1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * comedi/drivers/s626.c
4  * Sensoray s626 Comedi driver
5  *
6  * COMEDI - Linux Control and Measurement Device Interface
7  * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8  *
9  * Based on Sensoray Model 626 Linux driver Version 0.2
10  * Copyright (C) 2002-2004 Sensoray Co., Inc.
11  */
12 
13 /*
14  * Driver: s626
15  * Description: Sensoray 626 driver
16  * Devices: [Sensoray] 626 (s626)
17  * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
18  * Updated: Fri, 15 Feb 2008 10:28:42 +0000
19  * Status: experimental
20 
21  * Configuration options: not applicable, uses PCI auto config
22 
23  * INSN_CONFIG instructions:
24  *   analog input:
25  *    none
26  *
27  *   analog output:
28  *    none
29  *
30  *   digital channel:
31  *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
32  *    supported configuration options:
33  *    INSN_CONFIG_DIO_QUERY
34  *    COMEDI_INPUT
35  *    COMEDI_OUTPUT
36  *
37  *   encoder:
38  *    Every channel must be configured before reading.
39  *
40  *   Example code
41  *
42  *    insn.insn=INSN_CONFIG;   //configuration instruction
43  *    insn.n=1;                //number of operation (must be 1)
44  *    insn.data=&initialvalue; //initial value loaded into encoder
45  *                             //during configuration
46  *    insn.subdev=5;           //encoder subdevice
47  *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
48  *                                                         //to configure
49  *
50  *    comedi_do_insn(cf,&insn); //executing configuration
51  */
52 
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/kernel.h>
57 #include <linux/types.h>
58 
59 #include "../comedi_pci.h"
60 
61 #include "s626.h"
62 
63 struct s626_buffer_dma {
64 	dma_addr_t physical_base;
65 	void *logical_base;
66 };
67 
68 /**
69  * struct s626_private - Working data for s626 driver.
70  * @ai_cmd_running: non-zero if ai_cmd is running.
71  * @ai_sample_timer: time between samples in units of the timer.
72  * @ai_convert_count: conversion counter.
73  * @ai_convert_timer: time between conversion in units of the timer.
74  * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
75  * @adc_items: number of items in ADC poll list.
76  * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
77  * @ana_buf:  DMA buffer used to receive ADC data and hold DAC data.
78  * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
79  * @dacpol: image of DAC polarity register.
80  * @trim_setpoint: images of TrimDAC setpoints.
81  * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
82  */
83 struct s626_private {
84 	u8 ai_cmd_running;
85 	unsigned int ai_sample_timer;
86 	int ai_convert_count;
87 	unsigned int ai_convert_timer;
88 	u16 counter_int_enabs;
89 	u8 adc_items;
90 	struct s626_buffer_dma rps_buf;
91 	struct s626_buffer_dma ana_buf;
92 	u32 *dac_wbuf;
93 	u16 dacpol;
94 	u8 trim_setpoint[12];
95 	u32 i2c_adrs;
96 };
97 
98 /* Counter overflow/index event flag masks for RDMISC2. */
99 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
100 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
101 
102 /*
103  * Enable/disable a function or test status bit(s) that are accessed
104  * through Main Control Registers 1 or 2.
105  */
s626_mc_enable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)106 static void s626_mc_enable(struct comedi_device *dev,
107 			   unsigned int cmd, unsigned int reg)
108 {
109 	unsigned int val = (cmd << 16) | cmd;
110 
111 	mmiowb();
112 	writel(val, dev->mmio + reg);
113 }
114 
s626_mc_disable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)115 static void s626_mc_disable(struct comedi_device *dev,
116 			    unsigned int cmd, unsigned int reg)
117 {
118 	writel(cmd << 16, dev->mmio + reg);
119 	mmiowb();
120 }
121 
s626_mc_test(struct comedi_device * dev,unsigned int cmd,unsigned int reg)122 static bool s626_mc_test(struct comedi_device *dev,
123 			 unsigned int cmd, unsigned int reg)
124 {
125 	unsigned int val;
126 
127 	val = readl(dev->mmio + reg);
128 
129 	return (val & cmd) ? true : false;
130 }
131 
132 #define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
133 
134 /* Write a time slot control record to TSL2. */
135 #define S626_VECTPORT(VECTNUM)		(S626_P_TSL2 + ((VECTNUM) << 2))
136 
137 static const struct comedi_lrange s626_range_table = {
138 	2, {
139 		BIP_RANGE(5),
140 		BIP_RANGE(10)
141 	}
142 };
143 
144 /*
145  * Execute a DEBI transfer.  This must be called from within a critical section.
146  */
s626_debi_transfer(struct comedi_device * dev)147 static void s626_debi_transfer(struct comedi_device *dev)
148 {
149 	static const int timeout = 10000;
150 	int i;
151 
152 	/* Initiate upload of shadow RAM to DEBI control register */
153 	s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
154 
155 	/*
156 	 * Wait for completion of upload from shadow RAM to
157 	 * DEBI control register.
158 	 */
159 	for (i = 0; i < timeout; i++) {
160 		if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
161 			break;
162 		udelay(1);
163 	}
164 	if (i == timeout)
165 		dev_err(dev->class_dev,
166 			"Timeout while uploading to DEBI control register\n");
167 
168 	/* Wait until DEBI transfer is done */
169 	for (i = 0; i < timeout; i++) {
170 		if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
171 			break;
172 		udelay(1);
173 	}
174 	if (i == timeout)
175 		dev_err(dev->class_dev, "DEBI transfer timeout\n");
176 }
177 
178 /*
179  * Read a value from a gate array register.
180  */
s626_debi_read(struct comedi_device * dev,u16 addr)181 static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
182 {
183 	/* Set up DEBI control register value in shadow RAM */
184 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
185 
186 	/*  Execute the DEBI transfer. */
187 	s626_debi_transfer(dev);
188 
189 	return readl(dev->mmio + S626_P_DEBIAD);
190 }
191 
192 /*
193  * Write a value to a gate array register.
194  */
s626_debi_write(struct comedi_device * dev,u16 addr,u16 wdata)195 static void s626_debi_write(struct comedi_device *dev, u16 addr,
196 			    u16 wdata)
197 {
198 	/* Set up DEBI control register value in shadow RAM */
199 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
200 	writel(wdata, dev->mmio + S626_P_DEBIAD);
201 
202 	/*  Execute the DEBI transfer. */
203 	s626_debi_transfer(dev);
204 }
205 
206 /*
207  * Replace the specified bits in a gate array register.  Imports: mask
208  * specifies bits that are to be preserved, wdata is new value to be
209  * or'd with the masked original.
210  */
s626_debi_replace(struct comedi_device * dev,unsigned int addr,unsigned int mask,unsigned int wdata)211 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
212 			      unsigned int mask, unsigned int wdata)
213 {
214 	unsigned int val;
215 
216 	addr &= 0xffff;
217 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
218 	s626_debi_transfer(dev);
219 
220 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
221 	val = readl(dev->mmio + S626_P_DEBIAD);
222 	val &= mask;
223 	val |= wdata;
224 	writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
225 	s626_debi_transfer(dev);
226 }
227 
228 /* **************  EEPROM ACCESS FUNCTIONS  ************** */
229 
s626_i2c_handshake_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)230 static int s626_i2c_handshake_eoc(struct comedi_device *dev,
231 				  struct comedi_subdevice *s,
232 				  struct comedi_insn *insn,
233 				  unsigned long context)
234 {
235 	bool status;
236 
237 	status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
238 	if (status)
239 		return 0;
240 	return -EBUSY;
241 }
242 
s626_i2c_handshake(struct comedi_device * dev,u32 val)243 static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
244 {
245 	unsigned int ctrl;
246 	int ret;
247 
248 	/* Write I2C command to I2C Transfer Control shadow register */
249 	writel(val, dev->mmio + S626_P_I2CCTRL);
250 
251 	/*
252 	 * Upload I2C shadow registers into working registers and
253 	 * wait for upload confirmation.
254 	 */
255 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
256 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
257 	if (ret)
258 		return ret;
259 
260 	/* Wait until I2C bus transfer is finished or an error occurs */
261 	do {
262 		ctrl = readl(dev->mmio + S626_P_I2CCTRL);
263 	} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
264 
265 	/* Return non-zero if I2C error occurred */
266 	return ctrl & S626_I2C_ERR;
267 }
268 
269 /* Read u8 from EEPROM. */
s626_i2c_read(struct comedi_device * dev,u8 addr)270 static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
271 {
272 	struct s626_private *devpriv = dev->private;
273 
274 	/*
275 	 * Send EEPROM target address:
276 	 *  Byte2 = I2C command: write to I2C EEPROM device.
277 	 *  Byte1 = EEPROM internal target address.
278 	 *  Byte0 = Not sent.
279 	 */
280 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
281 						devpriv->i2c_adrs) |
282 				    S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
283 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
284 		/* Abort function and declare error if handshake failed. */
285 		return 0;
286 
287 	/*
288 	 * Execute EEPROM read:
289 	 *  Byte2 = I2C command: read from I2C EEPROM device.
290 	 *  Byte1 receives uint8_t from EEPROM.
291 	 *  Byte0 = Not sent.
292 	 */
293 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
294 						(devpriv->i2c_adrs | 1)) |
295 				    S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
296 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
297 		/* Abort function and declare error if handshake failed. */
298 		return 0;
299 
300 	return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
301 }
302 
303 /* ***********  DAC FUNCTIONS *********** */
304 
305 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
306 static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
307 
308 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
309 static const u8 s626_trimadrs[] = {
310 	0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
311 };
312 
313 enum {
314 	s626_send_dac_wait_not_mc1_a2out,
315 	s626_send_dac_wait_ssr_af2_out,
316 	s626_send_dac_wait_fb_buffer2_msb_00,
317 	s626_send_dac_wait_fb_buffer2_msb_ff
318 };
319 
s626_send_dac_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)320 static int s626_send_dac_eoc(struct comedi_device *dev,
321 			     struct comedi_subdevice *s,
322 			     struct comedi_insn *insn,
323 			     unsigned long context)
324 {
325 	unsigned int status;
326 
327 	switch (context) {
328 	case s626_send_dac_wait_not_mc1_a2out:
329 		status = readl(dev->mmio + S626_P_MC1);
330 		if (!(status & S626_MC1_A2OUT))
331 			return 0;
332 		break;
333 	case s626_send_dac_wait_ssr_af2_out:
334 		status = readl(dev->mmio + S626_P_SSR);
335 		if (status & S626_SSR_AF2_OUT)
336 			return 0;
337 		break;
338 	case s626_send_dac_wait_fb_buffer2_msb_00:
339 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
340 		if (!(status & 0xff000000))
341 			return 0;
342 		break;
343 	case s626_send_dac_wait_fb_buffer2_msb_ff:
344 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
345 		if (status & 0xff000000)
346 			return 0;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 	return -EBUSY;
352 }
353 
354 /*
355  * Private helper function: Transmit serial data to DAC via Audio
356  * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
357  * dacpol contains valid target image.
358  */
s626_send_dac(struct comedi_device * dev,u32 val)359 static int s626_send_dac(struct comedi_device *dev, u32 val)
360 {
361 	struct s626_private *devpriv = dev->private;
362 	int ret;
363 
364 	/* START THE SERIAL CLOCK RUNNING ------------- */
365 
366 	/*
367 	 * Assert DAC polarity control and enable gating of DAC serial clock
368 	 * and audio bit stream signals.  At this point in time we must be
369 	 * assured of being in time slot 0.  If we are not in slot 0, the
370 	 * serial clock and audio stream signals will be disabled; this is
371 	 * because the following s626_debi_write statement (which enables
372 	 * signals to be passed through the gate array) would execute before
373 	 * the trailing edge of WS1/WS3 (which turns off the signals), thus
374 	 * causing the signals to be inactive during the DAC write.
375 	 */
376 	s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
377 
378 	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
379 
380 	/* Copy DAC setpoint value to DAC's output DMA buffer. */
381 	/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
382 	*devpriv->dac_wbuf = val;
383 
384 	/*
385 	 * Enable the output DMA transfer. This will cause the DMAC to copy
386 	 * the DAC's data value to A2's output FIFO. The DMA transfer will
387 	 * then immediately terminate because the protection address is
388 	 * reached upon transfer of the first DWORD value.
389 	 */
390 	s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
391 
392 	/* While the DMA transfer is executing ... */
393 
394 	/*
395 	 * Reset Audio2 output FIFO's underflow flag (along with any
396 	 * other FIFO underflow/overflow flags). When set, this flag
397 	 * will indicate that we have emerged from slot 0.
398 	 */
399 	writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
400 
401 	/*
402 	 * Wait for the DMA transfer to finish so that there will be data
403 	 * available in the FIFO when time slot 1 tries to transfer a DWORD
404 	 * from the FIFO to the output buffer register.  We test for DMA
405 	 * Done by polling the DMAC enable flag; this flag is automatically
406 	 * cleared when the transfer has finished.
407 	 */
408 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
409 			     s626_send_dac_wait_not_mc1_a2out);
410 	if (ret) {
411 		dev_err(dev->class_dev, "DMA transfer timeout\n");
412 		return ret;
413 	}
414 
415 	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
416 
417 	/*
418 	 * FIFO data is now available, so we enable execution of time slots
419 	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
420 	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
421 	 * detection.
422 	 */
423 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
424 	       dev->mmio + S626_VECTPORT(0));
425 
426 	/*
427 	 * Wait for slot 1 to execute to ensure that the Packet will be
428 	 * transmitted.  This is detected by polling the Audio2 output FIFO
429 	 * underflow flag, which will be set when slot 1 execution has
430 	 * finished transferring the DAC's data DWORD from the output FIFO
431 	 * to the output buffer register.
432 	 */
433 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
434 			     s626_send_dac_wait_ssr_af2_out);
435 	if (ret) {
436 		dev_err(dev->class_dev,
437 			"TSL timeout waiting for slot 1 to execute\n");
438 		return ret;
439 	}
440 
441 	/*
442 	 * Set up to trap execution at slot 0 when the TSL sequencer cycles
443 	 * back to slot 0 after executing the EOS in slot 5.  Also,
444 	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
445 	 * stored in the last byte to be shifted out of the FIFO's DWORD
446 	 * buffer register.
447 	 */
448 	writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
449 	       dev->mmio + S626_VECTPORT(0));
450 
451 	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
452 
453 	/*
454 	 * Wait for the TSL to finish executing all time slots before
455 	 * exiting this function.  We must do this so that the next DAC
456 	 * write doesn't start, thereby enabling clock/chip select signals:
457 	 *
458 	 * 1. Before the TSL sequence cycles back to slot 0, which disables
459 	 *    the clock/cs signal gating and traps slot // list execution.
460 	 *    we have not yet finished slot 5 then the clock/cs signals are
461 	 *    still gated and we have not finished transmitting the stream.
462 	 *
463 	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
464 	 *    this case, the slot sequence is currently repeating, but with
465 	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
466 	 *    execution before setting up the next DAC setpoint DMA transfer
467 	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
468 	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
469 	 *    the TSL has not yet finished executing slot 5 ...
470 	 */
471 	if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
472 		/*
473 		 * The trap was set on time and we are still executing somewhere
474 		 * in slots 2-5, so we now wait for slot 0 to execute and trap
475 		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
476 		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
477 		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
478 		 */
479 		ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
480 				     s626_send_dac_wait_fb_buffer2_msb_00);
481 		if (ret) {
482 			dev_err(dev->class_dev,
483 				"TSL timeout waiting for slot 0 to execute\n");
484 			return ret;
485 		}
486 	}
487 	/*
488 	 * Either (1) we were too late setting the slot 0 trap; the TSL
489 	 * sequencer restarted slot 0 before we could set the EOS trap flag,
490 	 * or (2) we were not late and execution is now trapped at slot 0.
491 	 * In either case, we must now change slot 0 so that it will store
492 	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
493 	 * In order to do this, we reprogram slot 0 so that it will shift in
494 	 * SD3, which is driven only by a pull-up resistor.
495 	 */
496 	writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
497 	       dev->mmio + S626_VECTPORT(0));
498 
499 	/*
500 	 * Wait for slot 0 to execute, at which time the TSL is setup for
501 	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
502 	 * from 0x00 to 0xFF.
503 	 */
504 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
505 			     s626_send_dac_wait_fb_buffer2_msb_ff);
506 	if (ret) {
507 		dev_err(dev->class_dev,
508 			"TSL timeout waiting for slot 0 to execute\n");
509 		return ret;
510 	}
511 	return 0;
512 }
513 
514 /*
515  * Private helper function: Write setpoint to an application DAC channel.
516  */
s626_set_dac(struct comedi_device * dev,u16 chan,int16_t dacdata)517 static int s626_set_dac(struct comedi_device *dev,
518 			u16 chan, int16_t dacdata)
519 {
520 	struct s626_private *devpriv = dev->private;
521 	u16 signmask;
522 	u32 ws_image;
523 	u32 val;
524 
525 	/*
526 	 * Adjust DAC data polarity and set up Polarity Control Register image.
527 	 */
528 	signmask = 1 << chan;
529 	if (dacdata < 0) {
530 		dacdata = -dacdata;
531 		devpriv->dacpol |= signmask;
532 	} else {
533 		devpriv->dacpol &= ~signmask;
534 	}
535 
536 	/* Limit DAC setpoint value to valid range. */
537 	if ((u16)dacdata > 0x1FFF)
538 		dacdata = 0x1FFF;
539 
540 	/*
541 	 * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
542 	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
543 	 * data to a non-existent TrimDac channel just to keep the clock
544 	 * running after sending data to the target DAC.  This is necessary
545 	 * to eliminate the clock glitch that would otherwise occur at the
546 	 * end of the target DAC's serial data stream.  When the sequence
547 	 * restarts at V0 (after executing V5), the gate array automatically
548 	 * disables gating for the DAC clock and all DAC chip selects.
549 	 */
550 
551 	/* Choose DAC chip select to be asserted */
552 	ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
553 	/* Slot 2: Transmit high data byte to target DAC */
554 	writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
555 	       dev->mmio + S626_VECTPORT(2));
556 	/* Slot 3: Transmit low data byte to target DAC */
557 	writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
558 	       dev->mmio + S626_VECTPORT(3));
559 	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
560 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
561 	       dev->mmio + S626_VECTPORT(4));
562 	/* Slot 5: running after writing target DAC's low data byte */
563 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
564 	       dev->mmio + S626_VECTPORT(5));
565 
566 	/*
567 	 * Construct and transmit target DAC's serial packet:
568 	 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
569 	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
570 	 * to a  non-existent TrimDac channel) that serves to keep the clock
571 	 * running after the packet has been sent to the target DAC.
572 	 */
573 	val = 0x0F000000;	/* Continue clock after target DAC data
574 				 * (write to non-existent trimdac).
575 				 */
576 	val |= 0x00004000;	/* Address the two main dual-DAC devices
577 				 * (TSL's chip select enables target device).
578 				 */
579 	val |= ((u32)(chan & 1) << 15);	/* Address the DAC channel
580 					 * within the device.
581 					 */
582 	val |= (u32)dacdata;	/* Include DAC setpoint data. */
583 	return s626_send_dac(dev, val);
584 }
585 
s626_write_trim_dac(struct comedi_device * dev,u8 logical_chan,u8 dac_data)586 static int s626_write_trim_dac(struct comedi_device *dev,
587 			       u8 logical_chan, u8 dac_data)
588 {
589 	struct s626_private *devpriv = dev->private;
590 	u32 chan;
591 
592 	/*
593 	 * Save the new setpoint in case the application needs to read it back
594 	 * later.
595 	 */
596 	devpriv->trim_setpoint[logical_chan] = dac_data;
597 
598 	/* Map logical channel number to physical channel number. */
599 	chan = s626_trimchan[logical_chan];
600 
601 	/*
602 	 * Set up TSL2 records for TrimDac write operation.  All slots shift
603 	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
604 	 * can be detected.
605 	 */
606 
607 	/* Slot 2: Send high uint8_t to target TrimDac */
608 	writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
609 	       dev->mmio + S626_VECTPORT(2));
610 	/* Slot 3: Send low uint8_t to target TrimDac */
611 	writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
612 	       dev->mmio + S626_VECTPORT(3));
613 	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
614 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
615 	       dev->mmio + S626_VECTPORT(4));
616 	/* Slot 5: Send NOP low  uint8_t to DAC0 */
617 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
618 	       dev->mmio + S626_VECTPORT(5));
619 
620 	/*
621 	 * Construct and transmit target DAC's serial packet:
622 	 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
623 	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
624 	 * WORD value (that writes a channel 0 NOP command to a non-existent
625 	 * main DAC channel) that serves to keep the clock running after the
626 	 * packet has been sent to the target DAC.
627 	 */
628 
629 	/*
630 	 * Address the DAC channel within the trimdac device.
631 	 * Include DAC setpoint data.
632 	 */
633 	return s626_send_dac(dev, (chan << 8) | dac_data);
634 }
635 
s626_load_trim_dacs(struct comedi_device * dev)636 static int s626_load_trim_dacs(struct comedi_device *dev)
637 {
638 	u8 i;
639 	int ret;
640 
641 	/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
642 	for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
643 		ret = s626_write_trim_dac(dev, i,
644 					  s626_i2c_read(dev, s626_trimadrs[i]));
645 		if (ret)
646 			return ret;
647 	}
648 	return 0;
649 }
650 
651 /* ******  COUNTER FUNCTIONS  ******* */
652 
653 /*
654  * All counter functions address a specific counter by means of the
655  * "Counter" argument, which is a logical counter number.  The Counter
656  * argument may have any of the following legal values: 0=0A, 1=1A,
657  * 2=2A, 3=0B, 4=1B, 5=2B.
658  */
659 
660 /*
661  * Return/set a counter pair's latch trigger source.  0: On read
662  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
663  * latches B.
664  */
s626_set_latch_source(struct comedi_device * dev,unsigned int chan,u16 value)665 static void s626_set_latch_source(struct comedi_device *dev,
666 				  unsigned int chan, u16 value)
667 {
668 	s626_debi_replace(dev, S626_LP_CRB(chan),
669 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
670 			  S626_SET_CRB_LATCHSRC(value));
671 }
672 
673 /*
674  * Write value into counter preload register.
675  */
s626_preload(struct comedi_device * dev,unsigned int chan,u32 value)676 static void s626_preload(struct comedi_device *dev,
677 			 unsigned int chan, u32 value)
678 {
679 	s626_debi_write(dev, S626_LP_CNTR(chan), value);
680 	s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
681 }
682 
683 /* ******  PRIVATE COUNTER FUNCTIONS ****** */
684 
685 /*
686  * Reset a counter's index and overflow event capture flags.
687  */
s626_reset_cap_flags(struct comedi_device * dev,unsigned int chan)688 static void s626_reset_cap_flags(struct comedi_device *dev,
689 				 unsigned int chan)
690 {
691 	u16 set;
692 
693 	set = S626_SET_CRB_INTRESETCMD(1);
694 	if (chan < 3)
695 		set |= S626_SET_CRB_INTRESET_A(1);
696 	else
697 		set |= S626_SET_CRB_INTRESET_B(1);
698 
699 	s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
700 }
701 
702 /*
703  * Set the operating mode for the specified counter.  The setup
704  * parameter is treated as a COUNTER_SETUP data type.  The following
705  * parameters are programmable (all other parms are ignored): ClkMult,
706  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
707  */
s626_set_mode_a(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)708 static void s626_set_mode_a(struct comedi_device *dev,
709 			    unsigned int chan, u16 setup,
710 			    u16 disable_int_src)
711 {
712 	struct s626_private *devpriv = dev->private;
713 	u16 cra;
714 	u16 crb;
715 	unsigned int cntsrc, clkmult, clkpol;
716 
717 	/* Initialize CRA and CRB images. */
718 	/* Preload trigger is passed through. */
719 	cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
720 	/* IndexSrc is passed through. */
721 	cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
722 
723 	/* Reset any pending CounterA event captures. */
724 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
725 	/* Clock enable is passed through. */
726 	crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
727 
728 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
729 	if (!disable_int_src)
730 		cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
731 
732 	/* Populate all mode-dependent attributes of CRA & CRB images. */
733 	clkpol = S626_GET_STD_CLKPOL(setup);
734 	switch (S626_GET_STD_ENCMODE(setup)) {
735 	case S626_ENCMODE_EXTENDER: /* Extender Mode: */
736 		/* Force to Timer mode (Extender valid only for B counters). */
737 		/* Fall through to case S626_ENCMODE_TIMER: */
738 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
739 		/* CntSrcA<1> selects system clock */
740 		cntsrc = S626_CNTSRC_SYSCLK;
741 		/* Count direction (CntSrcA<0>) obtained from ClkPol. */
742 		cntsrc |= clkpol;
743 		/* ClkPolA behaves as always-on clock enable. */
744 		clkpol = 1;
745 		/* ClkMult must be 1x. */
746 		clkmult = S626_CLKMULT_1X;
747 		break;
748 	default:		/* Counter Mode: */
749 		/* Select ENC_C and ENC_D as clock/direction inputs. */
750 		cntsrc = S626_CNTSRC_ENCODER;
751 		/* Clock polarity is passed through. */
752 		/* Force multiplier to x1 if not legal, else pass through. */
753 		clkmult = S626_GET_STD_CLKMULT(setup);
754 		if (clkmult == S626_CLKMULT_SPECIAL)
755 			clkmult = S626_CLKMULT_1X;
756 		break;
757 	}
758 	cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
759 	       S626_SET_CRA_CLKMULT_A(clkmult);
760 
761 	/*
762 	 * Force positive index polarity if IndxSrc is software-driven only,
763 	 * otherwise pass it through.
764 	 */
765 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
766 		cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
767 
768 	/*
769 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
770 	 * enable mask to indicate the counter interrupt is disabled.
771 	 */
772 	if (disable_int_src)
773 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
774 						S626_INDXMASK(chan));
775 
776 	/*
777 	 * While retaining CounterB and LatchSrc configurations, program the
778 	 * new counter operating mode.
779 	 */
780 	s626_debi_replace(dev, S626_LP_CRA(chan),
781 			  S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
782 	s626_debi_replace(dev, S626_LP_CRB(chan),
783 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
784 }
785 
s626_set_mode_b(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)786 static void s626_set_mode_b(struct comedi_device *dev,
787 			    unsigned int chan, u16 setup,
788 			    u16 disable_int_src)
789 {
790 	struct s626_private *devpriv = dev->private;
791 	u16 cra;
792 	u16 crb;
793 	unsigned int cntsrc, clkmult, clkpol;
794 
795 	/* Initialize CRA and CRB images. */
796 	/* IndexSrc is passed through. */
797 	cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
798 
799 	/* Reset event captures and disable interrupts. */
800 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
801 	/* Clock enable is passed through. */
802 	crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
803 	/* Preload trigger source is passed through. */
804 	crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
805 
806 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
807 	if (!disable_int_src)
808 		crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
809 
810 	/* Populate all mode-dependent attributes of CRA & CRB images. */
811 	clkpol = S626_GET_STD_CLKPOL(setup);
812 	switch (S626_GET_STD_ENCMODE(setup)) {
813 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
814 		/* CntSrcB<1> selects system clock */
815 		cntsrc = S626_CNTSRC_SYSCLK;
816 		/* with direction (CntSrcB<0>) obtained from ClkPol. */
817 		cntsrc |= clkpol;
818 		/* ClkPolB behaves as always-on clock enable. */
819 		clkpol = 1;
820 		/* ClkMultB must be 1x. */
821 		clkmult = S626_CLKMULT_1X;
822 		break;
823 	case S626_ENCMODE_EXTENDER:	/* Extender Mode: */
824 		/* CntSrcB source is OverflowA (same as "timer") */
825 		cntsrc = S626_CNTSRC_SYSCLK;
826 		/* with direction obtained from ClkPol. */
827 		cntsrc |= clkpol;
828 		/* ClkPolB controls IndexB -- always set to active. */
829 		clkpol = 1;
830 		/* ClkMultB selects OverflowA as the clock source. */
831 		clkmult = S626_CLKMULT_SPECIAL;
832 		break;
833 	default:		/* Counter Mode: */
834 		/* Select ENC_C and ENC_D as clock/direction inputs. */
835 		cntsrc = S626_CNTSRC_ENCODER;
836 		/* ClkPol is passed through. */
837 		/* Force ClkMult to x1 if not legal, otherwise pass through. */
838 		clkmult = S626_GET_STD_CLKMULT(setup);
839 		if (clkmult == S626_CLKMULT_SPECIAL)
840 			clkmult = S626_CLKMULT_1X;
841 		break;
842 	}
843 	cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
844 	crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
845 
846 	/*
847 	 * Force positive index polarity if IndxSrc is software-driven only,
848 	 * otherwise pass it through.
849 	 */
850 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
851 		crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
852 
853 	/*
854 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
855 	 * enable mask to indicate the counter interrupt is disabled.
856 	 */
857 	if (disable_int_src)
858 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
859 						S626_INDXMASK(chan));
860 
861 	/*
862 	 * While retaining CounterA and LatchSrc configurations, program the
863 	 * new counter operating mode.
864 	 */
865 	s626_debi_replace(dev, S626_LP_CRA(chan),
866 			  ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
867 	s626_debi_replace(dev, S626_LP_CRB(chan),
868 			  S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
869 }
870 
s626_set_mode(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)871 static void s626_set_mode(struct comedi_device *dev,
872 			  unsigned int chan,
873 			  u16 setup, u16 disable_int_src)
874 {
875 	if (chan < 3)
876 		s626_set_mode_a(dev, chan, setup, disable_int_src);
877 	else
878 		s626_set_mode_b(dev, chan, setup, disable_int_src);
879 }
880 
881 /*
882  * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
883  */
s626_set_enable(struct comedi_device * dev,unsigned int chan,u16 enab)884 static void s626_set_enable(struct comedi_device *dev,
885 			    unsigned int chan, u16 enab)
886 {
887 	unsigned int mask = S626_CRBMSK_INTCTRL;
888 	unsigned int set;
889 
890 	if (chan < 3) {
891 		mask |= S626_CRBMSK_CLKENAB_A;
892 		set = S626_SET_CRB_CLKENAB_A(enab);
893 	} else {
894 		mask |= S626_CRBMSK_CLKENAB_B;
895 		set = S626_SET_CRB_CLKENAB_B(enab);
896 	}
897 	s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
898 }
899 
900 /*
901  * Return/set the event that will trigger transfer of the preload
902  * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
903  * 2=OverflowA (B counters only), 3=disabled.
904  */
s626_set_load_trig(struct comedi_device * dev,unsigned int chan,u16 trig)905 static void s626_set_load_trig(struct comedi_device *dev,
906 			       unsigned int chan, u16 trig)
907 {
908 	u16 reg;
909 	u16 mask;
910 	u16 set;
911 
912 	if (chan < 3) {
913 		reg = S626_LP_CRA(chan);
914 		mask = S626_CRAMSK_LOADSRC_A;
915 		set = S626_SET_CRA_LOADSRC_A(trig);
916 	} else {
917 		reg = S626_LP_CRB(chan);
918 		mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
919 		set = S626_SET_CRB_LOADSRC_B(trig);
920 	}
921 	s626_debi_replace(dev, reg, ~mask, set);
922 }
923 
924 /*
925  * Return/set counter interrupt source and clear any captured
926  * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
927  * 2=IndexOnly, 3=IndexAndOverflow.
928  */
s626_set_int_src(struct comedi_device * dev,unsigned int chan,u16 int_source)929 static void s626_set_int_src(struct comedi_device *dev,
930 			     unsigned int chan, u16 int_source)
931 {
932 	struct s626_private *devpriv = dev->private;
933 	u16 cra_reg = S626_LP_CRA(chan);
934 	u16 crb_reg = S626_LP_CRB(chan);
935 
936 	if (chan < 3) {
937 		/* Reset any pending counter overflow or index captures */
938 		s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
939 				  S626_SET_CRB_INTRESETCMD(1) |
940 				  S626_SET_CRB_INTRESET_A(1));
941 
942 		/* Program counter interrupt source */
943 		s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
944 				  S626_SET_CRA_INTSRC_A(int_source));
945 	} else {
946 		u16 crb;
947 
948 		/* Cache writeable CRB register image */
949 		crb = s626_debi_read(dev, crb_reg);
950 		crb &= ~S626_CRBMSK_INTCTRL;
951 
952 		/* Reset any pending counter overflow or index captures */
953 		s626_debi_write(dev, crb_reg,
954 				crb | S626_SET_CRB_INTRESETCMD(1) |
955 				S626_SET_CRB_INTRESET_B(1));
956 
957 		/* Program counter interrupt source */
958 		s626_debi_write(dev, crb_reg,
959 				(crb & ~S626_CRBMSK_INTSRC_B) |
960 				S626_SET_CRB_INTSRC_B(int_source));
961 	}
962 
963 	/* Update MISC2 interrupt enable mask. */
964 	devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
965 					S626_INDXMASK(chan));
966 	switch (int_source) {
967 	case 0:
968 	default:
969 		break;
970 	case 1:
971 		devpriv->counter_int_enabs |= S626_OVERMASK(chan);
972 		break;
973 	case 2:
974 		devpriv->counter_int_enabs |= S626_INDXMASK(chan);
975 		break;
976 	case 3:
977 		devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
978 					       S626_INDXMASK(chan));
979 		break;
980 	}
981 }
982 
983 /*
984  * Generate an index pulse.
985  */
s626_pulse_index(struct comedi_device * dev,unsigned int chan)986 static void s626_pulse_index(struct comedi_device *dev,
987 			     unsigned int chan)
988 {
989 	if (chan < 3) {
990 		u16 cra;
991 
992 		cra = s626_debi_read(dev, S626_LP_CRA(chan));
993 
994 		/* Pulse index */
995 		s626_debi_write(dev, S626_LP_CRA(chan),
996 				(cra ^ S626_CRAMSK_INDXPOL_A));
997 		s626_debi_write(dev, S626_LP_CRA(chan), cra);
998 	} else {
999 		u16 crb;
1000 
1001 		crb = s626_debi_read(dev, S626_LP_CRB(chan));
1002 		crb &= ~S626_CRBMSK_INTCTRL;
1003 
1004 		/* Pulse index */
1005 		s626_debi_write(dev, S626_LP_CRB(chan),
1006 				(crb ^ S626_CRBMSK_INDXPOL_B));
1007 		s626_debi_write(dev, S626_LP_CRB(chan), crb);
1008 	}
1009 }
1010 
s626_ai_reg_to_uint(unsigned int data)1011 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1012 {
1013 	return ((data >> 18) & 0x3fff) ^ 0x2000;
1014 }
1015 
s626_dio_set_irq(struct comedi_device * dev,unsigned int chan)1016 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1017 {
1018 	unsigned int group = chan / 16;
1019 	unsigned int mask = 1 << (chan - (16 * group));
1020 	unsigned int status;
1021 
1022 	/* set channel to capture positive edge */
1023 	status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1024 	s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1025 
1026 	/* enable interrupt on selected channel */
1027 	status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1028 	s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1029 
1030 	/* enable edge capture write command */
1031 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1032 
1033 	/* enable edge capture on selected channel */
1034 	status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1035 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1036 
1037 	return 0;
1038 }
1039 
s626_dio_reset_irq(struct comedi_device * dev,unsigned int group,unsigned int mask)1040 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1041 			      unsigned int mask)
1042 {
1043 	/* disable edge capture write command */
1044 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1045 
1046 	/* enable edge capture on selected channel */
1047 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1048 
1049 	return 0;
1050 }
1051 
s626_dio_clear_irq(struct comedi_device * dev)1052 static int s626_dio_clear_irq(struct comedi_device *dev)
1053 {
1054 	unsigned int group;
1055 
1056 	/* disable edge capture write command */
1057 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1058 
1059 	/* clear all dio pending events and interrupt */
1060 	for (group = 0; group < S626_DIO_BANKS; group++)
1061 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1062 
1063 	return 0;
1064 }
1065 
s626_handle_dio_interrupt(struct comedi_device * dev,u16 irqbit,u8 group)1066 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1067 				      u16 irqbit, u8 group)
1068 {
1069 	struct s626_private *devpriv = dev->private;
1070 	struct comedi_subdevice *s = dev->read_subdev;
1071 	struct comedi_cmd *cmd = &s->async->cmd;
1072 
1073 	s626_dio_reset_irq(dev, group, irqbit);
1074 
1075 	if (devpriv->ai_cmd_running) {
1076 		/* check if interrupt is an ai acquisition start trigger */
1077 		if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1078 		    cmd->start_src == TRIG_EXT) {
1079 			/* Start executing the RPS program */
1080 			s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1081 
1082 			if (cmd->scan_begin_src == TRIG_EXT)
1083 				s626_dio_set_irq(dev, cmd->scan_begin_arg);
1084 		}
1085 		if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1086 		    cmd->scan_begin_src == TRIG_EXT) {
1087 			/* Trigger ADC scan loop start */
1088 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1089 
1090 			if (cmd->convert_src == TRIG_EXT) {
1091 				devpriv->ai_convert_count = cmd->chanlist_len;
1092 
1093 				s626_dio_set_irq(dev, cmd->convert_arg);
1094 			}
1095 
1096 			if (cmd->convert_src == TRIG_TIMER) {
1097 				devpriv->ai_convert_count = cmd->chanlist_len;
1098 				s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1099 			}
1100 		}
1101 		if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1102 		    cmd->convert_src == TRIG_EXT) {
1103 			/* Trigger ADC scan loop start */
1104 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1105 
1106 			devpriv->ai_convert_count--;
1107 			if (devpriv->ai_convert_count > 0)
1108 				s626_dio_set_irq(dev, cmd->convert_arg);
1109 		}
1110 	}
1111 }
1112 
s626_check_dio_interrupts(struct comedi_device * dev)1113 static void s626_check_dio_interrupts(struct comedi_device *dev)
1114 {
1115 	u16 irqbit;
1116 	u8 group;
1117 
1118 	for (group = 0; group < S626_DIO_BANKS; group++) {
1119 		/* read interrupt type */
1120 		irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1121 
1122 		/* check if interrupt is generated from dio channels */
1123 		if (irqbit) {
1124 			s626_handle_dio_interrupt(dev, irqbit, group);
1125 			return;
1126 		}
1127 	}
1128 }
1129 
s626_check_counter_interrupts(struct comedi_device * dev)1130 static void s626_check_counter_interrupts(struct comedi_device *dev)
1131 {
1132 	struct s626_private *devpriv = dev->private;
1133 	struct comedi_subdevice *s = dev->read_subdev;
1134 	struct comedi_async *async = s->async;
1135 	struct comedi_cmd *cmd = &async->cmd;
1136 	u16 irqbit;
1137 
1138 	/* read interrupt type */
1139 	irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1140 
1141 	/* check interrupt on counters */
1142 	if (irqbit & S626_IRQ_COINT1A) {
1143 		/* clear interrupt capture flag */
1144 		s626_reset_cap_flags(dev, 0);
1145 	}
1146 	if (irqbit & S626_IRQ_COINT2A) {
1147 		/* clear interrupt capture flag */
1148 		s626_reset_cap_flags(dev, 1);
1149 	}
1150 	if (irqbit & S626_IRQ_COINT3A) {
1151 		/* clear interrupt capture flag */
1152 		s626_reset_cap_flags(dev, 2);
1153 	}
1154 	if (irqbit & S626_IRQ_COINT1B) {
1155 		/* clear interrupt capture flag */
1156 		s626_reset_cap_flags(dev, 3);
1157 	}
1158 	if (irqbit & S626_IRQ_COINT2B) {
1159 		/* clear interrupt capture flag */
1160 		s626_reset_cap_flags(dev, 4);
1161 
1162 		if (devpriv->ai_convert_count > 0) {
1163 			devpriv->ai_convert_count--;
1164 			if (devpriv->ai_convert_count == 0)
1165 				s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1166 
1167 			if (cmd->convert_src == TRIG_TIMER) {
1168 				/* Trigger ADC scan loop start */
1169 				s626_mc_enable(dev, S626_MC2_ADC_RPS,
1170 					       S626_P_MC2);
1171 			}
1172 		}
1173 	}
1174 	if (irqbit & S626_IRQ_COINT3B) {
1175 		/* clear interrupt capture flag */
1176 		s626_reset_cap_flags(dev, 5);
1177 
1178 		if (cmd->scan_begin_src == TRIG_TIMER) {
1179 			/* Trigger ADC scan loop start */
1180 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1181 		}
1182 
1183 		if (cmd->convert_src == TRIG_TIMER) {
1184 			devpriv->ai_convert_count = cmd->chanlist_len;
1185 			s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1186 		}
1187 	}
1188 }
1189 
s626_handle_eos_interrupt(struct comedi_device * dev)1190 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1191 {
1192 	struct s626_private *devpriv = dev->private;
1193 	struct comedi_subdevice *s = dev->read_subdev;
1194 	struct comedi_async *async = s->async;
1195 	struct comedi_cmd *cmd = &async->cmd;
1196 	/*
1197 	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
1198 	 * first uint16_t in the buffer because it contains junk data
1199 	 * from the final ADC of the previous poll list scan.
1200 	 */
1201 	u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
1202 	int i;
1203 
1204 	/* get the data and hand it over to comedi */
1205 	for (i = 0; i < cmd->chanlist_len; i++) {
1206 		unsigned short tempdata;
1207 
1208 		/*
1209 		 * Convert ADC data to 16-bit integer values and copy
1210 		 * to application buffer.
1211 		 */
1212 		tempdata = s626_ai_reg_to_uint(*readaddr);
1213 		readaddr++;
1214 
1215 		comedi_buf_write_samples(s, &tempdata, 1);
1216 	}
1217 
1218 	if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1219 		async->events |= COMEDI_CB_EOA;
1220 
1221 	if (async->events & COMEDI_CB_CANCEL_MASK)
1222 		devpriv->ai_cmd_running = 0;
1223 
1224 	if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1225 		s626_dio_set_irq(dev, cmd->scan_begin_arg);
1226 
1227 	comedi_handle_events(dev, s);
1228 
1229 	return !devpriv->ai_cmd_running;
1230 }
1231 
s626_irq_handler(int irq,void * d)1232 static irqreturn_t s626_irq_handler(int irq, void *d)
1233 {
1234 	struct comedi_device *dev = d;
1235 	unsigned long flags;
1236 	u32 irqtype, irqstatus;
1237 
1238 	if (!dev->attached)
1239 		return IRQ_NONE;
1240 	/* lock to avoid race with comedi_poll */
1241 	spin_lock_irqsave(&dev->spinlock, flags);
1242 
1243 	/* save interrupt enable register state */
1244 	irqstatus = readl(dev->mmio + S626_P_IER);
1245 
1246 	/* read interrupt type */
1247 	irqtype = readl(dev->mmio + S626_P_ISR);
1248 
1249 	/* disable master interrupt */
1250 	writel(0, dev->mmio + S626_P_IER);
1251 
1252 	/* clear interrupt */
1253 	writel(irqtype, dev->mmio + S626_P_ISR);
1254 
1255 	switch (irqtype) {
1256 	case S626_IRQ_RPS1:	/* end_of_scan occurs */
1257 		if (s626_handle_eos_interrupt(dev))
1258 			irqstatus = 0;
1259 		break;
1260 	case S626_IRQ_GPIO3:	/* check dio and counter interrupt */
1261 		/* s626_dio_clear_irq(dev); */
1262 		s626_check_dio_interrupts(dev);
1263 		s626_check_counter_interrupts(dev);
1264 		break;
1265 	}
1266 
1267 	/* enable interrupt */
1268 	writel(irqstatus, dev->mmio + S626_P_IER);
1269 
1270 	spin_unlock_irqrestore(&dev->spinlock, flags);
1271 	return IRQ_HANDLED;
1272 }
1273 
1274 /*
1275  * This function builds the RPS program for hardware driven acquisition.
1276  */
s626_reset_adc(struct comedi_device * dev,u8 * ppl)1277 static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
1278 {
1279 	struct s626_private *devpriv = dev->private;
1280 	struct comedi_subdevice *s = dev->read_subdev;
1281 	struct comedi_cmd *cmd = &s->async->cmd;
1282 	u32 *rps;
1283 	u32 jmp_adrs;
1284 	u16 i;
1285 	u16 n;
1286 	u32 local_ppl;
1287 
1288 	/* Stop RPS program in case it is currently running */
1289 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1290 
1291 	/* Set starting logical address to write RPS commands. */
1292 	rps = (u32 *)devpriv->rps_buf.logical_base;
1293 
1294 	/* Initialize RPS instruction pointer */
1295 	writel((u32)devpriv->rps_buf.physical_base,
1296 	       dev->mmio + S626_P_RPSADDR1);
1297 
1298 	/* Construct RPS program in rps_buf DMA buffer */
1299 	if (cmd->scan_begin_src != TRIG_FOLLOW) {
1300 		/* Wait for Start trigger. */
1301 		*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1302 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1303 	}
1304 
1305 	/*
1306 	 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1307 	 * because the first RPS DEBI Write following a non-RPS DEBI write
1308 	 * seems to always fail.  If we don't do this dummy write, the ADC
1309 	 * gain might not be set to the value required for the first slot in
1310 	 * the poll list; the ADC gain would instead remain unchanged from
1311 	 * the previously programmed value.
1312 	 */
1313 	/* Write DEBI Write command and address to shadow RAM. */
1314 	*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1315 	*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1316 	*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1317 	/* Write DEBI immediate data  to shadow RAM: */
1318 	*rps++ = S626_GSEL_BIPOLAR5V;	/* arbitrary immediate data  value. */
1319 	*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1320 	/* Reset "shadow RAM  uploaded" flag. */
1321 	/* Invoke shadow RAM upload. */
1322 	*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1323 	/* Wait for shadow upload to finish. */
1324 	*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1325 
1326 	/*
1327 	 * Digitize all slots in the poll list. This is implemented as a
1328 	 * for loop to limit the slot count to 16 in case the application
1329 	 * forgot to set the S626_EOPL flag in the final slot.
1330 	 */
1331 	for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1332 	     devpriv->adc_items++) {
1333 		/*
1334 		 * Convert application's poll list item to private board class
1335 		 * format.  Each app poll list item is an uint8_t with form
1336 		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1337 		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1338 		 */
1339 		local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1340 					   S626_GSEL_BIPOLAR10V);
1341 
1342 		/* Switch ADC analog gain. */
1343 		/* Write DEBI command and address to shadow RAM. */
1344 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1345 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1346 		/* Write DEBI immediate data to shadow RAM. */
1347 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1348 		*rps++ = local_ppl;
1349 		/* Reset "shadow RAM uploaded" flag. */
1350 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1351 		/* Invoke shadow RAM upload. */
1352 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1353 		/* Wait for shadow upload to finish. */
1354 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1355 		/* Select ADC analog input channel. */
1356 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1357 		/* Write DEBI command and address to shadow RAM. */
1358 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1359 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1360 		/* Write DEBI immediate data to shadow RAM. */
1361 		*rps++ = local_ppl;
1362 		/* Reset "shadow RAM uploaded" flag. */
1363 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1364 		/* Invoke shadow RAM upload. */
1365 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1366 		/* Wait for shadow upload to finish. */
1367 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1368 
1369 		/*
1370 		 * Delay at least 10 microseconds for analog input settling.
1371 		 * Instead of padding with NOPs, we use S626_RPS_JUMP
1372 		 * instructions here; this allows us to produce a longer delay
1373 		 * than is possible with NOPs because each S626_RPS_JUMP
1374 		 * flushes the RPS' instruction prefetch pipeline.
1375 		 */
1376 		jmp_adrs =
1377 			(u32)devpriv->rps_buf.physical_base +
1378 			(u32)((unsigned long)rps -
1379 			      (unsigned long)devpriv->rps_buf.logical_base);
1380 		for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1381 			jmp_adrs += 8;	/* Repeat to implement time delay: */
1382 			/* Jump to next RPS instruction. */
1383 			*rps++ = S626_RPS_JUMP;
1384 			*rps++ = jmp_adrs;
1385 		}
1386 
1387 		if (cmd->convert_src != TRIG_NOW) {
1388 			/* Wait for Start trigger. */
1389 			*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1390 			*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1391 		}
1392 		/* Start ADC by pulsing GPIO1. */
1393 		/* Begin ADC Start pulse. */
1394 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1395 		*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1396 		*rps++ = S626_RPS_NOP;
1397 		/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1398 		/* End ADC Start pulse. */
1399 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1400 		*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1401 		/*
1402 		 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1403 		 * busy) and for data from previous conversion to shift into FB
1404 		 * BUFFER 1 register.
1405 		 */
1406 		/* Wait for ADC done. */
1407 		*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1408 
1409 		/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1410 		*rps++ = S626_RPS_STREG |
1411 			 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1412 		*rps++ = (u32)devpriv->ana_buf.physical_base +
1413 			 (devpriv->adc_items << 2);
1414 
1415 		/*
1416 		 * If this slot's EndOfPollList flag is set, all channels have
1417 		 * now been processed.
1418 		 */
1419 		if (*ppl++ & S626_EOPL) {
1420 			devpriv->adc_items++; /* Adjust poll list item count. */
1421 			break;	/* Exit poll list processing loop. */
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1427 	 * ADC to stabilize for 2 microseconds before starting the final
1428 	 * (dummy) conversion.  This delay is necessary to allow sufficient
1429 	 * time between last conversion finished and the start of the dummy
1430 	 * conversion.  Without this delay, the last conversion's data value
1431 	 * is sometimes set to the previous conversion's data value.
1432 	 */
1433 	for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1434 		*rps++ = S626_RPS_NOP;
1435 
1436 	/*
1437 	 * Start a dummy conversion to cause the data from the last
1438 	 * conversion of interest to be shifted in.
1439 	 */
1440 	/* Begin ADC Start pulse. */
1441 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1442 	*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1443 	*rps++ = S626_RPS_NOP;
1444 	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1445 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1446 	*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1447 
1448 	/*
1449 	 * Wait for the data from the last conversion of interest to arrive
1450 	 * in FB BUFFER 1 register.
1451 	 */
1452 	*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;	/* Wait for ADC done. */
1453 
1454 	/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1455 	*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1456 	*rps++ = (u32)devpriv->ana_buf.physical_base +
1457 		 (devpriv->adc_items << 2);
1458 
1459 	/* Indicate ADC scan loop is finished. */
1460 	/* Signal ReadADC() that scan is done. */
1461 	/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1462 
1463 	/* invoke interrupt */
1464 	if (devpriv->ai_cmd_running == 1)
1465 		*rps++ = S626_RPS_IRQ;
1466 
1467 	/* Restart RPS program at its beginning. */
1468 	*rps++ = S626_RPS_JUMP;	/* Branch to start of RPS program. */
1469 	*rps++ = (u32)devpriv->rps_buf.physical_base;
1470 
1471 	/* End of RPS program build */
1472 }
1473 
s626_ai_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)1474 static int s626_ai_eoc(struct comedi_device *dev,
1475 		       struct comedi_subdevice *s,
1476 		       struct comedi_insn *insn,
1477 		       unsigned long context)
1478 {
1479 	unsigned int status;
1480 
1481 	status = readl(dev->mmio + S626_P_PSR);
1482 	if (status & S626_PSR_GPIO2)
1483 		return 0;
1484 	return -EBUSY;
1485 }
1486 
s626_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1487 static int s626_ai_insn_read(struct comedi_device *dev,
1488 			     struct comedi_subdevice *s,
1489 			     struct comedi_insn *insn,
1490 			     unsigned int *data)
1491 {
1492 	u16 chan = CR_CHAN(insn->chanspec);
1493 	u16 range = CR_RANGE(insn->chanspec);
1494 	u16 adc_spec = 0;
1495 	u32 gpio_image;
1496 	u32 tmp;
1497 	int ret;
1498 	int n;
1499 
1500 	/*
1501 	 * Convert application's ADC specification into form
1502 	 *  appropriate for register programming.
1503 	 */
1504 	if (range == 0)
1505 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1506 	else
1507 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1508 
1509 	/* Switch ADC analog gain. */
1510 	s626_debi_write(dev, S626_LP_GSEL, adc_spec);	/* Set gain. */
1511 
1512 	/* Select ADC analog input channel. */
1513 	s626_debi_write(dev, S626_LP_ISEL, adc_spec);	/* Select channel. */
1514 
1515 	for (n = 0; n < insn->n; n++) {
1516 		/* Delay 10 microseconds for analog input settling. */
1517 		usleep_range(10, 20);
1518 
1519 		/* Start ADC by pulsing GPIO1 low */
1520 		gpio_image = readl(dev->mmio + S626_P_GPIO);
1521 		/* Assert ADC Start command */
1522 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1523 		/* and stretch it out */
1524 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1525 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1526 		/* Negate ADC Start command */
1527 		writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1528 
1529 		/*
1530 		 * Wait for ADC to complete (GPIO2 is asserted high when
1531 		 * ADC not busy) and for data from previous conversion to
1532 		 * shift into FB BUFFER 1 register.
1533 		 */
1534 
1535 		/* Wait for ADC done */
1536 		ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1537 		if (ret)
1538 			return ret;
1539 
1540 		/* Fetch ADC data */
1541 		if (n != 0) {
1542 			tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1543 			data[n - 1] = s626_ai_reg_to_uint(tmp);
1544 		}
1545 
1546 		/*
1547 		 * Allow the ADC to stabilize for 4 microseconds before
1548 		 * starting the next (final) conversion.  This delay is
1549 		 * necessary to allow sufficient time between last
1550 		 * conversion finished and the start of the next
1551 		 * conversion.  Without this delay, the last conversion's
1552 		 * data value is sometimes set to the previous
1553 		 * conversion's data value.
1554 		 */
1555 		udelay(4);
1556 	}
1557 
1558 	/*
1559 	 * Start a dummy conversion to cause the data from the
1560 	 * previous conversion to be shifted in.
1561 	 */
1562 	gpio_image = readl(dev->mmio + S626_P_GPIO);
1563 	/* Assert ADC Start command */
1564 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1565 	/* and stretch it out */
1566 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1567 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1568 	/* Negate ADC Start command */
1569 	writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1570 
1571 	/* Wait for the data to arrive in FB BUFFER 1 register. */
1572 
1573 	/* Wait for ADC done */
1574 	ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1575 	if (ret)
1576 		return ret;
1577 
1578 	/* Fetch ADC data from audio interface's input shift register. */
1579 
1580 	/* Fetch ADC data */
1581 	if (n != 0) {
1582 		tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1583 		data[n - 1] = s626_ai_reg_to_uint(tmp);
1584 	}
1585 
1586 	return n;
1587 }
1588 
s626_ai_load_polllist(u8 * ppl,struct comedi_cmd * cmd)1589 static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
1590 {
1591 	int n;
1592 
1593 	for (n = 0; n < cmd->chanlist_len; n++) {
1594 		if (CR_RANGE(cmd->chanlist[n]) == 0)
1595 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1596 		else
1597 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1598 	}
1599 	if (n != 0)
1600 		ppl[n - 1] |= S626_EOPL;
1601 
1602 	return n;
1603 }
1604 
s626_ai_inttrig(struct comedi_device * dev,struct comedi_subdevice * s,unsigned int trig_num)1605 static int s626_ai_inttrig(struct comedi_device *dev,
1606 			   struct comedi_subdevice *s,
1607 			   unsigned int trig_num)
1608 {
1609 	struct comedi_cmd *cmd = &s->async->cmd;
1610 
1611 	if (trig_num != cmd->start_arg)
1612 		return -EINVAL;
1613 
1614 	/* Start executing the RPS program */
1615 	s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1616 
1617 	s->async->inttrig = NULL;
1618 
1619 	return 1;
1620 }
1621 
1622 /*
1623  * This function doesn't require a particular form, this is just what
1624  * happens to be used in some of the drivers.  It should convert ns
1625  * nanoseconds to a counter value suitable for programming the device.
1626  * Also, it should adjust ns so that it cooresponds to the actual time
1627  * that the device will use.
1628  */
s626_ns_to_timer(unsigned int * nanosec,unsigned int flags)1629 static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1630 {
1631 	int divider, base;
1632 
1633 	base = 500;		/* 2MHz internal clock */
1634 
1635 	switch (flags & CMDF_ROUND_MASK) {
1636 	case CMDF_ROUND_NEAREST:
1637 	default:
1638 		divider = DIV_ROUND_CLOSEST(*nanosec, base);
1639 		break;
1640 	case CMDF_ROUND_DOWN:
1641 		divider = (*nanosec) / base;
1642 		break;
1643 	case CMDF_ROUND_UP:
1644 		divider = DIV_ROUND_UP(*nanosec, base);
1645 		break;
1646 	}
1647 
1648 	*nanosec = base * divider;
1649 	return divider - 1;
1650 }
1651 
s626_timer_load(struct comedi_device * dev,unsigned int chan,int tick)1652 static void s626_timer_load(struct comedi_device *dev,
1653 			    unsigned int chan, int tick)
1654 {
1655 	u16 setup =
1656 		/* Preload upon index. */
1657 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1658 		/* Disable hardware index. */
1659 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1660 		/* Operating mode is Timer. */
1661 		S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1662 		/* Count direction is Down. */
1663 		S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1664 		/* Clock multiplier is 1x. */
1665 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1666 		/* Enabled by index */
1667 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1668 	u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
1669 	/* uint16_t enab = S626_CLKENAB_ALWAYS; */
1670 
1671 	s626_set_mode(dev, chan, setup, false);
1672 
1673 	/* Set the preload register */
1674 	s626_preload(dev, chan, tick);
1675 
1676 	/*
1677 	 * Software index pulse forces the preload register to load
1678 	 * into the counter
1679 	 */
1680 	s626_set_load_trig(dev, chan, 0);
1681 	s626_pulse_index(dev, chan);
1682 
1683 	/* set reload on counter overflow */
1684 	s626_set_load_trig(dev, chan, 1);
1685 
1686 	/* set interrupt on overflow */
1687 	s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1688 
1689 	s626_set_latch_source(dev, chan, value_latchsrc);
1690 	/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1691 }
1692 
1693 /* TO COMPLETE  */
s626_ai_cmd(struct comedi_device * dev,struct comedi_subdevice * s)1694 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1695 {
1696 	struct s626_private *devpriv = dev->private;
1697 	u8 ppl[16];
1698 	struct comedi_cmd *cmd = &s->async->cmd;
1699 	int tick;
1700 
1701 	if (devpriv->ai_cmd_running) {
1702 		dev_err(dev->class_dev,
1703 			"%s: Another ai_cmd is running\n", __func__);
1704 		return -EBUSY;
1705 	}
1706 	/* disable interrupt */
1707 	writel(0, dev->mmio + S626_P_IER);
1708 
1709 	/* clear interrupt request */
1710 	writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
1711 
1712 	/* clear any pending interrupt */
1713 	s626_dio_clear_irq(dev);
1714 	/* s626_enc_clear_irq(dev); */
1715 
1716 	/* reset ai_cmd_running flag */
1717 	devpriv->ai_cmd_running = 0;
1718 
1719 	s626_ai_load_polllist(ppl, cmd);
1720 	devpriv->ai_cmd_running = 1;
1721 	devpriv->ai_convert_count = 0;
1722 
1723 	switch (cmd->scan_begin_src) {
1724 	case TRIG_FOLLOW:
1725 		break;
1726 	case TRIG_TIMER:
1727 		/*
1728 		 * set a counter to generate adc trigger at scan_begin_arg
1729 		 * interval
1730 		 */
1731 		tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
1732 
1733 		/* load timer value and enable interrupt */
1734 		s626_timer_load(dev, 5, tick);
1735 		s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1736 		break;
1737 	case TRIG_EXT:
1738 		/* set the digital line and interrupt for scan trigger */
1739 		if (cmd->start_src != TRIG_EXT)
1740 			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1741 		break;
1742 	}
1743 
1744 	switch (cmd->convert_src) {
1745 	case TRIG_NOW:
1746 		break;
1747 	case TRIG_TIMER:
1748 		/*
1749 		 * set a counter to generate adc trigger at convert_arg
1750 		 * interval
1751 		 */
1752 		tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
1753 
1754 		/* load timer value and enable interrupt */
1755 		s626_timer_load(dev, 4, tick);
1756 		s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1757 		break;
1758 	case TRIG_EXT:
1759 		/* set the digital line and interrupt for convert trigger */
1760 		if (cmd->scan_begin_src != TRIG_EXT &&
1761 		    cmd->start_src == TRIG_EXT)
1762 			s626_dio_set_irq(dev, cmd->convert_arg);
1763 		break;
1764 	}
1765 
1766 	s626_reset_adc(dev, ppl);
1767 
1768 	switch (cmd->start_src) {
1769 	case TRIG_NOW:
1770 		/* Trigger ADC scan loop start */
1771 		/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1772 
1773 		/* Start executing the RPS program */
1774 		s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1775 		s->async->inttrig = NULL;
1776 		break;
1777 	case TRIG_EXT:
1778 		/* configure DIO channel for acquisition trigger */
1779 		s626_dio_set_irq(dev, cmd->start_arg);
1780 		s->async->inttrig = NULL;
1781 		break;
1782 	case TRIG_INT:
1783 		s->async->inttrig = s626_ai_inttrig;
1784 		break;
1785 	}
1786 
1787 	/* enable interrupt */
1788 	writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
1789 
1790 	return 0;
1791 }
1792 
s626_ai_cmdtest(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_cmd * cmd)1793 static int s626_ai_cmdtest(struct comedi_device *dev,
1794 			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
1795 {
1796 	int err = 0;
1797 	unsigned int arg;
1798 
1799 	/* Step 1 : check if triggers are trivially valid */
1800 
1801 	err |= comedi_check_trigger_src(&cmd->start_src,
1802 					TRIG_NOW | TRIG_INT | TRIG_EXT);
1803 	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1804 					TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1805 	err |= comedi_check_trigger_src(&cmd->convert_src,
1806 					TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1807 	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1808 	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1809 
1810 	if (err)
1811 		return 1;
1812 
1813 	/* Step 2a : make sure trigger sources are unique */
1814 
1815 	err |= comedi_check_trigger_is_unique(cmd->start_src);
1816 	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1817 	err |= comedi_check_trigger_is_unique(cmd->convert_src);
1818 	err |= comedi_check_trigger_is_unique(cmd->stop_src);
1819 
1820 	/* Step 2b : and mutually compatible */
1821 
1822 	if (err)
1823 		return 2;
1824 
1825 	/* Step 3: check if arguments are trivially valid */
1826 
1827 	switch (cmd->start_src) {
1828 	case TRIG_NOW:
1829 	case TRIG_INT:
1830 		err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
1831 		break;
1832 	case TRIG_EXT:
1833 		err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
1834 		break;
1835 	}
1836 
1837 	if (cmd->scan_begin_src == TRIG_EXT)
1838 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1839 	if (cmd->convert_src == TRIG_EXT)
1840 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
1841 
1842 #define S626_MAX_SPEED	200000	/* in nanoseconds */
1843 #define S626_MIN_SPEED	2000000000	/* in nanoseconds */
1844 
1845 	if (cmd->scan_begin_src == TRIG_TIMER) {
1846 		err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1847 						    S626_MAX_SPEED);
1848 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1849 						    S626_MIN_SPEED);
1850 	} else {
1851 		/*
1852 		 * external trigger
1853 		 * should be level/edge, hi/lo specification here
1854 		 * should specify multiple external triggers
1855 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1856 		 */
1857 	}
1858 	if (cmd->convert_src == TRIG_TIMER) {
1859 		err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1860 						    S626_MAX_SPEED);
1861 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1862 						    S626_MIN_SPEED);
1863 	} else {
1864 		/*
1865 		 * external trigger - see above
1866 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1867 		 */
1868 	}
1869 
1870 	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1871 					   cmd->chanlist_len);
1872 
1873 	if (cmd->stop_src == TRIG_COUNT)
1874 		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
1875 	else	/* TRIG_NONE */
1876 		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
1877 
1878 	if (err)
1879 		return 3;
1880 
1881 	/* step 4: fix up any arguments */
1882 
1883 	if (cmd->scan_begin_src == TRIG_TIMER) {
1884 		arg = cmd->scan_begin_arg;
1885 		s626_ns_to_timer(&arg, cmd->flags);
1886 		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
1887 	}
1888 
1889 	if (cmd->convert_src == TRIG_TIMER) {
1890 		arg = cmd->convert_arg;
1891 		s626_ns_to_timer(&arg, cmd->flags);
1892 		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
1893 
1894 		if (cmd->scan_begin_src == TRIG_TIMER) {
1895 			arg = cmd->convert_arg * cmd->scan_end_arg;
1896 			err |= comedi_check_trigger_arg_min(
1897 				&cmd->scan_begin_arg,
1898 				arg);
1899 		}
1900 	}
1901 
1902 	if (err)
1903 		return 4;
1904 
1905 	return 0;
1906 }
1907 
s626_ai_cancel(struct comedi_device * dev,struct comedi_subdevice * s)1908 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1909 {
1910 	struct s626_private *devpriv = dev->private;
1911 
1912 	/* Stop RPS program in case it is currently running */
1913 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1914 
1915 	/* disable master interrupt */
1916 	writel(0, dev->mmio + S626_P_IER);
1917 
1918 	devpriv->ai_cmd_running = 0;
1919 
1920 	return 0;
1921 }
1922 
s626_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1923 static int s626_ao_insn_write(struct comedi_device *dev,
1924 			      struct comedi_subdevice *s,
1925 			      struct comedi_insn *insn,
1926 			      unsigned int *data)
1927 {
1928 	unsigned int chan = CR_CHAN(insn->chanspec);
1929 	int i;
1930 
1931 	for (i = 0; i < insn->n; i++) {
1932 		s16 dacdata = (s16)data[i];
1933 		int ret;
1934 
1935 		dacdata -= (0x1fff);
1936 
1937 		ret = s626_set_dac(dev, chan, dacdata);
1938 		if (ret)
1939 			return ret;
1940 
1941 		s->readback[chan] = data[i];
1942 	}
1943 
1944 	return insn->n;
1945 }
1946 
1947 /* *************** DIGITAL I/O FUNCTIONS *************** */
1948 
1949 /*
1950  * All DIO functions address a group of DIO channels by means of
1951  * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
1952  * ports A, B and C, respectively.
1953  */
1954 
s626_dio_init(struct comedi_device * dev)1955 static void s626_dio_init(struct comedi_device *dev)
1956 {
1957 	u16 group;
1958 
1959 	/* Prepare to treat writes to WRCapSel as capture disables. */
1960 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1961 
1962 	/* For each group of sixteen channels ... */
1963 	for (group = 0; group < S626_DIO_BANKS; group++) {
1964 		/* Disable all interrupts */
1965 		s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
1966 		/* Disable all event captures */
1967 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1968 		/* Init all DIOs to default edge polarity */
1969 		s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
1970 		/* Program all outputs to inactive state */
1971 		s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
1972 	}
1973 }
1974 
s626_dio_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1975 static int s626_dio_insn_bits(struct comedi_device *dev,
1976 			      struct comedi_subdevice *s,
1977 			      struct comedi_insn *insn,
1978 			      unsigned int *data)
1979 {
1980 	unsigned long group = (unsigned long)s->private;
1981 
1982 	if (comedi_dio_update_state(s, data))
1983 		s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
1984 
1985 	data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1986 
1987 	return insn->n;
1988 }
1989 
s626_dio_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1990 static int s626_dio_insn_config(struct comedi_device *dev,
1991 				struct comedi_subdevice *s,
1992 				struct comedi_insn *insn,
1993 				unsigned int *data)
1994 {
1995 	unsigned long group = (unsigned long)s->private;
1996 	int ret;
1997 
1998 	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
1999 	if (ret)
2000 		return ret;
2001 
2002 	s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2003 
2004 	return insn->n;
2005 }
2006 
2007 /*
2008  * Now this function initializes the value of the counter (data[0])
2009  * and set the subdevice. To complete with trigger and interrupt
2010  * configuration.
2011  *
2012  * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2013  * what is being configured, but this function appears to be using data[0]
2014  * as a variable.
2015  */
s626_enc_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2016 static int s626_enc_insn_config(struct comedi_device *dev,
2017 				struct comedi_subdevice *s,
2018 				struct comedi_insn *insn, unsigned int *data)
2019 {
2020 	unsigned int chan = CR_CHAN(insn->chanspec);
2021 	u16 setup =
2022 		/* Preload upon index. */
2023 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2024 		/* Disable hardware index. */
2025 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2026 		/* Operating mode is Counter. */
2027 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2028 		/* Active high clock. */
2029 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2030 		/* Clock multiplier is 1x. */
2031 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2032 		/* Enabled by index */
2033 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2034 	/* uint16_t disable_int_src = true; */
2035 	/* uint32_t Preloadvalue;              //Counter initial value */
2036 	u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2037 	u16 enab = S626_CLKENAB_ALWAYS;
2038 
2039 	/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2040 
2041 	s626_set_mode(dev, chan, setup, true);
2042 	s626_preload(dev, chan, data[0]);
2043 	s626_pulse_index(dev, chan);
2044 	s626_set_latch_source(dev, chan, value_latchsrc);
2045 	s626_set_enable(dev, chan, (enab != 0));
2046 
2047 	return insn->n;
2048 }
2049 
s626_enc_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2050 static int s626_enc_insn_read(struct comedi_device *dev,
2051 			      struct comedi_subdevice *s,
2052 			      struct comedi_insn *insn,
2053 			      unsigned int *data)
2054 {
2055 	unsigned int chan = CR_CHAN(insn->chanspec);
2056 	u16 cntr_latch_reg = S626_LP_CNTR(chan);
2057 	int i;
2058 
2059 	for (i = 0; i < insn->n; i++) {
2060 		unsigned int val;
2061 
2062 		/*
2063 		 * Read the counter's output latch LSW/MSW.
2064 		 * Latches on LSW read.
2065 		 */
2066 		val = s626_debi_read(dev, cntr_latch_reg);
2067 		val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2068 		data[i] = val;
2069 	}
2070 
2071 	return insn->n;
2072 }
2073 
s626_enc_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2074 static int s626_enc_insn_write(struct comedi_device *dev,
2075 			       struct comedi_subdevice *s,
2076 			       struct comedi_insn *insn, unsigned int *data)
2077 {
2078 	unsigned int chan = CR_CHAN(insn->chanspec);
2079 
2080 	/* Set the preload register */
2081 	s626_preload(dev, chan, data[0]);
2082 
2083 	/*
2084 	 * Software index pulse forces the preload register to load
2085 	 * into the counter
2086 	 */
2087 	s626_set_load_trig(dev, chan, 0);
2088 	s626_pulse_index(dev, chan);
2089 	s626_set_load_trig(dev, chan, 2);
2090 
2091 	return 1;
2092 }
2093 
s626_write_misc2(struct comedi_device * dev,u16 new_image)2094 static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
2095 {
2096 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2097 	s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2098 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2099 }
2100 
s626_counters_init(struct comedi_device * dev)2101 static void s626_counters_init(struct comedi_device *dev)
2102 {
2103 	int chan;
2104 	u16 setup =
2105 		/* Preload upon index. */
2106 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2107 		/* Disable hardware index. */
2108 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2109 		/* Operating mode is counter. */
2110 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2111 		/* Active high clock. */
2112 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2113 		/* Clock multiplier is 1x. */
2114 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2115 		/* Enabled by index */
2116 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2117 
2118 	/*
2119 	 * Disable all counter interrupts and clear any captured counter events.
2120 	 */
2121 	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2122 		s626_set_mode(dev, chan, setup, true);
2123 		s626_set_int_src(dev, chan, 0);
2124 		s626_reset_cap_flags(dev, chan);
2125 		s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2126 	}
2127 }
2128 
s626_allocate_dma_buffers(struct comedi_device * dev)2129 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2130 {
2131 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2132 	struct s626_private *devpriv = dev->private;
2133 	void *addr;
2134 	dma_addr_t appdma;
2135 
2136 	addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2137 	if (!addr)
2138 		return -ENOMEM;
2139 	devpriv->ana_buf.logical_base = addr;
2140 	devpriv->ana_buf.physical_base = appdma;
2141 
2142 	addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2143 	if (!addr)
2144 		return -ENOMEM;
2145 	devpriv->rps_buf.logical_base = addr;
2146 	devpriv->rps_buf.physical_base = appdma;
2147 
2148 	return 0;
2149 }
2150 
s626_free_dma_buffers(struct comedi_device * dev)2151 static void s626_free_dma_buffers(struct comedi_device *dev)
2152 {
2153 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2154 	struct s626_private *devpriv = dev->private;
2155 
2156 	if (!devpriv)
2157 		return;
2158 
2159 	if (devpriv->rps_buf.logical_base)
2160 		pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2161 				    devpriv->rps_buf.logical_base,
2162 				    devpriv->rps_buf.physical_base);
2163 	if (devpriv->ana_buf.logical_base)
2164 		pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2165 				    devpriv->ana_buf.logical_base,
2166 				    devpriv->ana_buf.physical_base);
2167 }
2168 
s626_initialize(struct comedi_device * dev)2169 static int s626_initialize(struct comedi_device *dev)
2170 {
2171 	struct s626_private *devpriv = dev->private;
2172 	dma_addr_t phys_buf;
2173 	u16 chan;
2174 	int i;
2175 	int ret;
2176 
2177 	/* Enable DEBI and audio pins, enable I2C interface */
2178 	s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2179 		       S626_P_MC1);
2180 
2181 	/*
2182 	 * Configure DEBI operating mode
2183 	 *
2184 	 *  Local bus is 16 bits wide
2185 	 *  Declare DEBI transfer timeout interval
2186 	 *  Set up byte lane steering
2187 	 *  Intel-compatible local bus (DEBI never times out)
2188 	 */
2189 	writel(S626_DEBI_CFG_SLAVE16 |
2190 	       (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2191 	       S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2192 
2193 	/* Disable MMU paging */
2194 	writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2195 
2196 	/* Init GPIO so that ADC Start* is negated */
2197 	writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2198 
2199 	/* I2C device address for onboard eeprom (revb) */
2200 	devpriv->i2c_adrs = 0xA0;
2201 
2202 	/*
2203 	 * Issue an I2C ABORT command to halt any I2C
2204 	 * operation in progress and reset BUSY flag.
2205 	 */
2206 	writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2207 	       dev->mmio + S626_P_I2CSTAT);
2208 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2209 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2210 	if (ret)
2211 		return ret;
2212 
2213 	/*
2214 	 * Per SAA7146 data sheet, write to STATUS
2215 	 * reg twice to reset all  I2C error flags.
2216 	 */
2217 	for (i = 0; i < 2; i++) {
2218 		writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2219 		s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2220 		ret = comedi_timeout(dev, NULL,
2221 				     NULL, s626_i2c_handshake_eoc, 0);
2222 		if (ret)
2223 			return ret;
2224 	}
2225 
2226 	/*
2227 	 * Init audio interface functional attributes: set DAC/ADC
2228 	 * serial clock rates, invert DAC serial clock so that
2229 	 * DAC data setup times are satisfied, enable DAC serial
2230 	 * clock out.
2231 	 */
2232 	writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2233 
2234 	/*
2235 	 * Set up TSL1 slot list, which is used to control the
2236 	 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2237 	 * S626_SIB_A1  = store data uint8_t at next available location
2238 	 * in FB BUFFER1 register.
2239 	 */
2240 	writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2241 	writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2242 	       dev->mmio + S626_P_TSL1 + 4);
2243 
2244 	/* Enable TSL1 slot list so that it executes all the time */
2245 	writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2246 
2247 	/*
2248 	 * Initialize RPS registers used for ADC
2249 	 */
2250 
2251 	/* Physical start of RPS program */
2252 	writel((u32)devpriv->rps_buf.physical_base,
2253 	       dev->mmio + S626_P_RPSADDR1);
2254 	/* RPS program performs no explicit mem writes */
2255 	writel(0, dev->mmio + S626_P_RPSPAGE1);
2256 	/* Disable RPS timeouts */
2257 	writel(0, dev->mmio + S626_P_RPS1_TOUT);
2258 
2259 #if 0
2260 	/*
2261 	 * SAA7146 BUG WORKAROUND
2262 	 *
2263 	 * Initialize SAA7146 ADC interface to a known state by
2264 	 * invoking ADCs until FB BUFFER 1 register shows that it
2265 	 * is correctly receiving ADC data. This is necessary
2266 	 * because the SAA7146 ADC interface does not start up in
2267 	 * a defined state after a PCI reset.
2268 	 */
2269 	{
2270 		struct comedi_subdevice *s = dev->read_subdev;
2271 		u8 poll_list;
2272 		u16 adc_data;
2273 		u16 start_val;
2274 		u16 index;
2275 		unsigned int data[16];
2276 
2277 		/* Create a simple polling list for analog input channel 0 */
2278 		poll_list = S626_EOPL;
2279 		s626_reset_adc(dev, &poll_list);
2280 
2281 		/* Get initial ADC value */
2282 		s626_ai_rinsn(dev, s, NULL, data);
2283 		start_val = data[0];
2284 
2285 		/*
2286 		 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2287 		 * EXECUTION.
2288 		 *
2289 		 * Invoke ADCs until the new ADC value differs from the initial
2290 		 * value or a timeout occurs.  The timeout protects against the
2291 		 * possibility that the driver is restarting and the ADC data is
2292 		 * a fixed value resulting from the applied ADC analog input
2293 		 * being unusually quiet or at the rail.
2294 		 */
2295 		for (index = 0; index < 500; index++) {
2296 			s626_ai_rinsn(dev, s, NULL, data);
2297 			adc_data = data[0];
2298 			if (adc_data != start_val)
2299 				break;
2300 		}
2301 	}
2302 #endif	/* SAA7146 BUG WORKAROUND */
2303 
2304 	/*
2305 	 * Initialize the DAC interface
2306 	 */
2307 
2308 	/*
2309 	 * Init Audio2's output DMAC attributes:
2310 	 *   burst length = 1 DWORD
2311 	 *   threshold = 1 DWORD.
2312 	 */
2313 	writel(0, dev->mmio + S626_P_PCI_BT_A);
2314 
2315 	/*
2316 	 * Init Audio2's output DMA physical addresses.  The protection
2317 	 * address is set to 1 DWORD past the base address so that a
2318 	 * single DWORD will be transferred each time a DMA transfer is
2319 	 * enabled.
2320 	 */
2321 	phys_buf = devpriv->ana_buf.physical_base +
2322 		   (S626_DAC_WDMABUF_OS * sizeof(u32));
2323 	writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2324 	writel((u32)(phys_buf + sizeof(u32)),
2325 	       dev->mmio + S626_P_PROTA2_OUT);
2326 
2327 	/*
2328 	 * Cache Audio2's output DMA buffer logical address.  This is
2329 	 * where DAC data is buffered for A2 output DMA transfers.
2330 	 */
2331 	devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
2332 			    S626_DAC_WDMABUF_OS;
2333 
2334 	/*
2335 	 * Audio2's output channels does not use paging.  The
2336 	 * protection violation handling bit is set so that the
2337 	 * DMAC will automatically halt and its PCI address pointer
2338 	 * will be reset when the protection address is reached.
2339 	 */
2340 	writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2341 
2342 	/*
2343 	 * Initialize time slot list 2 (TSL2), which is used to control
2344 	 * the clock generation for and serialization of data to be sent
2345 	 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2346 	 * execution; this permits other slots to be safely modified
2347 	 * without first turning off the TSL sequencer (which is
2348 	 * apparently impossible to do).  Also, SD3 (which is driven by a
2349 	 * pull-up resistor) is shifted in and stored to the MSB of
2350 	 * FB_BUFFER2 to be used as evidence that the slot sequence has
2351 	 * not yet finished executing.
2352 	 */
2353 
2354 	/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2355 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2356 	       dev->mmio + S626_VECTPORT(0));
2357 
2358 	/*
2359 	 * Initialize slot 1, which is constant.  Slot 1 causes a
2360 	 * DWORD to be transferred from audio channel 2's output FIFO
2361 	 * to the FIFO's output buffer so that it can be serialized
2362 	 * and sent to the DAC during subsequent slots.  All remaining
2363 	 * slots are dynamically populated as required by the target
2364 	 * DAC device.
2365 	 */
2366 
2367 	/* Slot 1: Fetch DWORD from Audio2's output FIFO */
2368 	writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2369 
2370 	/* Start DAC's audio interface (TSL2) running */
2371 	writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2372 
2373 	/*
2374 	 * Init Trim DACs to calibrated values.  Do it twice because the
2375 	 * SAA7146 audio channel does not always reset properly and
2376 	 * sometimes causes the first few TrimDAC writes to malfunction.
2377 	 */
2378 	s626_load_trim_dacs(dev);
2379 	ret = s626_load_trim_dacs(dev);
2380 	if (ret)
2381 		return ret;
2382 
2383 	/*
2384 	 * Manually init all gate array hardware in case this is a soft
2385 	 * reset (we have no way of determining whether this is a warm
2386 	 * or cold start).  This is necessary because the gate array will
2387 	 * reset only in response to a PCI hard reset; there is no soft
2388 	 * reset function.
2389 	 */
2390 
2391 	/*
2392 	 * Init all DAC outputs to 0V and init all DAC setpoint and
2393 	 * polarity images.
2394 	 */
2395 	for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2396 		ret = s626_set_dac(dev, chan, 0);
2397 		if (ret)
2398 			return ret;
2399 	}
2400 
2401 	/* Init counters */
2402 	s626_counters_init(dev);
2403 
2404 	/*
2405 	 * Without modifying the state of the Battery Backup enab, disable
2406 	 * the watchdog timer, set DIO channels 0-5 to operate in the
2407 	 * standard DIO (vs. counter overflow) mode, disable the battery
2408 	 * charger, and reset the watchdog interval selector to zero.
2409 	 */
2410 	s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2411 			       S626_MISC2_BATT_ENABLE));
2412 
2413 	/* Initialize the digital I/O subsystem */
2414 	s626_dio_init(dev);
2415 
2416 	return 0;
2417 }
2418 
s626_auto_attach(struct comedi_device * dev,unsigned long context_unused)2419 static int s626_auto_attach(struct comedi_device *dev,
2420 			    unsigned long context_unused)
2421 {
2422 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2423 	struct s626_private *devpriv;
2424 	struct comedi_subdevice *s;
2425 	int ret;
2426 
2427 	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2428 	if (!devpriv)
2429 		return -ENOMEM;
2430 
2431 	ret = comedi_pci_enable(dev);
2432 	if (ret)
2433 		return ret;
2434 
2435 	dev->mmio = pci_ioremap_bar(pcidev, 0);
2436 	if (!dev->mmio)
2437 		return -ENOMEM;
2438 
2439 	/* disable master interrupt */
2440 	writel(0, dev->mmio + S626_P_IER);
2441 
2442 	/* soft reset */
2443 	writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2444 
2445 	/* DMA FIXME DMA// */
2446 
2447 	ret = s626_allocate_dma_buffers(dev);
2448 	if (ret)
2449 		return ret;
2450 
2451 	if (pcidev->irq) {
2452 		ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2453 				  dev->board_name, dev);
2454 
2455 		if (ret == 0)
2456 			dev->irq = pcidev->irq;
2457 	}
2458 
2459 	ret = comedi_alloc_subdevices(dev, 6);
2460 	if (ret)
2461 		return ret;
2462 
2463 	s = &dev->subdevices[0];
2464 	/* analog input subdevice */
2465 	s->type		= COMEDI_SUBD_AI;
2466 	s->subdev_flags	= SDF_READABLE | SDF_DIFF;
2467 	s->n_chan	= S626_ADC_CHANNELS;
2468 	s->maxdata	= 0x3fff;
2469 	s->range_table	= &s626_range_table;
2470 	s->len_chanlist	= S626_ADC_CHANNELS;
2471 	s->insn_read	= s626_ai_insn_read;
2472 	if (dev->irq) {
2473 		dev->read_subdev = s;
2474 		s->subdev_flags	|= SDF_CMD_READ;
2475 		s->do_cmd	= s626_ai_cmd;
2476 		s->do_cmdtest	= s626_ai_cmdtest;
2477 		s->cancel	= s626_ai_cancel;
2478 	}
2479 
2480 	s = &dev->subdevices[1];
2481 	/* analog output subdevice */
2482 	s->type		= COMEDI_SUBD_AO;
2483 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2484 	s->n_chan	= S626_DAC_CHANNELS;
2485 	s->maxdata	= 0x3fff;
2486 	s->range_table	= &range_bipolar10;
2487 	s->insn_write	= s626_ao_insn_write;
2488 
2489 	ret = comedi_alloc_subdev_readback(s);
2490 	if (ret)
2491 		return ret;
2492 
2493 	s = &dev->subdevices[2];
2494 	/* digital I/O subdevice */
2495 	s->type		= COMEDI_SUBD_DIO;
2496 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2497 	s->n_chan	= 16;
2498 	s->maxdata	= 1;
2499 	s->io_bits	= 0xffff;
2500 	s->private	= (void *)0;	/* DIO group 0 */
2501 	s->range_table	= &range_digital;
2502 	s->insn_config	= s626_dio_insn_config;
2503 	s->insn_bits	= s626_dio_insn_bits;
2504 
2505 	s = &dev->subdevices[3];
2506 	/* digital I/O subdevice */
2507 	s->type		= COMEDI_SUBD_DIO;
2508 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2509 	s->n_chan	= 16;
2510 	s->maxdata	= 1;
2511 	s->io_bits	= 0xffff;
2512 	s->private	= (void *)1;	/* DIO group 1 */
2513 	s->range_table	= &range_digital;
2514 	s->insn_config	= s626_dio_insn_config;
2515 	s->insn_bits	= s626_dio_insn_bits;
2516 
2517 	s = &dev->subdevices[4];
2518 	/* digital I/O subdevice */
2519 	s->type		= COMEDI_SUBD_DIO;
2520 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2521 	s->n_chan	= 16;
2522 	s->maxdata	= 1;
2523 	s->io_bits	= 0xffff;
2524 	s->private	= (void *)2;	/* DIO group 2 */
2525 	s->range_table	= &range_digital;
2526 	s->insn_config	= s626_dio_insn_config;
2527 	s->insn_bits	= s626_dio_insn_bits;
2528 
2529 	s = &dev->subdevices[5];
2530 	/* encoder (counter) subdevice */
2531 	s->type		= COMEDI_SUBD_COUNTER;
2532 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2533 	s->n_chan	= S626_ENCODER_CHANNELS;
2534 	s->maxdata	= 0xffffff;
2535 	s->range_table	= &range_unknown;
2536 	s->insn_config	= s626_enc_insn_config;
2537 	s->insn_read	= s626_enc_insn_read;
2538 	s->insn_write	= s626_enc_insn_write;
2539 
2540 	return s626_initialize(dev);
2541 }
2542 
s626_detach(struct comedi_device * dev)2543 static void s626_detach(struct comedi_device *dev)
2544 {
2545 	struct s626_private *devpriv = dev->private;
2546 
2547 	if (devpriv) {
2548 		/* stop ai_command */
2549 		devpriv->ai_cmd_running = 0;
2550 
2551 		if (dev->mmio) {
2552 			/* interrupt mask */
2553 			/* Disable master interrupt */
2554 			writel(0, dev->mmio + S626_P_IER);
2555 			/* Clear board's IRQ status flag */
2556 			writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2557 			       dev->mmio + S626_P_ISR);
2558 
2559 			/* Disable the watchdog timer and battery charger. */
2560 			s626_write_misc2(dev, 0);
2561 
2562 			/* Close all interfaces on 7146 device */
2563 			writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2564 			writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2565 		}
2566 	}
2567 	comedi_pci_detach(dev);
2568 	s626_free_dma_buffers(dev);
2569 }
2570 
2571 static struct comedi_driver s626_driver = {
2572 	.driver_name	= "s626",
2573 	.module		= THIS_MODULE,
2574 	.auto_attach	= s626_auto_attach,
2575 	.detach		= s626_detach,
2576 };
2577 
s626_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)2578 static int s626_pci_probe(struct pci_dev *dev,
2579 			  const struct pci_device_id *id)
2580 {
2581 	return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2582 }
2583 
2584 /*
2585  * For devices with vendor:device id == 0x1131:0x7146 you must specify
2586  * also subvendor:subdevice ids, because otherwise it will conflict with
2587  * Philips SAA7146 media/dvb based cards.
2588  */
2589 static const struct pci_device_id s626_pci_table[] = {
2590 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2591 			 0x6000, 0x0272) },
2592 	{ 0 }
2593 };
2594 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2595 
2596 static struct pci_driver s626_pci_driver = {
2597 	.name		= "s626",
2598 	.id_table	= s626_pci_table,
2599 	.probe		= s626_pci_probe,
2600 	.remove		= comedi_pci_auto_unconfig,
2601 };
2602 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2603 
2604 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2605 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2606 MODULE_LICENSE("GPL");
2607