1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /*
54  * Maximum number of blkcg policies allowed to be registered concurrently.
55  * Defined here to simplify include dependency.
56  */
57 #define BLKCG_MAX_POLS		5
58 
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60 
61 #define BLK_RL_SYNCFULL		(1U << 0)
62 #define BLK_RL_ASYNCFULL	(1U << 1)
63 
64 struct request_list {
65 	struct request_queue	*q;	/* the queue this rl belongs to */
66 #ifdef CONFIG_BLK_CGROUP
67 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
68 #endif
69 	/*
70 	 * count[], starved[], and wait[] are indexed by
71 	 * BLK_RW_SYNC/BLK_RW_ASYNC
72 	 */
73 	int			count[2];
74 	int			starved[2];
75 	mempool_t		*rq_pool;
76 	wait_queue_head_t	wait[2];
77 	unsigned int		flags;
78 };
79 
80 /*
81  * request flags */
82 typedef __u32 __bitwise req_flags_t;
83 
84 /* elevator knows about this request */
85 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
86 /* drive already may have started this one */
87 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
88 /* uses tagged queueing */
89 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
90 /* may not be passed by ioscheduler */
91 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
92 /* request for flush sequence */
93 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
94 /* merge of different types, fail separately */
95 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
96 /* track inflight for MQ */
97 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
98 /* don't call prep for this one */
99 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
100 /* set for "ide_preempt" requests and also for requests for which the SCSI
101    "quiesce" state must be ignored. */
102 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
103 /* contains copies of user pages */
104 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
105 /* vaguely specified driver internal error.  Ignored by the block layer */
106 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
107 /* don't warn about errors */
108 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
109 /* elevator private data attached */
110 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
111 /* account I/O stat */
112 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
113 /* request came from our alloc pool */
114 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
115 /* runtime pm request */
116 #define RQF_PM			((__force req_flags_t)(1 << 15))
117 /* on IO scheduler merge hash */
118 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
119 /* IO stats tracking on */
120 #define RQF_STATS		((__force req_flags_t)(1 << 17))
121 /* Look at ->special_vec for the actual data payload instead of the
122    bio chain. */
123 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
124 /* The per-zone write lock is held for this request */
125 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
126 /* already slept for hybrid poll */
127 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
128 /* ->timeout has been called, don't expire again */
129 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
130 
131 /* flags that prevent us from merging requests: */
132 #define RQF_NOMERGE_FLAGS \
133 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
134 
135 /*
136  * Request state for blk-mq.
137  */
138 enum mq_rq_state {
139 	MQ_RQ_IDLE		= 0,
140 	MQ_RQ_IN_FLIGHT		= 1,
141 	MQ_RQ_COMPLETE		= 2,
142 };
143 
144 /*
145  * Try to put the fields that are referenced together in the same cacheline.
146  *
147  * If you modify this structure, make sure to update blk_rq_init() and
148  * especially blk_mq_rq_ctx_init() to take care of the added fields.
149  */
150 struct request {
151 	struct request_queue *q;
152 	struct blk_mq_ctx *mq_ctx;
153 
154 	int cpu;
155 	unsigned int cmd_flags;		/* op and common flags */
156 	req_flags_t rq_flags;
157 
158 	int internal_tag;
159 
160 	/* the following two fields are internal, NEVER access directly */
161 	unsigned int __data_len;	/* total data len */
162 	int tag;
163 	sector_t __sector;		/* sector cursor */
164 
165 	struct bio *bio;
166 	struct bio *biotail;
167 
168 	struct list_head queuelist;
169 
170 	/*
171 	 * The hash is used inside the scheduler, and killed once the
172 	 * request reaches the dispatch list. The ipi_list is only used
173 	 * to queue the request for softirq completion, which is long
174 	 * after the request has been unhashed (and even removed from
175 	 * the dispatch list).
176 	 */
177 	union {
178 		struct hlist_node hash;	/* merge hash */
179 		struct list_head ipi_list;
180 	};
181 
182 	/*
183 	 * The rb_node is only used inside the io scheduler, requests
184 	 * are pruned when moved to the dispatch queue. So let the
185 	 * completion_data share space with the rb_node.
186 	 */
187 	union {
188 		struct rb_node rb_node;	/* sort/lookup */
189 		struct bio_vec special_vec;
190 		void *completion_data;
191 		int error_count; /* for legacy drivers, don't use */
192 	};
193 
194 	/*
195 	 * Three pointers are available for the IO schedulers, if they need
196 	 * more they have to dynamically allocate it.  Flush requests are
197 	 * never put on the IO scheduler. So let the flush fields share
198 	 * space with the elevator data.
199 	 */
200 	union {
201 		struct {
202 			struct io_cq		*icq;
203 			void			*priv[2];
204 		} elv;
205 
206 		struct {
207 			unsigned int		seq;
208 			struct list_head	list;
209 			rq_end_io_fn		*saved_end_io;
210 		} flush;
211 	};
212 
213 	struct gendisk *rq_disk;
214 	struct hd_struct *part;
215 	/* Time that I/O was submitted to the kernel. */
216 	u64 start_time_ns;
217 	/* Time that I/O was submitted to the device. */
218 	u64 io_start_time_ns;
219 
220 #ifdef CONFIG_BLK_WBT
221 	unsigned short wbt_flags;
222 #endif
223 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
224 	unsigned short throtl_size;
225 #endif
226 
227 	/*
228 	 * Number of scatter-gather DMA addr+len pairs after
229 	 * physical address coalescing is performed.
230 	 */
231 	unsigned short nr_phys_segments;
232 
233 #if defined(CONFIG_BLK_DEV_INTEGRITY)
234 	unsigned short nr_integrity_segments;
235 #endif
236 
237 	unsigned short write_hint;
238 	unsigned short ioprio;
239 
240 	void *special;		/* opaque pointer available for LLD use */
241 
242 	unsigned int extra_len;	/* length of alignment and padding */
243 
244 	enum mq_rq_state state;
245 	refcount_t ref;
246 
247 	unsigned int timeout;
248 
249 	/* access through blk_rq_set_deadline, blk_rq_deadline */
250 	unsigned long __deadline;
251 
252 	struct list_head timeout_list;
253 
254 	union {
255 		struct __call_single_data csd;
256 		u64 fifo_time;
257 	};
258 
259 	/*
260 	 * completion callback.
261 	 */
262 	rq_end_io_fn *end_io;
263 	void *end_io_data;
264 
265 	/* for bidi */
266 	struct request *next_rq;
267 
268 #ifdef CONFIG_BLK_CGROUP
269 	struct request_list *rl;		/* rl this rq is alloced from */
270 #endif
271 };
272 
blk_op_is_scsi(unsigned int op)273 static inline bool blk_op_is_scsi(unsigned int op)
274 {
275 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
276 }
277 
blk_op_is_private(unsigned int op)278 static inline bool blk_op_is_private(unsigned int op)
279 {
280 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
281 }
282 
blk_rq_is_scsi(struct request * rq)283 static inline bool blk_rq_is_scsi(struct request *rq)
284 {
285 	return blk_op_is_scsi(req_op(rq));
286 }
287 
blk_rq_is_private(struct request * rq)288 static inline bool blk_rq_is_private(struct request *rq)
289 {
290 	return blk_op_is_private(req_op(rq));
291 }
292 
blk_rq_is_passthrough(struct request * rq)293 static inline bool blk_rq_is_passthrough(struct request *rq)
294 {
295 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
296 }
297 
bio_is_passthrough(struct bio * bio)298 static inline bool bio_is_passthrough(struct bio *bio)
299 {
300 	unsigned op = bio_op(bio);
301 
302 	return blk_op_is_scsi(op) || blk_op_is_private(op);
303 }
304 
req_get_ioprio(struct request * req)305 static inline unsigned short req_get_ioprio(struct request *req)
306 {
307 	return req->ioprio;
308 }
309 
310 #include <linux/elevator.h>
311 
312 struct blk_queue_ctx;
313 
314 typedef void (request_fn_proc) (struct request_queue *q);
315 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
316 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
317 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
318 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
319 
320 struct bio_vec;
321 typedef void (softirq_done_fn)(struct request *);
322 typedef int (dma_drain_needed_fn)(struct request *);
323 typedef int (lld_busy_fn) (struct request_queue *q);
324 typedef int (bsg_job_fn) (struct bsg_job *);
325 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
326 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
327 
328 enum blk_eh_timer_return {
329 	BLK_EH_DONE,		/* drivers has completed the command */
330 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
331 };
332 
333 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
334 
335 enum blk_queue_state {
336 	Queue_down,
337 	Queue_up,
338 };
339 
340 struct blk_queue_tag {
341 	struct request **tag_index;	/* map of busy tags */
342 	unsigned long *tag_map;		/* bit map of free/busy tags */
343 	int max_depth;			/* what we will send to device */
344 	int real_max_depth;		/* what the array can hold */
345 	atomic_t refcnt;		/* map can be shared */
346 	int alloc_policy;		/* tag allocation policy */
347 	int next_tag;			/* next tag */
348 };
349 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
350 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
351 
352 #define BLK_SCSI_MAX_CMDS	(256)
353 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
354 
355 /*
356  * Zoned block device models (zoned limit).
357  */
358 enum blk_zoned_model {
359 	BLK_ZONED_NONE,	/* Regular block device */
360 	BLK_ZONED_HA,	/* Host-aware zoned block device */
361 	BLK_ZONED_HM,	/* Host-managed zoned block device */
362 };
363 
364 struct queue_limits {
365 	unsigned long		bounce_pfn;
366 	unsigned long		seg_boundary_mask;
367 	unsigned long		virt_boundary_mask;
368 
369 	unsigned int		max_hw_sectors;
370 	unsigned int		max_dev_sectors;
371 	unsigned int		chunk_sectors;
372 	unsigned int		max_sectors;
373 	unsigned int		max_segment_size;
374 	unsigned int		physical_block_size;
375 	unsigned int		alignment_offset;
376 	unsigned int		io_min;
377 	unsigned int		io_opt;
378 	unsigned int		max_discard_sectors;
379 	unsigned int		max_hw_discard_sectors;
380 	unsigned int		max_write_same_sectors;
381 	unsigned int		max_write_zeroes_sectors;
382 	unsigned int		discard_granularity;
383 	unsigned int		discard_alignment;
384 
385 	unsigned short		logical_block_size;
386 	unsigned short		max_segments;
387 	unsigned short		max_integrity_segments;
388 	unsigned short		max_discard_segments;
389 
390 	unsigned char		misaligned;
391 	unsigned char		discard_misaligned;
392 	unsigned char		cluster;
393 	unsigned char		raid_partial_stripes_expensive;
394 	enum blk_zoned_model	zoned;
395 };
396 
397 #ifdef CONFIG_BLK_DEV_ZONED
398 
399 struct blk_zone_report_hdr {
400 	unsigned int	nr_zones;
401 	u8		padding[60];
402 };
403 
404 extern int blkdev_report_zones(struct block_device *bdev,
405 			       sector_t sector, struct blk_zone *zones,
406 			       unsigned int *nr_zones, gfp_t gfp_mask);
407 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
408 			      sector_t nr_sectors, gfp_t gfp_mask);
409 
410 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
411 				     unsigned int cmd, unsigned long arg);
412 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
413 				    unsigned int cmd, unsigned long arg);
414 
415 #else /* CONFIG_BLK_DEV_ZONED */
416 
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)417 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
418 					    fmode_t mode, unsigned int cmd,
419 					    unsigned long arg)
420 {
421 	return -ENOTTY;
422 }
423 
blkdev_reset_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)424 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
425 					   fmode_t mode, unsigned int cmd,
426 					   unsigned long arg)
427 {
428 	return -ENOTTY;
429 }
430 
431 #endif /* CONFIG_BLK_DEV_ZONED */
432 
433 struct request_queue {
434 	/*
435 	 * Together with queue_head for cacheline sharing
436 	 */
437 	struct list_head	queue_head;
438 	struct request		*last_merge;
439 	struct elevator_queue	*elevator;
440 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
441 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
442 
443 	struct blk_queue_stats	*stats;
444 	struct rq_qos		*rq_qos;
445 
446 	/*
447 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
448 	 * is used, root blkg allocates from @q->root_rl and all other
449 	 * blkgs from their own blkg->rl.  Which one to use should be
450 	 * determined using bio_request_list().
451 	 */
452 	struct request_list	root_rl;
453 
454 	request_fn_proc		*request_fn;
455 	make_request_fn		*make_request_fn;
456 	poll_q_fn		*poll_fn;
457 	prep_rq_fn		*prep_rq_fn;
458 	unprep_rq_fn		*unprep_rq_fn;
459 	softirq_done_fn		*softirq_done_fn;
460 	rq_timed_out_fn		*rq_timed_out_fn;
461 	dma_drain_needed_fn	*dma_drain_needed;
462 	lld_busy_fn		*lld_busy_fn;
463 	/* Called just after a request is allocated */
464 	init_rq_fn		*init_rq_fn;
465 	/* Called just before a request is freed */
466 	exit_rq_fn		*exit_rq_fn;
467 	/* Called from inside blk_get_request() */
468 	void (*initialize_rq_fn)(struct request *rq);
469 
470 	const struct blk_mq_ops	*mq_ops;
471 
472 	unsigned int		*mq_map;
473 
474 	/* sw queues */
475 	struct blk_mq_ctx __percpu	*queue_ctx;
476 	unsigned int		nr_queues;
477 
478 	unsigned int		queue_depth;
479 
480 	/* hw dispatch queues */
481 	struct blk_mq_hw_ctx	**queue_hw_ctx;
482 	unsigned int		nr_hw_queues;
483 
484 	/*
485 	 * Dispatch queue sorting
486 	 */
487 	sector_t		end_sector;
488 	struct request		*boundary_rq;
489 
490 	/*
491 	 * Delayed queue handling
492 	 */
493 	struct delayed_work	delay_work;
494 
495 	struct backing_dev_info	*backing_dev_info;
496 
497 	/*
498 	 * The queue owner gets to use this for whatever they like.
499 	 * ll_rw_blk doesn't touch it.
500 	 */
501 	void			*queuedata;
502 
503 	/*
504 	 * various queue flags, see QUEUE_* below
505 	 */
506 	unsigned long		queue_flags;
507 
508 	/*
509 	 * ida allocated id for this queue.  Used to index queues from
510 	 * ioctx.
511 	 */
512 	int			id;
513 
514 	/*
515 	 * queue needs bounce pages for pages above this limit
516 	 */
517 	gfp_t			bounce_gfp;
518 
519 	/*
520 	 * protects queue structures from reentrancy. ->__queue_lock should
521 	 * _never_ be used directly, it is queue private. always use
522 	 * ->queue_lock.
523 	 */
524 	spinlock_t		__queue_lock;
525 	spinlock_t		*queue_lock;
526 
527 	/*
528 	 * queue kobject
529 	 */
530 	struct kobject kobj;
531 
532 	/*
533 	 * mq queue kobject
534 	 */
535 	struct kobject mq_kobj;
536 
537 #ifdef  CONFIG_BLK_DEV_INTEGRITY
538 	struct blk_integrity integrity;
539 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
540 
541 #ifdef CONFIG_PM
542 	struct device		*dev;
543 	int			rpm_status;
544 	unsigned int		nr_pending;
545 #endif
546 
547 	/*
548 	 * queue settings
549 	 */
550 	unsigned long		nr_requests;	/* Max # of requests */
551 	unsigned int		nr_congestion_on;
552 	unsigned int		nr_congestion_off;
553 	unsigned int		nr_batching;
554 
555 	unsigned int		dma_drain_size;
556 	void			*dma_drain_buffer;
557 	unsigned int		dma_pad_mask;
558 	unsigned int		dma_alignment;
559 
560 	struct blk_queue_tag	*queue_tags;
561 
562 	unsigned int		nr_sorted;
563 	unsigned int		in_flight[2];
564 
565 	/*
566 	 * Number of active block driver functions for which blk_drain_queue()
567 	 * must wait. Must be incremented around functions that unlock the
568 	 * queue_lock internally, e.g. scsi_request_fn().
569 	 */
570 	unsigned int		request_fn_active;
571 
572 	unsigned int		rq_timeout;
573 	int			poll_nsec;
574 
575 	struct blk_stat_callback	*poll_cb;
576 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
577 
578 	struct timer_list	timeout;
579 	struct work_struct	timeout_work;
580 	struct list_head	timeout_list;
581 
582 	struct list_head	icq_list;
583 #ifdef CONFIG_BLK_CGROUP
584 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
585 	struct blkcg_gq		*root_blkg;
586 	struct list_head	blkg_list;
587 #endif
588 
589 	struct queue_limits	limits;
590 
591 #ifdef CONFIG_BLK_DEV_ZONED
592 	/*
593 	 * Zoned block device information for request dispatch control.
594 	 * nr_zones is the total number of zones of the device. This is always
595 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
596 	 * bits which indicates if a zone is conventional (bit clear) or
597 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
598 	 * bits which indicates if a zone is write locked, that is, if a write
599 	 * request targeting the zone was dispatched. All three fields are
600 	 * initialized by the low level device driver (e.g. scsi/sd.c).
601 	 * Stacking drivers (device mappers) may or may not initialize
602 	 * these fields.
603 	 *
604 	 * Reads of this information must be protected with blk_queue_enter() /
605 	 * blk_queue_exit(). Modifying this information is only allowed while
606 	 * no requests are being processed. See also blk_mq_freeze_queue() and
607 	 * blk_mq_unfreeze_queue().
608 	 */
609 	unsigned int		nr_zones;
610 	unsigned long		*seq_zones_bitmap;
611 	unsigned long		*seq_zones_wlock;
612 #endif /* CONFIG_BLK_DEV_ZONED */
613 
614 	/*
615 	 * sg stuff
616 	 */
617 	unsigned int		sg_timeout;
618 	unsigned int		sg_reserved_size;
619 	int			node;
620 #ifdef CONFIG_BLK_DEV_IO_TRACE
621 	struct blk_trace	*blk_trace;
622 	struct mutex		blk_trace_mutex;
623 #endif
624 	/*
625 	 * for flush operations
626 	 */
627 	struct blk_flush_queue	*fq;
628 
629 	struct list_head	requeue_list;
630 	spinlock_t		requeue_lock;
631 	struct delayed_work	requeue_work;
632 
633 	struct mutex		sysfs_lock;
634 
635 	int			bypass_depth;
636 	atomic_t		mq_freeze_depth;
637 
638 #if defined(CONFIG_BLK_DEV_BSG)
639 	bsg_job_fn		*bsg_job_fn;
640 	struct bsg_class_device bsg_dev;
641 #endif
642 
643 #ifdef CONFIG_BLK_DEV_THROTTLING
644 	/* Throttle data */
645 	struct throtl_data *td;
646 #endif
647 	struct rcu_head		rcu_head;
648 	wait_queue_head_t	mq_freeze_wq;
649 	struct percpu_ref	q_usage_counter;
650 	struct list_head	all_q_node;
651 
652 	struct blk_mq_tag_set	*tag_set;
653 	struct list_head	tag_set_list;
654 	struct bio_set		bio_split;
655 
656 #ifdef CONFIG_BLK_DEBUG_FS
657 	struct dentry		*debugfs_dir;
658 	struct dentry		*sched_debugfs_dir;
659 #endif
660 
661 	bool			mq_sysfs_init_done;
662 
663 	size_t			cmd_size;
664 	void			*rq_alloc_data;
665 
666 	struct work_struct	release_work;
667 
668 #define BLK_MAX_WRITE_HINTS	5
669 	u64			write_hints[BLK_MAX_WRITE_HINTS];
670 };
671 
672 #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
673 #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
674 #define QUEUE_FLAG_DYING	2	/* queue being torn down */
675 #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
676 #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
677 #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
678 #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
679 #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
680 #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
681 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
682 #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
683 #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
684 #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
685 #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
686 #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
687 #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
688 #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
689 #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
690 #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
691 #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
692 #define QUEUE_FLAG_WC	       20	/* Write back caching */
693 #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
694 #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
695 #define QUEUE_FLAG_DAX         23	/* device supports DAX */
696 #define QUEUE_FLAG_STATS       24	/* track rq completion times */
697 #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
698 #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
699 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
700 #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
701 #define QUEUE_FLAG_PREEMPT_ONLY	29	/* only process REQ_PREEMPT requests */
702 
703 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
704 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
705 				 (1 << QUEUE_FLAG_ADD_RANDOM))
706 
707 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
708 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
709 				 (1 << QUEUE_FLAG_POLL))
710 
711 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
712 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
713 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
714 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q);
715 
716 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
717 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
718 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
719 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
720 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
721 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
722 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
723 #define blk_queue_noxmerges(q)	\
724 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
725 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
726 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
727 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
728 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
729 #define blk_queue_secure_erase(q) \
730 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
731 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
732 #define blk_queue_scsi_passthrough(q)	\
733 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
734 
735 #define blk_noretry_request(rq) \
736 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
737 			     REQ_FAILFAST_DRIVER))
738 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
739 #define blk_queue_preempt_only(q)				\
740 	test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags)
741 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
742 
743 extern int blk_set_preempt_only(struct request_queue *q);
744 extern void blk_clear_preempt_only(struct request_queue *q);
745 
queue_in_flight(struct request_queue * q)746 static inline int queue_in_flight(struct request_queue *q)
747 {
748 	return q->in_flight[0] + q->in_flight[1];
749 }
750 
blk_account_rq(struct request * rq)751 static inline bool blk_account_rq(struct request *rq)
752 {
753 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
754 }
755 
756 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
757 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
758 /* rq->queuelist of dequeued request must be list_empty() */
759 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
760 
761 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
762 
763 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
764 
765 /*
766  * Driver can handle struct request, if it either has an old style
767  * request_fn defined, or is blk-mq based.
768  */
queue_is_rq_based(struct request_queue * q)769 static inline bool queue_is_rq_based(struct request_queue *q)
770 {
771 	return q->request_fn || q->mq_ops;
772 }
773 
blk_queue_cluster(struct request_queue * q)774 static inline unsigned int blk_queue_cluster(struct request_queue *q)
775 {
776 	return q->limits.cluster;
777 }
778 
779 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)780 blk_queue_zoned_model(struct request_queue *q)
781 {
782 	return q->limits.zoned;
783 }
784 
blk_queue_is_zoned(struct request_queue * q)785 static inline bool blk_queue_is_zoned(struct request_queue *q)
786 {
787 	switch (blk_queue_zoned_model(q)) {
788 	case BLK_ZONED_HA:
789 	case BLK_ZONED_HM:
790 		return true;
791 	default:
792 		return false;
793 	}
794 }
795 
blk_queue_zone_sectors(struct request_queue * q)796 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
797 {
798 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
799 }
800 
801 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_zone_no(struct request_queue * q,sector_t sector)802 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
803 					     sector_t sector)
804 {
805 	if (!blk_queue_is_zoned(q))
806 		return 0;
807 	return sector >> ilog2(q->limits.chunk_sectors);
808 }
809 
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)810 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
811 					 sector_t sector)
812 {
813 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
814 		return false;
815 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
816 }
817 #endif /* CONFIG_BLK_DEV_ZONED */
818 
rq_is_sync(struct request * rq)819 static inline bool rq_is_sync(struct request *rq)
820 {
821 	return op_is_sync(rq->cmd_flags);
822 }
823 
blk_rl_full(struct request_list * rl,bool sync)824 static inline bool blk_rl_full(struct request_list *rl, bool sync)
825 {
826 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
827 
828 	return rl->flags & flag;
829 }
830 
blk_set_rl_full(struct request_list * rl,bool sync)831 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
832 {
833 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
834 
835 	rl->flags |= flag;
836 }
837 
blk_clear_rl_full(struct request_list * rl,bool sync)838 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
839 {
840 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
841 
842 	rl->flags &= ~flag;
843 }
844 
rq_mergeable(struct request * rq)845 static inline bool rq_mergeable(struct request *rq)
846 {
847 	if (blk_rq_is_passthrough(rq))
848 		return false;
849 
850 	if (req_op(rq) == REQ_OP_FLUSH)
851 		return false;
852 
853 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
854 		return false;
855 
856 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
857 		return false;
858 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
859 		return false;
860 
861 	return true;
862 }
863 
blk_write_same_mergeable(struct bio * a,struct bio * b)864 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
865 {
866 	if (bio_page(a) == bio_page(b) &&
867 	    bio_offset(a) == bio_offset(b))
868 		return true;
869 
870 	return false;
871 }
872 
blk_queue_depth(struct request_queue * q)873 static inline unsigned int blk_queue_depth(struct request_queue *q)
874 {
875 	if (q->queue_depth)
876 		return q->queue_depth;
877 
878 	return q->nr_requests;
879 }
880 
881 /*
882  * q->prep_rq_fn return values
883  */
884 enum {
885 	BLKPREP_OK,		/* serve it */
886 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
887 	BLKPREP_DEFER,		/* leave on queue */
888 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
889 };
890 
891 extern unsigned long blk_max_low_pfn, blk_max_pfn;
892 
893 /*
894  * standard bounce addresses:
895  *
896  * BLK_BOUNCE_HIGH	: bounce all highmem pages
897  * BLK_BOUNCE_ANY	: don't bounce anything
898  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
899  */
900 
901 #if BITS_PER_LONG == 32
902 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
903 #else
904 #define BLK_BOUNCE_HIGH		-1ULL
905 #endif
906 #define BLK_BOUNCE_ANY		(-1ULL)
907 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
908 
909 /*
910  * default timeout for SG_IO if none specified
911  */
912 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
913 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
914 
915 struct rq_map_data {
916 	struct page **pages;
917 	int page_order;
918 	int nr_entries;
919 	unsigned long offset;
920 	int null_mapped;
921 	int from_user;
922 };
923 
924 struct req_iterator {
925 	struct bvec_iter iter;
926 	struct bio *bio;
927 };
928 
929 /* This should not be used directly - use rq_for_each_segment */
930 #define for_each_bio(_bio)		\
931 	for (; _bio; _bio = _bio->bi_next)
932 #define __rq_for_each_bio(_bio, rq)	\
933 	if ((rq->bio))			\
934 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
935 
936 #define rq_for_each_segment(bvl, _rq, _iter)			\
937 	__rq_for_each_bio(_iter.bio, _rq)			\
938 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
939 
940 #define rq_iter_last(bvec, _iter)				\
941 		(_iter.bio->bi_next == NULL &&			\
942 		 bio_iter_last(bvec, _iter.iter))
943 
944 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
945 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
946 #endif
947 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
948 extern void rq_flush_dcache_pages(struct request *rq);
949 #else
rq_flush_dcache_pages(struct request * rq)950 static inline void rq_flush_dcache_pages(struct request *rq)
951 {
952 }
953 #endif
954 
955 extern int blk_register_queue(struct gendisk *disk);
956 extern void blk_unregister_queue(struct gendisk *disk);
957 extern blk_qc_t generic_make_request(struct bio *bio);
958 extern blk_qc_t direct_make_request(struct bio *bio);
959 extern void blk_rq_init(struct request_queue *q, struct request *rq);
960 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
961 extern void blk_put_request(struct request *);
962 extern void __blk_put_request(struct request_queue *, struct request *);
963 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
964 				       blk_mq_req_flags_t flags);
965 extern void blk_requeue_request(struct request_queue *, struct request *);
966 extern int blk_lld_busy(struct request_queue *q);
967 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
968 			     struct bio_set *bs, gfp_t gfp_mask,
969 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
970 			     void *data);
971 extern void blk_rq_unprep_clone(struct request *rq);
972 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
973 				     struct request *rq);
974 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
975 extern void blk_delay_queue(struct request_queue *, unsigned long);
976 extern void blk_queue_split(struct request_queue *, struct bio **);
977 extern void blk_recount_segments(struct request_queue *, struct bio *);
978 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
979 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
980 			      unsigned int, void __user *);
981 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
982 			  unsigned int, void __user *);
983 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
984 			 struct scsi_ioctl_command __user *);
985 
986 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
987 extern void blk_queue_exit(struct request_queue *q);
988 extern void blk_start_queue(struct request_queue *q);
989 extern void blk_start_queue_async(struct request_queue *q);
990 extern void blk_stop_queue(struct request_queue *q);
991 extern void blk_sync_queue(struct request_queue *q);
992 extern void __blk_stop_queue(struct request_queue *q);
993 extern void __blk_run_queue(struct request_queue *q);
994 extern void __blk_run_queue_uncond(struct request_queue *q);
995 extern void blk_run_queue(struct request_queue *);
996 extern void blk_run_queue_async(struct request_queue *q);
997 extern int blk_rq_map_user(struct request_queue *, struct request *,
998 			   struct rq_map_data *, void __user *, unsigned long,
999 			   gfp_t);
1000 extern int blk_rq_unmap_user(struct bio *);
1001 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1002 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1003 			       struct rq_map_data *, const struct iov_iter *,
1004 			       gfp_t);
1005 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1006 			  struct request *, int);
1007 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1008 				  struct request *, int, rq_end_io_fn *);
1009 
1010 int blk_status_to_errno(blk_status_t status);
1011 blk_status_t errno_to_blk_status(int errno);
1012 
1013 bool blk_poll(struct request_queue *q, blk_qc_t cookie);
1014 
bdev_get_queue(struct block_device * bdev)1015 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1016 {
1017 	return bdev->bd_disk->queue;	/* this is never NULL */
1018 }
1019 
1020 /*
1021  * The basic unit of block I/O is a sector. It is used in a number of contexts
1022  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
1023  * bytes. Variables of type sector_t represent an offset or size that is a
1024  * multiple of 512 bytes. Hence these two constants.
1025  */
1026 #ifndef SECTOR_SHIFT
1027 #define SECTOR_SHIFT 9
1028 #endif
1029 #ifndef SECTOR_SIZE
1030 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
1031 #endif
1032 
1033 /*
1034  * blk_rq_pos()			: the current sector
1035  * blk_rq_bytes()		: bytes left in the entire request
1036  * blk_rq_cur_bytes()		: bytes left in the current segment
1037  * blk_rq_err_bytes()		: bytes left till the next error boundary
1038  * blk_rq_sectors()		: sectors left in the entire request
1039  * blk_rq_cur_sectors()		: sectors left in the current segment
1040  */
blk_rq_pos(const struct request * rq)1041 static inline sector_t blk_rq_pos(const struct request *rq)
1042 {
1043 	return rq->__sector;
1044 }
1045 
blk_rq_bytes(const struct request * rq)1046 static inline unsigned int blk_rq_bytes(const struct request *rq)
1047 {
1048 	return rq->__data_len;
1049 }
1050 
blk_rq_cur_bytes(const struct request * rq)1051 static inline int blk_rq_cur_bytes(const struct request *rq)
1052 {
1053 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1054 }
1055 
1056 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1057 
blk_rq_sectors(const struct request * rq)1058 static inline unsigned int blk_rq_sectors(const struct request *rq)
1059 {
1060 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1061 }
1062 
blk_rq_cur_sectors(const struct request * rq)1063 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1064 {
1065 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1066 }
1067 
1068 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)1069 static inline unsigned int blk_rq_zone_no(struct request *rq)
1070 {
1071 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1072 }
1073 
blk_rq_zone_is_seq(struct request * rq)1074 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1075 {
1076 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1077 }
1078 #endif /* CONFIG_BLK_DEV_ZONED */
1079 
1080 /*
1081  * Some commands like WRITE SAME have a payload or data transfer size which
1082  * is different from the size of the request.  Any driver that supports such
1083  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1084  * calculate the data transfer size.
1085  */
blk_rq_payload_bytes(struct request * rq)1086 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1087 {
1088 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1089 		return rq->special_vec.bv_len;
1090 	return blk_rq_bytes(rq);
1091 }
1092 
blk_queue_get_max_sectors(struct request_queue * q,int op)1093 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1094 						     int op)
1095 {
1096 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1097 		return min(q->limits.max_discard_sectors,
1098 			   UINT_MAX >> SECTOR_SHIFT);
1099 
1100 	if (unlikely(op == REQ_OP_WRITE_SAME))
1101 		return q->limits.max_write_same_sectors;
1102 
1103 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1104 		return q->limits.max_write_zeroes_sectors;
1105 
1106 	return q->limits.max_sectors;
1107 }
1108 
1109 /*
1110  * Return maximum size of a request at given offset. Only valid for
1111  * file system requests.
1112  */
blk_max_size_offset(struct request_queue * q,sector_t offset)1113 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1114 					       sector_t offset)
1115 {
1116 	if (!q->limits.chunk_sectors)
1117 		return q->limits.max_sectors;
1118 
1119 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1120 			(offset & (q->limits.chunk_sectors - 1))));
1121 }
1122 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1123 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1124 						  sector_t offset)
1125 {
1126 	struct request_queue *q = rq->q;
1127 
1128 	if (blk_rq_is_passthrough(rq))
1129 		return q->limits.max_hw_sectors;
1130 
1131 	if (!q->limits.chunk_sectors ||
1132 	    req_op(rq) == REQ_OP_DISCARD ||
1133 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1134 		return blk_queue_get_max_sectors(q, req_op(rq));
1135 
1136 	return min(blk_max_size_offset(q, offset),
1137 			blk_queue_get_max_sectors(q, req_op(rq)));
1138 }
1139 
blk_rq_count_bios(struct request * rq)1140 static inline unsigned int blk_rq_count_bios(struct request *rq)
1141 {
1142 	unsigned int nr_bios = 0;
1143 	struct bio *bio;
1144 
1145 	__rq_for_each_bio(bio, rq)
1146 		nr_bios++;
1147 
1148 	return nr_bios;
1149 }
1150 
1151 /*
1152  * Request issue related functions.
1153  */
1154 extern struct request *blk_peek_request(struct request_queue *q);
1155 extern void blk_start_request(struct request *rq);
1156 extern struct request *blk_fetch_request(struct request_queue *q);
1157 
1158 void blk_steal_bios(struct bio_list *list, struct request *rq);
1159 
1160 /*
1161  * Request completion related functions.
1162  *
1163  * blk_update_request() completes given number of bytes and updates
1164  * the request without completing it.
1165  *
1166  * blk_end_request() and friends.  __blk_end_request() must be called
1167  * with the request queue spinlock acquired.
1168  *
1169  * Several drivers define their own end_request and call
1170  * blk_end_request() for parts of the original function.
1171  * This prevents code duplication in drivers.
1172  */
1173 extern bool blk_update_request(struct request *rq, blk_status_t error,
1174 			       unsigned int nr_bytes);
1175 extern void blk_finish_request(struct request *rq, blk_status_t error);
1176 extern bool blk_end_request(struct request *rq, blk_status_t error,
1177 			    unsigned int nr_bytes);
1178 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1179 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1180 			      unsigned int nr_bytes);
1181 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1182 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1183 
1184 extern void blk_complete_request(struct request *);
1185 extern void __blk_complete_request(struct request *);
1186 extern void blk_abort_request(struct request *);
1187 extern void blk_unprep_request(struct request *);
1188 
1189 /*
1190  * Access functions for manipulating queue properties
1191  */
1192 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1193 					spinlock_t *lock, int node_id);
1194 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1195 extern int blk_init_allocated_queue(struct request_queue *);
1196 extern void blk_cleanup_queue(struct request_queue *);
1197 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1198 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1199 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1200 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1201 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1202 extern void blk_queue_max_discard_segments(struct request_queue *,
1203 		unsigned short);
1204 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1205 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1206 		unsigned int max_discard_sectors);
1207 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1208 		unsigned int max_write_same_sectors);
1209 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1210 		unsigned int max_write_same_sectors);
1211 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1212 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1213 extern void blk_queue_alignment_offset(struct request_queue *q,
1214 				       unsigned int alignment);
1215 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1216 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1217 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1218 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1219 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1220 extern void blk_set_default_limits(struct queue_limits *lim);
1221 extern void blk_set_stacking_limits(struct queue_limits *lim);
1222 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1223 			    sector_t offset);
1224 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1225 			    sector_t offset);
1226 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1227 			      sector_t offset);
1228 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1229 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1230 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1231 extern int blk_queue_dma_drain(struct request_queue *q,
1232 			       dma_drain_needed_fn *dma_drain_needed,
1233 			       void *buf, unsigned int size);
1234 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1235 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1236 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1237 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1238 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1239 extern void blk_queue_dma_alignment(struct request_queue *, int);
1240 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1241 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1242 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1243 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1244 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1245 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1246 
1247 /*
1248  * Number of physical segments as sent to the device.
1249  *
1250  * Normally this is the number of discontiguous data segments sent by the
1251  * submitter.  But for data-less command like discard we might have no
1252  * actual data segments submitted, but the driver might have to add it's
1253  * own special payload.  In that case we still return 1 here so that this
1254  * special payload will be mapped.
1255  */
blk_rq_nr_phys_segments(struct request * rq)1256 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1257 {
1258 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1259 		return 1;
1260 	return rq->nr_phys_segments;
1261 }
1262 
1263 /*
1264  * Number of discard segments (or ranges) the driver needs to fill in.
1265  * Each discard bio merged into a request is counted as one segment.
1266  */
blk_rq_nr_discard_segments(struct request * rq)1267 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1268 {
1269 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1270 }
1271 
1272 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1273 extern void blk_dump_rq_flags(struct request *, char *);
1274 extern long nr_blockdev_pages(void);
1275 
1276 bool __must_check blk_get_queue(struct request_queue *);
1277 struct request_queue *blk_alloc_queue(gfp_t);
1278 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1279 					   spinlock_t *lock);
1280 extern void blk_put_queue(struct request_queue *);
1281 extern void blk_set_queue_dying(struct request_queue *);
1282 
1283 /*
1284  * block layer runtime pm functions
1285  */
1286 #ifdef CONFIG_PM
1287 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1288 extern int blk_pre_runtime_suspend(struct request_queue *q);
1289 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1290 extern void blk_pre_runtime_resume(struct request_queue *q);
1291 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1292 extern void blk_set_runtime_active(struct request_queue *q);
1293 #else
blk_pm_runtime_init(struct request_queue * q,struct device * dev)1294 static inline void blk_pm_runtime_init(struct request_queue *q,
1295 	struct device *dev) {}
blk_pre_runtime_suspend(struct request_queue * q)1296 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1297 {
1298 	return -ENOSYS;
1299 }
blk_post_runtime_suspend(struct request_queue * q,int err)1300 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
blk_pre_runtime_resume(struct request_queue * q)1301 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
blk_post_runtime_resume(struct request_queue * q,int err)1302 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
blk_set_runtime_active(struct request_queue * q)1303 static inline void blk_set_runtime_active(struct request_queue *q) {}
1304 #endif
1305 
1306 /*
1307  * blk_plug permits building a queue of related requests by holding the I/O
1308  * fragments for a short period. This allows merging of sequential requests
1309  * into single larger request. As the requests are moved from a per-task list to
1310  * the device's request_queue in a batch, this results in improved scalability
1311  * as the lock contention for request_queue lock is reduced.
1312  *
1313  * It is ok not to disable preemption when adding the request to the plug list
1314  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1315  * the plug list when the task sleeps by itself. For details, please see
1316  * schedule() where blk_schedule_flush_plug() is called.
1317  */
1318 struct blk_plug {
1319 	struct list_head list; /* requests */
1320 	struct list_head mq_list; /* blk-mq requests */
1321 	struct list_head cb_list; /* md requires an unplug callback */
1322 };
1323 #define BLK_MAX_REQUEST_COUNT 16
1324 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1325 
1326 struct blk_plug_cb;
1327 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1328 struct blk_plug_cb {
1329 	struct list_head list;
1330 	blk_plug_cb_fn callback;
1331 	void *data;
1332 };
1333 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1334 					     void *data, int size);
1335 extern void blk_start_plug(struct blk_plug *);
1336 extern void blk_finish_plug(struct blk_plug *);
1337 extern void blk_flush_plug_list(struct blk_plug *, bool);
1338 
blk_flush_plug(struct task_struct * tsk)1339 static inline void blk_flush_plug(struct task_struct *tsk)
1340 {
1341 	struct blk_plug *plug = tsk->plug;
1342 
1343 	if (plug)
1344 		blk_flush_plug_list(plug, false);
1345 }
1346 
blk_schedule_flush_plug(struct task_struct * tsk)1347 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1348 {
1349 	struct blk_plug *plug = tsk->plug;
1350 
1351 	if (plug)
1352 		blk_flush_plug_list(plug, true);
1353 }
1354 
blk_needs_flush_plug(struct task_struct * tsk)1355 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1356 {
1357 	struct blk_plug *plug = tsk->plug;
1358 
1359 	return plug &&
1360 		(!list_empty(&plug->list) ||
1361 		 !list_empty(&plug->mq_list) ||
1362 		 !list_empty(&plug->cb_list));
1363 }
1364 
1365 /*
1366  * tag stuff
1367  */
1368 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1369 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1370 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1371 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1372 extern void blk_queue_free_tags(struct request_queue *);
1373 extern int blk_queue_resize_tags(struct request_queue *, int);
1374 extern struct blk_queue_tag *blk_init_tags(int, int);
1375 extern void blk_free_tags(struct blk_queue_tag *);
1376 
blk_map_queue_find_tag(struct blk_queue_tag * bqt,int tag)1377 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1378 						int tag)
1379 {
1380 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1381 		return NULL;
1382 	return bqt->tag_index[tag];
1383 }
1384 
1385 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1386 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1387 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1388 
1389 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1390 
1391 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1392 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1393 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1394 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1395 		struct bio **biop);
1396 
1397 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1398 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1399 
1400 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1401 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1402 		unsigned flags);
1403 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1404 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1405 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1406 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1407 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1408 {
1409 	return blkdev_issue_discard(sb->s_bdev,
1410 				    block << (sb->s_blocksize_bits -
1411 					      SECTOR_SHIFT),
1412 				    nr_blocks << (sb->s_blocksize_bits -
1413 						  SECTOR_SHIFT),
1414 				    gfp_mask, flags);
1415 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1416 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1417 		sector_t nr_blocks, gfp_t gfp_mask)
1418 {
1419 	return blkdev_issue_zeroout(sb->s_bdev,
1420 				    block << (sb->s_blocksize_bits -
1421 					      SECTOR_SHIFT),
1422 				    nr_blocks << (sb->s_blocksize_bits -
1423 						  SECTOR_SHIFT),
1424 				    gfp_mask, 0);
1425 }
1426 
1427 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1428 
1429 enum blk_default_limits {
1430 	BLK_MAX_SEGMENTS	= 128,
1431 	BLK_SAFE_MAX_SECTORS	= 255,
1432 	BLK_DEF_MAX_SECTORS	= 2560,
1433 	BLK_MAX_SEGMENT_SIZE	= 65536,
1434 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1435 };
1436 
queue_segment_boundary(struct request_queue * q)1437 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1438 {
1439 	return q->limits.seg_boundary_mask;
1440 }
1441 
queue_virt_boundary(struct request_queue * q)1442 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1443 {
1444 	return q->limits.virt_boundary_mask;
1445 }
1446 
queue_max_sectors(struct request_queue * q)1447 static inline unsigned int queue_max_sectors(struct request_queue *q)
1448 {
1449 	return q->limits.max_sectors;
1450 }
1451 
queue_max_hw_sectors(struct request_queue * q)1452 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1453 {
1454 	return q->limits.max_hw_sectors;
1455 }
1456 
queue_max_segments(struct request_queue * q)1457 static inline unsigned short queue_max_segments(struct request_queue *q)
1458 {
1459 	return q->limits.max_segments;
1460 }
1461 
queue_max_discard_segments(struct request_queue * q)1462 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1463 {
1464 	return q->limits.max_discard_segments;
1465 }
1466 
queue_max_segment_size(struct request_queue * q)1467 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1468 {
1469 	return q->limits.max_segment_size;
1470 }
1471 
queue_logical_block_size(struct request_queue * q)1472 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1473 {
1474 	int retval = 512;
1475 
1476 	if (q && q->limits.logical_block_size)
1477 		retval = q->limits.logical_block_size;
1478 
1479 	return retval;
1480 }
1481 
bdev_logical_block_size(struct block_device * bdev)1482 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1483 {
1484 	return queue_logical_block_size(bdev_get_queue(bdev));
1485 }
1486 
queue_physical_block_size(struct request_queue * q)1487 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1488 {
1489 	return q->limits.physical_block_size;
1490 }
1491 
bdev_physical_block_size(struct block_device * bdev)1492 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1493 {
1494 	return queue_physical_block_size(bdev_get_queue(bdev));
1495 }
1496 
queue_io_min(struct request_queue * q)1497 static inline unsigned int queue_io_min(struct request_queue *q)
1498 {
1499 	return q->limits.io_min;
1500 }
1501 
bdev_io_min(struct block_device * bdev)1502 static inline int bdev_io_min(struct block_device *bdev)
1503 {
1504 	return queue_io_min(bdev_get_queue(bdev));
1505 }
1506 
queue_io_opt(struct request_queue * q)1507 static inline unsigned int queue_io_opt(struct request_queue *q)
1508 {
1509 	return q->limits.io_opt;
1510 }
1511 
bdev_io_opt(struct block_device * bdev)1512 static inline int bdev_io_opt(struct block_device *bdev)
1513 {
1514 	return queue_io_opt(bdev_get_queue(bdev));
1515 }
1516 
queue_alignment_offset(struct request_queue * q)1517 static inline int queue_alignment_offset(struct request_queue *q)
1518 {
1519 	if (q->limits.misaligned)
1520 		return -1;
1521 
1522 	return q->limits.alignment_offset;
1523 }
1524 
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1525 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1526 {
1527 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1528 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1529 		<< SECTOR_SHIFT;
1530 
1531 	return (granularity + lim->alignment_offset - alignment) % granularity;
1532 }
1533 
bdev_alignment_offset(struct block_device * bdev)1534 static inline int bdev_alignment_offset(struct block_device *bdev)
1535 {
1536 	struct request_queue *q = bdev_get_queue(bdev);
1537 
1538 	if (q->limits.misaligned)
1539 		return -1;
1540 
1541 	if (bdev != bdev->bd_contains)
1542 		return bdev->bd_part->alignment_offset;
1543 
1544 	return q->limits.alignment_offset;
1545 }
1546 
queue_discard_alignment(struct request_queue * q)1547 static inline int queue_discard_alignment(struct request_queue *q)
1548 {
1549 	if (q->limits.discard_misaligned)
1550 		return -1;
1551 
1552 	return q->limits.discard_alignment;
1553 }
1554 
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1555 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1556 {
1557 	unsigned int alignment, granularity, offset;
1558 
1559 	if (!lim->max_discard_sectors)
1560 		return 0;
1561 
1562 	/* Why are these in bytes, not sectors? */
1563 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1564 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1565 	if (!granularity)
1566 		return 0;
1567 
1568 	/* Offset of the partition start in 'granularity' sectors */
1569 	offset = sector_div(sector, granularity);
1570 
1571 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1572 	offset = (granularity + alignment - offset) % granularity;
1573 
1574 	/* Turn it back into bytes, gaah */
1575 	return offset << SECTOR_SHIFT;
1576 }
1577 
bdev_discard_alignment(struct block_device * bdev)1578 static inline int bdev_discard_alignment(struct block_device *bdev)
1579 {
1580 	struct request_queue *q = bdev_get_queue(bdev);
1581 
1582 	if (bdev != bdev->bd_contains)
1583 		return bdev->bd_part->discard_alignment;
1584 
1585 	return q->limits.discard_alignment;
1586 }
1587 
bdev_write_same(struct block_device * bdev)1588 static inline unsigned int bdev_write_same(struct block_device *bdev)
1589 {
1590 	struct request_queue *q = bdev_get_queue(bdev);
1591 
1592 	if (q)
1593 		return q->limits.max_write_same_sectors;
1594 
1595 	return 0;
1596 }
1597 
bdev_write_zeroes_sectors(struct block_device * bdev)1598 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1599 {
1600 	struct request_queue *q = bdev_get_queue(bdev);
1601 
1602 	if (q)
1603 		return q->limits.max_write_zeroes_sectors;
1604 
1605 	return 0;
1606 }
1607 
bdev_zoned_model(struct block_device * bdev)1608 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1609 {
1610 	struct request_queue *q = bdev_get_queue(bdev);
1611 
1612 	if (q)
1613 		return blk_queue_zoned_model(q);
1614 
1615 	return BLK_ZONED_NONE;
1616 }
1617 
bdev_is_zoned(struct block_device * bdev)1618 static inline bool bdev_is_zoned(struct block_device *bdev)
1619 {
1620 	struct request_queue *q = bdev_get_queue(bdev);
1621 
1622 	if (q)
1623 		return blk_queue_is_zoned(q);
1624 
1625 	return false;
1626 }
1627 
bdev_zone_sectors(struct block_device * bdev)1628 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1629 {
1630 	struct request_queue *q = bdev_get_queue(bdev);
1631 
1632 	if (q)
1633 		return blk_queue_zone_sectors(q);
1634 	return 0;
1635 }
1636 
queue_dma_alignment(struct request_queue * q)1637 static inline int queue_dma_alignment(struct request_queue *q)
1638 {
1639 	return q ? q->dma_alignment : 511;
1640 }
1641 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1642 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1643 				 unsigned int len)
1644 {
1645 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1646 	return !(addr & alignment) && !(len & alignment);
1647 }
1648 
1649 /* assumes size > 256 */
blksize_bits(unsigned int size)1650 static inline unsigned int blksize_bits(unsigned int size)
1651 {
1652 	unsigned int bits = 8;
1653 	do {
1654 		bits++;
1655 		size >>= 1;
1656 	} while (size > 256);
1657 	return bits;
1658 }
1659 
block_size(struct block_device * bdev)1660 static inline unsigned int block_size(struct block_device *bdev)
1661 {
1662 	return bdev->bd_block_size;
1663 }
1664 
queue_flush_queueable(struct request_queue * q)1665 static inline bool queue_flush_queueable(struct request_queue *q)
1666 {
1667 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1668 }
1669 
1670 typedef struct {struct page *v;} Sector;
1671 
1672 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1673 
put_dev_sector(Sector p)1674 static inline void put_dev_sector(Sector p)
1675 {
1676 	put_page(p.v);
1677 }
1678 
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)1679 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1680 				struct bio_vec *bprv, unsigned int offset)
1681 {
1682 	return offset ||
1683 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1684 }
1685 
1686 /*
1687  * Check if adding a bio_vec after bprv with offset would create a gap in
1688  * the SG list. Most drivers don't care about this, but some do.
1689  */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)1690 static inline bool bvec_gap_to_prev(struct request_queue *q,
1691 				struct bio_vec *bprv, unsigned int offset)
1692 {
1693 	if (!queue_virt_boundary(q))
1694 		return false;
1695 	return __bvec_gap_to_prev(q, bprv, offset);
1696 }
1697 
1698 /*
1699  * Check if the two bvecs from two bios can be merged to one segment.
1700  * If yes, no need to check gap between the two bios since the 1st bio
1701  * and the 1st bvec in the 2nd bio can be handled in one segment.
1702  */
bios_segs_mergeable(struct request_queue * q,struct bio * prev,struct bio_vec * prev_last_bv,struct bio_vec * next_first_bv)1703 static inline bool bios_segs_mergeable(struct request_queue *q,
1704 		struct bio *prev, struct bio_vec *prev_last_bv,
1705 		struct bio_vec *next_first_bv)
1706 {
1707 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1708 		return false;
1709 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1710 		return false;
1711 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1712 			queue_max_segment_size(q))
1713 		return false;
1714 	return true;
1715 }
1716 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)1717 static inline bool bio_will_gap(struct request_queue *q,
1718 				struct request *prev_rq,
1719 				struct bio *prev,
1720 				struct bio *next)
1721 {
1722 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1723 		struct bio_vec pb, nb;
1724 
1725 		/*
1726 		 * don't merge if the 1st bio starts with non-zero
1727 		 * offset, otherwise it is quite difficult to respect
1728 		 * sg gap limit. We work hard to merge a huge number of small
1729 		 * single bios in case of mkfs.
1730 		 */
1731 		if (prev_rq)
1732 			bio_get_first_bvec(prev_rq->bio, &pb);
1733 		else
1734 			bio_get_first_bvec(prev, &pb);
1735 		if (pb.bv_offset)
1736 			return true;
1737 
1738 		/*
1739 		 * We don't need to worry about the situation that the
1740 		 * merged segment ends in unaligned virt boundary:
1741 		 *
1742 		 * - if 'pb' ends aligned, the merged segment ends aligned
1743 		 * - if 'pb' ends unaligned, the next bio must include
1744 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1745 		 *   merge with 'pb'
1746 		 */
1747 		bio_get_last_bvec(prev, &pb);
1748 		bio_get_first_bvec(next, &nb);
1749 
1750 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1751 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1752 	}
1753 
1754 	return false;
1755 }
1756 
req_gap_back_merge(struct request * req,struct bio * bio)1757 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1758 {
1759 	return bio_will_gap(req->q, req, req->biotail, bio);
1760 }
1761 
req_gap_front_merge(struct request * req,struct bio * bio)1762 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1763 {
1764 	return bio_will_gap(req->q, NULL, bio, req->bio);
1765 }
1766 
1767 int kblockd_schedule_work(struct work_struct *work);
1768 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1769 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1770 
1771 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1772 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1773 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1774 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1775 
1776 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1777 
1778 enum blk_integrity_flags {
1779 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1780 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1781 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1782 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1783 };
1784 
1785 struct blk_integrity_iter {
1786 	void			*prot_buf;
1787 	void			*data_buf;
1788 	sector_t		seed;
1789 	unsigned int		data_size;
1790 	unsigned short		interval;
1791 	const char		*disk_name;
1792 };
1793 
1794 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1795 
1796 struct blk_integrity_profile {
1797 	integrity_processing_fn		*generate_fn;
1798 	integrity_processing_fn		*verify_fn;
1799 	const char			*name;
1800 };
1801 
1802 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1803 extern void blk_integrity_unregister(struct gendisk *);
1804 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1805 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1806 				   struct scatterlist *);
1807 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1808 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1809 				   struct request *);
1810 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1811 				    struct bio *);
1812 
blk_get_integrity(struct gendisk * disk)1813 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1814 {
1815 	struct blk_integrity *bi = &disk->queue->integrity;
1816 
1817 	if (!bi->profile)
1818 		return NULL;
1819 
1820 	return bi;
1821 }
1822 
1823 static inline
bdev_get_integrity(struct block_device * bdev)1824 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1825 {
1826 	return blk_get_integrity(bdev->bd_disk);
1827 }
1828 
blk_integrity_rq(struct request * rq)1829 static inline bool blk_integrity_rq(struct request *rq)
1830 {
1831 	return rq->cmd_flags & REQ_INTEGRITY;
1832 }
1833 
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1834 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1835 						    unsigned int segs)
1836 {
1837 	q->limits.max_integrity_segments = segs;
1838 }
1839 
1840 static inline unsigned short
queue_max_integrity_segments(struct request_queue * q)1841 queue_max_integrity_segments(struct request_queue *q)
1842 {
1843 	return q->limits.max_integrity_segments;
1844 }
1845 
integrity_req_gap_back_merge(struct request * req,struct bio * next)1846 static inline bool integrity_req_gap_back_merge(struct request *req,
1847 						struct bio *next)
1848 {
1849 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1850 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1851 
1852 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1853 				bip_next->bip_vec[0].bv_offset);
1854 }
1855 
integrity_req_gap_front_merge(struct request * req,struct bio * bio)1856 static inline bool integrity_req_gap_front_merge(struct request *req,
1857 						 struct bio *bio)
1858 {
1859 	struct bio_integrity_payload *bip = bio_integrity(bio);
1860 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1861 
1862 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1863 				bip_next->bip_vec[0].bv_offset);
1864 }
1865 
1866 /**
1867  * bio_integrity_intervals - Return number of integrity intervals for a bio
1868  * @bi:		blk_integrity profile for device
1869  * @sectors:	Size of the bio in 512-byte sectors
1870  *
1871  * Description: The block layer calculates everything in 512 byte
1872  * sectors but integrity metadata is done in terms of the data integrity
1873  * interval size of the storage device.  Convert the block layer sectors
1874  * to the appropriate number of integrity intervals.
1875  */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1876 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1877 						   unsigned int sectors)
1878 {
1879 	return sectors >> (bi->interval_exp - 9);
1880 }
1881 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1882 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1883 					       unsigned int sectors)
1884 {
1885 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1886 }
1887 
1888 #else /* CONFIG_BLK_DEV_INTEGRITY */
1889 
1890 struct bio;
1891 struct block_device;
1892 struct gendisk;
1893 struct blk_integrity;
1894 
blk_integrity_rq(struct request * rq)1895 static inline int blk_integrity_rq(struct request *rq)
1896 {
1897 	return 0;
1898 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1899 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1900 					    struct bio *b)
1901 {
1902 	return 0;
1903 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1904 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1905 					  struct bio *b,
1906 					  struct scatterlist *s)
1907 {
1908 	return 0;
1909 }
bdev_get_integrity(struct block_device * b)1910 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1911 {
1912 	return NULL;
1913 }
blk_get_integrity(struct gendisk * disk)1914 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1915 {
1916 	return NULL;
1917 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1918 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1919 {
1920 	return 0;
1921 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1922 static inline void blk_integrity_register(struct gendisk *d,
1923 					 struct blk_integrity *b)
1924 {
1925 }
blk_integrity_unregister(struct gendisk * d)1926 static inline void blk_integrity_unregister(struct gendisk *d)
1927 {
1928 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1929 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1930 						    unsigned int segs)
1931 {
1932 }
queue_max_integrity_segments(struct request_queue * q)1933 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1934 {
1935 	return 0;
1936 }
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)1937 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1938 					  struct request *r1,
1939 					  struct request *r2)
1940 {
1941 	return true;
1942 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)1943 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1944 					   struct request *r,
1945 					   struct bio *b)
1946 {
1947 	return true;
1948 }
1949 
integrity_req_gap_back_merge(struct request * req,struct bio * next)1950 static inline bool integrity_req_gap_back_merge(struct request *req,
1951 						struct bio *next)
1952 {
1953 	return false;
1954 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)1955 static inline bool integrity_req_gap_front_merge(struct request *req,
1956 						 struct bio *bio)
1957 {
1958 	return false;
1959 }
1960 
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1961 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1962 						   unsigned int sectors)
1963 {
1964 	return 0;
1965 }
1966 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1967 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1968 					       unsigned int sectors)
1969 {
1970 	return 0;
1971 }
1972 
1973 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1974 
1975 struct block_device_operations {
1976 	int (*open) (struct block_device *, fmode_t);
1977 	void (*release) (struct gendisk *, fmode_t);
1978 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1979 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1980 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1981 	unsigned int (*check_events) (struct gendisk *disk,
1982 				      unsigned int clearing);
1983 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1984 	int (*media_changed) (struct gendisk *);
1985 	void (*unlock_native_capacity) (struct gendisk *);
1986 	int (*revalidate_disk) (struct gendisk *);
1987 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1988 	/* this callback is with swap_lock and sometimes page table lock held */
1989 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1990 	struct module *owner;
1991 	const struct pr_ops *pr_ops;
1992 };
1993 
1994 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1995 				 unsigned long);
1996 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1997 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1998 						struct writeback_control *);
1999 
2000 #ifdef CONFIG_BLK_DEV_ZONED
2001 bool blk_req_needs_zone_write_lock(struct request *rq);
2002 void __blk_req_zone_write_lock(struct request *rq);
2003 void __blk_req_zone_write_unlock(struct request *rq);
2004 
blk_req_zone_write_lock(struct request * rq)2005 static inline void blk_req_zone_write_lock(struct request *rq)
2006 {
2007 	if (blk_req_needs_zone_write_lock(rq))
2008 		__blk_req_zone_write_lock(rq);
2009 }
2010 
blk_req_zone_write_unlock(struct request * rq)2011 static inline void blk_req_zone_write_unlock(struct request *rq)
2012 {
2013 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
2014 		__blk_req_zone_write_unlock(rq);
2015 }
2016 
blk_req_zone_is_write_locked(struct request * rq)2017 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2018 {
2019 	return rq->q->seq_zones_wlock &&
2020 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
2021 }
2022 
blk_req_can_dispatch_to_zone(struct request * rq)2023 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2024 {
2025 	if (!blk_req_needs_zone_write_lock(rq))
2026 		return true;
2027 	return !blk_req_zone_is_write_locked(rq);
2028 }
2029 #else
blk_req_needs_zone_write_lock(struct request * rq)2030 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
2031 {
2032 	return false;
2033 }
2034 
blk_req_zone_write_lock(struct request * rq)2035 static inline void blk_req_zone_write_lock(struct request *rq)
2036 {
2037 }
2038 
blk_req_zone_write_unlock(struct request * rq)2039 static inline void blk_req_zone_write_unlock(struct request *rq)
2040 {
2041 }
blk_req_zone_is_write_locked(struct request * rq)2042 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2043 {
2044 	return false;
2045 }
2046 
blk_req_can_dispatch_to_zone(struct request * rq)2047 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2048 {
2049 	return true;
2050 }
2051 #endif /* CONFIG_BLK_DEV_ZONED */
2052 
2053 #else /* CONFIG_BLOCK */
2054 
2055 struct block_device;
2056 
2057 /*
2058  * stubs for when the block layer is configured out
2059  */
2060 #define buffer_heads_over_limit 0
2061 
nr_blockdev_pages(void)2062 static inline long nr_blockdev_pages(void)
2063 {
2064 	return 0;
2065 }
2066 
2067 struct blk_plug {
2068 };
2069 
blk_start_plug(struct blk_plug * plug)2070 static inline void blk_start_plug(struct blk_plug *plug)
2071 {
2072 }
2073 
blk_finish_plug(struct blk_plug * plug)2074 static inline void blk_finish_plug(struct blk_plug *plug)
2075 {
2076 }
2077 
blk_flush_plug(struct task_struct * task)2078 static inline void blk_flush_plug(struct task_struct *task)
2079 {
2080 }
2081 
blk_schedule_flush_plug(struct task_struct * task)2082 static inline void blk_schedule_flush_plug(struct task_struct *task)
2083 {
2084 }
2085 
2086 
blk_needs_flush_plug(struct task_struct * tsk)2087 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2088 {
2089 	return false;
2090 }
2091 
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)2092 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2093 				     sector_t *error_sector)
2094 {
2095 	return 0;
2096 }
2097 
2098 #endif /* CONFIG_BLOCK */
2099 
2100 #endif
2101