1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71
72 /**
73 * sk_filter_trim_cap - run a packet through a socket filter
74 * @sk: sock associated with &sk_buff
75 * @skb: buffer to filter
76 * @cap: limit on how short the eBPF program may trim the packet
77 *
78 * Run the eBPF program and then cut skb->data to correct size returned by
79 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80 * than pkt_len we keep whole skb->data. This is the socket level
81 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82 * be accepted or -EPERM if the packet should be tossed.
83 *
84 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87 int err;
88 struct sk_filter *filter;
89
90 /*
91 * If the skb was allocated from pfmemalloc reserves, only
92 * allow SOCK_MEMALLOC sockets to use it as this socket is
93 * helping free memory
94 */
95 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97 return -ENOMEM;
98 }
99 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100 if (err)
101 return err;
102
103 err = security_sock_rcv_skb(sk, skb);
104 if (err)
105 return err;
106
107 rcu_read_lock();
108 filter = rcu_dereference(sk->sk_filter);
109 if (filter) {
110 struct sock *save_sk = skb->sk;
111 unsigned int pkt_len;
112
113 skb->sk = sk;
114 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115 skb->sk = save_sk;
116 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117 }
118 rcu_read_unlock();
119
120 return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126 return skb_get_poff(skb);
127 }
128
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131 struct nlattr *nla;
132
133 if (skb_is_nonlinear(skb))
134 return 0;
135
136 if (skb->len < sizeof(struct nlattr))
137 return 0;
138
139 if (a > skb->len - sizeof(struct nlattr))
140 return 0;
141
142 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143 if (nla)
144 return (void *) nla - (void *) skb->data;
145
146 return 0;
147 }
148
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151 struct nlattr *nla;
152
153 if (skb_is_nonlinear(skb))
154 return 0;
155
156 if (skb->len < sizeof(struct nlattr))
157 return 0;
158
159 if (a > skb->len - sizeof(struct nlattr))
160 return 0;
161
162 nla = (struct nlattr *) &skb->data[a];
163 if (nla->nla_len > skb->len - a)
164 return 0;
165
166 nla = nla_find_nested(nla, x);
167 if (nla)
168 return (void *) nla - (void *) skb->data;
169
170 return 0;
171 }
172
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174 data, int, headlen, int, offset)
175 {
176 u8 tmp, *ptr;
177 const int len = sizeof(tmp);
178
179 if (offset >= 0) {
180 if (headlen - offset >= len)
181 return *(u8 *)(data + offset);
182 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183 return tmp;
184 } else {
185 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186 if (likely(ptr))
187 return *(u8 *)ptr;
188 }
189
190 return -EFAULT;
191 }
192
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194 int, offset)
195 {
196 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197 offset);
198 }
199
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201 data, int, headlen, int, offset)
202 {
203 u16 tmp, *ptr;
204 const int len = sizeof(tmp);
205
206 if (offset >= 0) {
207 if (headlen - offset >= len)
208 return get_unaligned_be16(data + offset);
209 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210 return be16_to_cpu(tmp);
211 } else {
212 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213 if (likely(ptr))
214 return get_unaligned_be16(ptr);
215 }
216
217 return -EFAULT;
218 }
219
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221 int, offset)
222 {
223 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224 offset);
225 }
226
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228 data, int, headlen, int, offset)
229 {
230 u32 tmp, *ptr;
231 const int len = sizeof(tmp);
232
233 if (likely(offset >= 0)) {
234 if (headlen - offset >= len)
235 return get_unaligned_be32(data + offset);
236 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237 return be32_to_cpu(tmp);
238 } else {
239 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240 if (likely(ptr))
241 return get_unaligned_be32(ptr);
242 }
243
244 return -EFAULT;
245 }
246
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248 int, offset)
249 {
250 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251 offset);
252 }
253
BPF_CALL_0(bpf_get_raw_cpu_id)254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256 return raw_smp_processor_id();
257 }
258
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260 .func = bpf_get_raw_cpu_id,
261 .gpl_only = false,
262 .ret_type = RET_INTEGER,
263 };
264
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266 struct bpf_insn *insn_buf)
267 {
268 struct bpf_insn *insn = insn_buf;
269
270 switch (skb_field) {
271 case SKF_AD_MARK:
272 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273
274 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275 offsetof(struct sk_buff, mark));
276 break;
277
278 case SKF_AD_PKTTYPE:
279 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284 break;
285
286 case SKF_AD_QUEUE:
287 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288
289 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290 offsetof(struct sk_buff, queue_mapping));
291 break;
292
293 case SKF_AD_VLAN_TAG:
294 case SKF_AD_VLAN_TAG_PRESENT:
295 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297
298 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300 offsetof(struct sk_buff, vlan_tci));
301 if (skb_field == SKF_AD_VLAN_TAG) {
302 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303 ~VLAN_TAG_PRESENT);
304 } else {
305 /* dst_reg >>= 12 */
306 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307 /* dst_reg &= 1 */
308 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309 }
310 break;
311 }
312
313 return insn - insn_buf;
314 }
315
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)316 static bool convert_bpf_extensions(struct sock_filter *fp,
317 struct bpf_insn **insnp)
318 {
319 struct bpf_insn *insn = *insnp;
320 u32 cnt;
321
322 switch (fp->k) {
323 case SKF_AD_OFF + SKF_AD_PROTOCOL:
324 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325
326 /* A = *(u16 *) (CTX + offsetof(protocol)) */
327 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328 offsetof(struct sk_buff, protocol));
329 /* A = ntohs(A) [emitting a nop or swap16] */
330 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331 break;
332
333 case SKF_AD_OFF + SKF_AD_PKTTYPE:
334 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335 insn += cnt - 1;
336 break;
337
338 case SKF_AD_OFF + SKF_AD_IFINDEX:
339 case SKF_AD_OFF + SKF_AD_HATYPE:
340 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342
343 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344 BPF_REG_TMP, BPF_REG_CTX,
345 offsetof(struct sk_buff, dev));
346 /* if (tmp != 0) goto pc + 1 */
347 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348 *insn++ = BPF_EXIT_INSN();
349 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351 offsetof(struct net_device, ifindex));
352 else
353 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354 offsetof(struct net_device, type));
355 break;
356
357 case SKF_AD_OFF + SKF_AD_MARK:
358 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359 insn += cnt - 1;
360 break;
361
362 case SKF_AD_OFF + SKF_AD_RXHASH:
363 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364
365 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366 offsetof(struct sk_buff, hash));
367 break;
368
369 case SKF_AD_OFF + SKF_AD_QUEUE:
370 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371 insn += cnt - 1;
372 break;
373
374 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376 BPF_REG_A, BPF_REG_CTX, insn);
377 insn += cnt - 1;
378 break;
379
380 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382 BPF_REG_A, BPF_REG_CTX, insn);
383 insn += cnt - 1;
384 break;
385
386 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388
389 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391 offsetof(struct sk_buff, vlan_proto));
392 /* A = ntohs(A) [emitting a nop or swap16] */
393 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394 break;
395
396 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397 case SKF_AD_OFF + SKF_AD_NLATTR:
398 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399 case SKF_AD_OFF + SKF_AD_CPU:
400 case SKF_AD_OFF + SKF_AD_RANDOM:
401 /* arg1 = CTX */
402 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403 /* arg2 = A */
404 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405 /* arg3 = X */
406 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
408 switch (fp->k) {
409 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411 break;
412 case SKF_AD_OFF + SKF_AD_NLATTR:
413 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414 break;
415 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417 break;
418 case SKF_AD_OFF + SKF_AD_CPU:
419 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420 break;
421 case SKF_AD_OFF + SKF_AD_RANDOM:
422 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423 bpf_user_rnd_init_once();
424 break;
425 }
426 break;
427
428 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429 /* A ^= X */
430 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431 break;
432
433 default:
434 /* This is just a dummy call to avoid letting the compiler
435 * evict __bpf_call_base() as an optimization. Placed here
436 * where no-one bothers.
437 */
438 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439 return false;
440 }
441
442 *insnp = insn;
443 return true;
444 }
445
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450 bool endian = BPF_SIZE(fp->code) == BPF_H ||
451 BPF_SIZE(fp->code) == BPF_W;
452 bool indirect = BPF_MODE(fp->code) == BPF_IND;
453 const int ip_align = NET_IP_ALIGN;
454 struct bpf_insn *insn = *insnp;
455 int offset = fp->k;
456
457 if (!indirect &&
458 ((unaligned_ok && offset >= 0) ||
459 (!unaligned_ok && offset >= 0 &&
460 offset + ip_align >= 0 &&
461 offset + ip_align % size == 0))) {
462 bool ldx_off_ok = offset <= S16_MAX;
463
464 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
465 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
467 size, 2 + endian + (!ldx_off_ok * 2));
468 if (ldx_off_ok) {
469 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
470 BPF_REG_D, offset);
471 } else {
472 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
473 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
474 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
475 BPF_REG_TMP, 0);
476 }
477 if (endian)
478 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
479 *insn++ = BPF_JMP_A(8);
480 }
481
482 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
483 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
484 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
485 if (!indirect) {
486 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
487 } else {
488 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
489 if (fp->k)
490 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
491 }
492
493 switch (BPF_SIZE(fp->code)) {
494 case BPF_B:
495 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
496 break;
497 case BPF_H:
498 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
499 break;
500 case BPF_W:
501 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
502 break;
503 default:
504 return false;
505 }
506
507 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
508 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
509 *insn = BPF_EXIT_INSN();
510
511 *insnp = insn;
512 return true;
513 }
514
515 /**
516 * bpf_convert_filter - convert filter program
517 * @prog: the user passed filter program
518 * @len: the length of the user passed filter program
519 * @new_prog: allocated 'struct bpf_prog' or NULL
520 * @new_len: pointer to store length of converted program
521 * @seen_ld_abs: bool whether we've seen ld_abs/ind
522 *
523 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
524 * style extended BPF (eBPF).
525 * Conversion workflow:
526 *
527 * 1) First pass for calculating the new program length:
528 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529 *
530 * 2) 2nd pass to remap in two passes: 1st pass finds new
531 * jump offsets, 2nd pass remapping:
532 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)534 static int bpf_convert_filter(struct sock_filter *prog, int len,
535 struct bpf_prog *new_prog, int *new_len,
536 bool *seen_ld_abs)
537 {
538 int new_flen = 0, pass = 0, target, i, stack_off;
539 struct bpf_insn *new_insn, *first_insn = NULL;
540 struct sock_filter *fp;
541 int *addrs = NULL;
542 u8 bpf_src;
543
544 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546
547 if (len <= 0 || len > BPF_MAXINSNS)
548 return -EINVAL;
549
550 if (new_prog) {
551 first_insn = new_prog->insnsi;
552 addrs = kcalloc(len, sizeof(*addrs),
553 GFP_KERNEL | __GFP_NOWARN);
554 if (!addrs)
555 return -ENOMEM;
556 }
557
558 do_pass:
559 new_insn = first_insn;
560 fp = prog;
561
562 /* Classic BPF related prologue emission. */
563 if (new_prog) {
564 /* Classic BPF expects A and X to be reset first. These need
565 * to be guaranteed to be the first two instructions.
566 */
567 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
568 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569
570 /* All programs must keep CTX in callee saved BPF_REG_CTX.
571 * In eBPF case it's done by the compiler, here we need to
572 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
573 */
574 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575 if (*seen_ld_abs) {
576 /* For packet access in classic BPF, cache skb->data
577 * in callee-saved BPF R8 and skb->len - skb->data_len
578 * (headlen) in BPF R9. Since classic BPF is read-only
579 * on CTX, we only need to cache it once.
580 */
581 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
582 BPF_REG_D, BPF_REG_CTX,
583 offsetof(struct sk_buff, data));
584 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
585 offsetof(struct sk_buff, len));
586 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
587 offsetof(struct sk_buff, data_len));
588 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
589 }
590 } else {
591 new_insn += 3;
592 }
593
594 for (i = 0; i < len; fp++, i++) {
595 struct bpf_insn tmp_insns[32] = { };
596 struct bpf_insn *insn = tmp_insns;
597
598 if (addrs)
599 addrs[i] = new_insn - first_insn;
600
601 switch (fp->code) {
602 /* All arithmetic insns and skb loads map as-is. */
603 case BPF_ALU | BPF_ADD | BPF_X:
604 case BPF_ALU | BPF_ADD | BPF_K:
605 case BPF_ALU | BPF_SUB | BPF_X:
606 case BPF_ALU | BPF_SUB | BPF_K:
607 case BPF_ALU | BPF_AND | BPF_X:
608 case BPF_ALU | BPF_AND | BPF_K:
609 case BPF_ALU | BPF_OR | BPF_X:
610 case BPF_ALU | BPF_OR | BPF_K:
611 case BPF_ALU | BPF_LSH | BPF_X:
612 case BPF_ALU | BPF_LSH | BPF_K:
613 case BPF_ALU | BPF_RSH | BPF_X:
614 case BPF_ALU | BPF_RSH | BPF_K:
615 case BPF_ALU | BPF_XOR | BPF_X:
616 case BPF_ALU | BPF_XOR | BPF_K:
617 case BPF_ALU | BPF_MUL | BPF_X:
618 case BPF_ALU | BPF_MUL | BPF_K:
619 case BPF_ALU | BPF_DIV | BPF_X:
620 case BPF_ALU | BPF_DIV | BPF_K:
621 case BPF_ALU | BPF_MOD | BPF_X:
622 case BPF_ALU | BPF_MOD | BPF_K:
623 case BPF_ALU | BPF_NEG:
624 case BPF_LD | BPF_ABS | BPF_W:
625 case BPF_LD | BPF_ABS | BPF_H:
626 case BPF_LD | BPF_ABS | BPF_B:
627 case BPF_LD | BPF_IND | BPF_W:
628 case BPF_LD | BPF_IND | BPF_H:
629 case BPF_LD | BPF_IND | BPF_B:
630 /* Check for overloaded BPF extension and
631 * directly convert it if found, otherwise
632 * just move on with mapping.
633 */
634 if (BPF_CLASS(fp->code) == BPF_LD &&
635 BPF_MODE(fp->code) == BPF_ABS &&
636 convert_bpf_extensions(fp, &insn))
637 break;
638 if (BPF_CLASS(fp->code) == BPF_LD &&
639 convert_bpf_ld_abs(fp, &insn)) {
640 *seen_ld_abs = true;
641 break;
642 }
643
644 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647 /* Error with exception code on div/mod by 0.
648 * For cBPF programs, this was always return 0.
649 */
650 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
651 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
652 *insn++ = BPF_EXIT_INSN();
653 }
654
655 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656 break;
657
658 /* Jump transformation cannot use BPF block macros
659 * everywhere as offset calculation and target updates
660 * require a bit more work than the rest, i.e. jump
661 * opcodes map as-is, but offsets need adjustment.
662 */
663
664 #define BPF_EMIT_JMP \
665 do { \
666 const s32 off_min = S16_MIN, off_max = S16_MAX; \
667 s32 off; \
668 \
669 if (target >= len || target < 0) \
670 goto err; \
671 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
672 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
673 off -= insn - tmp_insns; \
674 /* Reject anything not fitting into insn->off. */ \
675 if (off < off_min || off > off_max) \
676 goto err; \
677 insn->off = off; \
678 } while (0)
679
680 case BPF_JMP | BPF_JA:
681 target = i + fp->k + 1;
682 insn->code = fp->code;
683 BPF_EMIT_JMP;
684 break;
685
686 case BPF_JMP | BPF_JEQ | BPF_K:
687 case BPF_JMP | BPF_JEQ | BPF_X:
688 case BPF_JMP | BPF_JSET | BPF_K:
689 case BPF_JMP | BPF_JSET | BPF_X:
690 case BPF_JMP | BPF_JGT | BPF_K:
691 case BPF_JMP | BPF_JGT | BPF_X:
692 case BPF_JMP | BPF_JGE | BPF_K:
693 case BPF_JMP | BPF_JGE | BPF_X:
694 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
695 /* BPF immediates are signed, zero extend
696 * immediate into tmp register and use it
697 * in compare insn.
698 */
699 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700
701 insn->dst_reg = BPF_REG_A;
702 insn->src_reg = BPF_REG_TMP;
703 bpf_src = BPF_X;
704 } else {
705 insn->dst_reg = BPF_REG_A;
706 insn->imm = fp->k;
707 bpf_src = BPF_SRC(fp->code);
708 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
709 }
710
711 /* Common case where 'jump_false' is next insn. */
712 if (fp->jf == 0) {
713 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
714 target = i + fp->jt + 1;
715 BPF_EMIT_JMP;
716 break;
717 }
718
719 /* Convert some jumps when 'jump_true' is next insn. */
720 if (fp->jt == 0) {
721 switch (BPF_OP(fp->code)) {
722 case BPF_JEQ:
723 insn->code = BPF_JMP | BPF_JNE | bpf_src;
724 break;
725 case BPF_JGT:
726 insn->code = BPF_JMP | BPF_JLE | bpf_src;
727 break;
728 case BPF_JGE:
729 insn->code = BPF_JMP | BPF_JLT | bpf_src;
730 break;
731 default:
732 goto jmp_rest;
733 }
734
735 target = i + fp->jf + 1;
736 BPF_EMIT_JMP;
737 break;
738 }
739 jmp_rest:
740 /* Other jumps are mapped into two insns: Jxx and JA. */
741 target = i + fp->jt + 1;
742 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743 BPF_EMIT_JMP;
744 insn++;
745
746 insn->code = BPF_JMP | BPF_JA;
747 target = i + fp->jf + 1;
748 BPF_EMIT_JMP;
749 break;
750
751 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752 case BPF_LDX | BPF_MSH | BPF_B: {
753 struct sock_filter tmp = {
754 .code = BPF_LD | BPF_ABS | BPF_B,
755 .k = fp->k,
756 };
757
758 *seen_ld_abs = true;
759
760 /* X = A */
761 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
763 convert_bpf_ld_abs(&tmp, &insn);
764 insn++;
765 /* A &= 0xf */
766 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767 /* A <<= 2 */
768 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769 /* tmp = X */
770 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771 /* X = A */
772 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773 /* A = tmp */
774 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775 break;
776 }
777 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
778 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
779 */
780 case BPF_RET | BPF_A:
781 case BPF_RET | BPF_K:
782 if (BPF_RVAL(fp->code) == BPF_K)
783 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
784 0, fp->k);
785 *insn = BPF_EXIT_INSN();
786 break;
787
788 /* Store to stack. */
789 case BPF_ST:
790 case BPF_STX:
791 stack_off = fp->k * 4 + 4;
792 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
793 BPF_ST ? BPF_REG_A : BPF_REG_X,
794 -stack_off);
795 /* check_load_and_stores() verifies that classic BPF can
796 * load from stack only after write, so tracking
797 * stack_depth for ST|STX insns is enough
798 */
799 if (new_prog && new_prog->aux->stack_depth < stack_off)
800 new_prog->aux->stack_depth = stack_off;
801 break;
802
803 /* Load from stack. */
804 case BPF_LD | BPF_MEM:
805 case BPF_LDX | BPF_MEM:
806 stack_off = fp->k * 4 + 4;
807 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
808 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809 -stack_off);
810 break;
811
812 /* A = K or X = K */
813 case BPF_LD | BPF_IMM:
814 case BPF_LDX | BPF_IMM:
815 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
816 BPF_REG_A : BPF_REG_X, fp->k);
817 break;
818
819 /* X = A */
820 case BPF_MISC | BPF_TAX:
821 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822 break;
823
824 /* A = X */
825 case BPF_MISC | BPF_TXA:
826 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827 break;
828
829 /* A = skb->len or X = skb->len */
830 case BPF_LD | BPF_W | BPF_LEN:
831 case BPF_LDX | BPF_W | BPF_LEN:
832 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
834 offsetof(struct sk_buff, len));
835 break;
836
837 /* Access seccomp_data fields. */
838 case BPF_LDX | BPF_ABS | BPF_W:
839 /* A = *(u32 *) (ctx + K) */
840 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841 break;
842
843 /* Unknown instruction. */
844 default:
845 goto err;
846 }
847
848 insn++;
849 if (new_prog)
850 memcpy(new_insn, tmp_insns,
851 sizeof(*insn) * (insn - tmp_insns));
852 new_insn += insn - tmp_insns;
853 }
854
855 if (!new_prog) {
856 /* Only calculating new length. */
857 *new_len = new_insn - first_insn;
858 if (*seen_ld_abs)
859 *new_len += 4; /* Prologue bits. */
860 return 0;
861 }
862
863 pass++;
864 if (new_flen != new_insn - first_insn) {
865 new_flen = new_insn - first_insn;
866 if (pass > 2)
867 goto err;
868 goto do_pass;
869 }
870
871 kfree(addrs);
872 BUG_ON(*new_len != new_flen);
873 return 0;
874 err:
875 kfree(addrs);
876 return -EINVAL;
877 }
878
879 /* Security:
880 *
881 * As we dont want to clear mem[] array for each packet going through
882 * __bpf_prog_run(), we check that filter loaded by user never try to read
883 * a cell if not previously written, and we check all branches to be sure
884 * a malicious user doesn't try to abuse us.
885 */
check_load_and_stores(const struct sock_filter * filter,int flen)886 static int check_load_and_stores(const struct sock_filter *filter, int flen)
887 {
888 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889 int pc, ret = 0;
890
891 BUILD_BUG_ON(BPF_MEMWORDS > 16);
892
893 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894 if (!masks)
895 return -ENOMEM;
896
897 memset(masks, 0xff, flen * sizeof(*masks));
898
899 for (pc = 0; pc < flen; pc++) {
900 memvalid &= masks[pc];
901
902 switch (filter[pc].code) {
903 case BPF_ST:
904 case BPF_STX:
905 memvalid |= (1 << filter[pc].k);
906 break;
907 case BPF_LD | BPF_MEM:
908 case BPF_LDX | BPF_MEM:
909 if (!(memvalid & (1 << filter[pc].k))) {
910 ret = -EINVAL;
911 goto error;
912 }
913 break;
914 case BPF_JMP | BPF_JA:
915 /* A jump must set masks on target */
916 masks[pc + 1 + filter[pc].k] &= memvalid;
917 memvalid = ~0;
918 break;
919 case BPF_JMP | BPF_JEQ | BPF_K:
920 case BPF_JMP | BPF_JEQ | BPF_X:
921 case BPF_JMP | BPF_JGE | BPF_K:
922 case BPF_JMP | BPF_JGE | BPF_X:
923 case BPF_JMP | BPF_JGT | BPF_K:
924 case BPF_JMP | BPF_JGT | BPF_X:
925 case BPF_JMP | BPF_JSET | BPF_K:
926 case BPF_JMP | BPF_JSET | BPF_X:
927 /* A jump must set masks on targets */
928 masks[pc + 1 + filter[pc].jt] &= memvalid;
929 masks[pc + 1 + filter[pc].jf] &= memvalid;
930 memvalid = ~0;
931 break;
932 }
933 }
934 error:
935 kfree(masks);
936 return ret;
937 }
938
chk_code_allowed(u16 code_to_probe)939 static bool chk_code_allowed(u16 code_to_probe)
940 {
941 static const bool codes[] = {
942 /* 32 bit ALU operations */
943 [BPF_ALU | BPF_ADD | BPF_K] = true,
944 [BPF_ALU | BPF_ADD | BPF_X] = true,
945 [BPF_ALU | BPF_SUB | BPF_K] = true,
946 [BPF_ALU | BPF_SUB | BPF_X] = true,
947 [BPF_ALU | BPF_MUL | BPF_K] = true,
948 [BPF_ALU | BPF_MUL | BPF_X] = true,
949 [BPF_ALU | BPF_DIV | BPF_K] = true,
950 [BPF_ALU | BPF_DIV | BPF_X] = true,
951 [BPF_ALU | BPF_MOD | BPF_K] = true,
952 [BPF_ALU | BPF_MOD | BPF_X] = true,
953 [BPF_ALU | BPF_AND | BPF_K] = true,
954 [BPF_ALU | BPF_AND | BPF_X] = true,
955 [BPF_ALU | BPF_OR | BPF_K] = true,
956 [BPF_ALU | BPF_OR | BPF_X] = true,
957 [BPF_ALU | BPF_XOR | BPF_K] = true,
958 [BPF_ALU | BPF_XOR | BPF_X] = true,
959 [BPF_ALU | BPF_LSH | BPF_K] = true,
960 [BPF_ALU | BPF_LSH | BPF_X] = true,
961 [BPF_ALU | BPF_RSH | BPF_K] = true,
962 [BPF_ALU | BPF_RSH | BPF_X] = true,
963 [BPF_ALU | BPF_NEG] = true,
964 /* Load instructions */
965 [BPF_LD | BPF_W | BPF_ABS] = true,
966 [BPF_LD | BPF_H | BPF_ABS] = true,
967 [BPF_LD | BPF_B | BPF_ABS] = true,
968 [BPF_LD | BPF_W | BPF_LEN] = true,
969 [BPF_LD | BPF_W | BPF_IND] = true,
970 [BPF_LD | BPF_H | BPF_IND] = true,
971 [BPF_LD | BPF_B | BPF_IND] = true,
972 [BPF_LD | BPF_IMM] = true,
973 [BPF_LD | BPF_MEM] = true,
974 [BPF_LDX | BPF_W | BPF_LEN] = true,
975 [BPF_LDX | BPF_B | BPF_MSH] = true,
976 [BPF_LDX | BPF_IMM] = true,
977 [BPF_LDX | BPF_MEM] = true,
978 /* Store instructions */
979 [BPF_ST] = true,
980 [BPF_STX] = true,
981 /* Misc instructions */
982 [BPF_MISC | BPF_TAX] = true,
983 [BPF_MISC | BPF_TXA] = true,
984 /* Return instructions */
985 [BPF_RET | BPF_K] = true,
986 [BPF_RET | BPF_A] = true,
987 /* Jump instructions */
988 [BPF_JMP | BPF_JA] = true,
989 [BPF_JMP | BPF_JEQ | BPF_K] = true,
990 [BPF_JMP | BPF_JEQ | BPF_X] = true,
991 [BPF_JMP | BPF_JGE | BPF_K] = true,
992 [BPF_JMP | BPF_JGE | BPF_X] = true,
993 [BPF_JMP | BPF_JGT | BPF_K] = true,
994 [BPF_JMP | BPF_JGT | BPF_X] = true,
995 [BPF_JMP | BPF_JSET | BPF_K] = true,
996 [BPF_JMP | BPF_JSET | BPF_X] = true,
997 };
998
999 if (code_to_probe >= ARRAY_SIZE(codes))
1000 return false;
1001
1002 return codes[code_to_probe];
1003 }
1004
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1005 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1006 unsigned int flen)
1007 {
1008 if (filter == NULL)
1009 return false;
1010 if (flen == 0 || flen > BPF_MAXINSNS)
1011 return false;
1012
1013 return true;
1014 }
1015
1016 /**
1017 * bpf_check_classic - verify socket filter code
1018 * @filter: filter to verify
1019 * @flen: length of filter
1020 *
1021 * Check the user's filter code. If we let some ugly
1022 * filter code slip through kaboom! The filter must contain
1023 * no references or jumps that are out of range, no illegal
1024 * instructions, and must end with a RET instruction.
1025 *
1026 * All jumps are forward as they are not signed.
1027 *
1028 * Returns 0 if the rule set is legal or -EINVAL if not.
1029 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1030 static int bpf_check_classic(const struct sock_filter *filter,
1031 unsigned int flen)
1032 {
1033 bool anc_found;
1034 int pc;
1035
1036 /* Check the filter code now */
1037 for (pc = 0; pc < flen; pc++) {
1038 const struct sock_filter *ftest = &filter[pc];
1039
1040 /* May we actually operate on this code? */
1041 if (!chk_code_allowed(ftest->code))
1042 return -EINVAL;
1043
1044 /* Some instructions need special checks */
1045 switch (ftest->code) {
1046 case BPF_ALU | BPF_DIV | BPF_K:
1047 case BPF_ALU | BPF_MOD | BPF_K:
1048 /* Check for division by zero */
1049 if (ftest->k == 0)
1050 return -EINVAL;
1051 break;
1052 case BPF_ALU | BPF_LSH | BPF_K:
1053 case BPF_ALU | BPF_RSH | BPF_K:
1054 if (ftest->k >= 32)
1055 return -EINVAL;
1056 break;
1057 case BPF_LD | BPF_MEM:
1058 case BPF_LDX | BPF_MEM:
1059 case BPF_ST:
1060 case BPF_STX:
1061 /* Check for invalid memory addresses */
1062 if (ftest->k >= BPF_MEMWORDS)
1063 return -EINVAL;
1064 break;
1065 case BPF_JMP | BPF_JA:
1066 /* Note, the large ftest->k might cause loops.
1067 * Compare this with conditional jumps below,
1068 * where offsets are limited. --ANK (981016)
1069 */
1070 if (ftest->k >= (unsigned int)(flen - pc - 1))
1071 return -EINVAL;
1072 break;
1073 case BPF_JMP | BPF_JEQ | BPF_K:
1074 case BPF_JMP | BPF_JEQ | BPF_X:
1075 case BPF_JMP | BPF_JGE | BPF_K:
1076 case BPF_JMP | BPF_JGE | BPF_X:
1077 case BPF_JMP | BPF_JGT | BPF_K:
1078 case BPF_JMP | BPF_JGT | BPF_X:
1079 case BPF_JMP | BPF_JSET | BPF_K:
1080 case BPF_JMP | BPF_JSET | BPF_X:
1081 /* Both conditionals must be safe */
1082 if (pc + ftest->jt + 1 >= flen ||
1083 pc + ftest->jf + 1 >= flen)
1084 return -EINVAL;
1085 break;
1086 case BPF_LD | BPF_W | BPF_ABS:
1087 case BPF_LD | BPF_H | BPF_ABS:
1088 case BPF_LD | BPF_B | BPF_ABS:
1089 anc_found = false;
1090 if (bpf_anc_helper(ftest) & BPF_ANC)
1091 anc_found = true;
1092 /* Ancillary operation unknown or unsupported */
1093 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1094 return -EINVAL;
1095 }
1096 }
1097
1098 /* Last instruction must be a RET code */
1099 switch (filter[flen - 1].code) {
1100 case BPF_RET | BPF_K:
1101 case BPF_RET | BPF_A:
1102 return check_load_and_stores(filter, flen);
1103 }
1104
1105 return -EINVAL;
1106 }
1107
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1108 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1109 const struct sock_fprog *fprog)
1110 {
1111 unsigned int fsize = bpf_classic_proglen(fprog);
1112 struct sock_fprog_kern *fkprog;
1113
1114 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1115 if (!fp->orig_prog)
1116 return -ENOMEM;
1117
1118 fkprog = fp->orig_prog;
1119 fkprog->len = fprog->len;
1120
1121 fkprog->filter = kmemdup(fp->insns, fsize,
1122 GFP_KERNEL | __GFP_NOWARN);
1123 if (!fkprog->filter) {
1124 kfree(fp->orig_prog);
1125 return -ENOMEM;
1126 }
1127
1128 return 0;
1129 }
1130
bpf_release_orig_filter(struct bpf_prog * fp)1131 static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 {
1133 struct sock_fprog_kern *fprog = fp->orig_prog;
1134
1135 if (fprog) {
1136 kfree(fprog->filter);
1137 kfree(fprog);
1138 }
1139 }
1140
__bpf_prog_release(struct bpf_prog * prog)1141 static void __bpf_prog_release(struct bpf_prog *prog)
1142 {
1143 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144 bpf_prog_put(prog);
1145 } else {
1146 bpf_release_orig_filter(prog);
1147 bpf_prog_free(prog);
1148 }
1149 }
1150
__sk_filter_release(struct sk_filter * fp)1151 static void __sk_filter_release(struct sk_filter *fp)
1152 {
1153 __bpf_prog_release(fp->prog);
1154 kfree(fp);
1155 }
1156
1157 /**
1158 * sk_filter_release_rcu - Release a socket filter by rcu_head
1159 * @rcu: rcu_head that contains the sk_filter to free
1160 */
sk_filter_release_rcu(struct rcu_head * rcu)1161 static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 {
1163 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1164
1165 __sk_filter_release(fp);
1166 }
1167
1168 /**
1169 * sk_filter_release - release a socket filter
1170 * @fp: filter to remove
1171 *
1172 * Remove a filter from a socket and release its resources.
1173 */
sk_filter_release(struct sk_filter * fp)1174 static void sk_filter_release(struct sk_filter *fp)
1175 {
1176 if (refcount_dec_and_test(&fp->refcnt))
1177 call_rcu(&fp->rcu, sk_filter_release_rcu);
1178 }
1179
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1180 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1181 {
1182 u32 filter_size = bpf_prog_size(fp->prog->len);
1183
1184 atomic_sub(filter_size, &sk->sk_omem_alloc);
1185 sk_filter_release(fp);
1186 }
1187
1188 /* try to charge the socket memory if there is space available
1189 * return true on success
1190 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1191 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192 {
1193 u32 filter_size = bpf_prog_size(fp->prog->len);
1194
1195 /* same check as in sock_kmalloc() */
1196 if (filter_size <= sysctl_optmem_max &&
1197 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1198 atomic_add(filter_size, &sk->sk_omem_alloc);
1199 return true;
1200 }
1201 return false;
1202 }
1203
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1204 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1205 {
1206 if (!refcount_inc_not_zero(&fp->refcnt))
1207 return false;
1208
1209 if (!__sk_filter_charge(sk, fp)) {
1210 sk_filter_release(fp);
1211 return false;
1212 }
1213 return true;
1214 }
1215
bpf_migrate_filter(struct bpf_prog * fp)1216 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 {
1218 struct sock_filter *old_prog;
1219 struct bpf_prog *old_fp;
1220 int err, new_len, old_len = fp->len;
1221 bool seen_ld_abs = false;
1222
1223 /* We are free to overwrite insns et al right here as it
1224 * won't be used at this point in time anymore internally
1225 * after the migration to the internal BPF instruction
1226 * representation.
1227 */
1228 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229 sizeof(struct bpf_insn));
1230
1231 /* Conversion cannot happen on overlapping memory areas,
1232 * so we need to keep the user BPF around until the 2nd
1233 * pass. At this time, the user BPF is stored in fp->insns.
1234 */
1235 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236 GFP_KERNEL | __GFP_NOWARN);
1237 if (!old_prog) {
1238 err = -ENOMEM;
1239 goto out_err;
1240 }
1241
1242 /* 1st pass: calculate the new program length. */
1243 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1244 &seen_ld_abs);
1245 if (err)
1246 goto out_err_free;
1247
1248 /* Expand fp for appending the new filter representation. */
1249 old_fp = fp;
1250 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251 if (!fp) {
1252 /* The old_fp is still around in case we couldn't
1253 * allocate new memory, so uncharge on that one.
1254 */
1255 fp = old_fp;
1256 err = -ENOMEM;
1257 goto out_err_free;
1258 }
1259
1260 fp->len = new_len;
1261
1262 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1264 &seen_ld_abs);
1265 if (err)
1266 /* 2nd bpf_convert_filter() can fail only if it fails
1267 * to allocate memory, remapping must succeed. Note,
1268 * that at this time old_fp has already been released
1269 * by krealloc().
1270 */
1271 goto out_err_free;
1272
1273 fp = bpf_prog_select_runtime(fp, &err);
1274 if (err)
1275 goto out_err_free;
1276
1277 kfree(old_prog);
1278 return fp;
1279
1280 out_err_free:
1281 kfree(old_prog);
1282 out_err:
1283 __bpf_prog_release(fp);
1284 return ERR_PTR(err);
1285 }
1286
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1287 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1288 bpf_aux_classic_check_t trans)
1289 {
1290 int err;
1291
1292 fp->bpf_func = NULL;
1293 fp->jited = 0;
1294
1295 err = bpf_check_classic(fp->insns, fp->len);
1296 if (err) {
1297 __bpf_prog_release(fp);
1298 return ERR_PTR(err);
1299 }
1300
1301 /* There might be additional checks and transformations
1302 * needed on classic filters, f.e. in case of seccomp.
1303 */
1304 if (trans) {
1305 err = trans(fp->insns, fp->len);
1306 if (err) {
1307 __bpf_prog_release(fp);
1308 return ERR_PTR(err);
1309 }
1310 }
1311
1312 /* Probe if we can JIT compile the filter and if so, do
1313 * the compilation of the filter.
1314 */
1315 bpf_jit_compile(fp);
1316
1317 /* JIT compiler couldn't process this filter, so do the
1318 * internal BPF translation for the optimized interpreter.
1319 */
1320 if (!fp->jited)
1321 fp = bpf_migrate_filter(fp);
1322
1323 return fp;
1324 }
1325
1326 /**
1327 * bpf_prog_create - create an unattached filter
1328 * @pfp: the unattached filter that is created
1329 * @fprog: the filter program
1330 *
1331 * Create a filter independent of any socket. We first run some
1332 * sanity checks on it to make sure it does not explode on us later.
1333 * If an error occurs or there is insufficient memory for the filter
1334 * a negative errno code is returned. On success the return is zero.
1335 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1336 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337 {
1338 unsigned int fsize = bpf_classic_proglen(fprog);
1339 struct bpf_prog *fp;
1340
1341 /* Make sure new filter is there and in the right amounts. */
1342 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343 return -EINVAL;
1344
1345 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346 if (!fp)
1347 return -ENOMEM;
1348
1349 memcpy(fp->insns, fprog->filter, fsize);
1350
1351 fp->len = fprog->len;
1352 /* Since unattached filters are not copied back to user
1353 * space through sk_get_filter(), we do not need to hold
1354 * a copy here, and can spare us the work.
1355 */
1356 fp->orig_prog = NULL;
1357
1358 /* bpf_prepare_filter() already takes care of freeing
1359 * memory in case something goes wrong.
1360 */
1361 fp = bpf_prepare_filter(fp, NULL);
1362 if (IS_ERR(fp))
1363 return PTR_ERR(fp);
1364
1365 *pfp = fp;
1366 return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(bpf_prog_create);
1369
1370 /**
1371 * bpf_prog_create_from_user - create an unattached filter from user buffer
1372 * @pfp: the unattached filter that is created
1373 * @fprog: the filter program
1374 * @trans: post-classic verifier transformation handler
1375 * @save_orig: save classic BPF program
1376 *
1377 * This function effectively does the same as bpf_prog_create(), only
1378 * that it builds up its insns buffer from user space provided buffer.
1379 * It also allows for passing a bpf_aux_classic_check_t handler.
1380 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1381 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382 bpf_aux_classic_check_t trans, bool save_orig)
1383 {
1384 unsigned int fsize = bpf_classic_proglen(fprog);
1385 struct bpf_prog *fp;
1386 int err;
1387
1388 /* Make sure new filter is there and in the right amounts. */
1389 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390 return -EINVAL;
1391
1392 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1393 if (!fp)
1394 return -ENOMEM;
1395
1396 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1397 __bpf_prog_free(fp);
1398 return -EFAULT;
1399 }
1400
1401 fp->len = fprog->len;
1402 fp->orig_prog = NULL;
1403
1404 if (save_orig) {
1405 err = bpf_prog_store_orig_filter(fp, fprog);
1406 if (err) {
1407 __bpf_prog_free(fp);
1408 return -ENOMEM;
1409 }
1410 }
1411
1412 /* bpf_prepare_filter() already takes care of freeing
1413 * memory in case something goes wrong.
1414 */
1415 fp = bpf_prepare_filter(fp, trans);
1416 if (IS_ERR(fp))
1417 return PTR_ERR(fp);
1418
1419 *pfp = fp;
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423
bpf_prog_destroy(struct bpf_prog * fp)1424 void bpf_prog_destroy(struct bpf_prog *fp)
1425 {
1426 __bpf_prog_release(fp);
1427 }
1428 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1430 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 {
1432 struct sk_filter *fp, *old_fp;
1433
1434 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1435 if (!fp)
1436 return -ENOMEM;
1437
1438 fp->prog = prog;
1439
1440 if (!__sk_filter_charge(sk, fp)) {
1441 kfree(fp);
1442 return -ENOMEM;
1443 }
1444 refcount_set(&fp->refcnt, 1);
1445
1446 old_fp = rcu_dereference_protected(sk->sk_filter,
1447 lockdep_sock_is_held(sk));
1448 rcu_assign_pointer(sk->sk_filter, fp);
1449
1450 if (old_fp)
1451 sk_filter_uncharge(sk, old_fp);
1452
1453 return 0;
1454 }
1455
1456 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1457 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1458 {
1459 unsigned int fsize = bpf_classic_proglen(fprog);
1460 struct bpf_prog *prog;
1461 int err;
1462
1463 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1464 return ERR_PTR(-EPERM);
1465
1466 /* Make sure new filter is there and in the right amounts. */
1467 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1468 return ERR_PTR(-EINVAL);
1469
1470 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1471 if (!prog)
1472 return ERR_PTR(-ENOMEM);
1473
1474 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1475 __bpf_prog_free(prog);
1476 return ERR_PTR(-EFAULT);
1477 }
1478
1479 prog->len = fprog->len;
1480
1481 err = bpf_prog_store_orig_filter(prog, fprog);
1482 if (err) {
1483 __bpf_prog_free(prog);
1484 return ERR_PTR(-ENOMEM);
1485 }
1486
1487 /* bpf_prepare_filter() already takes care of freeing
1488 * memory in case something goes wrong.
1489 */
1490 return bpf_prepare_filter(prog, NULL);
1491 }
1492
1493 /**
1494 * sk_attach_filter - attach a socket filter
1495 * @fprog: the filter program
1496 * @sk: the socket to use
1497 *
1498 * Attach the user's filter code. We first run some sanity checks on
1499 * it to make sure it does not explode on us later. If an error
1500 * occurs or there is insufficient memory for the filter a negative
1501 * errno code is returned. On success the return is zero.
1502 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1503 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1504 {
1505 struct bpf_prog *prog = __get_filter(fprog, sk);
1506 int err;
1507
1508 if (IS_ERR(prog))
1509 return PTR_ERR(prog);
1510
1511 err = __sk_attach_prog(prog, sk);
1512 if (err < 0) {
1513 __bpf_prog_release(prog);
1514 return err;
1515 }
1516
1517 return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(sk_attach_filter);
1520
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1521 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1522 {
1523 struct bpf_prog *prog = __get_filter(fprog, sk);
1524 int err;
1525
1526 if (IS_ERR(prog))
1527 return PTR_ERR(prog);
1528
1529 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1530 err = -ENOMEM;
1531 else
1532 err = reuseport_attach_prog(sk, prog);
1533
1534 if (err)
1535 __bpf_prog_release(prog);
1536
1537 return err;
1538 }
1539
__get_bpf(u32 ufd,struct sock * sk)1540 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1541 {
1542 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1543 return ERR_PTR(-EPERM);
1544
1545 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1546 }
1547
sk_attach_bpf(u32 ufd,struct sock * sk)1548 int sk_attach_bpf(u32 ufd, struct sock *sk)
1549 {
1550 struct bpf_prog *prog = __get_bpf(ufd, sk);
1551 int err;
1552
1553 if (IS_ERR(prog))
1554 return PTR_ERR(prog);
1555
1556 err = __sk_attach_prog(prog, sk);
1557 if (err < 0) {
1558 bpf_prog_put(prog);
1559 return err;
1560 }
1561
1562 return 0;
1563 }
1564
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1565 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567 struct bpf_prog *prog;
1568 int err;
1569
1570 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1571 return -EPERM;
1572
1573 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1574 if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1575 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1576 if (IS_ERR(prog))
1577 return PTR_ERR(prog);
1578
1579 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1580 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1581 * bpf prog (e.g. sockmap). It depends on the
1582 * limitation imposed by bpf_prog_load().
1583 * Hence, sysctl_optmem_max is not checked.
1584 */
1585 if ((sk->sk_type != SOCK_STREAM &&
1586 sk->sk_type != SOCK_DGRAM) ||
1587 (sk->sk_protocol != IPPROTO_UDP &&
1588 sk->sk_protocol != IPPROTO_TCP) ||
1589 (sk->sk_family != AF_INET &&
1590 sk->sk_family != AF_INET6)) {
1591 err = -ENOTSUPP;
1592 goto err_prog_put;
1593 }
1594 } else {
1595 /* BPF_PROG_TYPE_SOCKET_FILTER */
1596 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1597 err = -ENOMEM;
1598 goto err_prog_put;
1599 }
1600 }
1601
1602 err = reuseport_attach_prog(sk, prog);
1603 err_prog_put:
1604 if (err)
1605 bpf_prog_put(prog);
1606
1607 return err;
1608 }
1609
sk_reuseport_prog_free(struct bpf_prog * prog)1610 void sk_reuseport_prog_free(struct bpf_prog *prog)
1611 {
1612 if (!prog)
1613 return;
1614
1615 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1616 bpf_prog_put(prog);
1617 else
1618 bpf_prog_destroy(prog);
1619 }
1620
1621 struct bpf_scratchpad {
1622 union {
1623 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1624 u8 buff[MAX_BPF_STACK];
1625 };
1626 };
1627
1628 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1629
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1630 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1631 unsigned int write_len)
1632 {
1633 return skb_ensure_writable(skb, write_len);
1634 }
1635
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1636 static inline int bpf_try_make_writable(struct sk_buff *skb,
1637 unsigned int write_len)
1638 {
1639 int err = __bpf_try_make_writable(skb, write_len);
1640
1641 bpf_compute_data_pointers(skb);
1642 return err;
1643 }
1644
bpf_try_make_head_writable(struct sk_buff * skb)1645 static int bpf_try_make_head_writable(struct sk_buff *skb)
1646 {
1647 return bpf_try_make_writable(skb, skb_headlen(skb));
1648 }
1649
bpf_push_mac_rcsum(struct sk_buff * skb)1650 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1651 {
1652 if (skb_at_tc_ingress(skb))
1653 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1654 }
1655
bpf_pull_mac_rcsum(struct sk_buff * skb)1656 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1657 {
1658 if (skb_at_tc_ingress(skb))
1659 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1660 }
1661
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1662 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1663 const void *, from, u32, len, u64, flags)
1664 {
1665 void *ptr;
1666
1667 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1668 return -EINVAL;
1669 if (unlikely(offset > 0xffff))
1670 return -EFAULT;
1671 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1672 return -EFAULT;
1673
1674 ptr = skb->data + offset;
1675 if (flags & BPF_F_RECOMPUTE_CSUM)
1676 __skb_postpull_rcsum(skb, ptr, len, offset);
1677
1678 memcpy(ptr, from, len);
1679
1680 if (flags & BPF_F_RECOMPUTE_CSUM)
1681 __skb_postpush_rcsum(skb, ptr, len, offset);
1682 if (flags & BPF_F_INVALIDATE_HASH)
1683 skb_clear_hash(skb);
1684
1685 return 0;
1686 }
1687
1688 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1689 .func = bpf_skb_store_bytes,
1690 .gpl_only = false,
1691 .ret_type = RET_INTEGER,
1692 .arg1_type = ARG_PTR_TO_CTX,
1693 .arg2_type = ARG_ANYTHING,
1694 .arg3_type = ARG_PTR_TO_MEM,
1695 .arg4_type = ARG_CONST_SIZE,
1696 .arg5_type = ARG_ANYTHING,
1697 };
1698
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1699 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1700 void *, to, u32, len)
1701 {
1702 void *ptr;
1703
1704 if (unlikely(offset > 0xffff))
1705 goto err_clear;
1706
1707 ptr = skb_header_pointer(skb, offset, len, to);
1708 if (unlikely(!ptr))
1709 goto err_clear;
1710 if (ptr != to)
1711 memcpy(to, ptr, len);
1712
1713 return 0;
1714 err_clear:
1715 memset(to, 0, len);
1716 return -EFAULT;
1717 }
1718
1719 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1720 .func = bpf_skb_load_bytes,
1721 .gpl_only = false,
1722 .ret_type = RET_INTEGER,
1723 .arg1_type = ARG_PTR_TO_CTX,
1724 .arg2_type = ARG_ANYTHING,
1725 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1726 .arg4_type = ARG_CONST_SIZE,
1727 };
1728
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1729 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1730 u32, offset, void *, to, u32, len, u32, start_header)
1731 {
1732 u8 *end = skb_tail_pointer(skb);
1733 u8 *net = skb_network_header(skb);
1734 u8 *mac = skb_mac_header(skb);
1735 u8 *ptr;
1736
1737 if (unlikely(offset > 0xffff || len > (end - mac)))
1738 goto err_clear;
1739
1740 switch (start_header) {
1741 case BPF_HDR_START_MAC:
1742 ptr = mac + offset;
1743 break;
1744 case BPF_HDR_START_NET:
1745 ptr = net + offset;
1746 break;
1747 default:
1748 goto err_clear;
1749 }
1750
1751 if (likely(ptr >= mac && ptr + len <= end)) {
1752 memcpy(to, ptr, len);
1753 return 0;
1754 }
1755
1756 err_clear:
1757 memset(to, 0, len);
1758 return -EFAULT;
1759 }
1760
1761 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1762 .func = bpf_skb_load_bytes_relative,
1763 .gpl_only = false,
1764 .ret_type = RET_INTEGER,
1765 .arg1_type = ARG_PTR_TO_CTX,
1766 .arg2_type = ARG_ANYTHING,
1767 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1768 .arg4_type = ARG_CONST_SIZE,
1769 .arg5_type = ARG_ANYTHING,
1770 };
1771
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1772 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1773 {
1774 /* Idea is the following: should the needed direct read/write
1775 * test fail during runtime, we can pull in more data and redo
1776 * again, since implicitly, we invalidate previous checks here.
1777 *
1778 * Or, since we know how much we need to make read/writeable,
1779 * this can be done once at the program beginning for direct
1780 * access case. By this we overcome limitations of only current
1781 * headroom being accessible.
1782 */
1783 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1784 }
1785
1786 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1787 .func = bpf_skb_pull_data,
1788 .gpl_only = false,
1789 .ret_type = RET_INTEGER,
1790 .arg1_type = ARG_PTR_TO_CTX,
1791 .arg2_type = ARG_ANYTHING,
1792 };
1793
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1794 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1795 unsigned int write_len)
1796 {
1797 int err = __bpf_try_make_writable(skb, write_len);
1798
1799 bpf_compute_data_end_sk_skb(skb);
1800 return err;
1801 }
1802
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1803 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1804 {
1805 /* Idea is the following: should the needed direct read/write
1806 * test fail during runtime, we can pull in more data and redo
1807 * again, since implicitly, we invalidate previous checks here.
1808 *
1809 * Or, since we know how much we need to make read/writeable,
1810 * this can be done once at the program beginning for direct
1811 * access case. By this we overcome limitations of only current
1812 * headroom being accessible.
1813 */
1814 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1815 }
1816
1817 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1818 .func = sk_skb_pull_data,
1819 .gpl_only = false,
1820 .ret_type = RET_INTEGER,
1821 .arg1_type = ARG_PTR_TO_CTX,
1822 .arg2_type = ARG_ANYTHING,
1823 };
1824
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1825 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1826 u64, from, u64, to, u64, flags)
1827 {
1828 __sum16 *ptr;
1829
1830 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1831 return -EINVAL;
1832 if (unlikely(offset > 0xffff || offset & 1))
1833 return -EFAULT;
1834 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1835 return -EFAULT;
1836
1837 ptr = (__sum16 *)(skb->data + offset);
1838 switch (flags & BPF_F_HDR_FIELD_MASK) {
1839 case 0:
1840 if (unlikely(from != 0))
1841 return -EINVAL;
1842
1843 csum_replace_by_diff(ptr, to);
1844 break;
1845 case 2:
1846 csum_replace2(ptr, from, to);
1847 break;
1848 case 4:
1849 csum_replace4(ptr, from, to);
1850 break;
1851 default:
1852 return -EINVAL;
1853 }
1854
1855 return 0;
1856 }
1857
1858 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1859 .func = bpf_l3_csum_replace,
1860 .gpl_only = false,
1861 .ret_type = RET_INTEGER,
1862 .arg1_type = ARG_PTR_TO_CTX,
1863 .arg2_type = ARG_ANYTHING,
1864 .arg3_type = ARG_ANYTHING,
1865 .arg4_type = ARG_ANYTHING,
1866 .arg5_type = ARG_ANYTHING,
1867 };
1868
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1869 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1870 u64, from, u64, to, u64, flags)
1871 {
1872 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1873 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1874 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1875 __sum16 *ptr;
1876
1877 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1878 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1879 return -EINVAL;
1880 if (unlikely(offset > 0xffff || offset & 1))
1881 return -EFAULT;
1882 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 return -EFAULT;
1884
1885 ptr = (__sum16 *)(skb->data + offset);
1886 if (is_mmzero && !do_mforce && !*ptr)
1887 return 0;
1888
1889 switch (flags & BPF_F_HDR_FIELD_MASK) {
1890 case 0:
1891 if (unlikely(from != 0))
1892 return -EINVAL;
1893
1894 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1895 break;
1896 case 2:
1897 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1898 break;
1899 case 4:
1900 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1901 break;
1902 default:
1903 return -EINVAL;
1904 }
1905
1906 if (is_mmzero && !*ptr)
1907 *ptr = CSUM_MANGLED_0;
1908 return 0;
1909 }
1910
1911 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1912 .func = bpf_l4_csum_replace,
1913 .gpl_only = false,
1914 .ret_type = RET_INTEGER,
1915 .arg1_type = ARG_PTR_TO_CTX,
1916 .arg2_type = ARG_ANYTHING,
1917 .arg3_type = ARG_ANYTHING,
1918 .arg4_type = ARG_ANYTHING,
1919 .arg5_type = ARG_ANYTHING,
1920 };
1921
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1922 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1923 __be32 *, to, u32, to_size, __wsum, seed)
1924 {
1925 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1926 u32 diff_size = from_size + to_size;
1927 int i, j = 0;
1928
1929 /* This is quite flexible, some examples:
1930 *
1931 * from_size == 0, to_size > 0, seed := csum --> pushing data
1932 * from_size > 0, to_size == 0, seed := csum --> pulling data
1933 * from_size > 0, to_size > 0, seed := 0 --> diffing data
1934 *
1935 * Even for diffing, from_size and to_size don't need to be equal.
1936 */
1937 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1938 diff_size > sizeof(sp->diff)))
1939 return -EINVAL;
1940
1941 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1942 sp->diff[j] = ~from[i];
1943 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
1944 sp->diff[j] = to[i];
1945
1946 return csum_partial(sp->diff, diff_size, seed);
1947 }
1948
1949 static const struct bpf_func_proto bpf_csum_diff_proto = {
1950 .func = bpf_csum_diff,
1951 .gpl_only = false,
1952 .pkt_access = true,
1953 .ret_type = RET_INTEGER,
1954 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1955 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1956 .arg3_type = ARG_PTR_TO_MEM_OR_NULL,
1957 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1958 .arg5_type = ARG_ANYTHING,
1959 };
1960
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)1961 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1962 {
1963 /* The interface is to be used in combination with bpf_csum_diff()
1964 * for direct packet writes. csum rotation for alignment as well
1965 * as emulating csum_sub() can be done from the eBPF program.
1966 */
1967 if (skb->ip_summed == CHECKSUM_COMPLETE)
1968 return (skb->csum = csum_add(skb->csum, csum));
1969
1970 return -ENOTSUPP;
1971 }
1972
1973 static const struct bpf_func_proto bpf_csum_update_proto = {
1974 .func = bpf_csum_update,
1975 .gpl_only = false,
1976 .ret_type = RET_INTEGER,
1977 .arg1_type = ARG_PTR_TO_CTX,
1978 .arg2_type = ARG_ANYTHING,
1979 };
1980
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)1981 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1982 {
1983 return dev_forward_skb(dev, skb);
1984 }
1985
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)1986 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1987 struct sk_buff *skb)
1988 {
1989 int ret = ____dev_forward_skb(dev, skb);
1990
1991 if (likely(!ret)) {
1992 skb->dev = dev;
1993 ret = netif_rx(skb);
1994 }
1995
1996 return ret;
1997 }
1998
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)1999 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2000 {
2001 int ret;
2002
2003 if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2004 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2005 kfree_skb(skb);
2006 return -ENETDOWN;
2007 }
2008
2009 skb->dev = dev;
2010
2011 __this_cpu_inc(xmit_recursion);
2012 ret = dev_queue_xmit(skb);
2013 __this_cpu_dec(xmit_recursion);
2014
2015 return ret;
2016 }
2017
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2018 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2019 u32 flags)
2020 {
2021 /* skb->mac_len is not set on normal egress */
2022 unsigned int mlen = skb->network_header - skb->mac_header;
2023
2024 __skb_pull(skb, mlen);
2025
2026 /* At ingress, the mac header has already been pulled once.
2027 * At egress, skb_pospull_rcsum has to be done in case that
2028 * the skb is originated from ingress (i.e. a forwarded skb)
2029 * to ensure that rcsum starts at net header.
2030 */
2031 if (!skb_at_tc_ingress(skb))
2032 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2033 skb_pop_mac_header(skb);
2034 skb_reset_mac_len(skb);
2035 return flags & BPF_F_INGRESS ?
2036 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2037 }
2038
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2039 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2040 u32 flags)
2041 {
2042 /* Verify that a link layer header is carried */
2043 if (unlikely(skb->mac_header >= skb->network_header)) {
2044 kfree_skb(skb);
2045 return -ERANGE;
2046 }
2047
2048 bpf_push_mac_rcsum(skb);
2049 return flags & BPF_F_INGRESS ?
2050 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2051 }
2052
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2053 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2054 u32 flags)
2055 {
2056 if (dev_is_mac_header_xmit(dev))
2057 return __bpf_redirect_common(skb, dev, flags);
2058 else
2059 return __bpf_redirect_no_mac(skb, dev, flags);
2060 }
2061
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2062 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2063 {
2064 struct net_device *dev;
2065 struct sk_buff *clone;
2066 int ret;
2067
2068 if (unlikely(flags & ~(BPF_F_INGRESS)))
2069 return -EINVAL;
2070
2071 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2072 if (unlikely(!dev))
2073 return -EINVAL;
2074
2075 clone = skb_clone(skb, GFP_ATOMIC);
2076 if (unlikely(!clone))
2077 return -ENOMEM;
2078
2079 /* For direct write, we need to keep the invariant that the skbs
2080 * we're dealing with need to be uncloned. Should uncloning fail
2081 * here, we need to free the just generated clone to unclone once
2082 * again.
2083 */
2084 ret = bpf_try_make_head_writable(skb);
2085 if (unlikely(ret)) {
2086 kfree_skb(clone);
2087 return -ENOMEM;
2088 }
2089
2090 return __bpf_redirect(clone, dev, flags);
2091 }
2092
2093 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2094 .func = bpf_clone_redirect,
2095 .gpl_only = false,
2096 .ret_type = RET_INTEGER,
2097 .arg1_type = ARG_PTR_TO_CTX,
2098 .arg2_type = ARG_ANYTHING,
2099 .arg3_type = ARG_ANYTHING,
2100 };
2101
2102 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2103 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2104
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2105 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2106 {
2107 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2108
2109 if (unlikely(flags & ~(BPF_F_INGRESS)))
2110 return TC_ACT_SHOT;
2111
2112 ri->ifindex = ifindex;
2113 ri->flags = flags;
2114
2115 return TC_ACT_REDIRECT;
2116 }
2117
skb_do_redirect(struct sk_buff * skb)2118 int skb_do_redirect(struct sk_buff *skb)
2119 {
2120 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2121 struct net_device *dev;
2122
2123 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2124 ri->ifindex = 0;
2125 if (unlikely(!dev)) {
2126 kfree_skb(skb);
2127 return -EINVAL;
2128 }
2129
2130 return __bpf_redirect(skb, dev, ri->flags);
2131 }
2132
2133 static const struct bpf_func_proto bpf_redirect_proto = {
2134 .func = bpf_redirect,
2135 .gpl_only = false,
2136 .ret_type = RET_INTEGER,
2137 .arg1_type = ARG_ANYTHING,
2138 .arg2_type = ARG_ANYTHING,
2139 };
2140
BPF_CALL_4(bpf_sk_redirect_hash,struct sk_buff *,skb,struct bpf_map *,map,void *,key,u64,flags)2141 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2142 struct bpf_map *, map, void *, key, u64, flags)
2143 {
2144 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2145
2146 /* If user passes invalid input drop the packet. */
2147 if (unlikely(flags & ~(BPF_F_INGRESS)))
2148 return SK_DROP;
2149
2150 tcb->bpf.flags = flags;
2151 tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2152 if (!tcb->bpf.sk_redir)
2153 return SK_DROP;
2154
2155 return SK_PASS;
2156 }
2157
2158 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2159 .func = bpf_sk_redirect_hash,
2160 .gpl_only = false,
2161 .ret_type = RET_INTEGER,
2162 .arg1_type = ARG_PTR_TO_CTX,
2163 .arg2_type = ARG_CONST_MAP_PTR,
2164 .arg3_type = ARG_PTR_TO_MAP_KEY,
2165 .arg4_type = ARG_ANYTHING,
2166 };
2167
BPF_CALL_4(bpf_sk_redirect_map,struct sk_buff *,skb,struct bpf_map *,map,u32,key,u64,flags)2168 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2169 struct bpf_map *, map, u32, key, u64, flags)
2170 {
2171 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2172
2173 /* If user passes invalid input drop the packet. */
2174 if (unlikely(flags & ~(BPF_F_INGRESS)))
2175 return SK_DROP;
2176
2177 tcb->bpf.flags = flags;
2178 tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2179 if (!tcb->bpf.sk_redir)
2180 return SK_DROP;
2181
2182 return SK_PASS;
2183 }
2184
do_sk_redirect_map(struct sk_buff * skb)2185 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2186 {
2187 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2188
2189 return tcb->bpf.sk_redir;
2190 }
2191
2192 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2193 .func = bpf_sk_redirect_map,
2194 .gpl_only = false,
2195 .ret_type = RET_INTEGER,
2196 .arg1_type = ARG_PTR_TO_CTX,
2197 .arg2_type = ARG_CONST_MAP_PTR,
2198 .arg3_type = ARG_ANYTHING,
2199 .arg4_type = ARG_ANYTHING,
2200 };
2201
BPF_CALL_4(bpf_msg_redirect_hash,struct sk_msg_buff *,msg,struct bpf_map *,map,void *,key,u64,flags)2202 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2203 struct bpf_map *, map, void *, key, u64, flags)
2204 {
2205 /* If user passes invalid input drop the packet. */
2206 if (unlikely(flags & ~(BPF_F_INGRESS)))
2207 return SK_DROP;
2208
2209 msg->flags = flags;
2210 msg->sk_redir = __sock_hash_lookup_elem(map, key);
2211 if (!msg->sk_redir)
2212 return SK_DROP;
2213
2214 return SK_PASS;
2215 }
2216
2217 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2218 .func = bpf_msg_redirect_hash,
2219 .gpl_only = false,
2220 .ret_type = RET_INTEGER,
2221 .arg1_type = ARG_PTR_TO_CTX,
2222 .arg2_type = ARG_CONST_MAP_PTR,
2223 .arg3_type = ARG_PTR_TO_MAP_KEY,
2224 .arg4_type = ARG_ANYTHING,
2225 };
2226
BPF_CALL_4(bpf_msg_redirect_map,struct sk_msg_buff *,msg,struct bpf_map *,map,u32,key,u64,flags)2227 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2228 struct bpf_map *, map, u32, key, u64, flags)
2229 {
2230 /* If user passes invalid input drop the packet. */
2231 if (unlikely(flags & ~(BPF_F_INGRESS)))
2232 return SK_DROP;
2233
2234 msg->flags = flags;
2235 msg->sk_redir = __sock_map_lookup_elem(map, key);
2236 if (!msg->sk_redir)
2237 return SK_DROP;
2238
2239 return SK_PASS;
2240 }
2241
do_msg_redirect_map(struct sk_msg_buff * msg)2242 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2243 {
2244 return msg->sk_redir;
2245 }
2246
2247 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2248 .func = bpf_msg_redirect_map,
2249 .gpl_only = false,
2250 .ret_type = RET_INTEGER,
2251 .arg1_type = ARG_PTR_TO_CTX,
2252 .arg2_type = ARG_CONST_MAP_PTR,
2253 .arg3_type = ARG_ANYTHING,
2254 .arg4_type = ARG_ANYTHING,
2255 };
2256
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg_buff *,msg,u32,bytes)2257 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2258 {
2259 msg->apply_bytes = bytes;
2260 return 0;
2261 }
2262
2263 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2264 .func = bpf_msg_apply_bytes,
2265 .gpl_only = false,
2266 .ret_type = RET_INTEGER,
2267 .arg1_type = ARG_PTR_TO_CTX,
2268 .arg2_type = ARG_ANYTHING,
2269 };
2270
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg_buff *,msg,u32,bytes)2271 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2272 {
2273 msg->cork_bytes = bytes;
2274 return 0;
2275 }
2276
2277 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2278 .func = bpf_msg_cork_bytes,
2279 .gpl_only = false,
2280 .ret_type = RET_INTEGER,
2281 .arg1_type = ARG_PTR_TO_CTX,
2282 .arg2_type = ARG_ANYTHING,
2283 };
2284
2285 #define sk_msg_iter_var(var) \
2286 do { \
2287 var++; \
2288 if (var == MAX_SKB_FRAGS) \
2289 var = 0; \
2290 } while (0)
2291
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg_buff *,msg,u32,start,u32,end,u64,flags)2292 BPF_CALL_4(bpf_msg_pull_data,
2293 struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2294 {
2295 unsigned int len = 0, offset = 0, copy = 0, poffset = 0;
2296 int bytes = end - start, bytes_sg_total;
2297 struct scatterlist *sg = msg->sg_data;
2298 int first_sg, last_sg, i, shift;
2299 unsigned char *p, *to, *from;
2300 struct page *page;
2301
2302 if (unlikely(flags || end <= start))
2303 return -EINVAL;
2304
2305 /* First find the starting scatterlist element */
2306 i = msg->sg_start;
2307 do {
2308 len = sg[i].length;
2309 if (start < offset + len)
2310 break;
2311 offset += len;
2312 sk_msg_iter_var(i);
2313 } while (i != msg->sg_end);
2314
2315 if (unlikely(start >= offset + len))
2316 return -EINVAL;
2317
2318 first_sg = i;
2319 /* The start may point into the sg element so we need to also
2320 * account for the headroom.
2321 */
2322 bytes_sg_total = start - offset + bytes;
2323 if (!msg->sg_copy[i] && bytes_sg_total <= len)
2324 goto out;
2325
2326 /* At this point we need to linearize multiple scatterlist
2327 * elements or a single shared page. Either way we need to
2328 * copy into a linear buffer exclusively owned by BPF. Then
2329 * place the buffer in the scatterlist and fixup the original
2330 * entries by removing the entries now in the linear buffer
2331 * and shifting the remaining entries. For now we do not try
2332 * to copy partial entries to avoid complexity of running out
2333 * of sg_entry slots. The downside is reading a single byte
2334 * will copy the entire sg entry.
2335 */
2336 do {
2337 copy += sg[i].length;
2338 sk_msg_iter_var(i);
2339 if (bytes_sg_total <= copy)
2340 break;
2341 } while (i != msg->sg_end);
2342 last_sg = i;
2343
2344 if (unlikely(bytes_sg_total > copy))
2345 return -EINVAL;
2346
2347 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2348 get_order(copy));
2349 if (unlikely(!page))
2350 return -ENOMEM;
2351 p = page_address(page);
2352
2353 i = first_sg;
2354 do {
2355 from = sg_virt(&sg[i]);
2356 len = sg[i].length;
2357 to = p + poffset;
2358
2359 memcpy(to, from, len);
2360 poffset += len;
2361 sg[i].length = 0;
2362 put_page(sg_page(&sg[i]));
2363
2364 sk_msg_iter_var(i);
2365 } while (i != last_sg);
2366
2367 sg[first_sg].length = copy;
2368 sg_set_page(&sg[first_sg], page, copy, 0);
2369
2370 /* To repair sg ring we need to shift entries. If we only
2371 * had a single entry though we can just replace it and
2372 * be done. Otherwise walk the ring and shift the entries.
2373 */
2374 WARN_ON_ONCE(last_sg == first_sg);
2375 shift = last_sg > first_sg ?
2376 last_sg - first_sg - 1 :
2377 MAX_SKB_FRAGS - first_sg + last_sg - 1;
2378 if (!shift)
2379 goto out;
2380
2381 i = first_sg;
2382 sk_msg_iter_var(i);
2383 do {
2384 int move_from;
2385
2386 if (i + shift >= MAX_SKB_FRAGS)
2387 move_from = i + shift - MAX_SKB_FRAGS;
2388 else
2389 move_from = i + shift;
2390
2391 if (move_from == msg->sg_end)
2392 break;
2393
2394 sg[i] = sg[move_from];
2395 sg[move_from].length = 0;
2396 sg[move_from].page_link = 0;
2397 sg[move_from].offset = 0;
2398
2399 sk_msg_iter_var(i);
2400 } while (1);
2401 msg->sg_end -= shift;
2402 if (msg->sg_end < 0)
2403 msg->sg_end += MAX_SKB_FRAGS;
2404 out:
2405 msg->data = sg_virt(&sg[first_sg]) + start - offset;
2406 msg->data_end = msg->data + bytes;
2407
2408 return 0;
2409 }
2410
2411 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2412 .func = bpf_msg_pull_data,
2413 .gpl_only = false,
2414 .ret_type = RET_INTEGER,
2415 .arg1_type = ARG_PTR_TO_CTX,
2416 .arg2_type = ARG_ANYTHING,
2417 .arg3_type = ARG_ANYTHING,
2418 .arg4_type = ARG_ANYTHING,
2419 };
2420
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)2421 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2422 {
2423 return task_get_classid(skb);
2424 }
2425
2426 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2427 .func = bpf_get_cgroup_classid,
2428 .gpl_only = false,
2429 .ret_type = RET_INTEGER,
2430 .arg1_type = ARG_PTR_TO_CTX,
2431 };
2432
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)2433 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2434 {
2435 return dst_tclassid(skb);
2436 }
2437
2438 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2439 .func = bpf_get_route_realm,
2440 .gpl_only = false,
2441 .ret_type = RET_INTEGER,
2442 .arg1_type = ARG_PTR_TO_CTX,
2443 };
2444
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)2445 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2446 {
2447 /* If skb_clear_hash() was called due to mangling, we can
2448 * trigger SW recalculation here. Later access to hash
2449 * can then use the inline skb->hash via context directly
2450 * instead of calling this helper again.
2451 */
2452 return skb_get_hash(skb);
2453 }
2454
2455 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2456 .func = bpf_get_hash_recalc,
2457 .gpl_only = false,
2458 .ret_type = RET_INTEGER,
2459 .arg1_type = ARG_PTR_TO_CTX,
2460 };
2461
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)2462 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2463 {
2464 /* After all direct packet write, this can be used once for
2465 * triggering a lazy recalc on next skb_get_hash() invocation.
2466 */
2467 skb_clear_hash(skb);
2468 return 0;
2469 }
2470
2471 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2472 .func = bpf_set_hash_invalid,
2473 .gpl_only = false,
2474 .ret_type = RET_INTEGER,
2475 .arg1_type = ARG_PTR_TO_CTX,
2476 };
2477
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)2478 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2479 {
2480 /* Set user specified hash as L4(+), so that it gets returned
2481 * on skb_get_hash() call unless BPF prog later on triggers a
2482 * skb_clear_hash().
2483 */
2484 __skb_set_sw_hash(skb, hash, true);
2485 return 0;
2486 }
2487
2488 static const struct bpf_func_proto bpf_set_hash_proto = {
2489 .func = bpf_set_hash,
2490 .gpl_only = false,
2491 .ret_type = RET_INTEGER,
2492 .arg1_type = ARG_PTR_TO_CTX,
2493 .arg2_type = ARG_ANYTHING,
2494 };
2495
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)2496 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2497 u16, vlan_tci)
2498 {
2499 int ret;
2500
2501 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2502 vlan_proto != htons(ETH_P_8021AD)))
2503 vlan_proto = htons(ETH_P_8021Q);
2504
2505 bpf_push_mac_rcsum(skb);
2506 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2507 bpf_pull_mac_rcsum(skb);
2508
2509 bpf_compute_data_pointers(skb);
2510 return ret;
2511 }
2512
2513 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2514 .func = bpf_skb_vlan_push,
2515 .gpl_only = false,
2516 .ret_type = RET_INTEGER,
2517 .arg1_type = ARG_PTR_TO_CTX,
2518 .arg2_type = ARG_ANYTHING,
2519 .arg3_type = ARG_ANYTHING,
2520 };
2521
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)2522 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2523 {
2524 int ret;
2525
2526 bpf_push_mac_rcsum(skb);
2527 ret = skb_vlan_pop(skb);
2528 bpf_pull_mac_rcsum(skb);
2529
2530 bpf_compute_data_pointers(skb);
2531 return ret;
2532 }
2533
2534 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2535 .func = bpf_skb_vlan_pop,
2536 .gpl_only = false,
2537 .ret_type = RET_INTEGER,
2538 .arg1_type = ARG_PTR_TO_CTX,
2539 };
2540
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)2541 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2542 {
2543 /* Caller already did skb_cow() with len as headroom,
2544 * so no need to do it here.
2545 */
2546 skb_push(skb, len);
2547 memmove(skb->data, skb->data + len, off);
2548 memset(skb->data + off, 0, len);
2549
2550 /* No skb_postpush_rcsum(skb, skb->data + off, len)
2551 * needed here as it does not change the skb->csum
2552 * result for checksum complete when summing over
2553 * zeroed blocks.
2554 */
2555 return 0;
2556 }
2557
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)2558 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2559 {
2560 /* skb_ensure_writable() is not needed here, as we're
2561 * already working on an uncloned skb.
2562 */
2563 if (unlikely(!pskb_may_pull(skb, off + len)))
2564 return -ENOMEM;
2565
2566 skb_postpull_rcsum(skb, skb->data + off, len);
2567 memmove(skb->data + len, skb->data, off);
2568 __skb_pull(skb, len);
2569
2570 return 0;
2571 }
2572
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)2573 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2574 {
2575 bool trans_same = skb->transport_header == skb->network_header;
2576 int ret;
2577
2578 /* There's no need for __skb_push()/__skb_pull() pair to
2579 * get to the start of the mac header as we're guaranteed
2580 * to always start from here under eBPF.
2581 */
2582 ret = bpf_skb_generic_push(skb, off, len);
2583 if (likely(!ret)) {
2584 skb->mac_header -= len;
2585 skb->network_header -= len;
2586 if (trans_same)
2587 skb->transport_header = skb->network_header;
2588 }
2589
2590 return ret;
2591 }
2592
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)2593 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2594 {
2595 bool trans_same = skb->transport_header == skb->network_header;
2596 int ret;
2597
2598 /* Same here, __skb_push()/__skb_pull() pair not needed. */
2599 ret = bpf_skb_generic_pop(skb, off, len);
2600 if (likely(!ret)) {
2601 skb->mac_header += len;
2602 skb->network_header += len;
2603 if (trans_same)
2604 skb->transport_header = skb->network_header;
2605 }
2606
2607 return ret;
2608 }
2609
bpf_skb_proto_4_to_6(struct sk_buff * skb)2610 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2611 {
2612 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2613 u32 off = skb_mac_header_len(skb);
2614 int ret;
2615
2616 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2617 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2618 return -ENOTSUPP;
2619
2620 ret = skb_cow(skb, len_diff);
2621 if (unlikely(ret < 0))
2622 return ret;
2623
2624 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2625 if (unlikely(ret < 0))
2626 return ret;
2627
2628 if (skb_is_gso(skb)) {
2629 struct skb_shared_info *shinfo = skb_shinfo(skb);
2630
2631 /* SKB_GSO_TCPV4 needs to be changed into
2632 * SKB_GSO_TCPV6.
2633 */
2634 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2635 shinfo->gso_type &= ~SKB_GSO_TCPV4;
2636 shinfo->gso_type |= SKB_GSO_TCPV6;
2637 }
2638
2639 /* Due to IPv6 header, MSS needs to be downgraded. */
2640 skb_decrease_gso_size(shinfo, len_diff);
2641 /* Header must be checked, and gso_segs recomputed. */
2642 shinfo->gso_type |= SKB_GSO_DODGY;
2643 shinfo->gso_segs = 0;
2644 }
2645
2646 skb->protocol = htons(ETH_P_IPV6);
2647 skb_clear_hash(skb);
2648
2649 return 0;
2650 }
2651
bpf_skb_proto_6_to_4(struct sk_buff * skb)2652 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2653 {
2654 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2655 u32 off = skb_mac_header_len(skb);
2656 int ret;
2657
2658 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2659 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2660 return -ENOTSUPP;
2661
2662 ret = skb_unclone(skb, GFP_ATOMIC);
2663 if (unlikely(ret < 0))
2664 return ret;
2665
2666 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2667 if (unlikely(ret < 0))
2668 return ret;
2669
2670 if (skb_is_gso(skb)) {
2671 struct skb_shared_info *shinfo = skb_shinfo(skb);
2672
2673 /* SKB_GSO_TCPV6 needs to be changed into
2674 * SKB_GSO_TCPV4.
2675 */
2676 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2677 shinfo->gso_type &= ~SKB_GSO_TCPV6;
2678 shinfo->gso_type |= SKB_GSO_TCPV4;
2679 }
2680
2681 /* Due to IPv4 header, MSS can be upgraded. */
2682 skb_increase_gso_size(shinfo, len_diff);
2683 /* Header must be checked, and gso_segs recomputed. */
2684 shinfo->gso_type |= SKB_GSO_DODGY;
2685 shinfo->gso_segs = 0;
2686 }
2687
2688 skb->protocol = htons(ETH_P_IP);
2689 skb_clear_hash(skb);
2690
2691 return 0;
2692 }
2693
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)2694 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2695 {
2696 __be16 from_proto = skb->protocol;
2697
2698 if (from_proto == htons(ETH_P_IP) &&
2699 to_proto == htons(ETH_P_IPV6))
2700 return bpf_skb_proto_4_to_6(skb);
2701
2702 if (from_proto == htons(ETH_P_IPV6) &&
2703 to_proto == htons(ETH_P_IP))
2704 return bpf_skb_proto_6_to_4(skb);
2705
2706 return -ENOTSUPP;
2707 }
2708
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)2709 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2710 u64, flags)
2711 {
2712 int ret;
2713
2714 if (unlikely(flags))
2715 return -EINVAL;
2716
2717 /* General idea is that this helper does the basic groundwork
2718 * needed for changing the protocol, and eBPF program fills the
2719 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2720 * and other helpers, rather than passing a raw buffer here.
2721 *
2722 * The rationale is to keep this minimal and without a need to
2723 * deal with raw packet data. F.e. even if we would pass buffers
2724 * here, the program still needs to call the bpf_lX_csum_replace()
2725 * helpers anyway. Plus, this way we keep also separation of
2726 * concerns, since f.e. bpf_skb_store_bytes() should only take
2727 * care of stores.
2728 *
2729 * Currently, additional options and extension header space are
2730 * not supported, but flags register is reserved so we can adapt
2731 * that. For offloads, we mark packet as dodgy, so that headers
2732 * need to be verified first.
2733 */
2734 ret = bpf_skb_proto_xlat(skb, proto);
2735 bpf_compute_data_pointers(skb);
2736 return ret;
2737 }
2738
2739 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2740 .func = bpf_skb_change_proto,
2741 .gpl_only = false,
2742 .ret_type = RET_INTEGER,
2743 .arg1_type = ARG_PTR_TO_CTX,
2744 .arg2_type = ARG_ANYTHING,
2745 .arg3_type = ARG_ANYTHING,
2746 };
2747
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)2748 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2749 {
2750 /* We only allow a restricted subset to be changed for now. */
2751 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2752 !skb_pkt_type_ok(pkt_type)))
2753 return -EINVAL;
2754
2755 skb->pkt_type = pkt_type;
2756 return 0;
2757 }
2758
2759 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2760 .func = bpf_skb_change_type,
2761 .gpl_only = false,
2762 .ret_type = RET_INTEGER,
2763 .arg1_type = ARG_PTR_TO_CTX,
2764 .arg2_type = ARG_ANYTHING,
2765 };
2766
bpf_skb_net_base_len(const struct sk_buff * skb)2767 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2768 {
2769 switch (skb->protocol) {
2770 case htons(ETH_P_IP):
2771 return sizeof(struct iphdr);
2772 case htons(ETH_P_IPV6):
2773 return sizeof(struct ipv6hdr);
2774 default:
2775 return ~0U;
2776 }
2777 }
2778
bpf_skb_net_grow(struct sk_buff * skb,u32 len_diff)2779 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2780 {
2781 u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2782 int ret;
2783
2784 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2785 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2786 return -ENOTSUPP;
2787
2788 ret = skb_cow(skb, len_diff);
2789 if (unlikely(ret < 0))
2790 return ret;
2791
2792 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2793 if (unlikely(ret < 0))
2794 return ret;
2795
2796 if (skb_is_gso(skb)) {
2797 struct skb_shared_info *shinfo = skb_shinfo(skb);
2798
2799 /* Due to header grow, MSS needs to be downgraded. */
2800 skb_decrease_gso_size(shinfo, len_diff);
2801 /* Header must be checked, and gso_segs recomputed. */
2802 shinfo->gso_type |= SKB_GSO_DODGY;
2803 shinfo->gso_segs = 0;
2804 }
2805
2806 return 0;
2807 }
2808
bpf_skb_net_shrink(struct sk_buff * skb,u32 len_diff)2809 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2810 {
2811 u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2812 int ret;
2813
2814 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2815 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2816 return -ENOTSUPP;
2817
2818 ret = skb_unclone(skb, GFP_ATOMIC);
2819 if (unlikely(ret < 0))
2820 return ret;
2821
2822 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2823 if (unlikely(ret < 0))
2824 return ret;
2825
2826 if (skb_is_gso(skb)) {
2827 struct skb_shared_info *shinfo = skb_shinfo(skb);
2828
2829 /* Due to header shrink, MSS can be upgraded. */
2830 skb_increase_gso_size(shinfo, len_diff);
2831 /* Header must be checked, and gso_segs recomputed. */
2832 shinfo->gso_type |= SKB_GSO_DODGY;
2833 shinfo->gso_segs = 0;
2834 }
2835
2836 return 0;
2837 }
2838
__bpf_skb_max_len(const struct sk_buff * skb)2839 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2840 {
2841 return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2842 SKB_MAX_ALLOC;
2843 }
2844
bpf_skb_adjust_net(struct sk_buff * skb,s32 len_diff)2845 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2846 {
2847 bool trans_same = skb->transport_header == skb->network_header;
2848 u32 len_cur, len_diff_abs = abs(len_diff);
2849 u32 len_min = bpf_skb_net_base_len(skb);
2850 u32 len_max = __bpf_skb_max_len(skb);
2851 __be16 proto = skb->protocol;
2852 bool shrink = len_diff < 0;
2853 int ret;
2854
2855 if (unlikely(len_diff_abs > 0xfffU))
2856 return -EFAULT;
2857 if (unlikely(proto != htons(ETH_P_IP) &&
2858 proto != htons(ETH_P_IPV6)))
2859 return -ENOTSUPP;
2860
2861 len_cur = skb->len - skb_network_offset(skb);
2862 if (skb_transport_header_was_set(skb) && !trans_same)
2863 len_cur = skb_network_header_len(skb);
2864 if ((shrink && (len_diff_abs >= len_cur ||
2865 len_cur - len_diff_abs < len_min)) ||
2866 (!shrink && (skb->len + len_diff_abs > len_max &&
2867 !skb_is_gso(skb))))
2868 return -ENOTSUPP;
2869
2870 ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2871 bpf_skb_net_grow(skb, len_diff_abs);
2872
2873 bpf_compute_data_pointers(skb);
2874 return ret;
2875 }
2876
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)2877 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2878 u32, mode, u64, flags)
2879 {
2880 if (unlikely(flags))
2881 return -EINVAL;
2882 if (likely(mode == BPF_ADJ_ROOM_NET))
2883 return bpf_skb_adjust_net(skb, len_diff);
2884
2885 return -ENOTSUPP;
2886 }
2887
2888 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2889 .func = bpf_skb_adjust_room,
2890 .gpl_only = false,
2891 .ret_type = RET_INTEGER,
2892 .arg1_type = ARG_PTR_TO_CTX,
2893 .arg2_type = ARG_ANYTHING,
2894 .arg3_type = ARG_ANYTHING,
2895 .arg4_type = ARG_ANYTHING,
2896 };
2897
__bpf_skb_min_len(const struct sk_buff * skb)2898 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2899 {
2900 u32 min_len = skb_network_offset(skb);
2901
2902 if (skb_transport_header_was_set(skb))
2903 min_len = skb_transport_offset(skb);
2904 if (skb->ip_summed == CHECKSUM_PARTIAL)
2905 min_len = skb_checksum_start_offset(skb) +
2906 skb->csum_offset + sizeof(__sum16);
2907 return min_len;
2908 }
2909
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)2910 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2911 {
2912 unsigned int old_len = skb->len;
2913 int ret;
2914
2915 ret = __skb_grow_rcsum(skb, new_len);
2916 if (!ret)
2917 memset(skb->data + old_len, 0, new_len - old_len);
2918 return ret;
2919 }
2920
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)2921 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2922 {
2923 return __skb_trim_rcsum(skb, new_len);
2924 }
2925
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)2926 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
2927 u64 flags)
2928 {
2929 u32 max_len = __bpf_skb_max_len(skb);
2930 u32 min_len = __bpf_skb_min_len(skb);
2931 int ret;
2932
2933 if (unlikely(flags || new_len > max_len || new_len < min_len))
2934 return -EINVAL;
2935 if (skb->encapsulation)
2936 return -ENOTSUPP;
2937
2938 /* The basic idea of this helper is that it's performing the
2939 * needed work to either grow or trim an skb, and eBPF program
2940 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2941 * bpf_lX_csum_replace() and others rather than passing a raw
2942 * buffer here. This one is a slow path helper and intended
2943 * for replies with control messages.
2944 *
2945 * Like in bpf_skb_change_proto(), we want to keep this rather
2946 * minimal and without protocol specifics so that we are able
2947 * to separate concerns as in bpf_skb_store_bytes() should only
2948 * be the one responsible for writing buffers.
2949 *
2950 * It's really expected to be a slow path operation here for
2951 * control message replies, so we're implicitly linearizing,
2952 * uncloning and drop offloads from the skb by this.
2953 */
2954 ret = __bpf_try_make_writable(skb, skb->len);
2955 if (!ret) {
2956 if (new_len > skb->len)
2957 ret = bpf_skb_grow_rcsum(skb, new_len);
2958 else if (new_len < skb->len)
2959 ret = bpf_skb_trim_rcsum(skb, new_len);
2960 if (!ret && skb_is_gso(skb))
2961 skb_gso_reset(skb);
2962 }
2963 return ret;
2964 }
2965
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)2966 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2967 u64, flags)
2968 {
2969 int ret = __bpf_skb_change_tail(skb, new_len, flags);
2970
2971 bpf_compute_data_pointers(skb);
2972 return ret;
2973 }
2974
2975 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2976 .func = bpf_skb_change_tail,
2977 .gpl_only = false,
2978 .ret_type = RET_INTEGER,
2979 .arg1_type = ARG_PTR_TO_CTX,
2980 .arg2_type = ARG_ANYTHING,
2981 .arg3_type = ARG_ANYTHING,
2982 };
2983
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)2984 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2985 u64, flags)
2986 {
2987 int ret = __bpf_skb_change_tail(skb, new_len, flags);
2988
2989 bpf_compute_data_end_sk_skb(skb);
2990 return ret;
2991 }
2992
2993 static const struct bpf_func_proto sk_skb_change_tail_proto = {
2994 .func = sk_skb_change_tail,
2995 .gpl_only = false,
2996 .ret_type = RET_INTEGER,
2997 .arg1_type = ARG_PTR_TO_CTX,
2998 .arg2_type = ARG_ANYTHING,
2999 .arg3_type = ARG_ANYTHING,
3000 };
3001
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3002 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3003 u64 flags)
3004 {
3005 u32 max_len = __bpf_skb_max_len(skb);
3006 u32 new_len = skb->len + head_room;
3007 int ret;
3008
3009 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3010 new_len < skb->len))
3011 return -EINVAL;
3012
3013 ret = skb_cow(skb, head_room);
3014 if (likely(!ret)) {
3015 /* Idea for this helper is that we currently only
3016 * allow to expand on mac header. This means that
3017 * skb->protocol network header, etc, stay as is.
3018 * Compared to bpf_skb_change_tail(), we're more
3019 * flexible due to not needing to linearize or
3020 * reset GSO. Intention for this helper is to be
3021 * used by an L3 skb that needs to push mac header
3022 * for redirection into L2 device.
3023 */
3024 __skb_push(skb, head_room);
3025 memset(skb->data, 0, head_room);
3026 skb_reset_mac_header(skb);
3027 }
3028
3029 return ret;
3030 }
3031
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3032 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3033 u64, flags)
3034 {
3035 int ret = __bpf_skb_change_head(skb, head_room, flags);
3036
3037 bpf_compute_data_pointers(skb);
3038 return ret;
3039 }
3040
3041 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3042 .func = bpf_skb_change_head,
3043 .gpl_only = false,
3044 .ret_type = RET_INTEGER,
3045 .arg1_type = ARG_PTR_TO_CTX,
3046 .arg2_type = ARG_ANYTHING,
3047 .arg3_type = ARG_ANYTHING,
3048 };
3049
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3050 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3051 u64, flags)
3052 {
3053 int ret = __bpf_skb_change_head(skb, head_room, flags);
3054
3055 bpf_compute_data_end_sk_skb(skb);
3056 return ret;
3057 }
3058
3059 static const struct bpf_func_proto sk_skb_change_head_proto = {
3060 .func = sk_skb_change_head,
3061 .gpl_only = false,
3062 .ret_type = RET_INTEGER,
3063 .arg1_type = ARG_PTR_TO_CTX,
3064 .arg2_type = ARG_ANYTHING,
3065 .arg3_type = ARG_ANYTHING,
3066 };
xdp_get_metalen(const struct xdp_buff * xdp)3067 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3068 {
3069 return xdp_data_meta_unsupported(xdp) ? 0 :
3070 xdp->data - xdp->data_meta;
3071 }
3072
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3073 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3074 {
3075 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3076 unsigned long metalen = xdp_get_metalen(xdp);
3077 void *data_start = xdp_frame_end + metalen;
3078 void *data = xdp->data + offset;
3079
3080 if (unlikely(data < data_start ||
3081 data > xdp->data_end - ETH_HLEN))
3082 return -EINVAL;
3083
3084 if (metalen)
3085 memmove(xdp->data_meta + offset,
3086 xdp->data_meta, metalen);
3087 xdp->data_meta += offset;
3088 xdp->data = data;
3089
3090 return 0;
3091 }
3092
3093 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3094 .func = bpf_xdp_adjust_head,
3095 .gpl_only = false,
3096 .ret_type = RET_INTEGER,
3097 .arg1_type = ARG_PTR_TO_CTX,
3098 .arg2_type = ARG_ANYTHING,
3099 };
3100
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3101 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3102 {
3103 void *data_end = xdp->data_end + offset;
3104
3105 /* only shrinking is allowed for now. */
3106 if (unlikely(offset >= 0))
3107 return -EINVAL;
3108
3109 if (unlikely(data_end < xdp->data + ETH_HLEN))
3110 return -EINVAL;
3111
3112 xdp->data_end = data_end;
3113
3114 return 0;
3115 }
3116
3117 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3118 .func = bpf_xdp_adjust_tail,
3119 .gpl_only = false,
3120 .ret_type = RET_INTEGER,
3121 .arg1_type = ARG_PTR_TO_CTX,
3122 .arg2_type = ARG_ANYTHING,
3123 };
3124
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3125 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3126 {
3127 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3128 void *meta = xdp->data_meta + offset;
3129 unsigned long metalen = xdp->data - meta;
3130
3131 if (xdp_data_meta_unsupported(xdp))
3132 return -ENOTSUPP;
3133 if (unlikely(meta < xdp_frame_end ||
3134 meta > xdp->data))
3135 return -EINVAL;
3136 if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3137 (metalen > 32)))
3138 return -EACCES;
3139
3140 xdp->data_meta = meta;
3141
3142 return 0;
3143 }
3144
3145 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3146 .func = bpf_xdp_adjust_meta,
3147 .gpl_only = false,
3148 .ret_type = RET_INTEGER,
3149 .arg1_type = ARG_PTR_TO_CTX,
3150 .arg2_type = ARG_ANYTHING,
3151 };
3152
__bpf_tx_xdp(struct net_device * dev,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3153 static int __bpf_tx_xdp(struct net_device *dev,
3154 struct bpf_map *map,
3155 struct xdp_buff *xdp,
3156 u32 index)
3157 {
3158 struct xdp_frame *xdpf;
3159 int err, sent;
3160
3161 if (!dev->netdev_ops->ndo_xdp_xmit) {
3162 return -EOPNOTSUPP;
3163 }
3164
3165 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3166 if (unlikely(err))
3167 return err;
3168
3169 xdpf = convert_to_xdp_frame(xdp);
3170 if (unlikely(!xdpf))
3171 return -EOVERFLOW;
3172
3173 sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3174 if (sent <= 0)
3175 return sent;
3176 return 0;
3177 }
3178
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3179 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3180 struct bpf_map *map,
3181 struct xdp_buff *xdp,
3182 u32 index)
3183 {
3184 int err;
3185
3186 switch (map->map_type) {
3187 case BPF_MAP_TYPE_DEVMAP: {
3188 struct bpf_dtab_netdev *dst = fwd;
3189
3190 err = dev_map_enqueue(dst, xdp, dev_rx);
3191 if (err)
3192 return err;
3193 __dev_map_insert_ctx(map, index);
3194 break;
3195 }
3196 case BPF_MAP_TYPE_CPUMAP: {
3197 struct bpf_cpu_map_entry *rcpu = fwd;
3198
3199 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3200 if (err)
3201 return err;
3202 __cpu_map_insert_ctx(map, index);
3203 break;
3204 }
3205 case BPF_MAP_TYPE_XSKMAP: {
3206 struct xdp_sock *xs = fwd;
3207
3208 err = __xsk_map_redirect(map, xdp, xs);
3209 return err;
3210 }
3211 default:
3212 break;
3213 }
3214 return 0;
3215 }
3216
xdp_do_flush_map(void)3217 void xdp_do_flush_map(void)
3218 {
3219 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3220 struct bpf_map *map = ri->map_to_flush;
3221
3222 ri->map_to_flush = NULL;
3223 if (map) {
3224 switch (map->map_type) {
3225 case BPF_MAP_TYPE_DEVMAP:
3226 __dev_map_flush(map);
3227 break;
3228 case BPF_MAP_TYPE_CPUMAP:
3229 __cpu_map_flush(map);
3230 break;
3231 case BPF_MAP_TYPE_XSKMAP:
3232 __xsk_map_flush(map);
3233 break;
3234 default:
3235 break;
3236 }
3237 }
3238 }
3239 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3240
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3241 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3242 {
3243 switch (map->map_type) {
3244 case BPF_MAP_TYPE_DEVMAP:
3245 return __dev_map_lookup_elem(map, index);
3246 case BPF_MAP_TYPE_CPUMAP:
3247 return __cpu_map_lookup_elem(map, index);
3248 case BPF_MAP_TYPE_XSKMAP:
3249 return __xsk_map_lookup_elem(map, index);
3250 default:
3251 return NULL;
3252 }
3253 }
3254
bpf_clear_redirect_map(struct bpf_map * map)3255 void bpf_clear_redirect_map(struct bpf_map *map)
3256 {
3257 struct bpf_redirect_info *ri;
3258 int cpu;
3259
3260 for_each_possible_cpu(cpu) {
3261 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3262 /* Avoid polluting remote cacheline due to writes if
3263 * not needed. Once we pass this test, we need the
3264 * cmpxchg() to make sure it hasn't been changed in
3265 * the meantime by remote CPU.
3266 */
3267 if (unlikely(READ_ONCE(ri->map) == map))
3268 cmpxchg(&ri->map, map, NULL);
3269 }
3270 }
3271
xdp_do_redirect_map(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3272 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3273 struct bpf_prog *xdp_prog, struct bpf_map *map)
3274 {
3275 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3276 u32 index = ri->ifindex;
3277 void *fwd = NULL;
3278 int err;
3279
3280 ri->ifindex = 0;
3281 WRITE_ONCE(ri->map, NULL);
3282
3283 fwd = __xdp_map_lookup_elem(map, index);
3284 if (!fwd) {
3285 err = -EINVAL;
3286 goto err;
3287 }
3288 if (ri->map_to_flush && ri->map_to_flush != map)
3289 xdp_do_flush_map();
3290
3291 err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3292 if (unlikely(err))
3293 goto err;
3294
3295 ri->map_to_flush = map;
3296 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3297 return 0;
3298 err:
3299 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3300 return err;
3301 }
3302
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3303 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3304 struct bpf_prog *xdp_prog)
3305 {
3306 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3307 struct bpf_map *map = READ_ONCE(ri->map);
3308 struct net_device *fwd;
3309 u32 index = ri->ifindex;
3310 int err;
3311
3312 if (map)
3313 return xdp_do_redirect_map(dev, xdp, xdp_prog, map);
3314
3315 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3316 ri->ifindex = 0;
3317 if (unlikely(!fwd)) {
3318 err = -EINVAL;
3319 goto err;
3320 }
3321
3322 err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3323 if (unlikely(err))
3324 goto err;
3325
3326 _trace_xdp_redirect(dev, xdp_prog, index);
3327 return 0;
3328 err:
3329 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3330 return err;
3331 }
3332 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3333
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3334 static int xdp_do_generic_redirect_map(struct net_device *dev,
3335 struct sk_buff *skb,
3336 struct xdp_buff *xdp,
3337 struct bpf_prog *xdp_prog,
3338 struct bpf_map *map)
3339 {
3340 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3341 u32 index = ri->ifindex;
3342 void *fwd = NULL;
3343 int err = 0;
3344
3345 ri->ifindex = 0;
3346 WRITE_ONCE(ri->map, NULL);
3347
3348 fwd = __xdp_map_lookup_elem(map, index);
3349 if (unlikely(!fwd)) {
3350 err = -EINVAL;
3351 goto err;
3352 }
3353
3354 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3355 struct bpf_dtab_netdev *dst = fwd;
3356
3357 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3358 if (unlikely(err))
3359 goto err;
3360 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3361 struct xdp_sock *xs = fwd;
3362
3363 err = xsk_generic_rcv(xs, xdp);
3364 if (err)
3365 goto err;
3366 consume_skb(skb);
3367 } else {
3368 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3369 err = -EBADRQC;
3370 goto err;
3371 }
3372
3373 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3374 return 0;
3375 err:
3376 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3377 return err;
3378 }
3379
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3380 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3381 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3382 {
3383 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3384 struct bpf_map *map = READ_ONCE(ri->map);
3385 u32 index = ri->ifindex;
3386 struct net_device *fwd;
3387 int err = 0;
3388
3389 if (map)
3390 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3391 map);
3392 ri->ifindex = 0;
3393 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3394 if (unlikely(!fwd)) {
3395 err = -EINVAL;
3396 goto err;
3397 }
3398
3399 err = xdp_ok_fwd_dev(fwd, skb->len);
3400 if (unlikely(err))
3401 goto err;
3402
3403 skb->dev = fwd;
3404 _trace_xdp_redirect(dev, xdp_prog, index);
3405 generic_xdp_tx(skb, xdp_prog);
3406 return 0;
3407 err:
3408 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3409 return err;
3410 }
3411 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3412
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)3413 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3414 {
3415 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3416
3417 if (unlikely(flags))
3418 return XDP_ABORTED;
3419
3420 ri->ifindex = ifindex;
3421 ri->flags = flags;
3422 WRITE_ONCE(ri->map, NULL);
3423
3424 return XDP_REDIRECT;
3425 }
3426
3427 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3428 .func = bpf_xdp_redirect,
3429 .gpl_only = false,
3430 .ret_type = RET_INTEGER,
3431 .arg1_type = ARG_ANYTHING,
3432 .arg2_type = ARG_ANYTHING,
3433 };
3434
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)3435 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3436 u64, flags)
3437 {
3438 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3439
3440 if (unlikely(flags))
3441 return XDP_ABORTED;
3442
3443 ri->ifindex = ifindex;
3444 ri->flags = flags;
3445 WRITE_ONCE(ri->map, map);
3446
3447 return XDP_REDIRECT;
3448 }
3449
3450 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3451 .func = bpf_xdp_redirect_map,
3452 .gpl_only = false,
3453 .ret_type = RET_INTEGER,
3454 .arg1_type = ARG_CONST_MAP_PTR,
3455 .arg2_type = ARG_ANYTHING,
3456 .arg3_type = ARG_ANYTHING,
3457 };
3458
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)3459 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3460 unsigned long off, unsigned long len)
3461 {
3462 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3463
3464 if (unlikely(!ptr))
3465 return len;
3466 if (ptr != dst_buff)
3467 memcpy(dst_buff, ptr, len);
3468
3469 return 0;
3470 }
3471
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3472 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3473 u64, flags, void *, meta, u64, meta_size)
3474 {
3475 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3476
3477 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3478 return -EINVAL;
3479 if (unlikely(skb_size > skb->len))
3480 return -EFAULT;
3481
3482 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3483 bpf_skb_copy);
3484 }
3485
3486 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3487 .func = bpf_skb_event_output,
3488 .gpl_only = true,
3489 .ret_type = RET_INTEGER,
3490 .arg1_type = ARG_PTR_TO_CTX,
3491 .arg2_type = ARG_CONST_MAP_PTR,
3492 .arg3_type = ARG_ANYTHING,
3493 .arg4_type = ARG_PTR_TO_MEM,
3494 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
3495 };
3496
bpf_tunnel_key_af(u64 flags)3497 static unsigned short bpf_tunnel_key_af(u64 flags)
3498 {
3499 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3500 }
3501
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)3502 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3503 u32, size, u64, flags)
3504 {
3505 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3506 u8 compat[sizeof(struct bpf_tunnel_key)];
3507 void *to_orig = to;
3508 int err;
3509
3510 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3511 err = -EINVAL;
3512 goto err_clear;
3513 }
3514 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3515 err = -EPROTO;
3516 goto err_clear;
3517 }
3518 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3519 err = -EINVAL;
3520 switch (size) {
3521 case offsetof(struct bpf_tunnel_key, tunnel_label):
3522 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3523 goto set_compat;
3524 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3525 /* Fixup deprecated structure layouts here, so we have
3526 * a common path later on.
3527 */
3528 if (ip_tunnel_info_af(info) != AF_INET)
3529 goto err_clear;
3530 set_compat:
3531 to = (struct bpf_tunnel_key *)compat;
3532 break;
3533 default:
3534 goto err_clear;
3535 }
3536 }
3537
3538 to->tunnel_id = be64_to_cpu(info->key.tun_id);
3539 to->tunnel_tos = info->key.tos;
3540 to->tunnel_ttl = info->key.ttl;
3541 to->tunnel_ext = 0;
3542
3543 if (flags & BPF_F_TUNINFO_IPV6) {
3544 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3545 sizeof(to->remote_ipv6));
3546 to->tunnel_label = be32_to_cpu(info->key.label);
3547 } else {
3548 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3549 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3550 to->tunnel_label = 0;
3551 }
3552
3553 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3554 memcpy(to_orig, to, size);
3555
3556 return 0;
3557 err_clear:
3558 memset(to_orig, 0, size);
3559 return err;
3560 }
3561
3562 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3563 .func = bpf_skb_get_tunnel_key,
3564 .gpl_only = false,
3565 .ret_type = RET_INTEGER,
3566 .arg1_type = ARG_PTR_TO_CTX,
3567 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
3568 .arg3_type = ARG_CONST_SIZE,
3569 .arg4_type = ARG_ANYTHING,
3570 };
3571
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)3572 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3573 {
3574 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3575 int err;
3576
3577 if (unlikely(!info ||
3578 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3579 err = -ENOENT;
3580 goto err_clear;
3581 }
3582 if (unlikely(size < info->options_len)) {
3583 err = -ENOMEM;
3584 goto err_clear;
3585 }
3586
3587 ip_tunnel_info_opts_get(to, info);
3588 if (size > info->options_len)
3589 memset(to + info->options_len, 0, size - info->options_len);
3590
3591 return info->options_len;
3592 err_clear:
3593 memset(to, 0, size);
3594 return err;
3595 }
3596
3597 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3598 .func = bpf_skb_get_tunnel_opt,
3599 .gpl_only = false,
3600 .ret_type = RET_INTEGER,
3601 .arg1_type = ARG_PTR_TO_CTX,
3602 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
3603 .arg3_type = ARG_CONST_SIZE,
3604 };
3605
3606 static struct metadata_dst __percpu *md_dst;
3607
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)3608 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3609 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3610 {
3611 struct metadata_dst *md = this_cpu_ptr(md_dst);
3612 u8 compat[sizeof(struct bpf_tunnel_key)];
3613 struct ip_tunnel_info *info;
3614
3615 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3616 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3617 return -EINVAL;
3618 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3619 switch (size) {
3620 case offsetof(struct bpf_tunnel_key, tunnel_label):
3621 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3622 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3623 /* Fixup deprecated structure layouts here, so we have
3624 * a common path later on.
3625 */
3626 memcpy(compat, from, size);
3627 memset(compat + size, 0, sizeof(compat) - size);
3628 from = (const struct bpf_tunnel_key *) compat;
3629 break;
3630 default:
3631 return -EINVAL;
3632 }
3633 }
3634 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3635 from->tunnel_ext))
3636 return -EINVAL;
3637
3638 skb_dst_drop(skb);
3639 dst_hold((struct dst_entry *) md);
3640 skb_dst_set(skb, (struct dst_entry *) md);
3641
3642 info = &md->u.tun_info;
3643 memset(info, 0, sizeof(*info));
3644 info->mode = IP_TUNNEL_INFO_TX;
3645
3646 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3647 if (flags & BPF_F_DONT_FRAGMENT)
3648 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3649 if (flags & BPF_F_ZERO_CSUM_TX)
3650 info->key.tun_flags &= ~TUNNEL_CSUM;
3651 if (flags & BPF_F_SEQ_NUMBER)
3652 info->key.tun_flags |= TUNNEL_SEQ;
3653
3654 info->key.tun_id = cpu_to_be64(from->tunnel_id);
3655 info->key.tos = from->tunnel_tos;
3656 info->key.ttl = from->tunnel_ttl;
3657
3658 if (flags & BPF_F_TUNINFO_IPV6) {
3659 info->mode |= IP_TUNNEL_INFO_IPV6;
3660 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3661 sizeof(from->remote_ipv6));
3662 info->key.label = cpu_to_be32(from->tunnel_label) &
3663 IPV6_FLOWLABEL_MASK;
3664 } else {
3665 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3666 }
3667
3668 return 0;
3669 }
3670
3671 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3672 .func = bpf_skb_set_tunnel_key,
3673 .gpl_only = false,
3674 .ret_type = RET_INTEGER,
3675 .arg1_type = ARG_PTR_TO_CTX,
3676 .arg2_type = ARG_PTR_TO_MEM,
3677 .arg3_type = ARG_CONST_SIZE,
3678 .arg4_type = ARG_ANYTHING,
3679 };
3680
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)3681 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3682 const u8 *, from, u32, size)
3683 {
3684 struct ip_tunnel_info *info = skb_tunnel_info(skb);
3685 const struct metadata_dst *md = this_cpu_ptr(md_dst);
3686
3687 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3688 return -EINVAL;
3689 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3690 return -ENOMEM;
3691
3692 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3693
3694 return 0;
3695 }
3696
3697 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3698 .func = bpf_skb_set_tunnel_opt,
3699 .gpl_only = false,
3700 .ret_type = RET_INTEGER,
3701 .arg1_type = ARG_PTR_TO_CTX,
3702 .arg2_type = ARG_PTR_TO_MEM,
3703 .arg3_type = ARG_CONST_SIZE,
3704 };
3705
3706 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)3707 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3708 {
3709 if (!md_dst) {
3710 struct metadata_dst __percpu *tmp;
3711
3712 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3713 METADATA_IP_TUNNEL,
3714 GFP_KERNEL);
3715 if (!tmp)
3716 return NULL;
3717 if (cmpxchg(&md_dst, NULL, tmp))
3718 metadata_dst_free_percpu(tmp);
3719 }
3720
3721 switch (which) {
3722 case BPF_FUNC_skb_set_tunnel_key:
3723 return &bpf_skb_set_tunnel_key_proto;
3724 case BPF_FUNC_skb_set_tunnel_opt:
3725 return &bpf_skb_set_tunnel_opt_proto;
3726 default:
3727 return NULL;
3728 }
3729 }
3730
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)3731 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3732 u32, idx)
3733 {
3734 struct bpf_array *array = container_of(map, struct bpf_array, map);
3735 struct cgroup *cgrp;
3736 struct sock *sk;
3737
3738 sk = skb_to_full_sk(skb);
3739 if (!sk || !sk_fullsock(sk))
3740 return -ENOENT;
3741 if (unlikely(idx >= array->map.max_entries))
3742 return -E2BIG;
3743
3744 cgrp = READ_ONCE(array->ptrs[idx]);
3745 if (unlikely(!cgrp))
3746 return -EAGAIN;
3747
3748 return sk_under_cgroup_hierarchy(sk, cgrp);
3749 }
3750
3751 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3752 .func = bpf_skb_under_cgroup,
3753 .gpl_only = false,
3754 .ret_type = RET_INTEGER,
3755 .arg1_type = ARG_PTR_TO_CTX,
3756 .arg2_type = ARG_CONST_MAP_PTR,
3757 .arg3_type = ARG_ANYTHING,
3758 };
3759
3760 #ifdef CONFIG_SOCK_CGROUP_DATA
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)3761 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3762 {
3763 struct sock *sk = skb_to_full_sk(skb);
3764 struct cgroup *cgrp;
3765
3766 if (!sk || !sk_fullsock(sk))
3767 return 0;
3768
3769 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3770 return cgrp->kn->id.id;
3771 }
3772
3773 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3774 .func = bpf_skb_cgroup_id,
3775 .gpl_only = false,
3776 .ret_type = RET_INTEGER,
3777 .arg1_type = ARG_PTR_TO_CTX,
3778 };
3779
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)3780 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3781 ancestor_level)
3782 {
3783 struct sock *sk = skb_to_full_sk(skb);
3784 struct cgroup *ancestor;
3785 struct cgroup *cgrp;
3786
3787 if (!sk || !sk_fullsock(sk))
3788 return 0;
3789
3790 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3791 ancestor = cgroup_ancestor(cgrp, ancestor_level);
3792 if (!ancestor)
3793 return 0;
3794
3795 return ancestor->kn->id.id;
3796 }
3797
3798 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3799 .func = bpf_skb_ancestor_cgroup_id,
3800 .gpl_only = false,
3801 .ret_type = RET_INTEGER,
3802 .arg1_type = ARG_PTR_TO_CTX,
3803 .arg2_type = ARG_ANYTHING,
3804 };
3805 #endif
3806
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)3807 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3808 unsigned long off, unsigned long len)
3809 {
3810 memcpy(dst_buff, src_buff + off, len);
3811 return 0;
3812 }
3813
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3814 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3815 u64, flags, void *, meta, u64, meta_size)
3816 {
3817 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3818
3819 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3820 return -EINVAL;
3821 if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3822 return -EFAULT;
3823
3824 return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3825 xdp_size, bpf_xdp_copy);
3826 }
3827
3828 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3829 .func = bpf_xdp_event_output,
3830 .gpl_only = true,
3831 .ret_type = RET_INTEGER,
3832 .arg1_type = ARG_PTR_TO_CTX,
3833 .arg2_type = ARG_CONST_MAP_PTR,
3834 .arg3_type = ARG_ANYTHING,
3835 .arg4_type = ARG_PTR_TO_MEM,
3836 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
3837 };
3838
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)3839 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3840 {
3841 return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3842 }
3843
3844 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3845 .func = bpf_get_socket_cookie,
3846 .gpl_only = false,
3847 .ret_type = RET_INTEGER,
3848 .arg1_type = ARG_PTR_TO_CTX,
3849 };
3850
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)3851 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
3852 {
3853 return sock_gen_cookie(ctx->sk);
3854 }
3855
3856 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
3857 .func = bpf_get_socket_cookie_sock_addr,
3858 .gpl_only = false,
3859 .ret_type = RET_INTEGER,
3860 .arg1_type = ARG_PTR_TO_CTX,
3861 };
3862
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)3863 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
3864 {
3865 return sock_gen_cookie(ctx->sk);
3866 }
3867
3868 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
3869 .func = bpf_get_socket_cookie_sock_ops,
3870 .gpl_only = false,
3871 .ret_type = RET_INTEGER,
3872 .arg1_type = ARG_PTR_TO_CTX,
3873 };
3874
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)3875 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3876 {
3877 struct sock *sk = sk_to_full_sk(skb->sk);
3878 kuid_t kuid;
3879
3880 if (!sk || !sk_fullsock(sk))
3881 return overflowuid;
3882 kuid = sock_net_uid(sock_net(sk), sk);
3883 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3884 }
3885
3886 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3887 .func = bpf_get_socket_uid,
3888 .gpl_only = false,
3889 .ret_type = RET_INTEGER,
3890 .arg1_type = ARG_PTR_TO_CTX,
3891 };
3892
BPF_CALL_5(bpf_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)3893 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3894 int, level, int, optname, char *, optval, int, optlen)
3895 {
3896 struct sock *sk = bpf_sock->sk;
3897 int ret = 0;
3898 int val;
3899
3900 if (!sk_fullsock(sk))
3901 return -EINVAL;
3902
3903 if (level == SOL_SOCKET) {
3904 if (optlen != sizeof(int))
3905 return -EINVAL;
3906 val = *((int *)optval);
3907
3908 /* Only some socketops are supported */
3909 switch (optname) {
3910 case SO_RCVBUF:
3911 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3912 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3913 break;
3914 case SO_SNDBUF:
3915 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3916 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3917 break;
3918 case SO_MAX_PACING_RATE:
3919 sk->sk_max_pacing_rate = val;
3920 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3921 sk->sk_max_pacing_rate);
3922 break;
3923 case SO_PRIORITY:
3924 sk->sk_priority = val;
3925 break;
3926 case SO_RCVLOWAT:
3927 if (val < 0)
3928 val = INT_MAX;
3929 sk->sk_rcvlowat = val ? : 1;
3930 break;
3931 case SO_MARK:
3932 sk->sk_mark = val;
3933 break;
3934 default:
3935 ret = -EINVAL;
3936 }
3937 #ifdef CONFIG_INET
3938 } else if (level == SOL_IP) {
3939 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3940 return -EINVAL;
3941
3942 val = *((int *)optval);
3943 /* Only some options are supported */
3944 switch (optname) {
3945 case IP_TOS:
3946 if (val < -1 || val > 0xff) {
3947 ret = -EINVAL;
3948 } else {
3949 struct inet_sock *inet = inet_sk(sk);
3950
3951 if (val == -1)
3952 val = 0;
3953 inet->tos = val;
3954 }
3955 break;
3956 default:
3957 ret = -EINVAL;
3958 }
3959 #if IS_ENABLED(CONFIG_IPV6)
3960 } else if (level == SOL_IPV6) {
3961 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3962 return -EINVAL;
3963
3964 val = *((int *)optval);
3965 /* Only some options are supported */
3966 switch (optname) {
3967 case IPV6_TCLASS:
3968 if (val < -1 || val > 0xff) {
3969 ret = -EINVAL;
3970 } else {
3971 struct ipv6_pinfo *np = inet6_sk(sk);
3972
3973 if (val == -1)
3974 val = 0;
3975 np->tclass = val;
3976 }
3977 break;
3978 default:
3979 ret = -EINVAL;
3980 }
3981 #endif
3982 } else if (level == SOL_TCP &&
3983 sk->sk_prot->setsockopt == tcp_setsockopt) {
3984 if (optname == TCP_CONGESTION) {
3985 char name[TCP_CA_NAME_MAX];
3986 bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3987
3988 strncpy(name, optval, min_t(long, optlen,
3989 TCP_CA_NAME_MAX-1));
3990 name[TCP_CA_NAME_MAX-1] = 0;
3991 ret = tcp_set_congestion_control(sk, name, false,
3992 reinit);
3993 } else {
3994 struct tcp_sock *tp = tcp_sk(sk);
3995
3996 if (optlen != sizeof(int))
3997 return -EINVAL;
3998
3999 val = *((int *)optval);
4000 /* Only some options are supported */
4001 switch (optname) {
4002 case TCP_BPF_IW:
4003 if (val <= 0 || tp->data_segs_out > 0)
4004 ret = -EINVAL;
4005 else
4006 tp->snd_cwnd = val;
4007 break;
4008 case TCP_BPF_SNDCWND_CLAMP:
4009 if (val <= 0) {
4010 ret = -EINVAL;
4011 } else {
4012 tp->snd_cwnd_clamp = val;
4013 tp->snd_ssthresh = val;
4014 }
4015 break;
4016 default:
4017 ret = -EINVAL;
4018 }
4019 }
4020 #endif
4021 } else {
4022 ret = -EINVAL;
4023 }
4024 return ret;
4025 }
4026
4027 static const struct bpf_func_proto bpf_setsockopt_proto = {
4028 .func = bpf_setsockopt,
4029 .gpl_only = false,
4030 .ret_type = RET_INTEGER,
4031 .arg1_type = ARG_PTR_TO_CTX,
4032 .arg2_type = ARG_ANYTHING,
4033 .arg3_type = ARG_ANYTHING,
4034 .arg4_type = ARG_PTR_TO_MEM,
4035 .arg5_type = ARG_CONST_SIZE,
4036 };
4037
BPF_CALL_5(bpf_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)4038 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4039 int, level, int, optname, char *, optval, int, optlen)
4040 {
4041 struct sock *sk = bpf_sock->sk;
4042
4043 if (!sk_fullsock(sk))
4044 goto err_clear;
4045
4046 #ifdef CONFIG_INET
4047 if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4048 if (optname == TCP_CONGESTION) {
4049 struct inet_connection_sock *icsk = inet_csk(sk);
4050
4051 if (!icsk->icsk_ca_ops || optlen <= 1)
4052 goto err_clear;
4053 strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4054 optval[optlen - 1] = 0;
4055 } else {
4056 goto err_clear;
4057 }
4058 } else if (level == SOL_IP) {
4059 struct inet_sock *inet = inet_sk(sk);
4060
4061 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4062 goto err_clear;
4063
4064 /* Only some options are supported */
4065 switch (optname) {
4066 case IP_TOS:
4067 *((int *)optval) = (int)inet->tos;
4068 break;
4069 default:
4070 goto err_clear;
4071 }
4072 #if IS_ENABLED(CONFIG_IPV6)
4073 } else if (level == SOL_IPV6) {
4074 struct ipv6_pinfo *np = inet6_sk(sk);
4075
4076 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4077 goto err_clear;
4078
4079 /* Only some options are supported */
4080 switch (optname) {
4081 case IPV6_TCLASS:
4082 *((int *)optval) = (int)np->tclass;
4083 break;
4084 default:
4085 goto err_clear;
4086 }
4087 #endif
4088 } else {
4089 goto err_clear;
4090 }
4091 return 0;
4092 #endif
4093 err_clear:
4094 memset(optval, 0, optlen);
4095 return -EINVAL;
4096 }
4097
4098 static const struct bpf_func_proto bpf_getsockopt_proto = {
4099 .func = bpf_getsockopt,
4100 .gpl_only = false,
4101 .ret_type = RET_INTEGER,
4102 .arg1_type = ARG_PTR_TO_CTX,
4103 .arg2_type = ARG_ANYTHING,
4104 .arg3_type = ARG_ANYTHING,
4105 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
4106 .arg5_type = ARG_CONST_SIZE,
4107 };
4108
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)4109 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4110 int, argval)
4111 {
4112 struct sock *sk = bpf_sock->sk;
4113 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4114
4115 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4116 return -EINVAL;
4117
4118 if (val)
4119 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4120
4121 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4122 }
4123
4124 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4125 .func = bpf_sock_ops_cb_flags_set,
4126 .gpl_only = false,
4127 .ret_type = RET_INTEGER,
4128 .arg1_type = ARG_PTR_TO_CTX,
4129 .arg2_type = ARG_ANYTHING,
4130 };
4131
4132 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4133 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4134
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)4135 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4136 int, addr_len)
4137 {
4138 #ifdef CONFIG_INET
4139 struct sock *sk = ctx->sk;
4140 int err;
4141
4142 /* Binding to port can be expensive so it's prohibited in the helper.
4143 * Only binding to IP is supported.
4144 */
4145 err = -EINVAL;
4146 if (addr->sa_family == AF_INET) {
4147 if (addr_len < sizeof(struct sockaddr_in))
4148 return err;
4149 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4150 return err;
4151 return __inet_bind(sk, addr, addr_len, true, false);
4152 #if IS_ENABLED(CONFIG_IPV6)
4153 } else if (addr->sa_family == AF_INET6) {
4154 if (addr_len < SIN6_LEN_RFC2133)
4155 return err;
4156 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4157 return err;
4158 /* ipv6_bpf_stub cannot be NULL, since it's called from
4159 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4160 */
4161 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4162 #endif /* CONFIG_IPV6 */
4163 }
4164 #endif /* CONFIG_INET */
4165
4166 return -EAFNOSUPPORT;
4167 }
4168
4169 static const struct bpf_func_proto bpf_bind_proto = {
4170 .func = bpf_bind,
4171 .gpl_only = false,
4172 .ret_type = RET_INTEGER,
4173 .arg1_type = ARG_PTR_TO_CTX,
4174 .arg2_type = ARG_PTR_TO_MEM,
4175 .arg3_type = ARG_CONST_SIZE,
4176 };
4177
4178 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)4179 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4180 struct bpf_xfrm_state *, to, u32, size, u64, flags)
4181 {
4182 const struct sec_path *sp = skb_sec_path(skb);
4183 const struct xfrm_state *x;
4184
4185 if (!sp || unlikely(index >= sp->len || flags))
4186 goto err_clear;
4187
4188 x = sp->xvec[index];
4189
4190 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4191 goto err_clear;
4192
4193 to->reqid = x->props.reqid;
4194 to->spi = x->id.spi;
4195 to->family = x->props.family;
4196 to->ext = 0;
4197
4198 if (to->family == AF_INET6) {
4199 memcpy(to->remote_ipv6, x->props.saddr.a6,
4200 sizeof(to->remote_ipv6));
4201 } else {
4202 to->remote_ipv4 = x->props.saddr.a4;
4203 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4204 }
4205
4206 return 0;
4207 err_clear:
4208 memset(to, 0, size);
4209 return -EINVAL;
4210 }
4211
4212 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4213 .func = bpf_skb_get_xfrm_state,
4214 .gpl_only = false,
4215 .ret_type = RET_INTEGER,
4216 .arg1_type = ARG_PTR_TO_CTX,
4217 .arg2_type = ARG_ANYTHING,
4218 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4219 .arg4_type = ARG_CONST_SIZE,
4220 .arg5_type = ARG_ANYTHING,
4221 };
4222 #endif
4223
4224 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)4225 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4226 const struct neighbour *neigh,
4227 const struct net_device *dev)
4228 {
4229 memcpy(params->dmac, neigh->ha, ETH_ALEN);
4230 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4231 params->h_vlan_TCI = 0;
4232 params->h_vlan_proto = 0;
4233 params->ifindex = dev->ifindex;
4234
4235 return 0;
4236 }
4237 #endif
4238
4239 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4240 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4241 u32 flags, bool check_mtu)
4242 {
4243 struct in_device *in_dev;
4244 struct neighbour *neigh;
4245 struct net_device *dev;
4246 struct fib_result res;
4247 struct fib_nh *nh;
4248 struct flowi4 fl4;
4249 int err;
4250 u32 mtu;
4251
4252 dev = dev_get_by_index_rcu(net, params->ifindex);
4253 if (unlikely(!dev))
4254 return -ENODEV;
4255
4256 /* verify forwarding is enabled on this interface */
4257 in_dev = __in_dev_get_rcu(dev);
4258 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4259 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4260
4261 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4262 fl4.flowi4_iif = 1;
4263 fl4.flowi4_oif = params->ifindex;
4264 } else {
4265 fl4.flowi4_iif = params->ifindex;
4266 fl4.flowi4_oif = 0;
4267 }
4268 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4269 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4270 fl4.flowi4_flags = 0;
4271
4272 fl4.flowi4_proto = params->l4_protocol;
4273 fl4.daddr = params->ipv4_dst;
4274 fl4.saddr = params->ipv4_src;
4275 fl4.fl4_sport = params->sport;
4276 fl4.fl4_dport = params->dport;
4277
4278 if (flags & BPF_FIB_LOOKUP_DIRECT) {
4279 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4280 struct fib_table *tb;
4281
4282 tb = fib_get_table(net, tbid);
4283 if (unlikely(!tb))
4284 return BPF_FIB_LKUP_RET_NOT_FWDED;
4285
4286 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4287 } else {
4288 fl4.flowi4_mark = 0;
4289 fl4.flowi4_secid = 0;
4290 fl4.flowi4_tun_key.tun_id = 0;
4291 fl4.flowi4_uid = sock_net_uid(net, NULL);
4292
4293 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4294 }
4295
4296 if (err) {
4297 /* map fib lookup errors to RTN_ type */
4298 if (err == -EINVAL)
4299 return BPF_FIB_LKUP_RET_BLACKHOLE;
4300 if (err == -EHOSTUNREACH)
4301 return BPF_FIB_LKUP_RET_UNREACHABLE;
4302 if (err == -EACCES)
4303 return BPF_FIB_LKUP_RET_PROHIBIT;
4304
4305 return BPF_FIB_LKUP_RET_NOT_FWDED;
4306 }
4307
4308 if (res.type != RTN_UNICAST)
4309 return BPF_FIB_LKUP_RET_NOT_FWDED;
4310
4311 if (res.fi->fib_nhs > 1)
4312 fib_select_path(net, &res, &fl4, NULL);
4313
4314 if (check_mtu) {
4315 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4316 if (params->tot_len > mtu)
4317 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4318 }
4319
4320 nh = &res.fi->fib_nh[res.nh_sel];
4321
4322 /* do not handle lwt encaps right now */
4323 if (nh->nh_lwtstate)
4324 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4325
4326 dev = nh->nh_dev;
4327 if (nh->nh_gw)
4328 params->ipv4_dst = nh->nh_gw;
4329
4330 params->rt_metric = res.fi->fib_priority;
4331
4332 /* xdp and cls_bpf programs are run in RCU-bh so
4333 * rcu_read_lock_bh is not needed here
4334 */
4335 neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4336 if (!neigh)
4337 return BPF_FIB_LKUP_RET_NO_NEIGH;
4338
4339 return bpf_fib_set_fwd_params(params, neigh, dev);
4340 }
4341 #endif
4342
4343 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4344 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4345 u32 flags, bool check_mtu)
4346 {
4347 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4348 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4349 struct neighbour *neigh;
4350 struct net_device *dev;
4351 struct inet6_dev *idev;
4352 struct fib6_info *f6i;
4353 struct flowi6 fl6;
4354 int strict = 0;
4355 int oif;
4356 u32 mtu;
4357
4358 /* link local addresses are never forwarded */
4359 if (rt6_need_strict(dst) || rt6_need_strict(src))
4360 return BPF_FIB_LKUP_RET_NOT_FWDED;
4361
4362 dev = dev_get_by_index_rcu(net, params->ifindex);
4363 if (unlikely(!dev))
4364 return -ENODEV;
4365
4366 idev = __in6_dev_get_safely(dev);
4367 if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4368 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4369
4370 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4371 fl6.flowi6_iif = 1;
4372 oif = fl6.flowi6_oif = params->ifindex;
4373 } else {
4374 oif = fl6.flowi6_iif = params->ifindex;
4375 fl6.flowi6_oif = 0;
4376 strict = RT6_LOOKUP_F_HAS_SADDR;
4377 }
4378 fl6.flowlabel = params->flowinfo;
4379 fl6.flowi6_scope = 0;
4380 fl6.flowi6_flags = 0;
4381 fl6.mp_hash = 0;
4382
4383 fl6.flowi6_proto = params->l4_protocol;
4384 fl6.daddr = *dst;
4385 fl6.saddr = *src;
4386 fl6.fl6_sport = params->sport;
4387 fl6.fl6_dport = params->dport;
4388
4389 if (flags & BPF_FIB_LOOKUP_DIRECT) {
4390 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4391 struct fib6_table *tb;
4392
4393 tb = ipv6_stub->fib6_get_table(net, tbid);
4394 if (unlikely(!tb))
4395 return BPF_FIB_LKUP_RET_NOT_FWDED;
4396
4397 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4398 } else {
4399 fl6.flowi6_mark = 0;
4400 fl6.flowi6_secid = 0;
4401 fl6.flowi6_tun_key.tun_id = 0;
4402 fl6.flowi6_uid = sock_net_uid(net, NULL);
4403
4404 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4405 }
4406
4407 if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4408 return BPF_FIB_LKUP_RET_NOT_FWDED;
4409
4410 if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4411 switch (f6i->fib6_type) {
4412 case RTN_BLACKHOLE:
4413 return BPF_FIB_LKUP_RET_BLACKHOLE;
4414 case RTN_UNREACHABLE:
4415 return BPF_FIB_LKUP_RET_UNREACHABLE;
4416 case RTN_PROHIBIT:
4417 return BPF_FIB_LKUP_RET_PROHIBIT;
4418 default:
4419 return BPF_FIB_LKUP_RET_NOT_FWDED;
4420 }
4421 }
4422
4423 if (f6i->fib6_type != RTN_UNICAST)
4424 return BPF_FIB_LKUP_RET_NOT_FWDED;
4425
4426 if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4427 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4428 fl6.flowi6_oif, NULL,
4429 strict);
4430
4431 if (check_mtu) {
4432 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4433 if (params->tot_len > mtu)
4434 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4435 }
4436
4437 if (f6i->fib6_nh.nh_lwtstate)
4438 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4439
4440 if (f6i->fib6_flags & RTF_GATEWAY)
4441 *dst = f6i->fib6_nh.nh_gw;
4442
4443 dev = f6i->fib6_nh.nh_dev;
4444 params->rt_metric = f6i->fib6_metric;
4445
4446 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4447 * not needed here. Can not use __ipv6_neigh_lookup_noref here
4448 * because we need to get nd_tbl via the stub
4449 */
4450 neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4451 ndisc_hashfn, dst, dev);
4452 if (!neigh)
4453 return BPF_FIB_LKUP_RET_NO_NEIGH;
4454
4455 return bpf_fib_set_fwd_params(params, neigh, dev);
4456 }
4457 #endif
4458
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)4459 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4460 struct bpf_fib_lookup *, params, int, plen, u32, flags)
4461 {
4462 if (plen < sizeof(*params))
4463 return -EINVAL;
4464
4465 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4466 return -EINVAL;
4467
4468 switch (params->family) {
4469 #if IS_ENABLED(CONFIG_INET)
4470 case AF_INET:
4471 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4472 flags, true);
4473 #endif
4474 #if IS_ENABLED(CONFIG_IPV6)
4475 case AF_INET6:
4476 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4477 flags, true);
4478 #endif
4479 }
4480 return -EAFNOSUPPORT;
4481 }
4482
4483 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4484 .func = bpf_xdp_fib_lookup,
4485 .gpl_only = true,
4486 .ret_type = RET_INTEGER,
4487 .arg1_type = ARG_PTR_TO_CTX,
4488 .arg2_type = ARG_PTR_TO_MEM,
4489 .arg3_type = ARG_CONST_SIZE,
4490 .arg4_type = ARG_ANYTHING,
4491 };
4492
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)4493 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4494 struct bpf_fib_lookup *, params, int, plen, u32, flags)
4495 {
4496 struct net *net = dev_net(skb->dev);
4497 int rc = -EAFNOSUPPORT;
4498
4499 if (plen < sizeof(*params))
4500 return -EINVAL;
4501
4502 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4503 return -EINVAL;
4504
4505 switch (params->family) {
4506 #if IS_ENABLED(CONFIG_INET)
4507 case AF_INET:
4508 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4509 break;
4510 #endif
4511 #if IS_ENABLED(CONFIG_IPV6)
4512 case AF_INET6:
4513 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4514 break;
4515 #endif
4516 }
4517
4518 if (!rc) {
4519 struct net_device *dev;
4520
4521 dev = dev_get_by_index_rcu(net, params->ifindex);
4522 if (!is_skb_forwardable(dev, skb))
4523 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4524 }
4525
4526 return rc;
4527 }
4528
4529 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4530 .func = bpf_skb_fib_lookup,
4531 .gpl_only = true,
4532 .ret_type = RET_INTEGER,
4533 .arg1_type = ARG_PTR_TO_CTX,
4534 .arg2_type = ARG_PTR_TO_MEM,
4535 .arg3_type = ARG_CONST_SIZE,
4536 .arg4_type = ARG_ANYTHING,
4537 };
4538
4539 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)4540 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4541 {
4542 int err;
4543 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4544
4545 if (!seg6_validate_srh(srh, len))
4546 return -EINVAL;
4547
4548 switch (type) {
4549 case BPF_LWT_ENCAP_SEG6_INLINE:
4550 if (skb->protocol != htons(ETH_P_IPV6))
4551 return -EBADMSG;
4552
4553 err = seg6_do_srh_inline(skb, srh);
4554 break;
4555 case BPF_LWT_ENCAP_SEG6:
4556 skb_reset_inner_headers(skb);
4557 skb->encapsulation = 1;
4558 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4559 break;
4560 default:
4561 return -EINVAL;
4562 }
4563
4564 bpf_compute_data_pointers(skb);
4565 if (err)
4566 return err;
4567
4568 ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4569 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4570
4571 return seg6_lookup_nexthop(skb, NULL, 0);
4572 }
4573 #endif /* CONFIG_IPV6_SEG6_BPF */
4574
BPF_CALL_4(bpf_lwt_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)4575 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4576 u32, len)
4577 {
4578 switch (type) {
4579 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4580 case BPF_LWT_ENCAP_SEG6:
4581 case BPF_LWT_ENCAP_SEG6_INLINE:
4582 return bpf_push_seg6_encap(skb, type, hdr, len);
4583 #endif
4584 default:
4585 return -EINVAL;
4586 }
4587 }
4588
4589 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4590 .func = bpf_lwt_push_encap,
4591 .gpl_only = false,
4592 .ret_type = RET_INTEGER,
4593 .arg1_type = ARG_PTR_TO_CTX,
4594 .arg2_type = ARG_ANYTHING,
4595 .arg3_type = ARG_PTR_TO_MEM,
4596 .arg4_type = ARG_CONST_SIZE
4597 };
4598
4599 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)4600 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4601 const void *, from, u32, len)
4602 {
4603 struct seg6_bpf_srh_state *srh_state =
4604 this_cpu_ptr(&seg6_bpf_srh_states);
4605 struct ipv6_sr_hdr *srh = srh_state->srh;
4606 void *srh_tlvs, *srh_end, *ptr;
4607 int srhoff = 0;
4608
4609 if (srh == NULL)
4610 return -EINVAL;
4611
4612 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4613 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4614
4615 ptr = skb->data + offset;
4616 if (ptr >= srh_tlvs && ptr + len <= srh_end)
4617 srh_state->valid = false;
4618 else if (ptr < (void *)&srh->flags ||
4619 ptr + len > (void *)&srh->segments)
4620 return -EFAULT;
4621
4622 if (unlikely(bpf_try_make_writable(skb, offset + len)))
4623 return -EFAULT;
4624 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4625 return -EINVAL;
4626 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4627
4628 memcpy(skb->data + offset, from, len);
4629 return 0;
4630 }
4631
4632 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4633 .func = bpf_lwt_seg6_store_bytes,
4634 .gpl_only = false,
4635 .ret_type = RET_INTEGER,
4636 .arg1_type = ARG_PTR_TO_CTX,
4637 .arg2_type = ARG_ANYTHING,
4638 .arg3_type = ARG_PTR_TO_MEM,
4639 .arg4_type = ARG_CONST_SIZE
4640 };
4641
bpf_update_srh_state(struct sk_buff * skb)4642 static void bpf_update_srh_state(struct sk_buff *skb)
4643 {
4644 struct seg6_bpf_srh_state *srh_state =
4645 this_cpu_ptr(&seg6_bpf_srh_states);
4646 int srhoff = 0;
4647
4648 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4649 srh_state->srh = NULL;
4650 } else {
4651 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4652 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4653 srh_state->valid = true;
4654 }
4655 }
4656
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)4657 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4658 u32, action, void *, param, u32, param_len)
4659 {
4660 struct seg6_bpf_srh_state *srh_state =
4661 this_cpu_ptr(&seg6_bpf_srh_states);
4662 int hdroff = 0;
4663 int err;
4664
4665 switch (action) {
4666 case SEG6_LOCAL_ACTION_END_X:
4667 if (!seg6_bpf_has_valid_srh(skb))
4668 return -EBADMSG;
4669 if (param_len != sizeof(struct in6_addr))
4670 return -EINVAL;
4671 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4672 case SEG6_LOCAL_ACTION_END_T:
4673 if (!seg6_bpf_has_valid_srh(skb))
4674 return -EBADMSG;
4675 if (param_len != sizeof(int))
4676 return -EINVAL;
4677 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4678 case SEG6_LOCAL_ACTION_END_DT6:
4679 if (!seg6_bpf_has_valid_srh(skb))
4680 return -EBADMSG;
4681 if (param_len != sizeof(int))
4682 return -EINVAL;
4683
4684 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4685 return -EBADMSG;
4686 if (!pskb_pull(skb, hdroff))
4687 return -EBADMSG;
4688
4689 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4690 skb_reset_network_header(skb);
4691 skb_reset_transport_header(skb);
4692 skb->encapsulation = 0;
4693
4694 bpf_compute_data_pointers(skb);
4695 bpf_update_srh_state(skb);
4696 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4697 case SEG6_LOCAL_ACTION_END_B6:
4698 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4699 return -EBADMSG;
4700 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4701 param, param_len);
4702 if (!err)
4703 bpf_update_srh_state(skb);
4704
4705 return err;
4706 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4707 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4708 return -EBADMSG;
4709 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4710 param, param_len);
4711 if (!err)
4712 bpf_update_srh_state(skb);
4713
4714 return err;
4715 default:
4716 return -EINVAL;
4717 }
4718 }
4719
4720 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4721 .func = bpf_lwt_seg6_action,
4722 .gpl_only = false,
4723 .ret_type = RET_INTEGER,
4724 .arg1_type = ARG_PTR_TO_CTX,
4725 .arg2_type = ARG_ANYTHING,
4726 .arg3_type = ARG_PTR_TO_MEM,
4727 .arg4_type = ARG_CONST_SIZE
4728 };
4729
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)4730 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4731 s32, len)
4732 {
4733 struct seg6_bpf_srh_state *srh_state =
4734 this_cpu_ptr(&seg6_bpf_srh_states);
4735 struct ipv6_sr_hdr *srh = srh_state->srh;
4736 void *srh_end, *srh_tlvs, *ptr;
4737 struct ipv6hdr *hdr;
4738 int srhoff = 0;
4739 int ret;
4740
4741 if (unlikely(srh == NULL))
4742 return -EINVAL;
4743
4744 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4745 ((srh->first_segment + 1) << 4));
4746 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4747 srh_state->hdrlen);
4748 ptr = skb->data + offset;
4749
4750 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4751 return -EFAULT;
4752 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4753 return -EFAULT;
4754
4755 if (len > 0) {
4756 ret = skb_cow_head(skb, len);
4757 if (unlikely(ret < 0))
4758 return ret;
4759
4760 ret = bpf_skb_net_hdr_push(skb, offset, len);
4761 } else {
4762 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4763 }
4764
4765 bpf_compute_data_pointers(skb);
4766 if (unlikely(ret < 0))
4767 return ret;
4768
4769 hdr = (struct ipv6hdr *)skb->data;
4770 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4771
4772 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4773 return -EINVAL;
4774 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4775 srh_state->hdrlen += len;
4776 srh_state->valid = false;
4777 return 0;
4778 }
4779
4780 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4781 .func = bpf_lwt_seg6_adjust_srh,
4782 .gpl_only = false,
4783 .ret_type = RET_INTEGER,
4784 .arg1_type = ARG_PTR_TO_CTX,
4785 .arg2_type = ARG_ANYTHING,
4786 .arg3_type = ARG_ANYTHING,
4787 };
4788 #endif /* CONFIG_IPV6_SEG6_BPF */
4789
bpf_helper_changes_pkt_data(void * func)4790 bool bpf_helper_changes_pkt_data(void *func)
4791 {
4792 if (func == bpf_skb_vlan_push ||
4793 func == bpf_skb_vlan_pop ||
4794 func == bpf_skb_store_bytes ||
4795 func == bpf_skb_change_proto ||
4796 func == bpf_skb_change_head ||
4797 func == sk_skb_change_head ||
4798 func == bpf_skb_change_tail ||
4799 func == sk_skb_change_tail ||
4800 func == bpf_skb_adjust_room ||
4801 func == bpf_skb_pull_data ||
4802 func == sk_skb_pull_data ||
4803 func == bpf_clone_redirect ||
4804 func == bpf_l3_csum_replace ||
4805 func == bpf_l4_csum_replace ||
4806 func == bpf_xdp_adjust_head ||
4807 func == bpf_xdp_adjust_meta ||
4808 func == bpf_msg_pull_data ||
4809 func == bpf_xdp_adjust_tail ||
4810 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4811 func == bpf_lwt_seg6_store_bytes ||
4812 func == bpf_lwt_seg6_adjust_srh ||
4813 func == bpf_lwt_seg6_action ||
4814 #endif
4815 func == bpf_lwt_push_encap)
4816 return true;
4817
4818 return false;
4819 }
4820
4821 static const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)4822 bpf_base_func_proto(enum bpf_func_id func_id)
4823 {
4824 switch (func_id) {
4825 case BPF_FUNC_map_lookup_elem:
4826 return &bpf_map_lookup_elem_proto;
4827 case BPF_FUNC_map_update_elem:
4828 return &bpf_map_update_elem_proto;
4829 case BPF_FUNC_map_delete_elem:
4830 return &bpf_map_delete_elem_proto;
4831 case BPF_FUNC_get_prandom_u32:
4832 return &bpf_get_prandom_u32_proto;
4833 case BPF_FUNC_get_smp_processor_id:
4834 return &bpf_get_raw_smp_processor_id_proto;
4835 case BPF_FUNC_get_numa_node_id:
4836 return &bpf_get_numa_node_id_proto;
4837 case BPF_FUNC_tail_call:
4838 return &bpf_tail_call_proto;
4839 case BPF_FUNC_ktime_get_ns:
4840 return &bpf_ktime_get_ns_proto;
4841 case BPF_FUNC_trace_printk:
4842 if (capable(CAP_SYS_ADMIN))
4843 return bpf_get_trace_printk_proto();
4844 /* else: fall through */
4845 default:
4846 return NULL;
4847 }
4848 }
4849
4850 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4851 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4852 {
4853 switch (func_id) {
4854 /* inet and inet6 sockets are created in a process
4855 * context so there is always a valid uid/gid
4856 */
4857 case BPF_FUNC_get_current_uid_gid:
4858 return &bpf_get_current_uid_gid_proto;
4859 case BPF_FUNC_get_local_storage:
4860 return &bpf_get_local_storage_proto;
4861 default:
4862 return bpf_base_func_proto(func_id);
4863 }
4864 }
4865
4866 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4867 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4868 {
4869 switch (func_id) {
4870 /* inet and inet6 sockets are created in a process
4871 * context so there is always a valid uid/gid
4872 */
4873 case BPF_FUNC_get_current_uid_gid:
4874 return &bpf_get_current_uid_gid_proto;
4875 case BPF_FUNC_bind:
4876 switch (prog->expected_attach_type) {
4877 case BPF_CGROUP_INET4_CONNECT:
4878 case BPF_CGROUP_INET6_CONNECT:
4879 return &bpf_bind_proto;
4880 default:
4881 return NULL;
4882 }
4883 case BPF_FUNC_get_socket_cookie:
4884 return &bpf_get_socket_cookie_sock_addr_proto;
4885 case BPF_FUNC_get_local_storage:
4886 return &bpf_get_local_storage_proto;
4887 default:
4888 return bpf_base_func_proto(func_id);
4889 }
4890 }
4891
4892 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4893 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4894 {
4895 switch (func_id) {
4896 case BPF_FUNC_skb_load_bytes:
4897 return &bpf_skb_load_bytes_proto;
4898 case BPF_FUNC_skb_load_bytes_relative:
4899 return &bpf_skb_load_bytes_relative_proto;
4900 case BPF_FUNC_get_socket_cookie:
4901 return &bpf_get_socket_cookie_proto;
4902 case BPF_FUNC_get_socket_uid:
4903 return &bpf_get_socket_uid_proto;
4904 default:
4905 return bpf_base_func_proto(func_id);
4906 }
4907 }
4908
4909 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4910 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4911 {
4912 switch (func_id) {
4913 case BPF_FUNC_get_local_storage:
4914 return &bpf_get_local_storage_proto;
4915 default:
4916 return sk_filter_func_proto(func_id, prog);
4917 }
4918 }
4919
4920 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4921 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4922 {
4923 switch (func_id) {
4924 case BPF_FUNC_skb_store_bytes:
4925 return &bpf_skb_store_bytes_proto;
4926 case BPF_FUNC_skb_load_bytes:
4927 return &bpf_skb_load_bytes_proto;
4928 case BPF_FUNC_skb_load_bytes_relative:
4929 return &bpf_skb_load_bytes_relative_proto;
4930 case BPF_FUNC_skb_pull_data:
4931 return &bpf_skb_pull_data_proto;
4932 case BPF_FUNC_csum_diff:
4933 return &bpf_csum_diff_proto;
4934 case BPF_FUNC_csum_update:
4935 return &bpf_csum_update_proto;
4936 case BPF_FUNC_l3_csum_replace:
4937 return &bpf_l3_csum_replace_proto;
4938 case BPF_FUNC_l4_csum_replace:
4939 return &bpf_l4_csum_replace_proto;
4940 case BPF_FUNC_clone_redirect:
4941 return &bpf_clone_redirect_proto;
4942 case BPF_FUNC_get_cgroup_classid:
4943 return &bpf_get_cgroup_classid_proto;
4944 case BPF_FUNC_skb_vlan_push:
4945 return &bpf_skb_vlan_push_proto;
4946 case BPF_FUNC_skb_vlan_pop:
4947 return &bpf_skb_vlan_pop_proto;
4948 case BPF_FUNC_skb_change_proto:
4949 return &bpf_skb_change_proto_proto;
4950 case BPF_FUNC_skb_change_type:
4951 return &bpf_skb_change_type_proto;
4952 case BPF_FUNC_skb_adjust_room:
4953 return &bpf_skb_adjust_room_proto;
4954 case BPF_FUNC_skb_change_tail:
4955 return &bpf_skb_change_tail_proto;
4956 case BPF_FUNC_skb_get_tunnel_key:
4957 return &bpf_skb_get_tunnel_key_proto;
4958 case BPF_FUNC_skb_set_tunnel_key:
4959 return bpf_get_skb_set_tunnel_proto(func_id);
4960 case BPF_FUNC_skb_get_tunnel_opt:
4961 return &bpf_skb_get_tunnel_opt_proto;
4962 case BPF_FUNC_skb_set_tunnel_opt:
4963 return bpf_get_skb_set_tunnel_proto(func_id);
4964 case BPF_FUNC_redirect:
4965 return &bpf_redirect_proto;
4966 case BPF_FUNC_get_route_realm:
4967 return &bpf_get_route_realm_proto;
4968 case BPF_FUNC_get_hash_recalc:
4969 return &bpf_get_hash_recalc_proto;
4970 case BPF_FUNC_set_hash_invalid:
4971 return &bpf_set_hash_invalid_proto;
4972 case BPF_FUNC_set_hash:
4973 return &bpf_set_hash_proto;
4974 case BPF_FUNC_perf_event_output:
4975 return &bpf_skb_event_output_proto;
4976 case BPF_FUNC_get_smp_processor_id:
4977 return &bpf_get_smp_processor_id_proto;
4978 case BPF_FUNC_skb_under_cgroup:
4979 return &bpf_skb_under_cgroup_proto;
4980 case BPF_FUNC_get_socket_cookie:
4981 return &bpf_get_socket_cookie_proto;
4982 case BPF_FUNC_get_socket_uid:
4983 return &bpf_get_socket_uid_proto;
4984 case BPF_FUNC_fib_lookup:
4985 return &bpf_skb_fib_lookup_proto;
4986 #ifdef CONFIG_XFRM
4987 case BPF_FUNC_skb_get_xfrm_state:
4988 return &bpf_skb_get_xfrm_state_proto;
4989 #endif
4990 #ifdef CONFIG_SOCK_CGROUP_DATA
4991 case BPF_FUNC_skb_cgroup_id:
4992 return &bpf_skb_cgroup_id_proto;
4993 case BPF_FUNC_skb_ancestor_cgroup_id:
4994 return &bpf_skb_ancestor_cgroup_id_proto;
4995 #endif
4996 default:
4997 return bpf_base_func_proto(func_id);
4998 }
4999 }
5000
5001 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5002 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5003 {
5004 switch (func_id) {
5005 case BPF_FUNC_perf_event_output:
5006 return &bpf_xdp_event_output_proto;
5007 case BPF_FUNC_get_smp_processor_id:
5008 return &bpf_get_smp_processor_id_proto;
5009 case BPF_FUNC_csum_diff:
5010 return &bpf_csum_diff_proto;
5011 case BPF_FUNC_xdp_adjust_head:
5012 return &bpf_xdp_adjust_head_proto;
5013 case BPF_FUNC_xdp_adjust_meta:
5014 return &bpf_xdp_adjust_meta_proto;
5015 case BPF_FUNC_redirect:
5016 return &bpf_xdp_redirect_proto;
5017 case BPF_FUNC_redirect_map:
5018 return &bpf_xdp_redirect_map_proto;
5019 case BPF_FUNC_xdp_adjust_tail:
5020 return &bpf_xdp_adjust_tail_proto;
5021 case BPF_FUNC_fib_lookup:
5022 return &bpf_xdp_fib_lookup_proto;
5023 default:
5024 return bpf_base_func_proto(func_id);
5025 }
5026 }
5027
5028 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5029 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5030 {
5031 switch (func_id) {
5032 case BPF_FUNC_setsockopt:
5033 return &bpf_setsockopt_proto;
5034 case BPF_FUNC_getsockopt:
5035 return &bpf_getsockopt_proto;
5036 case BPF_FUNC_sock_ops_cb_flags_set:
5037 return &bpf_sock_ops_cb_flags_set_proto;
5038 case BPF_FUNC_sock_map_update:
5039 return &bpf_sock_map_update_proto;
5040 case BPF_FUNC_sock_hash_update:
5041 return &bpf_sock_hash_update_proto;
5042 case BPF_FUNC_get_socket_cookie:
5043 return &bpf_get_socket_cookie_sock_ops_proto;
5044 case BPF_FUNC_get_local_storage:
5045 return &bpf_get_local_storage_proto;
5046 default:
5047 return bpf_base_func_proto(func_id);
5048 }
5049 }
5050
5051 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5052 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5053 {
5054 switch (func_id) {
5055 case BPF_FUNC_msg_redirect_map:
5056 return &bpf_msg_redirect_map_proto;
5057 case BPF_FUNC_msg_redirect_hash:
5058 return &bpf_msg_redirect_hash_proto;
5059 case BPF_FUNC_msg_apply_bytes:
5060 return &bpf_msg_apply_bytes_proto;
5061 case BPF_FUNC_msg_cork_bytes:
5062 return &bpf_msg_cork_bytes_proto;
5063 case BPF_FUNC_msg_pull_data:
5064 return &bpf_msg_pull_data_proto;
5065 case BPF_FUNC_get_local_storage:
5066 return &bpf_get_local_storage_proto;
5067 default:
5068 return bpf_base_func_proto(func_id);
5069 }
5070 }
5071
5072 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5073 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5074 {
5075 switch (func_id) {
5076 case BPF_FUNC_skb_store_bytes:
5077 return &bpf_skb_store_bytes_proto;
5078 case BPF_FUNC_skb_load_bytes:
5079 return &bpf_skb_load_bytes_proto;
5080 case BPF_FUNC_skb_pull_data:
5081 return &sk_skb_pull_data_proto;
5082 case BPF_FUNC_skb_change_tail:
5083 return &sk_skb_change_tail_proto;
5084 case BPF_FUNC_skb_change_head:
5085 return &sk_skb_change_head_proto;
5086 case BPF_FUNC_get_socket_cookie:
5087 return &bpf_get_socket_cookie_proto;
5088 case BPF_FUNC_get_socket_uid:
5089 return &bpf_get_socket_uid_proto;
5090 case BPF_FUNC_sk_redirect_map:
5091 return &bpf_sk_redirect_map_proto;
5092 case BPF_FUNC_sk_redirect_hash:
5093 return &bpf_sk_redirect_hash_proto;
5094 case BPF_FUNC_get_local_storage:
5095 return &bpf_get_local_storage_proto;
5096 default:
5097 return bpf_base_func_proto(func_id);
5098 }
5099 }
5100
5101 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5102 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5103 {
5104 switch (func_id) {
5105 case BPF_FUNC_skb_load_bytes:
5106 return &bpf_skb_load_bytes_proto;
5107 case BPF_FUNC_skb_pull_data:
5108 return &bpf_skb_pull_data_proto;
5109 case BPF_FUNC_csum_diff:
5110 return &bpf_csum_diff_proto;
5111 case BPF_FUNC_get_cgroup_classid:
5112 return &bpf_get_cgroup_classid_proto;
5113 case BPF_FUNC_get_route_realm:
5114 return &bpf_get_route_realm_proto;
5115 case BPF_FUNC_get_hash_recalc:
5116 return &bpf_get_hash_recalc_proto;
5117 case BPF_FUNC_perf_event_output:
5118 return &bpf_skb_event_output_proto;
5119 case BPF_FUNC_get_smp_processor_id:
5120 return &bpf_get_smp_processor_id_proto;
5121 case BPF_FUNC_skb_under_cgroup:
5122 return &bpf_skb_under_cgroup_proto;
5123 default:
5124 return bpf_base_func_proto(func_id);
5125 }
5126 }
5127
5128 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5129 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5130 {
5131 switch (func_id) {
5132 case BPF_FUNC_lwt_push_encap:
5133 return &bpf_lwt_push_encap_proto;
5134 default:
5135 return lwt_out_func_proto(func_id, prog);
5136 }
5137 }
5138
5139 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5140 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5141 {
5142 switch (func_id) {
5143 case BPF_FUNC_skb_get_tunnel_key:
5144 return &bpf_skb_get_tunnel_key_proto;
5145 case BPF_FUNC_skb_set_tunnel_key:
5146 return bpf_get_skb_set_tunnel_proto(func_id);
5147 case BPF_FUNC_skb_get_tunnel_opt:
5148 return &bpf_skb_get_tunnel_opt_proto;
5149 case BPF_FUNC_skb_set_tunnel_opt:
5150 return bpf_get_skb_set_tunnel_proto(func_id);
5151 case BPF_FUNC_redirect:
5152 return &bpf_redirect_proto;
5153 case BPF_FUNC_clone_redirect:
5154 return &bpf_clone_redirect_proto;
5155 case BPF_FUNC_skb_change_tail:
5156 return &bpf_skb_change_tail_proto;
5157 case BPF_FUNC_skb_change_head:
5158 return &bpf_skb_change_head_proto;
5159 case BPF_FUNC_skb_store_bytes:
5160 return &bpf_skb_store_bytes_proto;
5161 case BPF_FUNC_csum_update:
5162 return &bpf_csum_update_proto;
5163 case BPF_FUNC_l3_csum_replace:
5164 return &bpf_l3_csum_replace_proto;
5165 case BPF_FUNC_l4_csum_replace:
5166 return &bpf_l4_csum_replace_proto;
5167 case BPF_FUNC_set_hash_invalid:
5168 return &bpf_set_hash_invalid_proto;
5169 default:
5170 return lwt_out_func_proto(func_id, prog);
5171 }
5172 }
5173
5174 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5175 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5176 {
5177 switch (func_id) {
5178 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5179 case BPF_FUNC_lwt_seg6_store_bytes:
5180 return &bpf_lwt_seg6_store_bytes_proto;
5181 case BPF_FUNC_lwt_seg6_action:
5182 return &bpf_lwt_seg6_action_proto;
5183 case BPF_FUNC_lwt_seg6_adjust_srh:
5184 return &bpf_lwt_seg6_adjust_srh_proto;
5185 #endif
5186 default:
5187 return lwt_out_func_proto(func_id, prog);
5188 }
5189 }
5190
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5191 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5192 const struct bpf_prog *prog,
5193 struct bpf_insn_access_aux *info)
5194 {
5195 const int size_default = sizeof(__u32);
5196
5197 if (off < 0 || off >= sizeof(struct __sk_buff))
5198 return false;
5199
5200 /* The verifier guarantees that size > 0. */
5201 if (off % size != 0)
5202 return false;
5203
5204 switch (off) {
5205 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5206 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5207 return false;
5208 break;
5209 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5210 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5211 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5212 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5213 case bpf_ctx_range(struct __sk_buff, data):
5214 case bpf_ctx_range(struct __sk_buff, data_meta):
5215 case bpf_ctx_range(struct __sk_buff, data_end):
5216 if (size != size_default)
5217 return false;
5218 break;
5219 default:
5220 /* Only narrow read access allowed for now. */
5221 if (type == BPF_WRITE) {
5222 if (size != size_default)
5223 return false;
5224 } else {
5225 bpf_ctx_record_field_size(info, size_default);
5226 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5227 return false;
5228 }
5229 }
5230
5231 return true;
5232 }
5233
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5234 static bool sk_filter_is_valid_access(int off, int size,
5235 enum bpf_access_type type,
5236 const struct bpf_prog *prog,
5237 struct bpf_insn_access_aux *info)
5238 {
5239 switch (off) {
5240 case bpf_ctx_range(struct __sk_buff, tc_classid):
5241 case bpf_ctx_range(struct __sk_buff, data):
5242 case bpf_ctx_range(struct __sk_buff, data_meta):
5243 case bpf_ctx_range(struct __sk_buff, data_end):
5244 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5245 return false;
5246 }
5247
5248 if (type == BPF_WRITE) {
5249 switch (off) {
5250 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5251 break;
5252 default:
5253 return false;
5254 }
5255 }
5256
5257 return bpf_skb_is_valid_access(off, size, type, prog, info);
5258 }
5259
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5260 static bool lwt_is_valid_access(int off, int size,
5261 enum bpf_access_type type,
5262 const struct bpf_prog *prog,
5263 struct bpf_insn_access_aux *info)
5264 {
5265 switch (off) {
5266 case bpf_ctx_range(struct __sk_buff, tc_classid):
5267 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5268 case bpf_ctx_range(struct __sk_buff, data_meta):
5269 return false;
5270 }
5271
5272 if (type == BPF_WRITE) {
5273 switch (off) {
5274 case bpf_ctx_range(struct __sk_buff, mark):
5275 case bpf_ctx_range(struct __sk_buff, priority):
5276 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5277 break;
5278 default:
5279 return false;
5280 }
5281 }
5282
5283 switch (off) {
5284 case bpf_ctx_range(struct __sk_buff, data):
5285 info->reg_type = PTR_TO_PACKET;
5286 break;
5287 case bpf_ctx_range(struct __sk_buff, data_end):
5288 info->reg_type = PTR_TO_PACKET_END;
5289 break;
5290 }
5291
5292 return bpf_skb_is_valid_access(off, size, type, prog, info);
5293 }
5294
5295 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)5296 static bool __sock_filter_check_attach_type(int off,
5297 enum bpf_access_type access_type,
5298 enum bpf_attach_type attach_type)
5299 {
5300 switch (off) {
5301 case offsetof(struct bpf_sock, bound_dev_if):
5302 case offsetof(struct bpf_sock, mark):
5303 case offsetof(struct bpf_sock, priority):
5304 switch (attach_type) {
5305 case BPF_CGROUP_INET_SOCK_CREATE:
5306 goto full_access;
5307 default:
5308 return false;
5309 }
5310 case bpf_ctx_range(struct bpf_sock, src_ip4):
5311 switch (attach_type) {
5312 case BPF_CGROUP_INET4_POST_BIND:
5313 goto read_only;
5314 default:
5315 return false;
5316 }
5317 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5318 switch (attach_type) {
5319 case BPF_CGROUP_INET6_POST_BIND:
5320 goto read_only;
5321 default:
5322 return false;
5323 }
5324 case bpf_ctx_range(struct bpf_sock, src_port):
5325 switch (attach_type) {
5326 case BPF_CGROUP_INET4_POST_BIND:
5327 case BPF_CGROUP_INET6_POST_BIND:
5328 goto read_only;
5329 default:
5330 return false;
5331 }
5332 }
5333 read_only:
5334 return access_type == BPF_READ;
5335 full_access:
5336 return true;
5337 }
5338
__sock_filter_check_size(int off,int size,struct bpf_insn_access_aux * info)5339 static bool __sock_filter_check_size(int off, int size,
5340 struct bpf_insn_access_aux *info)
5341 {
5342 const int size_default = sizeof(__u32);
5343
5344 switch (off) {
5345 case bpf_ctx_range(struct bpf_sock, src_ip4):
5346 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5347 bpf_ctx_record_field_size(info, size_default);
5348 return bpf_ctx_narrow_access_ok(off, size, size_default);
5349 }
5350
5351 return size == size_default;
5352 }
5353
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5354 static bool sock_filter_is_valid_access(int off, int size,
5355 enum bpf_access_type type,
5356 const struct bpf_prog *prog,
5357 struct bpf_insn_access_aux *info)
5358 {
5359 if (off < 0 || off >= sizeof(struct bpf_sock))
5360 return false;
5361 if (off % size != 0)
5362 return false;
5363 if (!__sock_filter_check_attach_type(off, type,
5364 prog->expected_attach_type))
5365 return false;
5366 if (!__sock_filter_check_size(off, size, info))
5367 return false;
5368 return true;
5369 }
5370
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)5371 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5372 const struct bpf_prog *prog, int drop_verdict)
5373 {
5374 struct bpf_insn *insn = insn_buf;
5375
5376 if (!direct_write)
5377 return 0;
5378
5379 /* if (!skb->cloned)
5380 * goto start;
5381 *
5382 * (Fast-path, otherwise approximation that we might be
5383 * a clone, do the rest in helper.)
5384 */
5385 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5386 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5387 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5388
5389 /* ret = bpf_skb_pull_data(skb, 0); */
5390 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5391 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5392 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5393 BPF_FUNC_skb_pull_data);
5394 /* if (!ret)
5395 * goto restore;
5396 * return TC_ACT_SHOT;
5397 */
5398 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5399 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5400 *insn++ = BPF_EXIT_INSN();
5401
5402 /* restore: */
5403 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5404 /* start: */
5405 *insn++ = prog->insnsi[0];
5406
5407 return insn - insn_buf;
5408 }
5409
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)5410 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5411 struct bpf_insn *insn_buf)
5412 {
5413 bool indirect = BPF_MODE(orig->code) == BPF_IND;
5414 struct bpf_insn *insn = insn_buf;
5415
5416 /* We're guaranteed here that CTX is in R6. */
5417 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5418 if (!indirect) {
5419 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5420 } else {
5421 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5422 if (orig->imm)
5423 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5424 }
5425
5426 switch (BPF_SIZE(orig->code)) {
5427 case BPF_B:
5428 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5429 break;
5430 case BPF_H:
5431 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5432 break;
5433 case BPF_W:
5434 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5435 break;
5436 }
5437
5438 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5439 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5440 *insn++ = BPF_EXIT_INSN();
5441
5442 return insn - insn_buf;
5443 }
5444
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)5445 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5446 const struct bpf_prog *prog)
5447 {
5448 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5449 }
5450
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5451 static bool tc_cls_act_is_valid_access(int off, int size,
5452 enum bpf_access_type type,
5453 const struct bpf_prog *prog,
5454 struct bpf_insn_access_aux *info)
5455 {
5456 if (type == BPF_WRITE) {
5457 switch (off) {
5458 case bpf_ctx_range(struct __sk_buff, mark):
5459 case bpf_ctx_range(struct __sk_buff, tc_index):
5460 case bpf_ctx_range(struct __sk_buff, priority):
5461 case bpf_ctx_range(struct __sk_buff, tc_classid):
5462 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5463 break;
5464 default:
5465 return false;
5466 }
5467 }
5468
5469 switch (off) {
5470 case bpf_ctx_range(struct __sk_buff, data):
5471 info->reg_type = PTR_TO_PACKET;
5472 break;
5473 case bpf_ctx_range(struct __sk_buff, data_meta):
5474 info->reg_type = PTR_TO_PACKET_META;
5475 break;
5476 case bpf_ctx_range(struct __sk_buff, data_end):
5477 info->reg_type = PTR_TO_PACKET_END;
5478 break;
5479 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5480 return false;
5481 }
5482
5483 return bpf_skb_is_valid_access(off, size, type, prog, info);
5484 }
5485
__is_valid_xdp_access(int off,int size)5486 static bool __is_valid_xdp_access(int off, int size)
5487 {
5488 if (off < 0 || off >= sizeof(struct xdp_md))
5489 return false;
5490 if (off % size != 0)
5491 return false;
5492 if (size != sizeof(__u32))
5493 return false;
5494
5495 return true;
5496 }
5497
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5498 static bool xdp_is_valid_access(int off, int size,
5499 enum bpf_access_type type,
5500 const struct bpf_prog *prog,
5501 struct bpf_insn_access_aux *info)
5502 {
5503 if (type == BPF_WRITE) {
5504 if (bpf_prog_is_dev_bound(prog->aux)) {
5505 switch (off) {
5506 case offsetof(struct xdp_md, rx_queue_index):
5507 return __is_valid_xdp_access(off, size);
5508 }
5509 }
5510 return false;
5511 }
5512
5513 switch (off) {
5514 case offsetof(struct xdp_md, data):
5515 info->reg_type = PTR_TO_PACKET;
5516 break;
5517 case offsetof(struct xdp_md, data_meta):
5518 info->reg_type = PTR_TO_PACKET_META;
5519 break;
5520 case offsetof(struct xdp_md, data_end):
5521 info->reg_type = PTR_TO_PACKET_END;
5522 break;
5523 }
5524
5525 return __is_valid_xdp_access(off, size);
5526 }
5527
bpf_warn_invalid_xdp_action(u32 act)5528 void bpf_warn_invalid_xdp_action(u32 act)
5529 {
5530 const u32 act_max = XDP_REDIRECT;
5531
5532 WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5533 act > act_max ? "Illegal" : "Driver unsupported",
5534 act);
5535 }
5536 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5537
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5538 static bool sock_addr_is_valid_access(int off, int size,
5539 enum bpf_access_type type,
5540 const struct bpf_prog *prog,
5541 struct bpf_insn_access_aux *info)
5542 {
5543 const int size_default = sizeof(__u32);
5544
5545 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5546 return false;
5547 if (off % size != 0)
5548 return false;
5549
5550 /* Disallow access to IPv6 fields from IPv4 contex and vise
5551 * versa.
5552 */
5553 switch (off) {
5554 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5555 switch (prog->expected_attach_type) {
5556 case BPF_CGROUP_INET4_BIND:
5557 case BPF_CGROUP_INET4_CONNECT:
5558 case BPF_CGROUP_UDP4_SENDMSG:
5559 break;
5560 default:
5561 return false;
5562 }
5563 break;
5564 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5565 switch (prog->expected_attach_type) {
5566 case BPF_CGROUP_INET6_BIND:
5567 case BPF_CGROUP_INET6_CONNECT:
5568 case BPF_CGROUP_UDP6_SENDMSG:
5569 break;
5570 default:
5571 return false;
5572 }
5573 break;
5574 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5575 switch (prog->expected_attach_type) {
5576 case BPF_CGROUP_UDP4_SENDMSG:
5577 break;
5578 default:
5579 return false;
5580 }
5581 break;
5582 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5583 msg_src_ip6[3]):
5584 switch (prog->expected_attach_type) {
5585 case BPF_CGROUP_UDP6_SENDMSG:
5586 break;
5587 default:
5588 return false;
5589 }
5590 break;
5591 }
5592
5593 switch (off) {
5594 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5595 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5596 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5597 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5598 msg_src_ip6[3]):
5599 /* Only narrow read access allowed for now. */
5600 if (type == BPF_READ) {
5601 bpf_ctx_record_field_size(info, size_default);
5602 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5603 return false;
5604 } else {
5605 if (size != size_default)
5606 return false;
5607 }
5608 break;
5609 case bpf_ctx_range(struct bpf_sock_addr, user_port):
5610 if (size != size_default)
5611 return false;
5612 break;
5613 default:
5614 if (type == BPF_READ) {
5615 if (size != size_default)
5616 return false;
5617 } else {
5618 return false;
5619 }
5620 }
5621
5622 return true;
5623 }
5624
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5625 static bool sock_ops_is_valid_access(int off, int size,
5626 enum bpf_access_type type,
5627 const struct bpf_prog *prog,
5628 struct bpf_insn_access_aux *info)
5629 {
5630 const int size_default = sizeof(__u32);
5631
5632 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5633 return false;
5634
5635 /* The verifier guarantees that size > 0. */
5636 if (off % size != 0)
5637 return false;
5638
5639 if (type == BPF_WRITE) {
5640 switch (off) {
5641 case offsetof(struct bpf_sock_ops, reply):
5642 case offsetof(struct bpf_sock_ops, sk_txhash):
5643 if (size != size_default)
5644 return false;
5645 break;
5646 default:
5647 return false;
5648 }
5649 } else {
5650 switch (off) {
5651 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5652 bytes_acked):
5653 if (size != sizeof(__u64))
5654 return false;
5655 break;
5656 default:
5657 if (size != size_default)
5658 return false;
5659 break;
5660 }
5661 }
5662
5663 return true;
5664 }
5665
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)5666 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5667 const struct bpf_prog *prog)
5668 {
5669 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5670 }
5671
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5672 static bool sk_skb_is_valid_access(int off, int size,
5673 enum bpf_access_type type,
5674 const struct bpf_prog *prog,
5675 struct bpf_insn_access_aux *info)
5676 {
5677 switch (off) {
5678 case bpf_ctx_range(struct __sk_buff, tc_classid):
5679 case bpf_ctx_range(struct __sk_buff, data_meta):
5680 return false;
5681 }
5682
5683 if (type == BPF_WRITE) {
5684 switch (off) {
5685 case bpf_ctx_range(struct __sk_buff, tc_index):
5686 case bpf_ctx_range(struct __sk_buff, priority):
5687 break;
5688 default:
5689 return false;
5690 }
5691 }
5692
5693 switch (off) {
5694 case bpf_ctx_range(struct __sk_buff, mark):
5695 return false;
5696 case bpf_ctx_range(struct __sk_buff, data):
5697 info->reg_type = PTR_TO_PACKET;
5698 break;
5699 case bpf_ctx_range(struct __sk_buff, data_end):
5700 info->reg_type = PTR_TO_PACKET_END;
5701 break;
5702 }
5703
5704 return bpf_skb_is_valid_access(off, size, type, prog, info);
5705 }
5706
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5707 static bool sk_msg_is_valid_access(int off, int size,
5708 enum bpf_access_type type,
5709 const struct bpf_prog *prog,
5710 struct bpf_insn_access_aux *info)
5711 {
5712 if (type == BPF_WRITE)
5713 return false;
5714
5715 switch (off) {
5716 case offsetof(struct sk_msg_md, data):
5717 info->reg_type = PTR_TO_PACKET;
5718 if (size != sizeof(__u64))
5719 return false;
5720 break;
5721 case offsetof(struct sk_msg_md, data_end):
5722 info->reg_type = PTR_TO_PACKET_END;
5723 if (size != sizeof(__u64))
5724 return false;
5725 break;
5726 default:
5727 if (size != sizeof(__u32))
5728 return false;
5729 }
5730
5731 if (off < 0 || off >= sizeof(struct sk_msg_md))
5732 return false;
5733 if (off % size != 0)
5734 return false;
5735
5736 return true;
5737 }
5738
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)5739 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5740 const struct bpf_insn *si,
5741 struct bpf_insn *insn_buf,
5742 struct bpf_prog *prog, u32 *target_size)
5743 {
5744 struct bpf_insn *insn = insn_buf;
5745 int off;
5746
5747 switch (si->off) {
5748 case offsetof(struct __sk_buff, len):
5749 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5750 bpf_target_off(struct sk_buff, len, 4,
5751 target_size));
5752 break;
5753
5754 case offsetof(struct __sk_buff, protocol):
5755 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5756 bpf_target_off(struct sk_buff, protocol, 2,
5757 target_size));
5758 break;
5759
5760 case offsetof(struct __sk_buff, vlan_proto):
5761 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5762 bpf_target_off(struct sk_buff, vlan_proto, 2,
5763 target_size));
5764 break;
5765
5766 case offsetof(struct __sk_buff, priority):
5767 if (type == BPF_WRITE)
5768 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5769 bpf_target_off(struct sk_buff, priority, 4,
5770 target_size));
5771 else
5772 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5773 bpf_target_off(struct sk_buff, priority, 4,
5774 target_size));
5775 break;
5776
5777 case offsetof(struct __sk_buff, ingress_ifindex):
5778 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5779 bpf_target_off(struct sk_buff, skb_iif, 4,
5780 target_size));
5781 break;
5782
5783 case offsetof(struct __sk_buff, ifindex):
5784 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5785 si->dst_reg, si->src_reg,
5786 offsetof(struct sk_buff, dev));
5787 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5788 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5789 bpf_target_off(struct net_device, ifindex, 4,
5790 target_size));
5791 break;
5792
5793 case offsetof(struct __sk_buff, hash):
5794 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5795 bpf_target_off(struct sk_buff, hash, 4,
5796 target_size));
5797 break;
5798
5799 case offsetof(struct __sk_buff, mark):
5800 if (type == BPF_WRITE)
5801 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5802 bpf_target_off(struct sk_buff, mark, 4,
5803 target_size));
5804 else
5805 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5806 bpf_target_off(struct sk_buff, mark, 4,
5807 target_size));
5808 break;
5809
5810 case offsetof(struct __sk_buff, pkt_type):
5811 *target_size = 1;
5812 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5813 PKT_TYPE_OFFSET());
5814 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5815 #ifdef __BIG_ENDIAN_BITFIELD
5816 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5817 #endif
5818 break;
5819
5820 case offsetof(struct __sk_buff, queue_mapping):
5821 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5822 bpf_target_off(struct sk_buff, queue_mapping, 2,
5823 target_size));
5824 break;
5825
5826 case offsetof(struct __sk_buff, vlan_present):
5827 case offsetof(struct __sk_buff, vlan_tci):
5828 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5829
5830 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5831 bpf_target_off(struct sk_buff, vlan_tci, 2,
5832 target_size));
5833 if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5834 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5835 ~VLAN_TAG_PRESENT);
5836 } else {
5837 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5838 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5839 }
5840 break;
5841
5842 case offsetof(struct __sk_buff, cb[0]) ...
5843 offsetofend(struct __sk_buff, cb[4]) - 1:
5844 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5845 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5846 offsetof(struct qdisc_skb_cb, data)) %
5847 sizeof(__u64));
5848
5849 prog->cb_access = 1;
5850 off = si->off;
5851 off -= offsetof(struct __sk_buff, cb[0]);
5852 off += offsetof(struct sk_buff, cb);
5853 off += offsetof(struct qdisc_skb_cb, data);
5854 if (type == BPF_WRITE)
5855 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5856 si->src_reg, off);
5857 else
5858 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5859 si->src_reg, off);
5860 break;
5861
5862 case offsetof(struct __sk_buff, tc_classid):
5863 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5864
5865 off = si->off;
5866 off -= offsetof(struct __sk_buff, tc_classid);
5867 off += offsetof(struct sk_buff, cb);
5868 off += offsetof(struct qdisc_skb_cb, tc_classid);
5869 *target_size = 2;
5870 if (type == BPF_WRITE)
5871 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5872 si->src_reg, off);
5873 else
5874 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5875 si->src_reg, off);
5876 break;
5877
5878 case offsetof(struct __sk_buff, data):
5879 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5880 si->dst_reg, si->src_reg,
5881 offsetof(struct sk_buff, data));
5882 break;
5883
5884 case offsetof(struct __sk_buff, data_meta):
5885 off = si->off;
5886 off -= offsetof(struct __sk_buff, data_meta);
5887 off += offsetof(struct sk_buff, cb);
5888 off += offsetof(struct bpf_skb_data_end, data_meta);
5889 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5890 si->src_reg, off);
5891 break;
5892
5893 case offsetof(struct __sk_buff, data_end):
5894 off = si->off;
5895 off -= offsetof(struct __sk_buff, data_end);
5896 off += offsetof(struct sk_buff, cb);
5897 off += offsetof(struct bpf_skb_data_end, data_end);
5898 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5899 si->src_reg, off);
5900 break;
5901
5902 case offsetof(struct __sk_buff, tc_index):
5903 #ifdef CONFIG_NET_SCHED
5904 if (type == BPF_WRITE)
5905 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5906 bpf_target_off(struct sk_buff, tc_index, 2,
5907 target_size));
5908 else
5909 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5910 bpf_target_off(struct sk_buff, tc_index, 2,
5911 target_size));
5912 #else
5913 *target_size = 2;
5914 if (type == BPF_WRITE)
5915 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5916 else
5917 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5918 #endif
5919 break;
5920
5921 case offsetof(struct __sk_buff, napi_id):
5922 #if defined(CONFIG_NET_RX_BUSY_POLL)
5923 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5924 bpf_target_off(struct sk_buff, napi_id, 4,
5925 target_size));
5926 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5927 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5928 #else
5929 *target_size = 4;
5930 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5931 #endif
5932 break;
5933 case offsetof(struct __sk_buff, family):
5934 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5935
5936 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5937 si->dst_reg, si->src_reg,
5938 offsetof(struct sk_buff, sk));
5939 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5940 bpf_target_off(struct sock_common,
5941 skc_family,
5942 2, target_size));
5943 break;
5944 case offsetof(struct __sk_buff, remote_ip4):
5945 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5946
5947 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5948 si->dst_reg, si->src_reg,
5949 offsetof(struct sk_buff, sk));
5950 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5951 bpf_target_off(struct sock_common,
5952 skc_daddr,
5953 4, target_size));
5954 break;
5955 case offsetof(struct __sk_buff, local_ip4):
5956 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5957 skc_rcv_saddr) != 4);
5958
5959 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5960 si->dst_reg, si->src_reg,
5961 offsetof(struct sk_buff, sk));
5962 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5963 bpf_target_off(struct sock_common,
5964 skc_rcv_saddr,
5965 4, target_size));
5966 break;
5967 case offsetof(struct __sk_buff, remote_ip6[0]) ...
5968 offsetof(struct __sk_buff, remote_ip6[3]):
5969 #if IS_ENABLED(CONFIG_IPV6)
5970 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5971 skc_v6_daddr.s6_addr32[0]) != 4);
5972
5973 off = si->off;
5974 off -= offsetof(struct __sk_buff, remote_ip6[0]);
5975
5976 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5977 si->dst_reg, si->src_reg,
5978 offsetof(struct sk_buff, sk));
5979 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5980 offsetof(struct sock_common,
5981 skc_v6_daddr.s6_addr32[0]) +
5982 off);
5983 #else
5984 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5985 #endif
5986 break;
5987 case offsetof(struct __sk_buff, local_ip6[0]) ...
5988 offsetof(struct __sk_buff, local_ip6[3]):
5989 #if IS_ENABLED(CONFIG_IPV6)
5990 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5991 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5992
5993 off = si->off;
5994 off -= offsetof(struct __sk_buff, local_ip6[0]);
5995
5996 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5997 si->dst_reg, si->src_reg,
5998 offsetof(struct sk_buff, sk));
5999 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6000 offsetof(struct sock_common,
6001 skc_v6_rcv_saddr.s6_addr32[0]) +
6002 off);
6003 #else
6004 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6005 #endif
6006 break;
6007
6008 case offsetof(struct __sk_buff, remote_port):
6009 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6010
6011 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6012 si->dst_reg, si->src_reg,
6013 offsetof(struct sk_buff, sk));
6014 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6015 bpf_target_off(struct sock_common,
6016 skc_dport,
6017 2, target_size));
6018 #ifndef __BIG_ENDIAN_BITFIELD
6019 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6020 #endif
6021 break;
6022
6023 case offsetof(struct __sk_buff, local_port):
6024 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6025
6026 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6027 si->dst_reg, si->src_reg,
6028 offsetof(struct sk_buff, sk));
6029 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6030 bpf_target_off(struct sock_common,
6031 skc_num, 2, target_size));
6032 break;
6033 }
6034
6035 return insn - insn_buf;
6036 }
6037
sock_filter_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6038 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
6039 const struct bpf_insn *si,
6040 struct bpf_insn *insn_buf,
6041 struct bpf_prog *prog, u32 *target_size)
6042 {
6043 struct bpf_insn *insn = insn_buf;
6044 int off;
6045
6046 switch (si->off) {
6047 case offsetof(struct bpf_sock, bound_dev_if):
6048 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
6049
6050 if (type == BPF_WRITE)
6051 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6052 offsetof(struct sock, sk_bound_dev_if));
6053 else
6054 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6055 offsetof(struct sock, sk_bound_dev_if));
6056 break;
6057
6058 case offsetof(struct bpf_sock, mark):
6059 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
6060
6061 if (type == BPF_WRITE)
6062 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6063 offsetof(struct sock, sk_mark));
6064 else
6065 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6066 offsetof(struct sock, sk_mark));
6067 break;
6068
6069 case offsetof(struct bpf_sock, priority):
6070 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
6071
6072 if (type == BPF_WRITE)
6073 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6074 offsetof(struct sock, sk_priority));
6075 else
6076 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6077 offsetof(struct sock, sk_priority));
6078 break;
6079
6080 case offsetof(struct bpf_sock, family):
6081 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
6082
6083 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6084 offsetof(struct sock, sk_family));
6085 break;
6086
6087 case offsetof(struct bpf_sock, type):
6088 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6089 offsetof(struct sock, __sk_flags_offset));
6090 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6091 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6092 break;
6093
6094 case offsetof(struct bpf_sock, protocol):
6095 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6096 offsetof(struct sock, __sk_flags_offset));
6097 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6098 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6099 break;
6100
6101 case offsetof(struct bpf_sock, src_ip4):
6102 *insn++ = BPF_LDX_MEM(
6103 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6104 bpf_target_off(struct sock_common, skc_rcv_saddr,
6105 FIELD_SIZEOF(struct sock_common,
6106 skc_rcv_saddr),
6107 target_size));
6108 break;
6109
6110 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6111 #if IS_ENABLED(CONFIG_IPV6)
6112 off = si->off;
6113 off -= offsetof(struct bpf_sock, src_ip6[0]);
6114 *insn++ = BPF_LDX_MEM(
6115 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6116 bpf_target_off(
6117 struct sock_common,
6118 skc_v6_rcv_saddr.s6_addr32[0],
6119 FIELD_SIZEOF(struct sock_common,
6120 skc_v6_rcv_saddr.s6_addr32[0]),
6121 target_size) + off);
6122 #else
6123 (void)off;
6124 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6125 #endif
6126 break;
6127
6128 case offsetof(struct bpf_sock, src_port):
6129 *insn++ = BPF_LDX_MEM(
6130 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6131 si->dst_reg, si->src_reg,
6132 bpf_target_off(struct sock_common, skc_num,
6133 FIELD_SIZEOF(struct sock_common,
6134 skc_num),
6135 target_size));
6136 break;
6137 }
6138
6139 return insn - insn_buf;
6140 }
6141
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6142 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6143 const struct bpf_insn *si,
6144 struct bpf_insn *insn_buf,
6145 struct bpf_prog *prog, u32 *target_size)
6146 {
6147 struct bpf_insn *insn = insn_buf;
6148
6149 switch (si->off) {
6150 case offsetof(struct __sk_buff, ifindex):
6151 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6152 si->dst_reg, si->src_reg,
6153 offsetof(struct sk_buff, dev));
6154 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6155 bpf_target_off(struct net_device, ifindex, 4,
6156 target_size));
6157 break;
6158 default:
6159 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6160 target_size);
6161 }
6162
6163 return insn - insn_buf;
6164 }
6165
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6166 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6167 const struct bpf_insn *si,
6168 struct bpf_insn *insn_buf,
6169 struct bpf_prog *prog, u32 *target_size)
6170 {
6171 struct bpf_insn *insn = insn_buf;
6172
6173 switch (si->off) {
6174 case offsetof(struct xdp_md, data):
6175 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6176 si->dst_reg, si->src_reg,
6177 offsetof(struct xdp_buff, data));
6178 break;
6179 case offsetof(struct xdp_md, data_meta):
6180 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6181 si->dst_reg, si->src_reg,
6182 offsetof(struct xdp_buff, data_meta));
6183 break;
6184 case offsetof(struct xdp_md, data_end):
6185 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6186 si->dst_reg, si->src_reg,
6187 offsetof(struct xdp_buff, data_end));
6188 break;
6189 case offsetof(struct xdp_md, ingress_ifindex):
6190 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6191 si->dst_reg, si->src_reg,
6192 offsetof(struct xdp_buff, rxq));
6193 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6194 si->dst_reg, si->dst_reg,
6195 offsetof(struct xdp_rxq_info, dev));
6196 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6197 offsetof(struct net_device, ifindex));
6198 break;
6199 case offsetof(struct xdp_md, rx_queue_index):
6200 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6201 si->dst_reg, si->src_reg,
6202 offsetof(struct xdp_buff, rxq));
6203 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6204 offsetof(struct xdp_rxq_info,
6205 queue_index));
6206 break;
6207 }
6208
6209 return insn - insn_buf;
6210 }
6211
6212 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6213 * context Structure, F is Field in context structure that contains a pointer
6214 * to Nested Structure of type NS that has the field NF.
6215 *
6216 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6217 * sure that SIZE is not greater than actual size of S.F.NF.
6218 *
6219 * If offset OFF is provided, the load happens from that offset relative to
6220 * offset of NF.
6221 */
6222 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
6223 do { \
6224 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
6225 si->src_reg, offsetof(S, F)); \
6226 *insn++ = BPF_LDX_MEM( \
6227 SIZE, si->dst_reg, si->dst_reg, \
6228 bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF), \
6229 target_size) \
6230 + OFF); \
6231 } while (0)
6232
6233 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
6234 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
6235 BPF_FIELD_SIZEOF(NS, NF), 0)
6236
6237 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6238 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6239 *
6240 * It doesn't support SIZE argument though since narrow stores are not
6241 * supported for now.
6242 *
6243 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6244 * "register" since two registers available in convert_ctx_access are not
6245 * enough: we can't override neither SRC, since it contains value to store, nor
6246 * DST since it contains pointer to context that may be used by later
6247 * instructions. But we need a temporary place to save pointer to nested
6248 * structure whose field we want to store to.
6249 */
6250 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF) \
6251 do { \
6252 int tmp_reg = BPF_REG_9; \
6253 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
6254 --tmp_reg; \
6255 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
6256 --tmp_reg; \
6257 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
6258 offsetof(S, TF)); \
6259 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
6260 si->dst_reg, offsetof(S, F)); \
6261 *insn++ = BPF_STX_MEM( \
6262 BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg, \
6263 bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF), \
6264 target_size) \
6265 + OFF); \
6266 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
6267 offsetof(S, TF)); \
6268 } while (0)
6269
6270 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6271 TF) \
6272 do { \
6273 if (type == BPF_WRITE) { \
6274 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, \
6275 TF); \
6276 } else { \
6277 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
6278 S, NS, F, NF, SIZE, OFF); \
6279 } \
6280 } while (0)
6281
6282 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
6283 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
6284 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6285
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6286 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6287 const struct bpf_insn *si,
6288 struct bpf_insn *insn_buf,
6289 struct bpf_prog *prog, u32 *target_size)
6290 {
6291 struct bpf_insn *insn = insn_buf;
6292 int off;
6293
6294 switch (si->off) {
6295 case offsetof(struct bpf_sock_addr, user_family):
6296 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6297 struct sockaddr, uaddr, sa_family);
6298 break;
6299
6300 case offsetof(struct bpf_sock_addr, user_ip4):
6301 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6302 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6303 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6304 break;
6305
6306 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6307 off = si->off;
6308 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6309 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6310 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6311 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6312 tmp_reg);
6313 break;
6314
6315 case offsetof(struct bpf_sock_addr, user_port):
6316 /* To get port we need to know sa_family first and then treat
6317 * sockaddr as either sockaddr_in or sockaddr_in6.
6318 * Though we can simplify since port field has same offset and
6319 * size in both structures.
6320 * Here we check this invariant and use just one of the
6321 * structures if it's true.
6322 */
6323 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6324 offsetof(struct sockaddr_in6, sin6_port));
6325 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6326 FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6327 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6328 struct sockaddr_in6, uaddr,
6329 sin6_port, tmp_reg);
6330 break;
6331
6332 case offsetof(struct bpf_sock_addr, family):
6333 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6334 struct sock, sk, sk_family);
6335 break;
6336
6337 case offsetof(struct bpf_sock_addr, type):
6338 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6339 struct bpf_sock_addr_kern, struct sock, sk,
6340 __sk_flags_offset, BPF_W, 0);
6341 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6342 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6343 break;
6344
6345 case offsetof(struct bpf_sock_addr, protocol):
6346 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6347 struct bpf_sock_addr_kern, struct sock, sk,
6348 __sk_flags_offset, BPF_W, 0);
6349 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6350 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6351 SK_FL_PROTO_SHIFT);
6352 break;
6353
6354 case offsetof(struct bpf_sock_addr, msg_src_ip4):
6355 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
6356 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6357 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6358 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6359 break;
6360
6361 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6362 msg_src_ip6[3]):
6363 off = si->off;
6364 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6365 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6366 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6367 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6368 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6369 break;
6370 }
6371
6372 return insn - insn_buf;
6373 }
6374
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6375 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6376 const struct bpf_insn *si,
6377 struct bpf_insn *insn_buf,
6378 struct bpf_prog *prog,
6379 u32 *target_size)
6380 {
6381 struct bpf_insn *insn = insn_buf;
6382 int off;
6383
6384 switch (si->off) {
6385 case offsetof(struct bpf_sock_ops, op) ...
6386 offsetof(struct bpf_sock_ops, replylong[3]):
6387 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6388 FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6389 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6390 FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6391 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6392 FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6393 off = si->off;
6394 off -= offsetof(struct bpf_sock_ops, op);
6395 off += offsetof(struct bpf_sock_ops_kern, op);
6396 if (type == BPF_WRITE)
6397 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6398 off);
6399 else
6400 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6401 off);
6402 break;
6403
6404 case offsetof(struct bpf_sock_ops, family):
6405 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6406
6407 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6408 struct bpf_sock_ops_kern, sk),
6409 si->dst_reg, si->src_reg,
6410 offsetof(struct bpf_sock_ops_kern, sk));
6411 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6412 offsetof(struct sock_common, skc_family));
6413 break;
6414
6415 case offsetof(struct bpf_sock_ops, remote_ip4):
6416 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6417
6418 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6419 struct bpf_sock_ops_kern, sk),
6420 si->dst_reg, si->src_reg,
6421 offsetof(struct bpf_sock_ops_kern, sk));
6422 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6423 offsetof(struct sock_common, skc_daddr));
6424 break;
6425
6426 case offsetof(struct bpf_sock_ops, local_ip4):
6427 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6428 skc_rcv_saddr) != 4);
6429
6430 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6431 struct bpf_sock_ops_kern, sk),
6432 si->dst_reg, si->src_reg,
6433 offsetof(struct bpf_sock_ops_kern, sk));
6434 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6435 offsetof(struct sock_common,
6436 skc_rcv_saddr));
6437 break;
6438
6439 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6440 offsetof(struct bpf_sock_ops, remote_ip6[3]):
6441 #if IS_ENABLED(CONFIG_IPV6)
6442 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6443 skc_v6_daddr.s6_addr32[0]) != 4);
6444
6445 off = si->off;
6446 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6447 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6448 struct bpf_sock_ops_kern, sk),
6449 si->dst_reg, si->src_reg,
6450 offsetof(struct bpf_sock_ops_kern, sk));
6451 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6452 offsetof(struct sock_common,
6453 skc_v6_daddr.s6_addr32[0]) +
6454 off);
6455 #else
6456 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6457 #endif
6458 break;
6459
6460 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6461 offsetof(struct bpf_sock_ops, local_ip6[3]):
6462 #if IS_ENABLED(CONFIG_IPV6)
6463 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6464 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6465
6466 off = si->off;
6467 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6468 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6469 struct bpf_sock_ops_kern, sk),
6470 si->dst_reg, si->src_reg,
6471 offsetof(struct bpf_sock_ops_kern, sk));
6472 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6473 offsetof(struct sock_common,
6474 skc_v6_rcv_saddr.s6_addr32[0]) +
6475 off);
6476 #else
6477 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6478 #endif
6479 break;
6480
6481 case offsetof(struct bpf_sock_ops, remote_port):
6482 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6483
6484 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6485 struct bpf_sock_ops_kern, sk),
6486 si->dst_reg, si->src_reg,
6487 offsetof(struct bpf_sock_ops_kern, sk));
6488 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6489 offsetof(struct sock_common, skc_dport));
6490 #ifndef __BIG_ENDIAN_BITFIELD
6491 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6492 #endif
6493 break;
6494
6495 case offsetof(struct bpf_sock_ops, local_port):
6496 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6497
6498 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6499 struct bpf_sock_ops_kern, sk),
6500 si->dst_reg, si->src_reg,
6501 offsetof(struct bpf_sock_ops_kern, sk));
6502 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6503 offsetof(struct sock_common, skc_num));
6504 break;
6505
6506 case offsetof(struct bpf_sock_ops, is_fullsock):
6507 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6508 struct bpf_sock_ops_kern,
6509 is_fullsock),
6510 si->dst_reg, si->src_reg,
6511 offsetof(struct bpf_sock_ops_kern,
6512 is_fullsock));
6513 break;
6514
6515 case offsetof(struct bpf_sock_ops, state):
6516 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6517
6518 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6519 struct bpf_sock_ops_kern, sk),
6520 si->dst_reg, si->src_reg,
6521 offsetof(struct bpf_sock_ops_kern, sk));
6522 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6523 offsetof(struct sock_common, skc_state));
6524 break;
6525
6526 case offsetof(struct bpf_sock_ops, rtt_min):
6527 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6528 sizeof(struct minmax));
6529 BUILD_BUG_ON(sizeof(struct minmax) <
6530 sizeof(struct minmax_sample));
6531
6532 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6533 struct bpf_sock_ops_kern, sk),
6534 si->dst_reg, si->src_reg,
6535 offsetof(struct bpf_sock_ops_kern, sk));
6536 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6537 offsetof(struct tcp_sock, rtt_min) +
6538 FIELD_SIZEOF(struct minmax_sample, t));
6539 break;
6540
6541 /* Helper macro for adding read access to tcp_sock or sock fields. */
6542 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
6543 do { \
6544 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) > \
6545 FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD)); \
6546 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6547 struct bpf_sock_ops_kern, \
6548 is_fullsock), \
6549 si->dst_reg, si->src_reg, \
6550 offsetof(struct bpf_sock_ops_kern, \
6551 is_fullsock)); \
6552 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2); \
6553 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6554 struct bpf_sock_ops_kern, sk),\
6555 si->dst_reg, si->src_reg, \
6556 offsetof(struct bpf_sock_ops_kern, sk));\
6557 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
6558 OBJ_FIELD), \
6559 si->dst_reg, si->dst_reg, \
6560 offsetof(OBJ, OBJ_FIELD)); \
6561 } while (0)
6562
6563 /* Helper macro for adding write access to tcp_sock or sock fields.
6564 * The macro is called with two registers, dst_reg which contains a pointer
6565 * to ctx (context) and src_reg which contains the value that should be
6566 * stored. However, we need an additional register since we cannot overwrite
6567 * dst_reg because it may be used later in the program.
6568 * Instead we "borrow" one of the other register. We first save its value
6569 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6570 * it at the end of the macro.
6571 */
6572 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
6573 do { \
6574 int reg = BPF_REG_9; \
6575 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) > \
6576 FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD)); \
6577 if (si->dst_reg == reg || si->src_reg == reg) \
6578 reg--; \
6579 if (si->dst_reg == reg || si->src_reg == reg) \
6580 reg--; \
6581 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
6582 offsetof(struct bpf_sock_ops_kern, \
6583 temp)); \
6584 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6585 struct bpf_sock_ops_kern, \
6586 is_fullsock), \
6587 reg, si->dst_reg, \
6588 offsetof(struct bpf_sock_ops_kern, \
6589 is_fullsock)); \
6590 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
6591 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6592 struct bpf_sock_ops_kern, sk),\
6593 reg, si->dst_reg, \
6594 offsetof(struct bpf_sock_ops_kern, sk));\
6595 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \
6596 reg, si->src_reg, \
6597 offsetof(OBJ, OBJ_FIELD)); \
6598 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
6599 offsetof(struct bpf_sock_ops_kern, \
6600 temp)); \
6601 } while (0)
6602
6603 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
6604 do { \
6605 if (TYPE == BPF_WRITE) \
6606 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
6607 else \
6608 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
6609 } while (0)
6610
6611 case offsetof(struct bpf_sock_ops, snd_cwnd):
6612 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6613 break;
6614
6615 case offsetof(struct bpf_sock_ops, srtt_us):
6616 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6617 break;
6618
6619 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6620 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6621 struct tcp_sock);
6622 break;
6623
6624 case offsetof(struct bpf_sock_ops, snd_ssthresh):
6625 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6626 break;
6627
6628 case offsetof(struct bpf_sock_ops, rcv_nxt):
6629 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6630 break;
6631
6632 case offsetof(struct bpf_sock_ops, snd_nxt):
6633 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6634 break;
6635
6636 case offsetof(struct bpf_sock_ops, snd_una):
6637 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6638 break;
6639
6640 case offsetof(struct bpf_sock_ops, mss_cache):
6641 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6642 break;
6643
6644 case offsetof(struct bpf_sock_ops, ecn_flags):
6645 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6646 break;
6647
6648 case offsetof(struct bpf_sock_ops, rate_delivered):
6649 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6650 struct tcp_sock);
6651 break;
6652
6653 case offsetof(struct bpf_sock_ops, rate_interval_us):
6654 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6655 struct tcp_sock);
6656 break;
6657
6658 case offsetof(struct bpf_sock_ops, packets_out):
6659 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6660 break;
6661
6662 case offsetof(struct bpf_sock_ops, retrans_out):
6663 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6664 break;
6665
6666 case offsetof(struct bpf_sock_ops, total_retrans):
6667 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6668 struct tcp_sock);
6669 break;
6670
6671 case offsetof(struct bpf_sock_ops, segs_in):
6672 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6673 break;
6674
6675 case offsetof(struct bpf_sock_ops, data_segs_in):
6676 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6677 break;
6678
6679 case offsetof(struct bpf_sock_ops, segs_out):
6680 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6681 break;
6682
6683 case offsetof(struct bpf_sock_ops, data_segs_out):
6684 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6685 struct tcp_sock);
6686 break;
6687
6688 case offsetof(struct bpf_sock_ops, lost_out):
6689 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6690 break;
6691
6692 case offsetof(struct bpf_sock_ops, sacked_out):
6693 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6694 break;
6695
6696 case offsetof(struct bpf_sock_ops, sk_txhash):
6697 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6698 struct sock, type);
6699 break;
6700
6701 case offsetof(struct bpf_sock_ops, bytes_received):
6702 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6703 struct tcp_sock);
6704 break;
6705
6706 case offsetof(struct bpf_sock_ops, bytes_acked):
6707 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6708 break;
6709
6710 }
6711 return insn - insn_buf;
6712 }
6713
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6714 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6715 const struct bpf_insn *si,
6716 struct bpf_insn *insn_buf,
6717 struct bpf_prog *prog, u32 *target_size)
6718 {
6719 struct bpf_insn *insn = insn_buf;
6720 int off;
6721
6722 switch (si->off) {
6723 case offsetof(struct __sk_buff, data_end):
6724 off = si->off;
6725 off -= offsetof(struct __sk_buff, data_end);
6726 off += offsetof(struct sk_buff, cb);
6727 off += offsetof(struct tcp_skb_cb, bpf.data_end);
6728 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6729 si->src_reg, off);
6730 break;
6731 default:
6732 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6733 target_size);
6734 }
6735
6736 return insn - insn_buf;
6737 }
6738
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6739 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6740 const struct bpf_insn *si,
6741 struct bpf_insn *insn_buf,
6742 struct bpf_prog *prog, u32 *target_size)
6743 {
6744 struct bpf_insn *insn = insn_buf;
6745 #if IS_ENABLED(CONFIG_IPV6)
6746 int off;
6747 #endif
6748
6749 switch (si->off) {
6750 case offsetof(struct sk_msg_md, data):
6751 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6752 si->dst_reg, si->src_reg,
6753 offsetof(struct sk_msg_buff, data));
6754 break;
6755 case offsetof(struct sk_msg_md, data_end):
6756 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6757 si->dst_reg, si->src_reg,
6758 offsetof(struct sk_msg_buff, data_end));
6759 break;
6760 case offsetof(struct sk_msg_md, family):
6761 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6762
6763 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6764 struct sk_msg_buff, sk),
6765 si->dst_reg, si->src_reg,
6766 offsetof(struct sk_msg_buff, sk));
6767 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6768 offsetof(struct sock_common, skc_family));
6769 break;
6770
6771 case offsetof(struct sk_msg_md, remote_ip4):
6772 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6773
6774 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6775 struct sk_msg_buff, sk),
6776 si->dst_reg, si->src_reg,
6777 offsetof(struct sk_msg_buff, sk));
6778 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6779 offsetof(struct sock_common, skc_daddr));
6780 break;
6781
6782 case offsetof(struct sk_msg_md, local_ip4):
6783 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6784 skc_rcv_saddr) != 4);
6785
6786 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6787 struct sk_msg_buff, sk),
6788 si->dst_reg, si->src_reg,
6789 offsetof(struct sk_msg_buff, sk));
6790 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6791 offsetof(struct sock_common,
6792 skc_rcv_saddr));
6793 break;
6794
6795 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6796 offsetof(struct sk_msg_md, remote_ip6[3]):
6797 #if IS_ENABLED(CONFIG_IPV6)
6798 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6799 skc_v6_daddr.s6_addr32[0]) != 4);
6800
6801 off = si->off;
6802 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6803 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6804 struct sk_msg_buff, sk),
6805 si->dst_reg, si->src_reg,
6806 offsetof(struct sk_msg_buff, sk));
6807 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6808 offsetof(struct sock_common,
6809 skc_v6_daddr.s6_addr32[0]) +
6810 off);
6811 #else
6812 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6813 #endif
6814 break;
6815
6816 case offsetof(struct sk_msg_md, local_ip6[0]) ...
6817 offsetof(struct sk_msg_md, local_ip6[3]):
6818 #if IS_ENABLED(CONFIG_IPV6)
6819 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6820 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6821
6822 off = si->off;
6823 off -= offsetof(struct sk_msg_md, local_ip6[0]);
6824 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6825 struct sk_msg_buff, sk),
6826 si->dst_reg, si->src_reg,
6827 offsetof(struct sk_msg_buff, sk));
6828 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6829 offsetof(struct sock_common,
6830 skc_v6_rcv_saddr.s6_addr32[0]) +
6831 off);
6832 #else
6833 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6834 #endif
6835 break;
6836
6837 case offsetof(struct sk_msg_md, remote_port):
6838 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6839
6840 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6841 struct sk_msg_buff, sk),
6842 si->dst_reg, si->src_reg,
6843 offsetof(struct sk_msg_buff, sk));
6844 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6845 offsetof(struct sock_common, skc_dport));
6846 #ifndef __BIG_ENDIAN_BITFIELD
6847 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6848 #endif
6849 break;
6850
6851 case offsetof(struct sk_msg_md, local_port):
6852 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6853
6854 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6855 struct sk_msg_buff, sk),
6856 si->dst_reg, si->src_reg,
6857 offsetof(struct sk_msg_buff, sk));
6858 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6859 offsetof(struct sock_common, skc_num));
6860 break;
6861 }
6862
6863 return insn - insn_buf;
6864 }
6865
6866 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6867 .get_func_proto = sk_filter_func_proto,
6868 .is_valid_access = sk_filter_is_valid_access,
6869 .convert_ctx_access = bpf_convert_ctx_access,
6870 .gen_ld_abs = bpf_gen_ld_abs,
6871 };
6872
6873 const struct bpf_prog_ops sk_filter_prog_ops = {
6874 .test_run = bpf_prog_test_run_skb,
6875 };
6876
6877 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6878 .get_func_proto = tc_cls_act_func_proto,
6879 .is_valid_access = tc_cls_act_is_valid_access,
6880 .convert_ctx_access = tc_cls_act_convert_ctx_access,
6881 .gen_prologue = tc_cls_act_prologue,
6882 .gen_ld_abs = bpf_gen_ld_abs,
6883 };
6884
6885 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6886 .test_run = bpf_prog_test_run_skb,
6887 };
6888
6889 const struct bpf_verifier_ops xdp_verifier_ops = {
6890 .get_func_proto = xdp_func_proto,
6891 .is_valid_access = xdp_is_valid_access,
6892 .convert_ctx_access = xdp_convert_ctx_access,
6893 };
6894
6895 const struct bpf_prog_ops xdp_prog_ops = {
6896 .test_run = bpf_prog_test_run_xdp,
6897 };
6898
6899 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6900 .get_func_proto = cg_skb_func_proto,
6901 .is_valid_access = sk_filter_is_valid_access,
6902 .convert_ctx_access = bpf_convert_ctx_access,
6903 };
6904
6905 const struct bpf_prog_ops cg_skb_prog_ops = {
6906 .test_run = bpf_prog_test_run_skb,
6907 };
6908
6909 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6910 .get_func_proto = lwt_in_func_proto,
6911 .is_valid_access = lwt_is_valid_access,
6912 .convert_ctx_access = bpf_convert_ctx_access,
6913 };
6914
6915 const struct bpf_prog_ops lwt_in_prog_ops = {
6916 .test_run = bpf_prog_test_run_skb,
6917 };
6918
6919 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6920 .get_func_proto = lwt_out_func_proto,
6921 .is_valid_access = lwt_is_valid_access,
6922 .convert_ctx_access = bpf_convert_ctx_access,
6923 };
6924
6925 const struct bpf_prog_ops lwt_out_prog_ops = {
6926 .test_run = bpf_prog_test_run_skb,
6927 };
6928
6929 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6930 .get_func_proto = lwt_xmit_func_proto,
6931 .is_valid_access = lwt_is_valid_access,
6932 .convert_ctx_access = bpf_convert_ctx_access,
6933 .gen_prologue = tc_cls_act_prologue,
6934 };
6935
6936 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6937 .test_run = bpf_prog_test_run_skb,
6938 };
6939
6940 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6941 .get_func_proto = lwt_seg6local_func_proto,
6942 .is_valid_access = lwt_is_valid_access,
6943 .convert_ctx_access = bpf_convert_ctx_access,
6944 };
6945
6946 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6947 .test_run = bpf_prog_test_run_skb,
6948 };
6949
6950 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6951 .get_func_proto = sock_filter_func_proto,
6952 .is_valid_access = sock_filter_is_valid_access,
6953 .convert_ctx_access = sock_filter_convert_ctx_access,
6954 };
6955
6956 const struct bpf_prog_ops cg_sock_prog_ops = {
6957 };
6958
6959 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6960 .get_func_proto = sock_addr_func_proto,
6961 .is_valid_access = sock_addr_is_valid_access,
6962 .convert_ctx_access = sock_addr_convert_ctx_access,
6963 };
6964
6965 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6966 };
6967
6968 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6969 .get_func_proto = sock_ops_func_proto,
6970 .is_valid_access = sock_ops_is_valid_access,
6971 .convert_ctx_access = sock_ops_convert_ctx_access,
6972 };
6973
6974 const struct bpf_prog_ops sock_ops_prog_ops = {
6975 };
6976
6977 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6978 .get_func_proto = sk_skb_func_proto,
6979 .is_valid_access = sk_skb_is_valid_access,
6980 .convert_ctx_access = sk_skb_convert_ctx_access,
6981 .gen_prologue = sk_skb_prologue,
6982 };
6983
6984 const struct bpf_prog_ops sk_skb_prog_ops = {
6985 };
6986
6987 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6988 .get_func_proto = sk_msg_func_proto,
6989 .is_valid_access = sk_msg_is_valid_access,
6990 .convert_ctx_access = sk_msg_convert_ctx_access,
6991 };
6992
6993 const struct bpf_prog_ops sk_msg_prog_ops = {
6994 };
6995
sk_detach_filter(struct sock * sk)6996 int sk_detach_filter(struct sock *sk)
6997 {
6998 int ret = -ENOENT;
6999 struct sk_filter *filter;
7000
7001 if (sock_flag(sk, SOCK_FILTER_LOCKED))
7002 return -EPERM;
7003
7004 filter = rcu_dereference_protected(sk->sk_filter,
7005 lockdep_sock_is_held(sk));
7006 if (filter) {
7007 RCU_INIT_POINTER(sk->sk_filter, NULL);
7008 sk_filter_uncharge(sk, filter);
7009 ret = 0;
7010 }
7011
7012 return ret;
7013 }
7014 EXPORT_SYMBOL_GPL(sk_detach_filter);
7015
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)7016 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7017 unsigned int len)
7018 {
7019 struct sock_fprog_kern *fprog;
7020 struct sk_filter *filter;
7021 int ret = 0;
7022
7023 lock_sock(sk);
7024 filter = rcu_dereference_protected(sk->sk_filter,
7025 lockdep_sock_is_held(sk));
7026 if (!filter)
7027 goto out;
7028
7029 /* We're copying the filter that has been originally attached,
7030 * so no conversion/decode needed anymore. eBPF programs that
7031 * have no original program cannot be dumped through this.
7032 */
7033 ret = -EACCES;
7034 fprog = filter->prog->orig_prog;
7035 if (!fprog)
7036 goto out;
7037
7038 ret = fprog->len;
7039 if (!len)
7040 /* User space only enquires number of filter blocks. */
7041 goto out;
7042
7043 ret = -EINVAL;
7044 if (len < fprog->len)
7045 goto out;
7046
7047 ret = -EFAULT;
7048 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7049 goto out;
7050
7051 /* Instead of bytes, the API requests to return the number
7052 * of filter blocks.
7053 */
7054 ret = fprog->len;
7055 out:
7056 release_sock(sk);
7057 return ret;
7058 }
7059
7060 #ifdef CONFIG_INET
7061 struct sk_reuseport_kern {
7062 struct sk_buff *skb;
7063 struct sock *sk;
7064 struct sock *selected_sk;
7065 void *data_end;
7066 u32 hash;
7067 u32 reuseport_id;
7068 bool bind_inany;
7069 };
7070
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)7071 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
7072 struct sock_reuseport *reuse,
7073 struct sock *sk, struct sk_buff *skb,
7074 u32 hash)
7075 {
7076 reuse_kern->skb = skb;
7077 reuse_kern->sk = sk;
7078 reuse_kern->selected_sk = NULL;
7079 reuse_kern->data_end = skb->data + skb_headlen(skb);
7080 reuse_kern->hash = hash;
7081 reuse_kern->reuseport_id = reuse->reuseport_id;
7082 reuse_kern->bind_inany = reuse->bind_inany;
7083 }
7084
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)7085 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
7086 struct bpf_prog *prog, struct sk_buff *skb,
7087 u32 hash)
7088 {
7089 struct sk_reuseport_kern reuse_kern;
7090 enum sk_action action;
7091
7092 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
7093 action = BPF_PROG_RUN(prog, &reuse_kern);
7094
7095 if (action == SK_PASS)
7096 return reuse_kern.selected_sk;
7097 else
7098 return ERR_PTR(-ECONNREFUSED);
7099 }
7100
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)7101 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
7102 struct bpf_map *, map, void *, key, u32, flags)
7103 {
7104 struct sock_reuseport *reuse;
7105 struct sock *selected_sk;
7106
7107 selected_sk = map->ops->map_lookup_elem(map, key);
7108 if (!selected_sk)
7109 return -ENOENT;
7110
7111 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
7112 if (!reuse)
7113 /* selected_sk is unhashed (e.g. by close()) after the
7114 * above map_lookup_elem(). Treat selected_sk has already
7115 * been removed from the map.
7116 */
7117 return -ENOENT;
7118
7119 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
7120 struct sock *sk;
7121
7122 if (unlikely(!reuse_kern->reuseport_id))
7123 /* There is a small race between adding the
7124 * sk to the map and setting the
7125 * reuse_kern->reuseport_id.
7126 * Treat it as the sk has not been added to
7127 * the bpf map yet.
7128 */
7129 return -ENOENT;
7130
7131 sk = reuse_kern->sk;
7132 if (sk->sk_protocol != selected_sk->sk_protocol)
7133 return -EPROTOTYPE;
7134 else if (sk->sk_family != selected_sk->sk_family)
7135 return -EAFNOSUPPORT;
7136
7137 /* Catch all. Likely bound to a different sockaddr. */
7138 return -EBADFD;
7139 }
7140
7141 reuse_kern->selected_sk = selected_sk;
7142
7143 return 0;
7144 }
7145
7146 static const struct bpf_func_proto sk_select_reuseport_proto = {
7147 .func = sk_select_reuseport,
7148 .gpl_only = false,
7149 .ret_type = RET_INTEGER,
7150 .arg1_type = ARG_PTR_TO_CTX,
7151 .arg2_type = ARG_CONST_MAP_PTR,
7152 .arg3_type = ARG_PTR_TO_MAP_KEY,
7153 .arg4_type = ARG_ANYTHING,
7154 };
7155
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)7156 BPF_CALL_4(sk_reuseport_load_bytes,
7157 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7158 void *, to, u32, len)
7159 {
7160 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
7161 }
7162
7163 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
7164 .func = sk_reuseport_load_bytes,
7165 .gpl_only = false,
7166 .ret_type = RET_INTEGER,
7167 .arg1_type = ARG_PTR_TO_CTX,
7168 .arg2_type = ARG_ANYTHING,
7169 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
7170 .arg4_type = ARG_CONST_SIZE,
7171 };
7172
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)7173 BPF_CALL_5(sk_reuseport_load_bytes_relative,
7174 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7175 void *, to, u32, len, u32, start_header)
7176 {
7177 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
7178 len, start_header);
7179 }
7180
7181 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
7182 .func = sk_reuseport_load_bytes_relative,
7183 .gpl_only = false,
7184 .ret_type = RET_INTEGER,
7185 .arg1_type = ARG_PTR_TO_CTX,
7186 .arg2_type = ARG_ANYTHING,
7187 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
7188 .arg4_type = ARG_CONST_SIZE,
7189 .arg5_type = ARG_ANYTHING,
7190 };
7191
7192 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7193 sk_reuseport_func_proto(enum bpf_func_id func_id,
7194 const struct bpf_prog *prog)
7195 {
7196 switch (func_id) {
7197 case BPF_FUNC_sk_select_reuseport:
7198 return &sk_select_reuseport_proto;
7199 case BPF_FUNC_skb_load_bytes:
7200 return &sk_reuseport_load_bytes_proto;
7201 case BPF_FUNC_skb_load_bytes_relative:
7202 return &sk_reuseport_load_bytes_relative_proto;
7203 default:
7204 return bpf_base_func_proto(func_id);
7205 }
7206 }
7207
7208 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7209 sk_reuseport_is_valid_access(int off, int size,
7210 enum bpf_access_type type,
7211 const struct bpf_prog *prog,
7212 struct bpf_insn_access_aux *info)
7213 {
7214 const u32 size_default = sizeof(__u32);
7215
7216 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
7217 off % size || type != BPF_READ)
7218 return false;
7219
7220 switch (off) {
7221 case offsetof(struct sk_reuseport_md, data):
7222 info->reg_type = PTR_TO_PACKET;
7223 return size == sizeof(__u64);
7224
7225 case offsetof(struct sk_reuseport_md, data_end):
7226 info->reg_type = PTR_TO_PACKET_END;
7227 return size == sizeof(__u64);
7228
7229 case offsetof(struct sk_reuseport_md, hash):
7230 return size == size_default;
7231
7232 /* Fields that allow narrowing */
7233 case offsetof(struct sk_reuseport_md, eth_protocol):
7234 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
7235 return false;
7236 /* fall through */
7237 case offsetof(struct sk_reuseport_md, ip_protocol):
7238 case offsetof(struct sk_reuseport_md, bind_inany):
7239 case offsetof(struct sk_reuseport_md, len):
7240 bpf_ctx_record_field_size(info, size_default);
7241 return bpf_ctx_narrow_access_ok(off, size, size_default);
7242
7243 default:
7244 return false;
7245 }
7246 }
7247
7248 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
7249 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7250 si->dst_reg, si->src_reg, \
7251 bpf_target_off(struct sk_reuseport_kern, F, \
7252 FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7253 target_size)); \
7254 })
7255
7256 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
7257 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
7258 struct sk_buff, \
7259 skb, \
7260 SKB_FIELD)
7261
7262 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
7263 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern, \
7264 struct sock, \
7265 sk, \
7266 SK_FIELD, BPF_SIZE, EXTRA_OFF)
7267
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7268 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
7269 const struct bpf_insn *si,
7270 struct bpf_insn *insn_buf,
7271 struct bpf_prog *prog,
7272 u32 *target_size)
7273 {
7274 struct bpf_insn *insn = insn_buf;
7275
7276 switch (si->off) {
7277 case offsetof(struct sk_reuseport_md, data):
7278 SK_REUSEPORT_LOAD_SKB_FIELD(data);
7279 break;
7280
7281 case offsetof(struct sk_reuseport_md, len):
7282 SK_REUSEPORT_LOAD_SKB_FIELD(len);
7283 break;
7284
7285 case offsetof(struct sk_reuseport_md, eth_protocol):
7286 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
7287 break;
7288
7289 case offsetof(struct sk_reuseport_md, ip_protocol):
7290 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7291 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
7292 BPF_W, 0);
7293 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7294 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7295 SK_FL_PROTO_SHIFT);
7296 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
7297 * aware. No further narrowing or masking is needed.
7298 */
7299 *target_size = 1;
7300 break;
7301
7302 case offsetof(struct sk_reuseport_md, data_end):
7303 SK_REUSEPORT_LOAD_FIELD(data_end);
7304 break;
7305
7306 case offsetof(struct sk_reuseport_md, hash):
7307 SK_REUSEPORT_LOAD_FIELD(hash);
7308 break;
7309
7310 case offsetof(struct sk_reuseport_md, bind_inany):
7311 SK_REUSEPORT_LOAD_FIELD(bind_inany);
7312 break;
7313 }
7314
7315 return insn - insn_buf;
7316 }
7317
7318 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
7319 .get_func_proto = sk_reuseport_func_proto,
7320 .is_valid_access = sk_reuseport_is_valid_access,
7321 .convert_ctx_access = sk_reuseport_convert_ctx_access,
7322 };
7323
7324 const struct bpf_prog_ops sk_reuseport_prog_ops = {
7325 };
7326 #endif /* CONFIG_INET */
7327