Home
last modified time | relevance | path

Searched refs:memory (Results 1 – 25 of 2540) sorted by relevance

12345678910>>...102

/Linux-v4.19/tools/testing/selftests/memory-hotplug/
Dmem-on-off-test.sh25 if ! ls $SYSFS/devices/system/memory/memory* > /dev/null 2>&1; then
26 echo $msg memory hotplug is not supported >&2
30 if ! grep -q 1 $SYSFS/devices/system/memory/memory*/removable; then
31 echo $msg no hot-pluggable memory >&2
43 for memory in $SYSFS/devices/system/memory/memory*; do
44 if grep -q 1 $memory/removable &&
45 grep -q $state $memory/state; then
46 echo ${memory##/*/memory}
63 grep -q online $SYSFS/devices/system/memory/memory$1/state
68 grep -q offline $SYSFS/devices/system/memory/memory$1/state
[all …]
/Linux-v4.19/drivers/gpu/drm/nouveau/nvkm/core/
Dmemory.c30 nvkm_memory_tags_put(struct nvkm_memory *memory, struct nvkm_device *device, in nvkm_memory_tags_put() argument
39 kfree(memory->tags); in nvkm_memory_tags_put()
40 memory->tags = NULL; in nvkm_memory_tags_put()
48 nvkm_memory_tags_get(struct nvkm_memory *memory, struct nvkm_device *device, in nvkm_memory_tags_get() argument
56 if ((tags = memory->tags)) { in nvkm_memory_tags_get()
101 struct nvkm_memory *memory) in nvkm_memory_ctor() argument
103 memory->func = func; in nvkm_memory_ctor()
104 kref_init(&memory->kref); in nvkm_memory_ctor()
110 struct nvkm_memory *memory = container_of(kref, typeof(*memory), kref); in nvkm_memory_del() local
111 if (!WARN_ON(!memory->func)) { in nvkm_memory_del()
[all …]
/Linux-v4.19/Documentation/
Dmemory-hotplug.txt6 :Updated: Add description of notifier of memory hotplug: Oct 11 2007
8 This document is about memory hotplug including how-to-use and current status.
15 1.1 purpose of memory hotplug
16 1.2. Phases of memory hotplug
19 3. sysfs files for memory hotplug
20 4. Physical memory hot-add phase
22 4.2 Notify memory hot-add event by hand
24 5.1. State of memory
25 5.2. How to online memory
26 6. Logical memory remove
[all …]
Dbus-virt-phys-mapping.txt2 How to access I/O mapped memory from within device drivers
22 (because all bus master devices see the physical memory mappings directly).
25 at memory addresses, and in this case we actually want the third, the
28 Essentially, the three ways of addressing memory are (this is "real memory",
32 0 is what the CPU sees when it drives zeroes on the memory bus.
38 - bus address. This is the address of memory as seen by OTHER devices,
40 addresses, with each device seeing memory in some device-specific way, but
43 external hardware sees the memory the same way.
47 because the memory and the devices share the same address space, and that is
51 CPU sees a memory map something like this (this is from memory)::
[all …]
/Linux-v4.19/Documentation/ABI/testing/
Dsysfs-devices-memory1 What: /sys/devices/system/memory
5 The /sys/devices/system/memory contains a snapshot of the
6 internal state of the kernel memory blocks. Files could be
9 Users: hotplug memory add/remove tools
12 What: /sys/devices/system/memory/memoryX/removable
16 The file /sys/devices/system/memory/memoryX/removable
17 indicates whether this memory block is removable or not.
19 identify removable sections of the memory before attempting
20 potentially expensive hot-remove memory operation
21 Users: hotplug memory remove tools
[all …]
/Linux-v4.19/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/
Dmem.c22 #define nvkm_mem(p) container_of((p), struct nvkm_mem, memory)
31 struct nvkm_memory memory; member
43 nvkm_mem_target(struct nvkm_memory *memory) in nvkm_mem_target() argument
45 return nvkm_mem(memory)->target; in nvkm_mem_target()
49 nvkm_mem_page(struct nvkm_memory *memory) in nvkm_mem_page() argument
55 nvkm_mem_addr(struct nvkm_memory *memory) in nvkm_mem_addr() argument
57 struct nvkm_mem *mem = nvkm_mem(memory); in nvkm_mem_addr()
64 nvkm_mem_size(struct nvkm_memory *memory) in nvkm_mem_size() argument
66 return nvkm_mem(memory)->pages << PAGE_SHIFT; in nvkm_mem_size()
70 nvkm_mem_map_dma(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, in nvkm_mem_map_dma() argument
[all …]
Dumem.c38 struct nvkm_memory *memory = NULL; in nvkm_umem_search() local
48 memory = nvkm_memory_ref(umem->memory); in nvkm_umem_search()
57 memory = nvkm_memory_ref(umem->memory); in nvkm_umem_search()
60 return memory ? memory : ERR_PTR(-ENOENT); in nvkm_umem_search()
99 int ret = nvkm_mem_map_host(umem->memory, &umem->map); in nvkm_umem_map()
104 *length = nvkm_memory_size(umem->memory); in nvkm_umem_map()
110 int ret = mmu->func->mem.umap(mmu, umem->memory, argv, argc, in nvkm_umem_map()
131 nvkm_memory_unref(&umem->memory); in nvkm_umem_dtor()
180 &umem->memory); in nvkm_umem_new()
188 args->v0.page = nvkm_memory_page(umem->memory); in nvkm_umem_new()
[all …]
/Linux-v4.19/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/
Dnv50.c43 #define nv50_instobj(p) container_of((p), struct nv50_instobj, base.memory)
56 nv50_instobj_wr32_slow(struct nvkm_memory *memory, u64 offset, u32 data) in nv50_instobj_wr32_slow() argument
58 struct nv50_instobj *iobj = nv50_instobj(memory); in nv50_instobj_wr32_slow()
75 nv50_instobj_rd32_slow(struct nvkm_memory *memory, u64 offset) in nv50_instobj_rd32_slow() argument
77 struct nv50_instobj *iobj = nv50_instobj(memory); in nv50_instobj_rd32_slow()
102 nv50_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) in nv50_instobj_wr32() argument
104 iowrite32_native(data, nv50_instobj(memory)->map + offset); in nv50_instobj_wr32()
108 nv50_instobj_rd32(struct nvkm_memory *memory, u64 offset) in nv50_instobj_rd32() argument
110 return ioread32_native(nv50_instobj(memory)->map + offset); in nv50_instobj_rd32()
124 struct nvkm_memory *memory = &iobj->base.memory; in nv50_instobj_kmap() local
[all …]
Dbase.c34 struct nvkm_memory *memory = &iobj->memory; in nvkm_instobj_load() local
35 const u64 size = nvkm_memory_size(memory); in nvkm_instobj_load()
39 if (!(map = nvkm_kmap(memory))) { in nvkm_instobj_load()
41 nvkm_wo32(memory, i, iobj->suspend[i / 4]); in nvkm_instobj_load()
45 nvkm_done(memory); in nvkm_instobj_load()
54 struct nvkm_memory *memory = &iobj->memory; in nvkm_instobj_save() local
55 const u64 size = nvkm_memory_size(memory); in nvkm_instobj_save()
63 if (!(map = nvkm_kmap(memory))) { in nvkm_instobj_save()
65 iobj->suspend[i / 4] = nvkm_ro32(memory, i); in nvkm_instobj_save()
69 nvkm_done(memory); in nvkm_instobj_save()
[all …]
Dgk20a.c52 struct nvkm_memory memory; member
59 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
116 gk20a_instobj_target(struct nvkm_memory *memory) in gk20a_instobj_target() argument
122 gk20a_instobj_page(struct nvkm_memory *memory) in gk20a_instobj_page() argument
128 gk20a_instobj_addr(struct nvkm_memory *memory) in gk20a_instobj_addr() argument
130 return (u64)gk20a_instobj(memory)->mn->offset << 12; in gk20a_instobj_addr()
134 gk20a_instobj_size(struct nvkm_memory *memory) in gk20a_instobj_size() argument
136 return (u64)gk20a_instobj(memory)->mn->length << 12; in gk20a_instobj_size()
151 imem->vaddr_use -= nvkm_memory_size(&obj->base.memory); in gk20a_instobj_iommu_recycle_vaddr()
174 gk20a_instobj_acquire_dma(struct nvkm_memory *memory) in gk20a_instobj_acquire_dma() argument
[all …]
Dnv04.c37 #define nv04_instobj(p) container_of((p), struct nv04_instobj, base.memory)
46 nv04_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) in nv04_instobj_wr32() argument
48 struct nv04_instobj *iobj = nv04_instobj(memory); in nv04_instobj_wr32()
54 nv04_instobj_rd32(struct nvkm_memory *memory, u64 offset) in nv04_instobj_rd32() argument
56 struct nv04_instobj *iobj = nv04_instobj(memory); in nv04_instobj_rd32()
68 nv04_instobj_release(struct nvkm_memory *memory) in nv04_instobj_release() argument
73 nv04_instobj_acquire(struct nvkm_memory *memory) in nv04_instobj_acquire() argument
75 struct nv04_instobj *iobj = nv04_instobj(memory); in nv04_instobj_acquire()
81 nv04_instobj_size(struct nvkm_memory *memory) in nv04_instobj_size() argument
83 return nv04_instobj(memory)->node->length; in nv04_instobj_size()
[all …]
Dnv40.c39 #define nv40_instobj(p) container_of((p), struct nv40_instobj, base.memory)
48 nv40_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) in nv40_instobj_wr32() argument
50 struct nv40_instobj *iobj = nv40_instobj(memory); in nv40_instobj_wr32()
55 nv40_instobj_rd32(struct nvkm_memory *memory, u64 offset) in nv40_instobj_rd32() argument
57 struct nv40_instobj *iobj = nv40_instobj(memory); in nv40_instobj_rd32()
68 nv40_instobj_release(struct nvkm_memory *memory) in nv40_instobj_release() argument
74 nv40_instobj_acquire(struct nvkm_memory *memory) in nv40_instobj_acquire() argument
76 struct nv40_instobj *iobj = nv40_instobj(memory); in nv40_instobj_acquire()
81 nv40_instobj_size(struct nvkm_memory *memory) in nv40_instobj_size() argument
83 return nv40_instobj(memory)->node->length; in nv40_instobj_size()
[all …]
/Linux-v4.19/Documentation/cgroup-v1/
Dmemory.txt9 memory controller in this document. Do not confuse memory controller
10 used here with the memory controller that is used in hardware.
14 When we mention a cgroup (cgroupfs's directory) with memory controller,
15 we call it "memory cgroup". When you see git-log and source code, you'll
19 Benefits and Purpose of the memory controller
21 The memory controller isolates the memory behaviour of a group of tasks
23 uses of the memory controller. The memory controller can be used to
27 amount of memory.
28 b. Create a cgroup with a limited amount of memory; this can be used
30 c. Virtualization solutions can control the amount of memory they want
[all …]
/Linux-v4.19/Documentation/devicetree/bindings/reserved-memory/
Dreserved-memory.txt1 *** Reserved memory regions ***
3 Reserved memory is specified as a node under the /reserved-memory node.
4 The operating system shall exclude reserved memory from normal usage
6 normal use) memory regions. Such memory regions are usually designed for
9 Parameters for each memory region can be encoded into the device tree
12 /reserved-memory node
19 /reserved-memory/ child nodes
21 Each child of the reserved-memory node specifies one or more regions of
22 reserved memory. Each child node may either use a 'reg' property to
23 specify a specific range of reserved memory, or a 'size' property with
[all …]
/Linux-v4.19/drivers/staging/octeon/
Dethernet-mem.c52 char *memory; in cvm_oct_free_hw_skbuff() local
55 memory = cvmx_fpa_alloc(pool); in cvm_oct_free_hw_skbuff()
56 if (memory) { in cvm_oct_free_hw_skbuff()
58 *(struct sk_buff **)(memory - sizeof(void *)); in cvm_oct_free_hw_skbuff()
62 } while (memory); in cvm_oct_free_hw_skbuff()
82 char *memory; in cvm_oct_fill_hw_memory() local
97 memory = kmalloc(size + 256, GFP_ATOMIC); in cvm_oct_fill_hw_memory()
98 if (unlikely(!memory)) { in cvm_oct_fill_hw_memory()
103 fpa = (char *)(((unsigned long)memory + 256) & ~0x7fUL); in cvm_oct_fill_hw_memory()
104 *((char **)fpa - 1) = memory; in cvm_oct_fill_hw_memory()
[all …]
/Linux-v4.19/Documentation/admin-guide/mm/
Dconcepts.rst7 The memory management in Linux is complex system that evolved over the
9 systems from MMU-less microcontrollers to supercomputers. The memory
21 The physical memory in a computer system is a limited resource and
22 even for systems that support memory hotplug there is a hard limit on
23 the amount of memory that can be installed. The physical memory is not
29 All this makes dealing directly with physical memory quite complex and
30 to avoid this complexity a concept of virtual memory was developed.
32 The virtual memory abstracts the details of physical memory from the
34 physical memory (demand paging) and provides a mechanism for the
37 With virtual memory, each and every memory access uses a virtual
[all …]
/Linux-v4.19/Documentation/vm/
Dnuma.rst14 or more CPUs, local memory, and/or IO buses. For brevity and to
28 Coherent NUMA or ccNUMA systems. With ccNUMA systems, all memory is visible
32 Memory access time and effective memory bandwidth varies depending on how far
33 away the cell containing the CPU or IO bus making the memory access is from the
34 cell containing the target memory. For example, access to memory by CPUs
36 bandwidths than accesses to memory on other, remote cells. NUMA platforms
41 memory bandwidth. However, to achieve scalable memory bandwidth, system and
42 application software must arrange for a large majority of the memory references
43 [cache misses] to be to "local" memory--memory on the same cell, if any--or
44 to the closest cell with memory.
[all …]
Dhmm.rst7 Provide infrastructure and helpers to integrate non-conventional memory (device
8 memory like GPU on board memory) into regular kernel path, with the cornerstone
9 of this being specialized struct page for such memory (see sections 5 to 7 of
20 related to using device specific memory allocators. In the second section, I
24 fifth section deals with how device memory is represented inside the kernel.
30 Problems of using a device specific memory allocator
33 Devices with a large amount of on board memory (several gigabytes) like GPUs
34 have historically managed their memory through dedicated driver specific APIs.
35 This creates a disconnect between memory allocated and managed by a device
36 driver and regular application memory (private anonymous, shared memory, or
[all …]
/Linux-v4.19/drivers/gpu/drm/nouveau/nvkm/engine/fifo/
Dgv100.c33 struct nvkm_memory *memory, u32 offset) in gv100_fifo_runlist_chan() argument
39 nvkm_wo32(memory, offset + 0x0, lower_32_bits(user)); in gv100_fifo_runlist_chan()
40 nvkm_wo32(memory, offset + 0x4, upper_32_bits(user)); in gv100_fifo_runlist_chan()
41 nvkm_wo32(memory, offset + 0x8, lower_32_bits(inst) | chan->base.chid); in gv100_fifo_runlist_chan()
42 nvkm_wo32(memory, offset + 0xc, upper_32_bits(inst)); in gv100_fifo_runlist_chan()
47 struct nvkm_memory *memory, u32 offset) in gv100_fifo_runlist_cgrp() argument
49 nvkm_wo32(memory, offset + 0x0, (128 << 24) | (3 << 16) | 0x00000001); in gv100_fifo_runlist_cgrp()
50 nvkm_wo32(memory, offset + 0x4, cgrp->chan_nr); in gv100_fifo_runlist_cgrp()
51 nvkm_wo32(memory, offset + 0x8, cgrp->id); in gv100_fifo_runlist_cgrp()
52 nvkm_wo32(memory, offset + 0xc, 0x00000000); in gv100_fifo_runlist_cgrp()
/Linux-v4.19/drivers/gpu/drm/nouveau/nvkm/subdev/fb/
Dram.c24 #define nvkm_vram(p) container_of((p), struct nvkm_vram, memory)
31 struct nvkm_memory memory; member
38 nvkm_vram_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, in nvkm_vram_map() argument
41 struct nvkm_vram *vram = nvkm_vram(memory); in nvkm_vram_map()
43 .memory = &vram->memory, in nvkm_vram_map()
52 nvkm_vram_size(struct nvkm_memory *memory) in nvkm_vram_size() argument
54 return (u64)nvkm_mm_size(nvkm_vram(memory)->mn) << NVKM_RAM_MM_SHIFT; in nvkm_vram_size()
58 nvkm_vram_addr(struct nvkm_memory *memory) in nvkm_vram_addr() argument
60 struct nvkm_vram *vram = nvkm_vram(memory); in nvkm_vram_addr()
67 nvkm_vram_page(struct nvkm_memory *memory) in nvkm_vram_page() argument
[all …]
/Linux-v4.19/Documentation/devicetree/bindings/memory-controllers/fsl/
Dddr.txt1 Freescale DDR memory controller
5 - compatible : Should include "fsl,chip-memory-controller" where
7 "fsl,qoriq-memory-controller".
15 memory-controller@2000 {
16 compatible = "fsl,bsc9132-memory-controller";
24 ddr1: memory-controller@8000 {
25 compatible = "fsl,qoriq-memory-controller-v4.7",
26 "fsl,qoriq-memory-controller";
/Linux-v4.19/Documentation/powerpc/
Dfirmware-assisted-dump.txt13 - Fadump uses the same firmware interfaces and memory reservation model
15 - Unlike phyp dump, fadump exports the memory dump through /proc/vmcore
20 - Unlike phyp dump, fadump allows user to release all the memory reserved
34 -- Once the dump is copied out, the memory that held the dump
43 -- The first kernel registers the sections of memory with the
45 These registered sections of memory are reserved by the first
49 the low memory (boot memory of size larger of 5% of system RAM
53 NOTE: The term 'boot memory' means size of the low memory chunk
55 booted with restricted memory. By default, the boot memory
57 Alternatively, user can also specify boot memory size
[all …]
/Linux-v4.19/arch/arm64/boot/dts/renesas/
Dr8a7795-es1-h3ulcb.dts17 memory@48000000 {
18 device_type = "memory";
23 memory@500000000 {
24 device_type = "memory";
28 memory@600000000 {
29 device_type = "memory";
33 memory@700000000 {
34 device_type = "memory";
Dr8a7795-h3ulcb.dts17 memory@48000000 {
18 device_type = "memory";
23 memory@500000000 {
24 device_type = "memory";
28 memory@600000000 {
29 device_type = "memory";
33 memory@700000000 {
34 device_type = "memory";
/Linux-v4.19/Documentation/devicetree/bindings/pmem/
Dpmem-region.txt1 Device-tree bindings for persistent memory regions
4 Persistent memory refers to a class of memory devices that are:
6 a) Usable as main system memory (i.e. cacheable), and
9 Given b) it is best to think of persistent memory as a kind of memory mapped
11 persistent regions separately to the normal memory pool. To aid with that this
13 memory regions exist inside the physical address space.
24 range should be mappable as normal system memory would be
36 backed by non-persistent memory. This lets the OS know that it
41 is backed by non-volatile memory.
48 * 0x5000 to 0x5fff that is backed by non-volatile memory.
[all …]

12345678910>>...102