1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MMCIF eMMC driver.
4 *
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
8
9 /*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
12 *
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
20 *
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
24 *
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
33 */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
58
59 #define DRIVER_NAME "sh_mmcif"
60
61 /* CE_CMD_SET */
62 #define CMD_MASK 0x3f000000
63 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN (1 << 20)
68 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH (1 << 5)
83 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
87
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK (1 << 0)
90
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK 0x0000ffff
93
94 /* CE_INT */
95 #define INT_CCSDE (1 << 29)
96 #define INT_CMD12DRE (1 << 26)
97 #define INT_CMD12RBE (1 << 25)
98 #define INT_CMD12CRE (1 << 24)
99 #define INT_DTRANE (1 << 23)
100 #define INT_BUFRE (1 << 22)
101 #define INT_BUFWEN (1 << 21)
102 #define INT_BUFREN (1 << 20)
103 #define INT_CCSRCV (1 << 19)
104 #define INT_RBSYE (1 << 17)
105 #define INT_CRSPE (1 << 16)
106 #define INT_CMDVIO (1 << 15)
107 #define INT_BUFVIO (1 << 14)
108 #define INT_WDATERR (1 << 11)
109 #define INT_RDATERR (1 << 10)
110 #define INT_RIDXERR (1 << 9)
111 #define INT_RSPERR (1 << 8)
112 #define INT_CCSTO (1 << 5)
113 #define INT_CRCSTO (1 << 4)
114 #define INT_WDATTO (1 << 3)
115 #define INT_RDATTO (1 << 2)
116 #define INT_RBSYTO (1 << 1)
117 #define INT_RSPTO (1 << 0)
118 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
119 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
121 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
124 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129 /* CE_INT_MASK */
130 #define MASK_ALL 0x00000000
131 #define MASK_MCCSDE (1 << 29)
132 #define MASK_MCMD12DRE (1 << 26)
133 #define MASK_MCMD12RBE (1 << 25)
134 #define MASK_MCMD12CRE (1 << 24)
135 #define MASK_MDTRANE (1 << 23)
136 #define MASK_MBUFRE (1 << 22)
137 #define MASK_MBUFWEN (1 << 21)
138 #define MASK_MBUFREN (1 << 20)
139 #define MASK_MCCSRCV (1 << 19)
140 #define MASK_MRBSYE (1 << 17)
141 #define MASK_MCRSPE (1 << 16)
142 #define MASK_MCMDVIO (1 << 15)
143 #define MASK_MBUFVIO (1 << 14)
144 #define MASK_MWDATERR (1 << 11)
145 #define MASK_MRDATERR (1 << 10)
146 #define MASK_MRIDXERR (1 << 9)
147 #define MASK_MRSPERR (1 << 8)
148 #define MASK_MCCSTO (1 << 5)
149 #define MASK_MCRCSTO (1 << 4)
150 #define MASK_MWDATTO (1 << 3)
151 #define MASK_MRDATTO (1 << 2)
152 #define MASK_MRBSYTO (1 << 1)
153 #define MASK_MRSPTO (1 << 0)
154
155 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157 MASK_MCRCSTO | MASK_MWDATTO | \
158 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
161 MASK_MBUFREN | MASK_MBUFWEN | \
162 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
163 MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ (1 << 31)
167
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE (1 << 31)
170 #define STS2_CRC16E (1 << 30)
171 #define STS2_AC12CRCE (1 << 29)
172 #define STS2_RSPCRC7E (1 << 28)
173 #define STS2_CRCSTEBE (1 << 27)
174 #define STS2_RDATEBE (1 << 26)
175 #define STS2_AC12REBE (1 << 25)
176 #define STS2_RSPEBE (1 << 24)
177 #define STS2_AC12IDXE (1 << 23)
178 #define STS2_RSPIDXE (1 << 22)
179 #define STS2_CCSTO (1 << 15)
180 #define STS2_RDATTO (1 << 14)
181 #define STS2_DATBSYTO (1 << 13)
182 #define STS2_CRCSTTO (1 << 12)
183 #define STS2_AC12BSYTO (1 << 11)
184 #define STS2_RSPBSYTO (1 << 10)
185 #define STS2_AC12RSPTO (1 << 9)
186 #define STS2_RSPTO (1 << 8)
187 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
188 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
190 STS2_DATBSYTO | STS2_CRCSTTO | \
191 STS2_AC12BSYTO | STS2_RSPBSYTO | \
192 STS2_AC12RSPTO | STS2_RSPTO)
193
194 #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */
195 #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */
196 #define CLKDEV_INIT 400000 /* 400 kHz */
197
198 enum sh_mmcif_state {
199 STATE_IDLE,
200 STATE_REQUEST,
201 STATE_IOS,
202 STATE_TIMEOUT,
203 };
204
205 enum sh_mmcif_wait_for {
206 MMCIF_WAIT_FOR_REQUEST,
207 MMCIF_WAIT_FOR_CMD,
208 MMCIF_WAIT_FOR_MREAD,
209 MMCIF_WAIT_FOR_MWRITE,
210 MMCIF_WAIT_FOR_READ,
211 MMCIF_WAIT_FOR_WRITE,
212 MMCIF_WAIT_FOR_READ_END,
213 MMCIF_WAIT_FOR_WRITE_END,
214 MMCIF_WAIT_FOR_STOP,
215 };
216
217 /*
218 * difference for each SoC
219 */
220 struct sh_mmcif_host {
221 struct mmc_host *mmc;
222 struct mmc_request *mrq;
223 struct platform_device *pd;
224 struct clk *clk;
225 int bus_width;
226 unsigned char timing;
227 bool sd_error;
228 bool dying;
229 long timeout;
230 void __iomem *addr;
231 u32 *pio_ptr;
232 spinlock_t lock; /* protect sh_mmcif_host::state */
233 enum sh_mmcif_state state;
234 enum sh_mmcif_wait_for wait_for;
235 struct delayed_work timeout_work;
236 size_t blocksize;
237 int sg_idx;
238 int sg_blkidx;
239 bool power;
240 bool ccs_enable; /* Command Completion Signal support */
241 bool clk_ctrl2_enable;
242 struct mutex thread_lock;
243 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
244
245 /* DMA support */
246 struct dma_chan *chan_rx;
247 struct dma_chan *chan_tx;
248 struct completion dma_complete;
249 bool dma_active;
250 };
251
252 static const struct of_device_id sh_mmcif_of_match[] = {
253 { .compatible = "renesas,sh-mmcif" },
254 { }
255 };
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
sh_mmcif_bitset(struct sh_mmcif_host * host,unsigned int reg,u32 val)260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
262 {
263 writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
sh_mmcif_bitclr(struct sh_mmcif_host * host,unsigned int reg,u32 val)266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
268 {
269 writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
sh_mmcif_dma_complete(void * arg)272 static void sh_mmcif_dma_complete(void *arg)
273 {
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
276 struct device *dev = sh_mmcif_host_to_dev(host);
277
278 dev_dbg(dev, "Command completed\n");
279
280 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281 dev_name(dev)))
282 return;
283
284 complete(&host->dma_complete);
285 }
286
sh_mmcif_start_dma_rx(struct sh_mmcif_host * host)287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 {
289 struct mmc_data *data = host->mrq->data;
290 struct scatterlist *sg = data->sg;
291 struct dma_async_tx_descriptor *desc = NULL;
292 struct dma_chan *chan = host->chan_rx;
293 struct device *dev = sh_mmcif_host_to_dev(host);
294 dma_cookie_t cookie = -EINVAL;
295 int ret;
296
297 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298 DMA_FROM_DEVICE);
299 if (ret > 0) {
300 host->dma_active = true;
301 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303 }
304
305 if (desc) {
306 desc->callback = sh_mmcif_dma_complete;
307 desc->callback_param = host;
308 cookie = dmaengine_submit(desc);
309 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310 dma_async_issue_pending(chan);
311 }
312 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313 __func__, data->sg_len, ret, cookie);
314
315 if (!desc) {
316 /* DMA failed, fall back to PIO */
317 if (ret >= 0)
318 ret = -EIO;
319 host->chan_rx = NULL;
320 host->dma_active = false;
321 dma_release_channel(chan);
322 /* Free the Tx channel too */
323 chan = host->chan_tx;
324 if (chan) {
325 host->chan_tx = NULL;
326 dma_release_channel(chan);
327 }
328 dev_warn(dev,
329 "DMA failed: %d, falling back to PIO\n", ret);
330 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331 }
332
333 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334 desc, cookie, data->sg_len);
335 }
336
sh_mmcif_start_dma_tx(struct sh_mmcif_host * host)337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338 {
339 struct mmc_data *data = host->mrq->data;
340 struct scatterlist *sg = data->sg;
341 struct dma_async_tx_descriptor *desc = NULL;
342 struct dma_chan *chan = host->chan_tx;
343 struct device *dev = sh_mmcif_host_to_dev(host);
344 dma_cookie_t cookie = -EINVAL;
345 int ret;
346
347 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348 DMA_TO_DEVICE);
349 if (ret > 0) {
350 host->dma_active = true;
351 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353 }
354
355 if (desc) {
356 desc->callback = sh_mmcif_dma_complete;
357 desc->callback_param = host;
358 cookie = dmaengine_submit(desc);
359 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360 dma_async_issue_pending(chan);
361 }
362 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363 __func__, data->sg_len, ret, cookie);
364
365 if (!desc) {
366 /* DMA failed, fall back to PIO */
367 if (ret >= 0)
368 ret = -EIO;
369 host->chan_tx = NULL;
370 host->dma_active = false;
371 dma_release_channel(chan);
372 /* Free the Rx channel too */
373 chan = host->chan_rx;
374 if (chan) {
375 host->chan_rx = NULL;
376 dma_release_channel(chan);
377 }
378 dev_warn(dev,
379 "DMA failed: %d, falling back to PIO\n", ret);
380 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381 }
382
383 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384 desc, cookie);
385 }
386
387 static struct dma_chan *
sh_mmcif_request_dma_pdata(struct sh_mmcif_host * host,uintptr_t slave_id)388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389 {
390 dma_cap_mask_t mask;
391
392 dma_cap_zero(mask);
393 dma_cap_set(DMA_SLAVE, mask);
394 if (slave_id <= 0)
395 return NULL;
396
397 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398 }
399
sh_mmcif_dma_slave_config(struct sh_mmcif_host * host,struct dma_chan * chan,enum dma_transfer_direction direction)400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401 struct dma_chan *chan,
402 enum dma_transfer_direction direction)
403 {
404 struct resource *res;
405 struct dma_slave_config cfg = { 0, };
406
407 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408 cfg.direction = direction;
409
410 if (direction == DMA_DEV_TO_MEM) {
411 cfg.src_addr = res->start + MMCIF_CE_DATA;
412 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 } else {
414 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 }
417
418 return dmaengine_slave_config(chan, &cfg);
419 }
420
sh_mmcif_request_dma(struct sh_mmcif_host * host)421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423 struct device *dev = sh_mmcif_host_to_dev(host);
424 host->dma_active = false;
425
426 /* We can only either use DMA for both Tx and Rx or not use it at all */
427 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 pdata->slave_id_tx);
432 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 pdata->slave_id_rx);
434 } else {
435 host->chan_tx = dma_request_chan(dev, "tx");
436 if (IS_ERR(host->chan_tx))
437 host->chan_tx = NULL;
438 host->chan_rx = dma_request_chan(dev, "rx");
439 if (IS_ERR(host->chan_rx))
440 host->chan_rx = NULL;
441 }
442 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
443 host->chan_rx);
444
445 if (!host->chan_tx || !host->chan_rx ||
446 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
447 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
448 goto error;
449
450 return;
451
452 error:
453 if (host->chan_tx)
454 dma_release_channel(host->chan_tx);
455 if (host->chan_rx)
456 dma_release_channel(host->chan_rx);
457 host->chan_tx = host->chan_rx = NULL;
458 }
459
sh_mmcif_release_dma(struct sh_mmcif_host * host)460 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461 {
462 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
463 /* Descriptors are freed automatically */
464 if (host->chan_tx) {
465 struct dma_chan *chan = host->chan_tx;
466 host->chan_tx = NULL;
467 dma_release_channel(chan);
468 }
469 if (host->chan_rx) {
470 struct dma_chan *chan = host->chan_rx;
471 host->chan_rx = NULL;
472 dma_release_channel(chan);
473 }
474
475 host->dma_active = false;
476 }
477
sh_mmcif_clock_control(struct sh_mmcif_host * host,unsigned int clk)478 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479 {
480 struct device *dev = sh_mmcif_host_to_dev(host);
481 struct sh_mmcif_plat_data *p = dev->platform_data;
482 bool sup_pclk = p ? p->sup_pclk : false;
483 unsigned int current_clk = clk_get_rate(host->clk);
484 unsigned int clkdiv;
485
486 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
487 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488
489 if (!clk)
490 return;
491
492 if (host->clkdiv_map) {
493 unsigned int freq, best_freq, myclk, div, diff_min, diff;
494 int i;
495
496 clkdiv = 0;
497 diff_min = ~0;
498 best_freq = 0;
499 for (i = 31; i >= 0; i--) {
500 if (!((1 << i) & host->clkdiv_map))
501 continue;
502
503 /*
504 * clk = parent_freq / div
505 * -> parent_freq = clk x div
506 */
507
508 div = 1 << (i + 1);
509 freq = clk_round_rate(host->clk, clk * div);
510 myclk = freq / div;
511 diff = (myclk > clk) ? myclk - clk : clk - myclk;
512
513 if (diff <= diff_min) {
514 best_freq = freq;
515 clkdiv = i;
516 diff_min = diff;
517 }
518 }
519
520 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
521 (best_freq / (1 << (clkdiv + 1))), clk,
522 best_freq, clkdiv);
523
524 clk_set_rate(host->clk, best_freq);
525 clkdiv = clkdiv << 16;
526 } else if (sup_pclk && clk == current_clk) {
527 clkdiv = CLK_SUP_PCLK;
528 } else {
529 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
530 }
531
532 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
534 }
535
sh_mmcif_sync_reset(struct sh_mmcif_host * host)536 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537 {
538 u32 tmp;
539
540 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541
542 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544 if (host->ccs_enable)
545 tmp |= SCCSTO_29;
546 if (host->clk_ctrl2_enable)
547 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550 /* byte swap on */
551 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
552 }
553
sh_mmcif_error_manage(struct sh_mmcif_host * host)554 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555 {
556 struct device *dev = sh_mmcif_host_to_dev(host);
557 u32 state1, state2;
558 int ret, timeout;
559
560 host->sd_error = false;
561
562 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566
567 if (state1 & STS1_CMDSEQ) {
568 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570 for (timeout = 10000; timeout; timeout--) {
571 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572 & STS1_CMDSEQ))
573 break;
574 mdelay(1);
575 }
576 if (!timeout) {
577 dev_err(dev,
578 "Forced end of command sequence timeout err\n");
579 return -EIO;
580 }
581 sh_mmcif_sync_reset(host);
582 dev_dbg(dev, "Forced end of command sequence\n");
583 return -EIO;
584 }
585
586 if (state2 & STS2_CRC_ERR) {
587 dev_err(dev, " CRC error: state %u, wait %u\n",
588 host->state, host->wait_for);
589 ret = -EIO;
590 } else if (state2 & STS2_TIMEOUT_ERR) {
591 dev_err(dev, " Timeout: state %u, wait %u\n",
592 host->state, host->wait_for);
593 ret = -ETIMEDOUT;
594 } else {
595 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596 host->state, host->wait_for);
597 ret = -EIO;
598 }
599 return ret;
600 }
601
sh_mmcif_next_block(struct sh_mmcif_host * host,u32 * p)602 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
603 {
604 struct mmc_data *data = host->mrq->data;
605
606 host->sg_blkidx += host->blocksize;
607
608 /* data->sg->length must be a multiple of host->blocksize? */
609 BUG_ON(host->sg_blkidx > data->sg->length);
610
611 if (host->sg_blkidx == data->sg->length) {
612 host->sg_blkidx = 0;
613 if (++host->sg_idx < data->sg_len)
614 host->pio_ptr = sg_virt(++data->sg);
615 } else {
616 host->pio_ptr = p;
617 }
618
619 return host->sg_idx != data->sg_len;
620 }
621
sh_mmcif_single_read(struct sh_mmcif_host * host,struct mmc_request * mrq)622 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
623 struct mmc_request *mrq)
624 {
625 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626 BLOCK_SIZE_MASK) + 3;
627
628 host->wait_for = MMCIF_WAIT_FOR_READ;
629
630 /* buf read enable */
631 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632 }
633
sh_mmcif_read_block(struct sh_mmcif_host * host)634 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
635 {
636 struct device *dev = sh_mmcif_host_to_dev(host);
637 struct mmc_data *data = host->mrq->data;
638 u32 *p = sg_virt(data->sg);
639 int i;
640
641 if (host->sd_error) {
642 data->error = sh_mmcif_error_manage(host);
643 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
644 return false;
645 }
646
647 for (i = 0; i < host->blocksize / 4; i++)
648 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
649
650 /* buffer read end */
651 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
652 host->wait_for = MMCIF_WAIT_FOR_READ_END;
653
654 return true;
655 }
656
sh_mmcif_multi_read(struct sh_mmcif_host * host,struct mmc_request * mrq)657 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
658 struct mmc_request *mrq)
659 {
660 struct mmc_data *data = mrq->data;
661
662 if (!data->sg_len || !data->sg->length)
663 return;
664
665 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
666 BLOCK_SIZE_MASK;
667
668 host->wait_for = MMCIF_WAIT_FOR_MREAD;
669 host->sg_idx = 0;
670 host->sg_blkidx = 0;
671 host->pio_ptr = sg_virt(data->sg);
672
673 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
674 }
675
sh_mmcif_mread_block(struct sh_mmcif_host * host)676 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
677 {
678 struct device *dev = sh_mmcif_host_to_dev(host);
679 struct mmc_data *data = host->mrq->data;
680 u32 *p = host->pio_ptr;
681 int i;
682
683 if (host->sd_error) {
684 data->error = sh_mmcif_error_manage(host);
685 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
686 return false;
687 }
688
689 BUG_ON(!data->sg->length);
690
691 for (i = 0; i < host->blocksize / 4; i++)
692 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
693
694 if (!sh_mmcif_next_block(host, p))
695 return false;
696
697 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
698
699 return true;
700 }
701
sh_mmcif_single_write(struct sh_mmcif_host * host,struct mmc_request * mrq)702 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
703 struct mmc_request *mrq)
704 {
705 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
706 BLOCK_SIZE_MASK) + 3;
707
708 host->wait_for = MMCIF_WAIT_FOR_WRITE;
709
710 /* buf write enable */
711 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
712 }
713
sh_mmcif_write_block(struct sh_mmcif_host * host)714 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
715 {
716 struct device *dev = sh_mmcif_host_to_dev(host);
717 struct mmc_data *data = host->mrq->data;
718 u32 *p = sg_virt(data->sg);
719 int i;
720
721 if (host->sd_error) {
722 data->error = sh_mmcif_error_manage(host);
723 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
724 return false;
725 }
726
727 for (i = 0; i < host->blocksize / 4; i++)
728 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729
730 /* buffer write end */
731 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
732 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
733
734 return true;
735 }
736
sh_mmcif_multi_write(struct sh_mmcif_host * host,struct mmc_request * mrq)737 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
738 struct mmc_request *mrq)
739 {
740 struct mmc_data *data = mrq->data;
741
742 if (!data->sg_len || !data->sg->length)
743 return;
744
745 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
746 BLOCK_SIZE_MASK;
747
748 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
749 host->sg_idx = 0;
750 host->sg_blkidx = 0;
751 host->pio_ptr = sg_virt(data->sg);
752
753 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
754 }
755
sh_mmcif_mwrite_block(struct sh_mmcif_host * host)756 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
757 {
758 struct device *dev = sh_mmcif_host_to_dev(host);
759 struct mmc_data *data = host->mrq->data;
760 u32 *p = host->pio_ptr;
761 int i;
762
763 if (host->sd_error) {
764 data->error = sh_mmcif_error_manage(host);
765 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
766 return false;
767 }
768
769 BUG_ON(!data->sg->length);
770
771 for (i = 0; i < host->blocksize / 4; i++)
772 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
773
774 if (!sh_mmcif_next_block(host, p))
775 return false;
776
777 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
778
779 return true;
780 }
781
sh_mmcif_get_response(struct sh_mmcif_host * host,struct mmc_command * cmd)782 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
783 struct mmc_command *cmd)
784 {
785 if (cmd->flags & MMC_RSP_136) {
786 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
787 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
788 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
789 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
790 } else
791 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
792 }
793
sh_mmcif_get_cmd12response(struct sh_mmcif_host * host,struct mmc_command * cmd)794 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
795 struct mmc_command *cmd)
796 {
797 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
798 }
799
sh_mmcif_set_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)800 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
801 struct mmc_request *mrq)
802 {
803 struct device *dev = sh_mmcif_host_to_dev(host);
804 struct mmc_data *data = mrq->data;
805 struct mmc_command *cmd = mrq->cmd;
806 u32 opc = cmd->opcode;
807 u32 tmp = 0;
808
809 /* Response Type check */
810 switch (mmc_resp_type(cmd)) {
811 case MMC_RSP_NONE:
812 tmp |= CMD_SET_RTYP_NO;
813 break;
814 case MMC_RSP_R1:
815 case MMC_RSP_R3:
816 tmp |= CMD_SET_RTYP_6B;
817 break;
818 case MMC_RSP_R1B:
819 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
820 break;
821 case MMC_RSP_R2:
822 tmp |= CMD_SET_RTYP_17B;
823 break;
824 default:
825 dev_err(dev, "Unsupported response type.\n");
826 break;
827 }
828
829 /* WDAT / DATW */
830 if (data) {
831 tmp |= CMD_SET_WDAT;
832 switch (host->bus_width) {
833 case MMC_BUS_WIDTH_1:
834 tmp |= CMD_SET_DATW_1;
835 break;
836 case MMC_BUS_WIDTH_4:
837 tmp |= CMD_SET_DATW_4;
838 break;
839 case MMC_BUS_WIDTH_8:
840 tmp |= CMD_SET_DATW_8;
841 break;
842 default:
843 dev_err(dev, "Unsupported bus width.\n");
844 break;
845 }
846 switch (host->timing) {
847 case MMC_TIMING_MMC_DDR52:
848 /*
849 * MMC core will only set this timing, if the host
850 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
851 * capability. MMCIF implementations with this
852 * capability, e.g. sh73a0, will have to set it
853 * in their platform data.
854 */
855 tmp |= CMD_SET_DARS;
856 break;
857 }
858 }
859 /* DWEN */
860 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
861 tmp |= CMD_SET_DWEN;
862 /* CMLTE/CMD12EN */
863 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
864 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
865 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
866 data->blocks << 16);
867 }
868 /* RIDXC[1:0] check bits */
869 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
870 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
871 tmp |= CMD_SET_RIDXC_BITS;
872 /* RCRC7C[1:0] check bits */
873 if (opc == MMC_SEND_OP_COND)
874 tmp |= CMD_SET_CRC7C_BITS;
875 /* RCRC7C[1:0] internal CRC7 */
876 if (opc == MMC_ALL_SEND_CID ||
877 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878 tmp |= CMD_SET_CRC7C_INTERNAL;
879
880 return (opc << 24) | tmp;
881 }
882
sh_mmcif_data_trans(struct sh_mmcif_host * host,struct mmc_request * mrq,u32 opc)883 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
884 struct mmc_request *mrq, u32 opc)
885 {
886 struct device *dev = sh_mmcif_host_to_dev(host);
887
888 switch (opc) {
889 case MMC_READ_MULTIPLE_BLOCK:
890 sh_mmcif_multi_read(host, mrq);
891 return 0;
892 case MMC_WRITE_MULTIPLE_BLOCK:
893 sh_mmcif_multi_write(host, mrq);
894 return 0;
895 case MMC_WRITE_BLOCK:
896 sh_mmcif_single_write(host, mrq);
897 return 0;
898 case MMC_READ_SINGLE_BLOCK:
899 case MMC_SEND_EXT_CSD:
900 sh_mmcif_single_read(host, mrq);
901 return 0;
902 default:
903 dev_err(dev, "Unsupported CMD%d\n", opc);
904 return -EINVAL;
905 }
906 }
907
sh_mmcif_start_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)908 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
909 struct mmc_request *mrq)
910 {
911 struct mmc_command *cmd = mrq->cmd;
912 u32 opc;
913 u32 mask = 0;
914 unsigned long flags;
915
916 if (cmd->flags & MMC_RSP_BUSY)
917 mask = MASK_START_CMD | MASK_MRBSYE;
918 else
919 mask = MASK_START_CMD | MASK_MCRSPE;
920
921 if (host->ccs_enable)
922 mask |= MASK_MCCSTO;
923
924 if (mrq->data) {
925 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
926 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
927 mrq->data->blksz);
928 }
929 opc = sh_mmcif_set_cmd(host, mrq);
930
931 if (host->ccs_enable)
932 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
933 else
934 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
935 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
936 /* set arg */
937 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
938 /* set cmd */
939 spin_lock_irqsave(&host->lock, flags);
940 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
941
942 host->wait_for = MMCIF_WAIT_FOR_CMD;
943 schedule_delayed_work(&host->timeout_work, host->timeout);
944 spin_unlock_irqrestore(&host->lock, flags);
945 }
946
sh_mmcif_stop_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)947 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
948 struct mmc_request *mrq)
949 {
950 struct device *dev = sh_mmcif_host_to_dev(host);
951
952 switch (mrq->cmd->opcode) {
953 case MMC_READ_MULTIPLE_BLOCK:
954 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
955 break;
956 case MMC_WRITE_MULTIPLE_BLOCK:
957 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
958 break;
959 default:
960 dev_err(dev, "unsupported stop cmd\n");
961 mrq->stop->error = sh_mmcif_error_manage(host);
962 return;
963 }
964
965 host->wait_for = MMCIF_WAIT_FOR_STOP;
966 }
967
sh_mmcif_request(struct mmc_host * mmc,struct mmc_request * mrq)968 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
969 {
970 struct sh_mmcif_host *host = mmc_priv(mmc);
971 struct device *dev = sh_mmcif_host_to_dev(host);
972 unsigned long flags;
973
974 spin_lock_irqsave(&host->lock, flags);
975 if (host->state != STATE_IDLE) {
976 dev_dbg(dev, "%s() rejected, state %u\n",
977 __func__, host->state);
978 spin_unlock_irqrestore(&host->lock, flags);
979 mrq->cmd->error = -EAGAIN;
980 mmc_request_done(mmc, mrq);
981 return;
982 }
983
984 host->state = STATE_REQUEST;
985 spin_unlock_irqrestore(&host->lock, flags);
986
987 host->mrq = mrq;
988
989 sh_mmcif_start_cmd(host, mrq);
990 }
991
sh_mmcif_clk_setup(struct sh_mmcif_host * host)992 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
993 {
994 struct device *dev = sh_mmcif_host_to_dev(host);
995
996 if (host->mmc->f_max) {
997 unsigned int f_max, f_min = 0, f_min_old;
998
999 f_max = host->mmc->f_max;
1000 for (f_min_old = f_max; f_min_old > 2;) {
1001 f_min = clk_round_rate(host->clk, f_min_old / 2);
1002 if (f_min == f_min_old)
1003 break;
1004 f_min_old = f_min;
1005 }
1006
1007 /*
1008 * This driver assumes this SoC is R-Car Gen2 or later
1009 */
1010 host->clkdiv_map = 0x3ff;
1011
1012 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014 } else {
1015 unsigned int clk = clk_get_rate(host->clk);
1016
1017 host->mmc->f_max = clk / 2;
1018 host->mmc->f_min = clk / 512;
1019 }
1020
1021 dev_dbg(dev, "clk max/min = %d/%d\n",
1022 host->mmc->f_max, host->mmc->f_min);
1023 }
1024
sh_mmcif_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1025 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026 {
1027 struct sh_mmcif_host *host = mmc_priv(mmc);
1028 struct device *dev = sh_mmcif_host_to_dev(host);
1029 unsigned long flags;
1030
1031 spin_lock_irqsave(&host->lock, flags);
1032 if (host->state != STATE_IDLE) {
1033 dev_dbg(dev, "%s() rejected, state %u\n",
1034 __func__, host->state);
1035 spin_unlock_irqrestore(&host->lock, flags);
1036 return;
1037 }
1038
1039 host->state = STATE_IOS;
1040 spin_unlock_irqrestore(&host->lock, flags);
1041
1042 switch (ios->power_mode) {
1043 case MMC_POWER_UP:
1044 if (!IS_ERR(mmc->supply.vmmc))
1045 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046 if (!host->power) {
1047 clk_prepare_enable(host->clk);
1048 pm_runtime_get_sync(dev);
1049 sh_mmcif_sync_reset(host);
1050 sh_mmcif_request_dma(host);
1051 host->power = true;
1052 }
1053 break;
1054 case MMC_POWER_OFF:
1055 if (!IS_ERR(mmc->supply.vmmc))
1056 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057 if (host->power) {
1058 sh_mmcif_clock_control(host, 0);
1059 sh_mmcif_release_dma(host);
1060 pm_runtime_put(dev);
1061 clk_disable_unprepare(host->clk);
1062 host->power = false;
1063 }
1064 break;
1065 case MMC_POWER_ON:
1066 sh_mmcif_clock_control(host, ios->clock);
1067 break;
1068 }
1069
1070 host->timing = ios->timing;
1071 host->bus_width = ios->bus_width;
1072 host->state = STATE_IDLE;
1073 }
1074
1075 static const struct mmc_host_ops sh_mmcif_ops = {
1076 .request = sh_mmcif_request,
1077 .set_ios = sh_mmcif_set_ios,
1078 .get_cd = mmc_gpio_get_cd,
1079 };
1080
sh_mmcif_end_cmd(struct sh_mmcif_host * host)1081 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082 {
1083 struct mmc_command *cmd = host->mrq->cmd;
1084 struct mmc_data *data = host->mrq->data;
1085 struct device *dev = sh_mmcif_host_to_dev(host);
1086 long time;
1087
1088 if (host->sd_error) {
1089 switch (cmd->opcode) {
1090 case MMC_ALL_SEND_CID:
1091 case MMC_SELECT_CARD:
1092 case MMC_APP_CMD:
1093 cmd->error = -ETIMEDOUT;
1094 break;
1095 default:
1096 cmd->error = sh_mmcif_error_manage(host);
1097 break;
1098 }
1099 dev_dbg(dev, "CMD%d error %d\n",
1100 cmd->opcode, cmd->error);
1101 host->sd_error = false;
1102 return false;
1103 }
1104 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105 cmd->error = 0;
1106 return false;
1107 }
1108
1109 sh_mmcif_get_response(host, cmd);
1110
1111 if (!data)
1112 return false;
1113
1114 /*
1115 * Completion can be signalled from DMA callback and error, so, have to
1116 * reset here, before setting .dma_active
1117 */
1118 init_completion(&host->dma_complete);
1119
1120 if (data->flags & MMC_DATA_READ) {
1121 if (host->chan_rx)
1122 sh_mmcif_start_dma_rx(host);
1123 } else {
1124 if (host->chan_tx)
1125 sh_mmcif_start_dma_tx(host);
1126 }
1127
1128 if (!host->dma_active) {
1129 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130 return !data->error;
1131 }
1132
1133 /* Running in the IRQ thread, can sleep */
1134 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135 host->timeout);
1136
1137 if (data->flags & MMC_DATA_READ)
1138 dma_unmap_sg(host->chan_rx->device->dev,
1139 data->sg, data->sg_len,
1140 DMA_FROM_DEVICE);
1141 else
1142 dma_unmap_sg(host->chan_tx->device->dev,
1143 data->sg, data->sg_len,
1144 DMA_TO_DEVICE);
1145
1146 if (host->sd_error) {
1147 dev_err(host->mmc->parent,
1148 "Error IRQ while waiting for DMA completion!\n");
1149 /* Woken up by an error IRQ: abort DMA */
1150 data->error = sh_mmcif_error_manage(host);
1151 } else if (!time) {
1152 dev_err(host->mmc->parent, "DMA timeout!\n");
1153 data->error = -ETIMEDOUT;
1154 } else if (time < 0) {
1155 dev_err(host->mmc->parent,
1156 "wait_for_completion_...() error %ld!\n", time);
1157 data->error = time;
1158 }
1159 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161 host->dma_active = false;
1162
1163 if (data->error) {
1164 data->bytes_xfered = 0;
1165 /* Abort DMA */
1166 if (data->flags & MMC_DATA_READ)
1167 dmaengine_terminate_all(host->chan_rx);
1168 else
1169 dmaengine_terminate_all(host->chan_tx);
1170 }
1171
1172 return false;
1173 }
1174
sh_mmcif_irqt(int irq,void * dev_id)1175 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176 {
1177 struct sh_mmcif_host *host = dev_id;
1178 struct mmc_request *mrq;
1179 struct device *dev = sh_mmcif_host_to_dev(host);
1180 bool wait = false;
1181 unsigned long flags;
1182 int wait_work;
1183
1184 spin_lock_irqsave(&host->lock, flags);
1185 wait_work = host->wait_for;
1186 spin_unlock_irqrestore(&host->lock, flags);
1187
1188 cancel_delayed_work_sync(&host->timeout_work);
1189
1190 mutex_lock(&host->thread_lock);
1191
1192 mrq = host->mrq;
1193 if (!mrq) {
1194 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195 host->state, host->wait_for);
1196 mutex_unlock(&host->thread_lock);
1197 return IRQ_HANDLED;
1198 }
1199
1200 /*
1201 * All handlers return true, if processing continues, and false, if the
1202 * request has to be completed - successfully or not
1203 */
1204 switch (wait_work) {
1205 case MMCIF_WAIT_FOR_REQUEST:
1206 /* We're too late, the timeout has already kicked in */
1207 mutex_unlock(&host->thread_lock);
1208 return IRQ_HANDLED;
1209 case MMCIF_WAIT_FOR_CMD:
1210 /* Wait for data? */
1211 wait = sh_mmcif_end_cmd(host);
1212 break;
1213 case MMCIF_WAIT_FOR_MREAD:
1214 /* Wait for more data? */
1215 wait = sh_mmcif_mread_block(host);
1216 break;
1217 case MMCIF_WAIT_FOR_READ:
1218 /* Wait for data end? */
1219 wait = sh_mmcif_read_block(host);
1220 break;
1221 case MMCIF_WAIT_FOR_MWRITE:
1222 /* Wait data to write? */
1223 wait = sh_mmcif_mwrite_block(host);
1224 break;
1225 case MMCIF_WAIT_FOR_WRITE:
1226 /* Wait for data end? */
1227 wait = sh_mmcif_write_block(host);
1228 break;
1229 case MMCIF_WAIT_FOR_STOP:
1230 if (host->sd_error) {
1231 mrq->stop->error = sh_mmcif_error_manage(host);
1232 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233 break;
1234 }
1235 sh_mmcif_get_cmd12response(host, mrq->stop);
1236 mrq->stop->error = 0;
1237 break;
1238 case MMCIF_WAIT_FOR_READ_END:
1239 case MMCIF_WAIT_FOR_WRITE_END:
1240 if (host->sd_error) {
1241 mrq->data->error = sh_mmcif_error_manage(host);
1242 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243 }
1244 break;
1245 default:
1246 BUG();
1247 }
1248
1249 if (wait) {
1250 schedule_delayed_work(&host->timeout_work, host->timeout);
1251 /* Wait for more data */
1252 mutex_unlock(&host->thread_lock);
1253 return IRQ_HANDLED;
1254 }
1255
1256 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257 struct mmc_data *data = mrq->data;
1258 if (!mrq->cmd->error && data && !data->error)
1259 data->bytes_xfered =
1260 data->blocks * data->blksz;
1261
1262 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263 sh_mmcif_stop_cmd(host, mrq);
1264 if (!mrq->stop->error) {
1265 schedule_delayed_work(&host->timeout_work, host->timeout);
1266 mutex_unlock(&host->thread_lock);
1267 return IRQ_HANDLED;
1268 }
1269 }
1270 }
1271
1272 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273 host->state = STATE_IDLE;
1274 host->mrq = NULL;
1275 mmc_request_done(host->mmc, mrq);
1276
1277 mutex_unlock(&host->thread_lock);
1278
1279 return IRQ_HANDLED;
1280 }
1281
sh_mmcif_intr(int irq,void * dev_id)1282 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283 {
1284 struct sh_mmcif_host *host = dev_id;
1285 struct device *dev = sh_mmcif_host_to_dev(host);
1286 u32 state, mask;
1287
1288 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290 if (host->ccs_enable)
1291 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292 else
1293 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296 if (state & ~MASK_CLEAN)
1297 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298 state);
1299
1300 if (state & INT_ERR_STS || state & ~INT_ALL) {
1301 host->sd_error = true;
1302 dev_dbg(dev, "int err state = 0x%08x\n", state);
1303 }
1304 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305 if (!host->mrq)
1306 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307 if (!host->dma_active)
1308 return IRQ_WAKE_THREAD;
1309 else if (host->sd_error)
1310 sh_mmcif_dma_complete(host);
1311 } else {
1312 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313 }
1314
1315 return IRQ_HANDLED;
1316 }
1317
sh_mmcif_timeout_work(struct work_struct * work)1318 static void sh_mmcif_timeout_work(struct work_struct *work)
1319 {
1320 struct delayed_work *d = to_delayed_work(work);
1321 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322 struct mmc_request *mrq = host->mrq;
1323 struct device *dev = sh_mmcif_host_to_dev(host);
1324 unsigned long flags;
1325
1326 if (host->dying)
1327 /* Don't run after mmc_remove_host() */
1328 return;
1329
1330 spin_lock_irqsave(&host->lock, flags);
1331 if (host->state == STATE_IDLE) {
1332 spin_unlock_irqrestore(&host->lock, flags);
1333 return;
1334 }
1335
1336 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337 host->wait_for, mrq->cmd->opcode);
1338
1339 host->state = STATE_TIMEOUT;
1340 spin_unlock_irqrestore(&host->lock, flags);
1341
1342 /*
1343 * Handle races with cancel_delayed_work(), unless
1344 * cancel_delayed_work_sync() is used
1345 */
1346 switch (host->wait_for) {
1347 case MMCIF_WAIT_FOR_CMD:
1348 mrq->cmd->error = sh_mmcif_error_manage(host);
1349 break;
1350 case MMCIF_WAIT_FOR_STOP:
1351 mrq->stop->error = sh_mmcif_error_manage(host);
1352 break;
1353 case MMCIF_WAIT_FOR_MREAD:
1354 case MMCIF_WAIT_FOR_MWRITE:
1355 case MMCIF_WAIT_FOR_READ:
1356 case MMCIF_WAIT_FOR_WRITE:
1357 case MMCIF_WAIT_FOR_READ_END:
1358 case MMCIF_WAIT_FOR_WRITE_END:
1359 mrq->data->error = sh_mmcif_error_manage(host);
1360 break;
1361 default:
1362 BUG();
1363 }
1364
1365 host->state = STATE_IDLE;
1366 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367 host->mrq = NULL;
1368 mmc_request_done(host->mmc, mrq);
1369 }
1370
sh_mmcif_init_ocr(struct sh_mmcif_host * host)1371 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372 {
1373 struct device *dev = sh_mmcif_host_to_dev(host);
1374 struct sh_mmcif_plat_data *pd = dev->platform_data;
1375 struct mmc_host *mmc = host->mmc;
1376
1377 mmc_regulator_get_supply(mmc);
1378
1379 if (!pd)
1380 return;
1381
1382 if (!mmc->ocr_avail)
1383 mmc->ocr_avail = pd->ocr;
1384 else if (pd->ocr)
1385 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386 }
1387
sh_mmcif_probe(struct platform_device * pdev)1388 static int sh_mmcif_probe(struct platform_device *pdev)
1389 {
1390 int ret = 0, irq[2];
1391 struct mmc_host *mmc;
1392 struct sh_mmcif_host *host;
1393 struct device *dev = &pdev->dev;
1394 struct sh_mmcif_plat_data *pd = dev->platform_data;
1395 void __iomem *reg;
1396 const char *name;
1397
1398 irq[0] = platform_get_irq(pdev, 0);
1399 irq[1] = platform_get_irq_optional(pdev, 1);
1400 if (irq[0] < 0)
1401 return -ENXIO;
1402
1403 reg = devm_platform_ioremap_resource(pdev, 0);
1404 if (IS_ERR(reg))
1405 return PTR_ERR(reg);
1406
1407 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408 if (!mmc)
1409 return -ENOMEM;
1410
1411 ret = mmc_of_parse(mmc);
1412 if (ret < 0)
1413 goto err_host;
1414
1415 host = mmc_priv(mmc);
1416 host->mmc = mmc;
1417 host->addr = reg;
1418 host->timeout = msecs_to_jiffies(10000);
1419 host->ccs_enable = true;
1420 host->clk_ctrl2_enable = false;
1421
1422 host->pd = pdev;
1423
1424 spin_lock_init(&host->lock);
1425
1426 mmc->ops = &sh_mmcif_ops;
1427 sh_mmcif_init_ocr(host);
1428
1429 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431 mmc->max_busy_timeout = 10000;
1432
1433 if (pd && pd->caps)
1434 mmc->caps |= pd->caps;
1435 mmc->max_segs = 32;
1436 mmc->max_blk_size = 512;
1437 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439 mmc->max_seg_size = mmc->max_req_size;
1440
1441 platform_set_drvdata(pdev, host);
1442
1443 host->clk = devm_clk_get(dev, NULL);
1444 if (IS_ERR(host->clk)) {
1445 ret = PTR_ERR(host->clk);
1446 dev_err(dev, "cannot get clock: %d\n", ret);
1447 goto err_host;
1448 }
1449
1450 ret = clk_prepare_enable(host->clk);
1451 if (ret < 0)
1452 goto err_host;
1453
1454 sh_mmcif_clk_setup(host);
1455
1456 pm_runtime_enable(dev);
1457 host->power = false;
1458
1459 ret = pm_runtime_get_sync(dev);
1460 if (ret < 0)
1461 goto err_clk;
1462
1463 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465 sh_mmcif_sync_reset(host);
1466 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470 sh_mmcif_irqt, 0, name, host);
1471 if (ret) {
1472 dev_err(dev, "request_irq error (%s)\n", name);
1473 goto err_clk;
1474 }
1475 if (irq[1] >= 0) {
1476 ret = devm_request_threaded_irq(dev, irq[1],
1477 sh_mmcif_intr, sh_mmcif_irqt,
1478 0, "sh_mmc:int", host);
1479 if (ret) {
1480 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481 goto err_clk;
1482 }
1483 }
1484
1485 mutex_init(&host->thread_lock);
1486
1487 ret = mmc_add_host(mmc);
1488 if (ret < 0)
1489 goto err_clk;
1490
1491 dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495 clk_get_rate(host->clk) / 1000000UL);
1496
1497 pm_runtime_put(dev);
1498 clk_disable_unprepare(host->clk);
1499 return ret;
1500
1501 err_clk:
1502 clk_disable_unprepare(host->clk);
1503 pm_runtime_put_sync(dev);
1504 pm_runtime_disable(dev);
1505 err_host:
1506 mmc_free_host(mmc);
1507 return ret;
1508 }
1509
sh_mmcif_remove(struct platform_device * pdev)1510 static int sh_mmcif_remove(struct platform_device *pdev)
1511 {
1512 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514 host->dying = true;
1515 clk_prepare_enable(host->clk);
1516 pm_runtime_get_sync(&pdev->dev);
1517
1518 dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520 mmc_remove_host(host->mmc);
1521 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523 /*
1524 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525 * mmc_remove_host() call above. But swapping order doesn't help either
1526 * (a query on the linux-mmc mailing list didn't bring any replies).
1527 */
1528 cancel_delayed_work_sync(&host->timeout_work);
1529
1530 clk_disable_unprepare(host->clk);
1531 mmc_free_host(host->mmc);
1532 pm_runtime_put_sync(&pdev->dev);
1533 pm_runtime_disable(&pdev->dev);
1534
1535 return 0;
1536 }
1537
1538 #ifdef CONFIG_PM_SLEEP
sh_mmcif_suspend(struct device * dev)1539 static int sh_mmcif_suspend(struct device *dev)
1540 {
1541 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543 pm_runtime_get_sync(dev);
1544 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545 pm_runtime_put(dev);
1546
1547 return 0;
1548 }
1549
sh_mmcif_resume(struct device * dev)1550 static int sh_mmcif_resume(struct device *dev)
1551 {
1552 return 0;
1553 }
1554 #endif
1555
1556 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558 };
1559
1560 static struct platform_driver sh_mmcif_driver = {
1561 .probe = sh_mmcif_probe,
1562 .remove = sh_mmcif_remove,
1563 .driver = {
1564 .name = DRIVER_NAME,
1565 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1566 .pm = &sh_mmcif_dev_pm_ops,
1567 .of_match_table = sh_mmcif_of_match,
1568 },
1569 };
1570
1571 module_platform_driver(sh_mmcif_driver);
1572
1573 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1574 MODULE_LICENSE("GPL v2");
1575 MODULE_ALIAS("platform:" DRIVER_NAME);
1576 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1577