mode for now.
521 * It is better to request pending before FLUSH and START trigger
522 * to make sure no pp_done irq missed.
523 * This is safe because no pp_done will happen before SW trigger
524 * in command mode.
525 */
526 }
527
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)528 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
529 struct drm_crtc_state *old_crtc_state)
530 {
531 struct dpu_crtc *dpu_crtc;
532 struct drm_device *dev;
533 struct drm_plane *plane;
534 struct msm_drm_private *priv;
535 unsigned long flags;
536 struct dpu_crtc_state *cstate;
537
538 if (!crtc->state->enable) {
539 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n",
540 crtc->base.id, crtc->state->enable);
541 return;
542 }
543
544 DPU_DEBUG("crtc%d\n", crtc->base.id);
545
546 dpu_crtc = to_dpu_crtc(crtc);
547 cstate = to_dpu_crtc_state(crtc->state);
548 dev = crtc->dev;
549 priv = dev->dev_private;
550
551 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
552 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
553 return;
554 }
555
556 WARN_ON(dpu_crtc->event);
557 spin_lock_irqsave(&dev->event_lock, flags);
558 dpu_crtc->event = crtc->state->event;
559 crtc->state->event = NULL;
560 spin_unlock_irqrestore(&dev->event_lock, flags);
561
562 /*
563 * If no mixers has been allocated in dpu_crtc_atomic_check(),
564 * it means we are trying to flush a CRTC whose state is disabled:
565 * nothing else needs to be done.
566 */
567 if (unlikely(!cstate->num_mixers))
568 return;
569
570 /*
571 * For planes without commit update, drm framework will not add
572 * those planes to current state since hardware update is not
573 * required. However, if those planes were power collapsed since
574 * last commit cycle, driver has to restore the hardware state
575 * of those planes explicitly here prior to plane flush.
576 */
577 drm_atomic_crtc_for_each_plane(plane, crtc)
578 dpu_plane_restore(plane);
579
580 /* update performance setting before crtc kickoff */
581 dpu_core_perf_crtc_update(crtc, 1, false);
582
583 /*
584 * Final plane updates: Give each plane a chance to complete all
585 * required writes/flushing before crtc's "flush
586 * everything" call below.
587 */
588 drm_atomic_crtc_for_each_plane(plane, crtc) {
589 if (dpu_crtc->smmu_state.transition_error)
590 dpu_plane_set_error(plane, true);
591 dpu_plane_flush(plane);
592 }
593
594 /* Kickoff will be scheduled by outer layer */
595 }
596
597 /**
598 * dpu_crtc_destroy_state - state destroy hook
599 * @crtc: drm CRTC
600 * @state: CRTC state object to release
601 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)602 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
603 struct drm_crtc_state *state)
604 {
605 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
606
607 DPU_DEBUG("crtc%d\n", crtc->base.id);
608
609 __drm_atomic_helper_crtc_destroy_state(state);
610
611 kfree(cstate);
612 }
613
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)614 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
615 {
616 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
617 int ret, rc = 0;
618
619 if (!atomic_read(&dpu_crtc->frame_pending)) {
620 DPU_DEBUG("no frames pending\n");
621 return 0;
622 }
623
624 DPU_ATRACE_BEGIN("frame done completion wait");
625 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
626 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
627 if (!ret) {
628 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
629 rc = -ETIMEDOUT;
630 }
631 DPU_ATRACE_END("frame done completion wait");
632
633 return rc;
634 }
635
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)636 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
637 {
638 struct drm_encoder *encoder;
639 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
640 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
641 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
642
643 /*
644 * If no mixers has been allocated in dpu_crtc_atomic_check(),
645 * it means we are trying to start a CRTC whose state is disabled:
646 * nothing else needs to be done.
647 */
648 if (unlikely(!cstate->num_mixers))
649 return;
650
651 DPU_ATRACE_BEGIN("crtc_commit");
652
653 /*
654 * Encoder will flush/start now, unless it has a tx pending. If so, it
655 * may delay and flush at an irq event (e.g. ppdone)
656 */
657 drm_for_each_encoder_mask(encoder, crtc->dev,
658 crtc->state->encoder_mask)
659 dpu_encoder_prepare_for_kickoff(encoder);
660
661 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
662 /* acquire bandwidth and other resources */
663 DPU_DEBUG("crtc%d first commit\n", crtc->base.id);
664 } else
665 DPU_DEBUG("crtc%d commit\n", crtc->base.id);
666
667 dpu_crtc->play_count++;
668
669 dpu_vbif_clear_errors(dpu_kms);
670
671 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
672 dpu_encoder_kickoff(encoder);
673
674 reinit_completion(&dpu_crtc->frame_done_comp);
675 DPU_ATRACE_END("crtc_commit");
676 }
677
dpu_crtc_reset(struct drm_crtc * crtc)678 static void dpu_crtc_reset(struct drm_crtc *crtc)
679 {
680 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
681
682 if (crtc->state)
683 dpu_crtc_destroy_state(crtc, crtc->state);
684
685 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
686 }
687
688 /**
689 * dpu_crtc_duplicate_state - state duplicate hook
690 * @crtc: Pointer to drm crtc structure
691 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)692 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
693 {
694 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
695
696 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
697 if (!cstate) {
698 DPU_ERROR("failed to allocate state\n");
699 return NULL;
700 }
701
702 /* duplicate base helper */
703 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
704
705 return &cstate->base;
706 }
707
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)708 static void dpu_crtc_disable(struct drm_crtc *crtc,
709 struct drm_crtc_state *old_crtc_state)
710 {
711 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
712 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
713 struct drm_encoder *encoder;
714 unsigned long flags;
715 bool release_bandwidth = false;
716
717 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
718
719 /* Disable/save vblank irq handling */
720 drm_crtc_vblank_off(crtc);
721
722 drm_for_each_encoder_mask(encoder, crtc->dev,
723 old_crtc_state->encoder_mask) {
724 /* in video mode, we hold an extra bandwidth reference
725 * as we cannot drop bandwidth at frame-done if any
726 * crtc is being used in video mode.
727 */
728 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
729 release_bandwidth = true;
730 dpu_encoder_assign_crtc(encoder, NULL);
731 }
732
733 /* wait for frame_event_done completion */
734 if (_dpu_crtc_wait_for_frame_done(crtc))
735 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
736 crtc->base.id,
737 atomic_read(&dpu_crtc->frame_pending));
738
739 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
740 dpu_crtc->enabled = false;
741
742 if (atomic_read(&dpu_crtc->frame_pending)) {
743 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
744 atomic_read(&dpu_crtc->frame_pending));
745 if (release_bandwidth)
746 dpu_core_perf_crtc_release_bw(crtc);
747 atomic_set(&dpu_crtc->frame_pending, 0);
748 }
749
750 dpu_core_perf_crtc_update(crtc, 0, true);
751
752 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
753 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
754
755 memset(cstate->mixers, 0, sizeof(cstate->mixers));
756 cstate->num_mixers = 0;
757
758 /* disable clk & bw control until clk & bw properties are set */
759 cstate->bw_control = false;
760 cstate->bw_split_vote = false;
761
762 if (crtc->state->event && !crtc->state->active) {
763 spin_lock_irqsave(&crtc->dev->event_lock, flags);
764 drm_crtc_send_vblank_event(crtc, crtc->state->event);
765 crtc->state->event = NULL;
766 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
767 }
768
769 pm_runtime_put_sync(crtc->dev->dev);
770 }
771
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)772 static void dpu_crtc_enable(struct drm_crtc *crtc,
773 struct drm_crtc_state *old_crtc_state)
774 {
775 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
776 struct drm_encoder *encoder;
777 bool request_bandwidth = false;
778
779 pm_runtime_get_sync(crtc->dev->dev);
780
781 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
782
783 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
784 /* in video mode, we hold an extra bandwidth reference
785 * as we cannot drop bandwidth at frame-done if any
786 * crtc is being used in video mode.
787 */
788 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
789 request_bandwidth = true;
790 dpu_encoder_register_frame_event_callback(encoder,
791 dpu_crtc_frame_event_cb, (void *)crtc);
792 }
793
794 if (request_bandwidth)
795 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
796
797 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
798 dpu_crtc->enabled = true;
799
800 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
801 dpu_encoder_assign_crtc(encoder, crtc);
802
803 /* Enable/restore vblank irq handling */
804 drm_crtc_vblank_on(crtc);
805 }
806
807 struct plane_state {
808 struct dpu_plane_state *dpu_pstate;
809 const struct drm_plane_state *drm_pstate;
810 int stage;
811 u32 pipe_id;
812 };
813
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)814 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
815 struct drm_crtc_state *state)
816 {
817 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
818 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
819 struct plane_state *pstates;
820
821 const struct drm_plane_state *pstate;
822 struct drm_plane *plane;
823 struct drm_display_mode *mode;
824
825 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
826
827 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
828 int multirect_count = 0;
829 const struct drm_plane_state *pipe_staged[SSPP_MAX];
830 int left_zpos_cnt = 0, right_zpos_cnt = 0;
831 struct drm_rect crtc_rect = { 0 };
832
833 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
834
835 if (!state->enable || !state->active) {
836 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n",
837 crtc->base.id, state->enable, state->active);
838 goto end;
839 }
840
841 mode = &state->adjusted_mode;
842 DPU_DEBUG("%s: check", dpu_crtc->name);
843
844 /* force a full mode set if active state changed */
845 if (state->active_changed)
846 state->mode_changed = true;
847
848 memset(pipe_staged, 0, sizeof(pipe_staged));
849
850 if (cstate->num_mixers) {
851 mixer_width = mode->hdisplay / cstate->num_mixers;
852
853 _dpu_crtc_setup_lm_bounds(crtc, state);
854 }
855
856 crtc_rect.x2 = mode->hdisplay;
857 crtc_rect.y2 = mode->vdisplay;
858
859 /* get plane state for all drm planes associated with crtc state */
860 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
861 struct drm_rect dst, clip = crtc_rect;
862
863 if (IS_ERR_OR_NULL(pstate)) {
864 rc = PTR_ERR(pstate);
865 DPU_ERROR("%s: failed to get plane%d state, %d\n",
866 dpu_crtc->name, plane->base.id, rc);
867 goto end;
868 }
869 if (cnt >= DPU_STAGE_MAX * 4)
870 continue;
871
872 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate);
873 pstates[cnt].drm_pstate = pstate;
874 pstates[cnt].stage = pstate->normalized_zpos;
875 pstates[cnt].pipe_id = dpu_plane_pipe(plane);
876
877 if (pipe_staged[pstates[cnt].pipe_id]) {
878 multirect_plane[multirect_count].r0 =
879 pipe_staged[pstates[cnt].pipe_id];
880 multirect_plane[multirect_count].r1 = pstate;
881 multirect_count++;
882
883 pipe_staged[pstates[cnt].pipe_id] = NULL;
884 } else {
885 pipe_staged[pstates[cnt].pipe_id] = pstate;
886 }
887
888 cnt++;
889
890 dst = drm_plane_state_dest(pstate);
891 if (!drm_rect_intersect(&clip, &dst)) {
892 DPU_ERROR("invalid vertical/horizontal destination\n");
893 DPU_ERROR("display: " DRM_RECT_FMT " plane: "
894 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
895 DRM_RECT_ARG(&dst));
896 rc = -E2BIG;
897 goto end;
898 }
899 }
900
901 for (i = 1; i < SSPP_MAX; i++) {
902 if (pipe_staged[i]) {
903 dpu_plane_clear_multirect(pipe_staged[i]);
904
905 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
906 DPU_ERROR(
907 "r1 only virt plane:%d not supported\n",
908 pipe_staged[i]->plane->base.id);
909 rc = -EINVAL;
910 goto end;
911 }
912 }
913 }
914
915 z_pos = -1;
916 for (i = 0; i < cnt; i++) {
917 /* reset counts at every new blend stage */
918 if (pstates[i].stage != z_pos) {
919 left_zpos_cnt = 0;
920 right_zpos_cnt = 0;
921 z_pos = pstates[i].stage;
922 }
923
924 /* verify z_pos setting before using it */
925 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
926 DPU_ERROR("> %d plane stages assigned\n",
927 DPU_STAGE_MAX - DPU_STAGE_0);
928 rc = -EINVAL;
929 goto end;
930 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
931 if (left_zpos_cnt == 2) {
932 DPU_ERROR("> 2 planes @ stage %d on left\n",
933 z_pos);
934 rc = -EINVAL;
935 goto end;
936 }
937 left_zpos_cnt++;
938
939 } else {
940 if (right_zpos_cnt == 2) {
941 DPU_ERROR("> 2 planes @ stage %d on right\n",
942 z_pos);
943 rc = -EINVAL;
944 goto end;
945 }
946 right_zpos_cnt++;
947 }
948
949 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
950 DPU_DEBUG("%s: zpos %d", dpu_crtc->name, z_pos);
951 }
952
953 for (i = 0; i < multirect_count; i++) {
954 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
955 DPU_ERROR(
956 "multirect validation failed for planes (%d - %d)\n",
957 multirect_plane[i].r0->plane->base.id,
958 multirect_plane[i].r1->plane->base.id);
959 rc = -EINVAL;
960 goto end;
961 }
962 }
963
964 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
965
966 rc = dpu_core_perf_crtc_check(crtc, state);
967 if (rc) {
968 DPU_ERROR("crtc%d failed performance check %d\n",
969 crtc->base.id, rc);
970 goto end;
971 }
972
973 /* validate source split:
974 * use pstates sorted by stage to check planes on same stage
975 * we assume that all pipes are in source split so its valid to compare
976 * without taking into account left/right mixer placement
977 */
978 for (i = 1; i < cnt; i++) {
979 struct plane_state *prv_pstate, *cur_pstate;
980 struct drm_rect left_rect, right_rect;
981 int32_t left_pid, right_pid;
982 int32_t stage;
983
984 prv_pstate = &pstates[i - 1];
985 cur_pstate = &pstates[i];
986 if (prv_pstate->stage != cur_pstate->stage)
987 continue;
988
989 stage = cur_pstate->stage;
990
991 left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
992 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
993
994 right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
995 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
996
997 if (right_rect.x1 < left_rect.x1) {
998 swap(left_pid, right_pid);
999 swap(left_rect, right_rect);
1000 }
1001
1002 /**
1003 * - planes are enumerated in pipe-priority order such that
1004 * planes with lower drm_id must be left-most in a shared
1005 * blend-stage when using source split.
1006 * - planes in source split must be contiguous in width
1007 * - planes in source split must have same dest yoff and height
1008 */
1009 if (right_pid < left_pid) {
1010 DPU_ERROR(
1011 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1012 stage, left_pid, right_pid);
1013 rc = -EINVAL;
1014 goto end;
1015 } else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1016 DPU_ERROR("non-contiguous coordinates for src split. "
1017 "stage: %d left: " DRM_RECT_FMT " right: "
1018 DRM_RECT_FMT "\n", stage,
1019 DRM_RECT_ARG(&left_rect),
1020 DRM_RECT_ARG(&right_rect));
1021 rc = -EINVAL;
1022 goto end;
1023 } else if (left_rect.y1 != right_rect.y1 ||
1024 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1025 DPU_ERROR("source split at stage: %d. invalid "
1026 "yoff/height: left: " DRM_RECT_FMT " right: "
1027 DRM_RECT_FMT "\n", stage,
1028 DRM_RECT_ARG(&left_rect),
1029 DRM_RECT_ARG(&right_rect));
1030 rc = -EINVAL;
1031 goto end;
1032 }
1033 }
1034
1035 end:
1036 kfree(pstates);
1037 return rc;
1038 }
1039
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1040 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1041 {
1042 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1043 struct drm_encoder *enc;
1044
1045 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1046
1047 /*
1048 * Normally we would iterate through encoder_mask in crtc state to find
1049 * attached encoders. In this case, we might be disabling vblank _after_
1050 * encoder_mask has been cleared.
1051 *
1052 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1053 * disable (which is also after encoder_mask is cleared). So instead of
1054 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1055 * currently assigned to our crtc.
1056 *
1057 * Note also that this function cannot be called while crtc is disabled
1058 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1059 * about the assigned crtcs being inconsistent with the current state
1060 * (which means no need to worry about modeset locks).
1061 */
1062 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1063 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1064 dpu_crtc);
1065
1066 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1067 }
1068
1069 return 0;
1070 }
1071
1072 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1073 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1074 {
1075 struct dpu_crtc *dpu_crtc;
1076 struct dpu_plane_state *pstate = NULL;
1077 struct dpu_crtc_mixer *m;
1078
1079 struct drm_crtc *crtc;
1080 struct drm_plane *plane;
1081 struct drm_display_mode *mode;
1082 struct drm_framebuffer *fb;
1083 struct drm_plane_state *state;
1084 struct dpu_crtc_state *cstate;
1085
1086 int i, out_width;
1087
1088 dpu_crtc = s->private;
1089 crtc = &dpu_crtc->base;
1090
1091 drm_modeset_lock_all(crtc->dev);
1092 cstate = to_dpu_crtc_state(crtc->state);
1093
1094 mode = &crtc->state->adjusted_mode;
1095 out_width = mode->hdisplay / cstate->num_mixers;
1096
1097 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1098 mode->hdisplay, mode->vdisplay);
1099
1100 seq_puts(s, "\n");
1101
1102 for (i = 0; i < cstate->num_mixers; ++i) {
1103 m = &cstate->mixers[i];
1104 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1105 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1106 out_width, mode->vdisplay);
1107 }
1108
1109 seq_puts(s, "\n");
1110
1111 drm_atomic_crtc_for_each_plane(plane, crtc) {
1112 pstate = to_dpu_plane_state(plane->state);
1113 state = plane->state;
1114
1115 if (!pstate || !state)
1116 continue;
1117
1118 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1119 pstate->stage);
1120
1121 if (plane->state->fb) {
1122 fb = plane->state->fb;
1123
1124 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1125 fb->base.id, (char *) &fb->format->format,
1126 fb->width, fb->height);
1127 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1128 seq_printf(s, "cpp[%d]:%u ",
1129 i, fb->format->cpp[i]);
1130 seq_puts(s, "\n\t");
1131
1132 seq_printf(s, "modifier:%8llu ", fb->modifier);
1133 seq_puts(s, "\n");
1134
1135 seq_puts(s, "\t");
1136 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1137 seq_printf(s, "pitches[%d]:%8u ", i,
1138 fb->pitches[i]);
1139 seq_puts(s, "\n");
1140
1141 seq_puts(s, "\t");
1142 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1143 seq_printf(s, "offsets[%d]:%8u ", i,
1144 fb->offsets[i]);
1145 seq_puts(s, "\n");
1146 }
1147
1148 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1149 state->src_x, state->src_y, state->src_w, state->src_h);
1150
1151 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1152 state->crtc_x, state->crtc_y, state->crtc_w,
1153 state->crtc_h);
1154 seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1155 pstate->multirect_mode, pstate->multirect_index);
1156
1157 seq_puts(s, "\n");
1158 }
1159 if (dpu_crtc->vblank_cb_count) {
1160 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1161 s64 diff_ms = ktime_to_ms(diff);
1162 s64 fps = diff_ms ? div_s64(
1163 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1164
1165 seq_printf(s,
1166 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1167 fps, dpu_crtc->vblank_cb_count,
1168 ktime_to_ms(diff), dpu_crtc->play_count);
1169
1170 /* reset time & count for next measurement */
1171 dpu_crtc->vblank_cb_count = 0;
1172 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1173 }
1174
1175 drm_modeset_unlock_all(crtc->dev);
1176
1177 return 0;
1178 }
1179
1180 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1181
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1182 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1183 {
1184 struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1185 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1186
1187 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1188 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1189 seq_printf(s, "core_clk_rate: %llu\n",
1190 dpu_crtc->cur_perf.core_clk_rate);
1191 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1192 seq_printf(s, "max_per_pipe_ib: %llu\n",
1193 dpu_crtc->cur_perf.max_per_pipe_ib);
1194
1195 return 0;
1196 }
1197 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1198
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1199 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1200 {
1201 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1202
1203 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
1204 crtc->dev->primary->debugfs_root);
1205
1206 debugfs_create_file("status", 0400,
1207 dpu_crtc->debugfs_root,
1208 dpu_crtc, &_dpu_debugfs_status_fops);
1209 debugfs_create_file("state", 0600,
1210 dpu_crtc->debugfs_root,
1211 &dpu_crtc->base,
1212 &dpu_crtc_debugfs_state_fops);
1213
1214 return 0;
1215 }
1216 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1217 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1218 {
1219 return 0;
1220 }
1221 #endif /* CONFIG_DEBUG_FS */
1222
dpu_crtc_late_register(struct drm_crtc * crtc)1223 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1224 {
1225 return _dpu_crtc_init_debugfs(crtc);
1226 }
1227
dpu_crtc_early_unregister(struct drm_crtc * crtc)1228 static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
1229 {
1230 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1231
1232 debugfs_remove_recursive(dpu_crtc->debugfs_root);
1233 }
1234
1235 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1236 .set_config = drm_atomic_helper_set_config,
1237 .destroy = dpu_crtc_destroy,
1238 .page_flip = drm_atomic_helper_page_flip,
1239 .reset = dpu_crtc_reset,
1240 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1241 .atomic_destroy_state = dpu_crtc_destroy_state,
1242 .late_register = dpu_crtc_late_register,
1243 .early_unregister = dpu_crtc_early_unregister,
1244 .enable_vblank = msm_crtc_enable_vblank,
1245 .disable_vblank = msm_crtc_disable_vblank,
1246 };
1247
1248 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1249 .atomic_disable = dpu_crtc_disable,
1250 .atomic_enable = dpu_crtc_enable,
1251 .atomic_check = dpu_crtc_atomic_check,
1252 .atomic_begin = dpu_crtc_atomic_begin,
1253 .atomic_flush = dpu_crtc_atomic_flush,
1254 };
1255
1256 /* initialize crtc */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1257 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1258 struct drm_plane *cursor)
1259 {
1260 struct drm_crtc *crtc = NULL;
1261 struct dpu_crtc *dpu_crtc = NULL;
1262 int i;
1263
1264 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1265 if (!dpu_crtc)
1266 return ERR_PTR(-ENOMEM);
1267
1268 crtc = &dpu_crtc->base;
1269 crtc->dev = dev;
1270
1271 spin_lock_init(&dpu_crtc->spin_lock);
1272 atomic_set(&dpu_crtc->frame_pending, 0);
1273
1274 init_completion(&dpu_crtc->frame_done_comp);
1275
1276 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1277
1278 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1279 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1280 list_add(&dpu_crtc->frame_events[i].list,
1281 &dpu_crtc->frame_event_list);
1282 kthread_init_work(&dpu_crtc->frame_events[i].work,
1283 dpu_crtc_frame_event_work);
1284 }
1285
1286 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1287 NULL);
1288
1289 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1290
1291 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1292
1293 /* save user friendly CRTC name for later */
1294 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1295
1296 /* initialize event handling */
1297 spin_lock_init(&dpu_crtc->event_lock);
1298
1299 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name);
1300 return crtc;
1301 }
1302