1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 struct vmbus_dynid {
49 struct list_head node;
50 struct hv_vmbus_device_id id;
51 };
52
53 static struct acpi_device *hv_acpi_dev;
54
55 static struct completion probe_event;
56
57 static int hyperv_cpuhp_online;
58
59 static void *hv_panic_page;
60
hyperv_panic_event(struct notifier_block * nb,unsigned long val,void * args)61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 void *args)
63 {
64 struct pt_regs *regs;
65
66 regs = current_pt_regs();
67
68 hyperv_report_panic(regs, val);
69 return NOTIFY_DONE;
70 }
71
hyperv_die_event(struct notifier_block * nb,unsigned long val,void * args)72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74 {
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
77
78 hyperv_report_panic(regs, val);
79 return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
vmbus_exists(void)94 static int vmbus_exists(void)
95 {
96 if (hv_acpi_dev == NULL)
97 return -ENODEV;
98
99 return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
print_alias_name(struct hv_device * hv_dev,char * alias_name)103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 int i;
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
channel_monitor_group(const struct vmbus_channel * channel)110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 return (u8)channel->offermsg.monitorid / 32;
113 }
114
channel_monitor_offset(const struct vmbus_channel * channel)115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 return (u8)channel->offermsg.monitorid % 32;
118 }
119
channel_pending(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)120 static u32 channel_pending(const struct vmbus_channel *channel,
121 const struct hv_monitor_page *monitor_page)
122 {
123 u8 monitor_group = channel_monitor_group(channel);
124
125 return monitor_page->trigger_group[monitor_group].pending;
126 }
127
channel_latency(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)128 static u32 channel_latency(const struct vmbus_channel *channel,
129 const struct hv_monitor_page *monitor_page)
130 {
131 u8 monitor_group = channel_monitor_group(channel);
132 u8 monitor_offset = channel_monitor_offset(channel);
133
134 return monitor_page->latency[monitor_group][monitor_offset];
135 }
136
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 struct hv_monitor_page *monitor_page)
139 {
140 u8 monitor_group = channel_monitor_group(channel);
141 u8 monitor_offset = channel_monitor_offset(channel);
142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 char *buf)
147 {
148 struct hv_device *hv_dev = device_to_hv_device(dev);
149
150 if (!hv_dev->channel)
151 return -ENODEV;
152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 char *buf)
158 {
159 struct hv_device *hv_dev = device_to_hv_device(dev);
160
161 if (!hv_dev->channel)
162 return -ENODEV;
163 return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)167 static ssize_t monitor_id_show(struct device *dev,
168 struct device_attribute *dev_attr, char *buf)
169 {
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)178 static ssize_t class_id_show(struct device *dev,
179 struct device_attribute *dev_attr, char *buf)
180 {
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "{%pUl}\n",
186 hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)190 static ssize_t device_id_show(struct device *dev,
191 struct device_attribute *dev_attr, char *buf)
192 {
193 struct hv_device *hv_dev = device_to_hv_device(dev);
194
195 if (!hv_dev->channel)
196 return -ENODEV;
197 return sprintf(buf, "{%pUl}\n",
198 hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)202 static ssize_t modalias_show(struct device *dev,
203 struct device_attribute *dev_attr, char *buf)
204 {
205 struct hv_device *hv_dev = device_to_hv_device(dev);
206 char alias_name[VMBUS_ALIAS_LEN + 1];
207
208 print_alias_name(hv_dev, alias_name);
209 return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212
213 #ifdef CONFIG_NUMA
numa_node_show(struct device * dev,struct device_attribute * attr,char * buf)214 static ssize_t numa_node_show(struct device *dev,
215 struct device_attribute *attr, char *buf)
216 {
217 struct hv_device *hv_dev = device_to_hv_device(dev);
218
219 if (!hv_dev->channel)
220 return -ENODEV;
221
222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)227 static ssize_t server_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
229 char *buf)
230 {
231 struct hv_device *hv_dev = device_to_hv_device(dev);
232
233 if (!hv_dev->channel)
234 return -ENODEV;
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)241 static ssize_t client_monitor_pending_show(struct device *dev,
242 struct device_attribute *dev_attr,
243 char *buf)
244 {
245 struct hv_device *hv_dev = device_to_hv_device(dev);
246
247 if (!hv_dev->channel)
248 return -ENODEV;
249 return sprintf(buf, "%d\n",
250 channel_pending(hv_dev->channel,
251 vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)255 static ssize_t server_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
258 {
259 struct hv_device *hv_dev = device_to_hv_device(dev);
260
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)269 static ssize_t client_monitor_latency_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
272 {
273 struct hv_device *hv_dev = device_to_hv_device(dev);
274
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_latency(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
286 {
287 struct hv_device *hv_dev = device_to_hv_device(dev);
288
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 struct device_attribute *dev_attr,
299 char *buf)
300 {
301 struct hv_device *hv_dev = device_to_hv_device(dev);
302
303 if (!hv_dev->channel)
304 return -ENODEV;
305 return sprintf(buf, "%d\n",
306 channel_conn_id(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)311 static ssize_t out_intr_mask_show(struct device *dev,
312 struct device_attribute *dev_attr, char *buf)
313 {
314 struct hv_device *hv_dev = device_to_hv_device(dev);
315 struct hv_ring_buffer_debug_info outbound;
316
317 if (!hv_dev->channel)
318 return -ENODEV;
319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
321 }
322 static DEVICE_ATTR_RO(out_intr_mask);
323
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)324 static ssize_t out_read_index_show(struct device *dev,
325 struct device_attribute *dev_attr, char *buf)
326 {
327 struct hv_device *hv_dev = device_to_hv_device(dev);
328 struct hv_ring_buffer_debug_info outbound;
329
330 if (!hv_dev->channel)
331 return -ENODEV;
332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 return sprintf(buf, "%d\n", outbound.current_read_index);
334 }
335 static DEVICE_ATTR_RO(out_read_index);
336
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)337 static ssize_t out_write_index_show(struct device *dev,
338 struct device_attribute *dev_attr,
339 char *buf)
340 {
341 struct hv_device *hv_dev = device_to_hv_device(dev);
342 struct hv_ring_buffer_debug_info outbound;
343
344 if (!hv_dev->channel)
345 return -ENODEV;
346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 return sprintf(buf, "%d\n", outbound.current_write_index);
348 }
349 static DEVICE_ATTR_RO(out_write_index);
350
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352 struct device_attribute *dev_attr,
353 char *buf)
354 {
355 struct hv_device *hv_dev = device_to_hv_device(dev);
356 struct hv_ring_buffer_debug_info outbound;
357
358 if (!hv_dev->channel)
359 return -ENODEV;
360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
362 }
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
364
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366 struct device_attribute *dev_attr,
367 char *buf)
368 {
369 struct hv_device *hv_dev = device_to_hv_device(dev);
370 struct hv_ring_buffer_debug_info outbound;
371
372 if (!hv_dev->channel)
373 return -ENODEV;
374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)379 static ssize_t in_intr_mask_show(struct device *dev,
380 struct device_attribute *dev_attr, char *buf)
381 {
382 struct hv_device *hv_dev = device_to_hv_device(dev);
383 struct hv_ring_buffer_debug_info inbound;
384
385 if (!hv_dev->channel)
386 return -ENODEV;
387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
389 }
390 static DEVICE_ATTR_RO(in_intr_mask);
391
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)392 static ssize_t in_read_index_show(struct device *dev,
393 struct device_attribute *dev_attr, char *buf)
394 {
395 struct hv_device *hv_dev = device_to_hv_device(dev);
396 struct hv_ring_buffer_debug_info inbound;
397
398 if (!hv_dev->channel)
399 return -ENODEV;
400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401 return sprintf(buf, "%d\n", inbound.current_read_index);
402 }
403 static DEVICE_ATTR_RO(in_read_index);
404
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)405 static ssize_t in_write_index_show(struct device *dev,
406 struct device_attribute *dev_attr, char *buf)
407 {
408 struct hv_device *hv_dev = device_to_hv_device(dev);
409 struct hv_ring_buffer_debug_info inbound;
410
411 if (!hv_dev->channel)
412 return -ENODEV;
413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 return sprintf(buf, "%d\n", inbound.current_write_index);
415 }
416 static DEVICE_ATTR_RO(in_write_index);
417
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419 struct device_attribute *dev_attr,
420 char *buf)
421 {
422 struct hv_device *hv_dev = device_to_hv_device(dev);
423 struct hv_ring_buffer_debug_info inbound;
424
425 if (!hv_dev->channel)
426 return -ENODEV;
427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
429 }
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
431
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433 struct device_attribute *dev_attr,
434 char *buf)
435 {
436 struct hv_device *hv_dev = device_to_hv_device(dev);
437 struct hv_ring_buffer_debug_info inbound;
438
439 if (!hv_dev->channel)
440 return -ENODEV;
441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
443 }
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
445
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)446 static ssize_t channel_vp_mapping_show(struct device *dev,
447 struct device_attribute *dev_attr,
448 char *buf)
449 {
450 struct hv_device *hv_dev = device_to_hv_device(dev);
451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452 unsigned long flags;
453 int buf_size = PAGE_SIZE, n_written, tot_written;
454 struct list_head *cur;
455
456 if (!channel)
457 return -ENODEV;
458
459 tot_written = snprintf(buf, buf_size, "%u:%u\n",
460 channel->offermsg.child_relid, channel->target_cpu);
461
462 spin_lock_irqsave(&channel->lock, flags);
463
464 list_for_each(cur, &channel->sc_list) {
465 if (tot_written >= buf_size - 1)
466 break;
467
468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469 n_written = scnprintf(buf + tot_written,
470 buf_size - tot_written,
471 "%u:%u\n",
472 cur_sc->offermsg.child_relid,
473 cur_sc->target_cpu);
474 tot_written += n_written;
475 }
476
477 spin_unlock_irqrestore(&channel->lock, flags);
478
479 return tot_written;
480 }
481 static DEVICE_ATTR_RO(channel_vp_mapping);
482
vendor_show(struct device * dev,struct device_attribute * dev_attr,char * buf)483 static ssize_t vendor_show(struct device *dev,
484 struct device_attribute *dev_attr,
485 char *buf)
486 {
487 struct hv_device *hv_dev = device_to_hv_device(dev);
488 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
489 }
490 static DEVICE_ATTR_RO(vendor);
491
device_show(struct device * dev,struct device_attribute * dev_attr,char * buf)492 static ssize_t device_show(struct device *dev,
493 struct device_attribute *dev_attr,
494 char *buf)
495 {
496 struct hv_device *hv_dev = device_to_hv_device(dev);
497 return sprintf(buf, "0x%x\n", hv_dev->device_id);
498 }
499 static DEVICE_ATTR_RO(device);
500
501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 static struct attribute *vmbus_dev_attrs[] = {
503 &dev_attr_id.attr,
504 &dev_attr_state.attr,
505 &dev_attr_monitor_id.attr,
506 &dev_attr_class_id.attr,
507 &dev_attr_device_id.attr,
508 &dev_attr_modalias.attr,
509 #ifdef CONFIG_NUMA
510 &dev_attr_numa_node.attr,
511 #endif
512 &dev_attr_server_monitor_pending.attr,
513 &dev_attr_client_monitor_pending.attr,
514 &dev_attr_server_monitor_latency.attr,
515 &dev_attr_client_monitor_latency.attr,
516 &dev_attr_server_monitor_conn_id.attr,
517 &dev_attr_client_monitor_conn_id.attr,
518 &dev_attr_out_intr_mask.attr,
519 &dev_attr_out_read_index.attr,
520 &dev_attr_out_write_index.attr,
521 &dev_attr_out_read_bytes_avail.attr,
522 &dev_attr_out_write_bytes_avail.attr,
523 &dev_attr_in_intr_mask.attr,
524 &dev_attr_in_read_index.attr,
525 &dev_attr_in_write_index.attr,
526 &dev_attr_in_read_bytes_avail.attr,
527 &dev_attr_in_write_bytes_avail.attr,
528 &dev_attr_channel_vp_mapping.attr,
529 &dev_attr_vendor.attr,
530 &dev_attr_device.attr,
531 NULL,
532 };
533 ATTRIBUTE_GROUPS(vmbus_dev);
534
535 /*
536 * vmbus_uevent - add uevent for our device
537 *
538 * This routine is invoked when a device is added or removed on the vmbus to
539 * generate a uevent to udev in the userspace. The udev will then look at its
540 * rule and the uevent generated here to load the appropriate driver
541 *
542 * The alias string will be of the form vmbus:guid where guid is the string
543 * representation of the device guid (each byte of the guid will be
544 * represented with two hex characters.
545 */
vmbus_uevent(struct device * device,struct kobj_uevent_env * env)546 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
547 {
548 struct hv_device *dev = device_to_hv_device(device);
549 int ret;
550 char alias_name[VMBUS_ALIAS_LEN + 1];
551
552 print_alias_name(dev, alias_name);
553 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
554 return ret;
555 }
556
557 static const uuid_le null_guid;
558
is_null_guid(const uuid_le * guid)559 static inline bool is_null_guid(const uuid_le *guid)
560 {
561 if (uuid_le_cmp(*guid, null_guid))
562 return false;
563 return true;
564 }
565
566 /*
567 * Return a matching hv_vmbus_device_id pointer.
568 * If there is no match, return NULL.
569 */
hv_vmbus_get_id(struct hv_driver * drv,const uuid_le * guid)570 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
571 const uuid_le *guid)
572 {
573 const struct hv_vmbus_device_id *id = NULL;
574 struct vmbus_dynid *dynid;
575
576 /* Look at the dynamic ids first, before the static ones */
577 spin_lock(&drv->dynids.lock);
578 list_for_each_entry(dynid, &drv->dynids.list, node) {
579 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
580 id = &dynid->id;
581 break;
582 }
583 }
584 spin_unlock(&drv->dynids.lock);
585
586 if (id)
587 return id;
588
589 id = drv->id_table;
590 if (id == NULL)
591 return NULL; /* empty device table */
592
593 for (; !is_null_guid(&id->guid); id++)
594 if (!uuid_le_cmp(id->guid, *guid))
595 return id;
596
597 return NULL;
598 }
599
600 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
vmbus_add_dynid(struct hv_driver * drv,uuid_le * guid)601 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
602 {
603 struct vmbus_dynid *dynid;
604
605 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
606 if (!dynid)
607 return -ENOMEM;
608
609 dynid->id.guid = *guid;
610
611 spin_lock(&drv->dynids.lock);
612 list_add_tail(&dynid->node, &drv->dynids.list);
613 spin_unlock(&drv->dynids.lock);
614
615 return driver_attach(&drv->driver);
616 }
617
vmbus_free_dynids(struct hv_driver * drv)618 static void vmbus_free_dynids(struct hv_driver *drv)
619 {
620 struct vmbus_dynid *dynid, *n;
621
622 spin_lock(&drv->dynids.lock);
623 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
624 list_del(&dynid->node);
625 kfree(dynid);
626 }
627 spin_unlock(&drv->dynids.lock);
628 }
629
630 /*
631 * store_new_id - sysfs frontend to vmbus_add_dynid()
632 *
633 * Allow GUIDs to be added to an existing driver via sysfs.
634 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)635 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
636 size_t count)
637 {
638 struct hv_driver *drv = drv_to_hv_drv(driver);
639 uuid_le guid;
640 ssize_t retval;
641
642 retval = uuid_le_to_bin(buf, &guid);
643 if (retval)
644 return retval;
645
646 if (hv_vmbus_get_id(drv, &guid))
647 return -EEXIST;
648
649 retval = vmbus_add_dynid(drv, &guid);
650 if (retval)
651 return retval;
652 return count;
653 }
654 static DRIVER_ATTR_WO(new_id);
655
656 /*
657 * store_remove_id - remove a PCI device ID from this driver
658 *
659 * Removes a dynamic pci device ID to this driver.
660 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)661 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
662 size_t count)
663 {
664 struct hv_driver *drv = drv_to_hv_drv(driver);
665 struct vmbus_dynid *dynid, *n;
666 uuid_le guid;
667 ssize_t retval;
668
669 retval = uuid_le_to_bin(buf, &guid);
670 if (retval)
671 return retval;
672
673 retval = -ENODEV;
674 spin_lock(&drv->dynids.lock);
675 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
676 struct hv_vmbus_device_id *id = &dynid->id;
677
678 if (!uuid_le_cmp(id->guid, guid)) {
679 list_del(&dynid->node);
680 kfree(dynid);
681 retval = count;
682 break;
683 }
684 }
685 spin_unlock(&drv->dynids.lock);
686
687 return retval;
688 }
689 static DRIVER_ATTR_WO(remove_id);
690
691 static struct attribute *vmbus_drv_attrs[] = {
692 &driver_attr_new_id.attr,
693 &driver_attr_remove_id.attr,
694 NULL,
695 };
696 ATTRIBUTE_GROUPS(vmbus_drv);
697
698
699 /*
700 * vmbus_match - Attempt to match the specified device to the specified driver
701 */
vmbus_match(struct device * device,struct device_driver * driver)702 static int vmbus_match(struct device *device, struct device_driver *driver)
703 {
704 struct hv_driver *drv = drv_to_hv_drv(driver);
705 struct hv_device *hv_dev = device_to_hv_device(device);
706
707 /* The hv_sock driver handles all hv_sock offers. */
708 if (is_hvsock_channel(hv_dev->channel))
709 return drv->hvsock;
710
711 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
712 return 1;
713
714 return 0;
715 }
716
717 /*
718 * vmbus_probe - Add the new vmbus's child device
719 */
vmbus_probe(struct device * child_device)720 static int vmbus_probe(struct device *child_device)
721 {
722 int ret = 0;
723 struct hv_driver *drv =
724 drv_to_hv_drv(child_device->driver);
725 struct hv_device *dev = device_to_hv_device(child_device);
726 const struct hv_vmbus_device_id *dev_id;
727
728 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
729 if (drv->probe) {
730 ret = drv->probe(dev, dev_id);
731 if (ret != 0)
732 pr_err("probe failed for device %s (%d)\n",
733 dev_name(child_device), ret);
734
735 } else {
736 pr_err("probe not set for driver %s\n",
737 dev_name(child_device));
738 ret = -ENODEV;
739 }
740 return ret;
741 }
742
743 /*
744 * vmbus_remove - Remove a vmbus device
745 */
vmbus_remove(struct device * child_device)746 static int vmbus_remove(struct device *child_device)
747 {
748 struct hv_driver *drv;
749 struct hv_device *dev = device_to_hv_device(child_device);
750
751 if (child_device->driver) {
752 drv = drv_to_hv_drv(child_device->driver);
753 if (drv->remove)
754 drv->remove(dev);
755 }
756
757 return 0;
758 }
759
760
761 /*
762 * vmbus_shutdown - Shutdown a vmbus device
763 */
vmbus_shutdown(struct device * child_device)764 static void vmbus_shutdown(struct device *child_device)
765 {
766 struct hv_driver *drv;
767 struct hv_device *dev = device_to_hv_device(child_device);
768
769
770 /* The device may not be attached yet */
771 if (!child_device->driver)
772 return;
773
774 drv = drv_to_hv_drv(child_device->driver);
775
776 if (drv->shutdown)
777 drv->shutdown(dev);
778 }
779
780
781 /*
782 * vmbus_device_release - Final callback release of the vmbus child device
783 */
vmbus_device_release(struct device * device)784 static void vmbus_device_release(struct device *device)
785 {
786 struct hv_device *hv_dev = device_to_hv_device(device);
787 struct vmbus_channel *channel = hv_dev->channel;
788
789 mutex_lock(&vmbus_connection.channel_mutex);
790 hv_process_channel_removal(channel->offermsg.child_relid);
791 mutex_unlock(&vmbus_connection.channel_mutex);
792 kfree(hv_dev);
793
794 }
795
796 /* The one and only one */
797 static struct bus_type hv_bus = {
798 .name = "vmbus",
799 .match = vmbus_match,
800 .shutdown = vmbus_shutdown,
801 .remove = vmbus_remove,
802 .probe = vmbus_probe,
803 .uevent = vmbus_uevent,
804 .dev_groups = vmbus_dev_groups,
805 .drv_groups = vmbus_drv_groups,
806 };
807
808 struct onmessage_work_context {
809 struct work_struct work;
810 struct hv_message msg;
811 };
812
vmbus_onmessage_work(struct work_struct * work)813 static void vmbus_onmessage_work(struct work_struct *work)
814 {
815 struct onmessage_work_context *ctx;
816
817 /* Do not process messages if we're in DISCONNECTED state */
818 if (vmbus_connection.conn_state == DISCONNECTED)
819 return;
820
821 ctx = container_of(work, struct onmessage_work_context,
822 work);
823 vmbus_onmessage(&ctx->msg);
824 kfree(ctx);
825 }
826
hv_process_timer_expiration(struct hv_message * msg,struct hv_per_cpu_context * hv_cpu)827 static void hv_process_timer_expiration(struct hv_message *msg,
828 struct hv_per_cpu_context *hv_cpu)
829 {
830 struct clock_event_device *dev = hv_cpu->clk_evt;
831
832 if (dev->event_handler)
833 dev->event_handler(dev);
834
835 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
836 }
837
vmbus_on_msg_dpc(unsigned long data)838 void vmbus_on_msg_dpc(unsigned long data)
839 {
840 struct hv_per_cpu_context *hv_cpu = (void *)data;
841 void *page_addr = hv_cpu->synic_message_page;
842 struct hv_message *msg = (struct hv_message *)page_addr +
843 VMBUS_MESSAGE_SINT;
844 struct vmbus_channel_message_header *hdr;
845 const struct vmbus_channel_message_table_entry *entry;
846 struct onmessage_work_context *ctx;
847 u32 message_type = msg->header.message_type;
848
849 if (message_type == HVMSG_NONE)
850 /* no msg */
851 return;
852
853 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
854
855 trace_vmbus_on_msg_dpc(hdr);
856
857 if (hdr->msgtype >= CHANNELMSG_COUNT) {
858 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
859 goto msg_handled;
860 }
861
862 entry = &channel_message_table[hdr->msgtype];
863 if (entry->handler_type == VMHT_BLOCKING) {
864 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
865 if (ctx == NULL)
866 return;
867
868 INIT_WORK(&ctx->work, vmbus_onmessage_work);
869 memcpy(&ctx->msg, msg, sizeof(*msg));
870
871 /*
872 * The host can generate a rescind message while we
873 * may still be handling the original offer. We deal with
874 * this condition by ensuring the processing is done on the
875 * same CPU.
876 */
877 switch (hdr->msgtype) {
878 case CHANNELMSG_RESCIND_CHANNELOFFER:
879 /*
880 * If we are handling the rescind message;
881 * schedule the work on the global work queue.
882 */
883 schedule_work_on(vmbus_connection.connect_cpu,
884 &ctx->work);
885 break;
886
887 case CHANNELMSG_OFFERCHANNEL:
888 atomic_inc(&vmbus_connection.offer_in_progress);
889 queue_work_on(vmbus_connection.connect_cpu,
890 vmbus_connection.work_queue,
891 &ctx->work);
892 break;
893
894 default:
895 queue_work(vmbus_connection.work_queue, &ctx->work);
896 }
897 } else
898 entry->message_handler(hdr);
899
900 msg_handled:
901 vmbus_signal_eom(msg, message_type);
902 }
903
904
905 /*
906 * Direct callback for channels using other deferred processing
907 */
vmbus_channel_isr(struct vmbus_channel * channel)908 static void vmbus_channel_isr(struct vmbus_channel *channel)
909 {
910 void (*callback_fn)(void *);
911
912 callback_fn = READ_ONCE(channel->onchannel_callback);
913 if (likely(callback_fn != NULL))
914 (*callback_fn)(channel->channel_callback_context);
915 }
916
917 /*
918 * Schedule all channels with events pending
919 */
vmbus_chan_sched(struct hv_per_cpu_context * hv_cpu)920 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
921 {
922 unsigned long *recv_int_page;
923 u32 maxbits, relid;
924
925 if (vmbus_proto_version < VERSION_WIN8) {
926 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
927 recv_int_page = vmbus_connection.recv_int_page;
928 } else {
929 /*
930 * When the host is win8 and beyond, the event page
931 * can be directly checked to get the id of the channel
932 * that has the interrupt pending.
933 */
934 void *page_addr = hv_cpu->synic_event_page;
935 union hv_synic_event_flags *event
936 = (union hv_synic_event_flags *)page_addr +
937 VMBUS_MESSAGE_SINT;
938
939 maxbits = HV_EVENT_FLAGS_COUNT;
940 recv_int_page = event->flags;
941 }
942
943 if (unlikely(!recv_int_page))
944 return;
945
946 for_each_set_bit(relid, recv_int_page, maxbits) {
947 struct vmbus_channel *channel;
948
949 if (!sync_test_and_clear_bit(relid, recv_int_page))
950 continue;
951
952 /* Special case - vmbus channel protocol msg */
953 if (relid == 0)
954 continue;
955
956 rcu_read_lock();
957
958 /* Find channel based on relid */
959 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
960 if (channel->offermsg.child_relid != relid)
961 continue;
962
963 if (channel->rescind)
964 continue;
965
966 trace_vmbus_chan_sched(channel);
967
968 ++channel->interrupts;
969
970 switch (channel->callback_mode) {
971 case HV_CALL_ISR:
972 vmbus_channel_isr(channel);
973 break;
974
975 case HV_CALL_BATCHED:
976 hv_begin_read(&channel->inbound);
977 /* fallthrough */
978 case HV_CALL_DIRECT:
979 tasklet_schedule(&channel->callback_event);
980 }
981 }
982
983 rcu_read_unlock();
984 }
985 }
986
vmbus_isr(void)987 static void vmbus_isr(void)
988 {
989 struct hv_per_cpu_context *hv_cpu
990 = this_cpu_ptr(hv_context.cpu_context);
991 void *page_addr = hv_cpu->synic_event_page;
992 struct hv_message *msg;
993 union hv_synic_event_flags *event;
994 bool handled = false;
995
996 if (unlikely(page_addr == NULL))
997 return;
998
999 event = (union hv_synic_event_flags *)page_addr +
1000 VMBUS_MESSAGE_SINT;
1001 /*
1002 * Check for events before checking for messages. This is the order
1003 * in which events and messages are checked in Windows guests on
1004 * Hyper-V, and the Windows team suggested we do the same.
1005 */
1006
1007 if ((vmbus_proto_version == VERSION_WS2008) ||
1008 (vmbus_proto_version == VERSION_WIN7)) {
1009
1010 /* Since we are a child, we only need to check bit 0 */
1011 if (sync_test_and_clear_bit(0, event->flags))
1012 handled = true;
1013 } else {
1014 /*
1015 * Our host is win8 or above. The signaling mechanism
1016 * has changed and we can directly look at the event page.
1017 * If bit n is set then we have an interrup on the channel
1018 * whose id is n.
1019 */
1020 handled = true;
1021 }
1022
1023 if (handled)
1024 vmbus_chan_sched(hv_cpu);
1025
1026 page_addr = hv_cpu->synic_message_page;
1027 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1028
1029 /* Check if there are actual msgs to be processed */
1030 if (msg->header.message_type != HVMSG_NONE) {
1031 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1032 hv_process_timer_expiration(msg, hv_cpu);
1033 else
1034 tasklet_schedule(&hv_cpu->msg_dpc);
1035 }
1036
1037 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1038 }
1039
1040 /*
1041 * Boolean to control whether to report panic messages over Hyper-V.
1042 *
1043 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1044 */
1045 static int sysctl_record_panic_msg = 1;
1046
1047 /*
1048 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1049 * buffer and call into Hyper-V to transfer the data.
1050 */
hv_kmsg_dump(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)1051 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1052 enum kmsg_dump_reason reason)
1053 {
1054 size_t bytes_written;
1055 phys_addr_t panic_pa;
1056
1057 /* We are only interested in panics. */
1058 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1059 return;
1060
1061 panic_pa = virt_to_phys(hv_panic_page);
1062
1063 /*
1064 * Write dump contents to the page. No need to synchronize; panic should
1065 * be single-threaded.
1066 */
1067 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1068 &bytes_written);
1069 if (bytes_written)
1070 hyperv_report_panic_msg(panic_pa, bytes_written);
1071 }
1072
1073 static struct kmsg_dumper hv_kmsg_dumper = {
1074 .dump = hv_kmsg_dump,
1075 };
1076
1077 static struct ctl_table_header *hv_ctl_table_hdr;
1078 static int zero;
1079 static int one = 1;
1080
1081 /*
1082 * sysctl option to allow the user to control whether kmsg data should be
1083 * reported to Hyper-V on panic.
1084 */
1085 static struct ctl_table hv_ctl_table[] = {
1086 {
1087 .procname = "hyperv_record_panic_msg",
1088 .data = &sysctl_record_panic_msg,
1089 .maxlen = sizeof(int),
1090 .mode = 0644,
1091 .proc_handler = proc_dointvec_minmax,
1092 .extra1 = &zero,
1093 .extra2 = &one
1094 },
1095 {}
1096 };
1097
1098 static struct ctl_table hv_root_table[] = {
1099 {
1100 .procname = "kernel",
1101 .mode = 0555,
1102 .child = hv_ctl_table
1103 },
1104 {}
1105 };
1106
1107 /*
1108 * vmbus_bus_init -Main vmbus driver initialization routine.
1109 *
1110 * Here, we
1111 * - initialize the vmbus driver context
1112 * - invoke the vmbus hv main init routine
1113 * - retrieve the channel offers
1114 */
vmbus_bus_init(void)1115 static int vmbus_bus_init(void)
1116 {
1117 int ret;
1118
1119 /* Hypervisor initialization...setup hypercall page..etc */
1120 ret = hv_init();
1121 if (ret != 0) {
1122 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1123 return ret;
1124 }
1125
1126 ret = bus_register(&hv_bus);
1127 if (ret)
1128 return ret;
1129
1130 hv_setup_vmbus_irq(vmbus_isr);
1131
1132 ret = hv_synic_alloc();
1133 if (ret)
1134 goto err_alloc;
1135 /*
1136 * Initialize the per-cpu interrupt state and
1137 * connect to the host.
1138 */
1139 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1140 hv_synic_init, hv_synic_cleanup);
1141 if (ret < 0)
1142 goto err_alloc;
1143 hyperv_cpuhp_online = ret;
1144
1145 ret = vmbus_connect();
1146 if (ret)
1147 goto err_connect;
1148
1149 /*
1150 * Only register if the crash MSRs are available
1151 */
1152 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1153 u64 hyperv_crash_ctl;
1154 /*
1155 * Sysctl registration is not fatal, since by default
1156 * reporting is enabled.
1157 */
1158 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1159 if (!hv_ctl_table_hdr)
1160 pr_err("Hyper-V: sysctl table register error");
1161
1162 /*
1163 * Register for panic kmsg callback only if the right
1164 * capability is supported by the hypervisor.
1165 */
1166 hv_get_crash_ctl(hyperv_crash_ctl);
1167 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1168 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1169 if (hv_panic_page) {
1170 ret = kmsg_dump_register(&hv_kmsg_dumper);
1171 if (ret)
1172 pr_err("Hyper-V: kmsg dump register "
1173 "error 0x%x\n", ret);
1174 } else
1175 pr_err("Hyper-V: panic message page memory "
1176 "allocation failed");
1177 }
1178
1179 register_die_notifier(&hyperv_die_block);
1180 atomic_notifier_chain_register(&panic_notifier_list,
1181 &hyperv_panic_block);
1182 }
1183
1184 vmbus_request_offers();
1185
1186 return 0;
1187
1188 err_connect:
1189 cpuhp_remove_state(hyperv_cpuhp_online);
1190 err_alloc:
1191 hv_synic_free();
1192 hv_remove_vmbus_irq();
1193
1194 bus_unregister(&hv_bus);
1195 free_page((unsigned long)hv_panic_page);
1196 unregister_sysctl_table(hv_ctl_table_hdr);
1197 hv_ctl_table_hdr = NULL;
1198 return ret;
1199 }
1200
1201 /**
1202 * __vmbus_child_driver_register() - Register a vmbus's driver
1203 * @hv_driver: Pointer to driver structure you want to register
1204 * @owner: owner module of the drv
1205 * @mod_name: module name string
1206 *
1207 * Registers the given driver with Linux through the 'driver_register()' call
1208 * and sets up the hyper-v vmbus handling for this driver.
1209 * It will return the state of the 'driver_register()' call.
1210 *
1211 */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)1212 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1213 {
1214 int ret;
1215
1216 pr_info("registering driver %s\n", hv_driver->name);
1217
1218 ret = vmbus_exists();
1219 if (ret < 0)
1220 return ret;
1221
1222 hv_driver->driver.name = hv_driver->name;
1223 hv_driver->driver.owner = owner;
1224 hv_driver->driver.mod_name = mod_name;
1225 hv_driver->driver.bus = &hv_bus;
1226
1227 spin_lock_init(&hv_driver->dynids.lock);
1228 INIT_LIST_HEAD(&hv_driver->dynids.list);
1229
1230 ret = driver_register(&hv_driver->driver);
1231
1232 return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1235
1236 /**
1237 * vmbus_driver_unregister() - Unregister a vmbus's driver
1238 * @hv_driver: Pointer to driver structure you want to
1239 * un-register
1240 *
1241 * Un-register the given driver that was previous registered with a call to
1242 * vmbus_driver_register()
1243 */
vmbus_driver_unregister(struct hv_driver * hv_driver)1244 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1245 {
1246 pr_info("unregistering driver %s\n", hv_driver->name);
1247
1248 if (!vmbus_exists()) {
1249 driver_unregister(&hv_driver->driver);
1250 vmbus_free_dynids(hv_driver);
1251 }
1252 }
1253 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1254
1255
1256 /*
1257 * Called when last reference to channel is gone.
1258 */
vmbus_chan_release(struct kobject * kobj)1259 static void vmbus_chan_release(struct kobject *kobj)
1260 {
1261 struct vmbus_channel *channel
1262 = container_of(kobj, struct vmbus_channel, kobj);
1263
1264 kfree_rcu(channel, rcu);
1265 }
1266
1267 struct vmbus_chan_attribute {
1268 struct attribute attr;
1269 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1270 ssize_t (*store)(struct vmbus_channel *chan,
1271 const char *buf, size_t count);
1272 };
1273 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1274 struct vmbus_chan_attribute chan_attr_##_name \
1275 = __ATTR(_name, _mode, _show, _store)
1276 #define VMBUS_CHAN_ATTR_RW(_name) \
1277 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1278 #define VMBUS_CHAN_ATTR_RO(_name) \
1279 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1280 #define VMBUS_CHAN_ATTR_WO(_name) \
1281 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1282
vmbus_chan_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1283 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1284 struct attribute *attr, char *buf)
1285 {
1286 const struct vmbus_chan_attribute *attribute
1287 = container_of(attr, struct vmbus_chan_attribute, attr);
1288 const struct vmbus_channel *chan
1289 = container_of(kobj, struct vmbus_channel, kobj);
1290
1291 if (!attribute->show)
1292 return -EIO;
1293
1294 if (chan->state != CHANNEL_OPENED_STATE)
1295 return -EINVAL;
1296
1297 return attribute->show(chan, buf);
1298 }
1299
1300 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1301 .show = vmbus_chan_attr_show,
1302 };
1303
out_mask_show(const struct vmbus_channel * channel,char * buf)1304 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1305 {
1306 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1307
1308 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1309 }
1310 static VMBUS_CHAN_ATTR_RO(out_mask);
1311
in_mask_show(const struct vmbus_channel * channel,char * buf)1312 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1313 {
1314 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1315
1316 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1317 }
1318 static VMBUS_CHAN_ATTR_RO(in_mask);
1319
read_avail_show(const struct vmbus_channel * channel,char * buf)1320 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1321 {
1322 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1323
1324 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1325 }
1326 static VMBUS_CHAN_ATTR_RO(read_avail);
1327
write_avail_show(const struct vmbus_channel * channel,char * buf)1328 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1329 {
1330 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1331
1332 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1333 }
1334 static VMBUS_CHAN_ATTR_RO(write_avail);
1335
show_target_cpu(const struct vmbus_channel * channel,char * buf)1336 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1337 {
1338 return sprintf(buf, "%u\n", channel->target_cpu);
1339 }
1340 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1341
channel_pending_show(const struct vmbus_channel * channel,char * buf)1342 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1343 char *buf)
1344 {
1345 return sprintf(buf, "%d\n",
1346 channel_pending(channel,
1347 vmbus_connection.monitor_pages[1]));
1348 }
1349 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1350
channel_latency_show(const struct vmbus_channel * channel,char * buf)1351 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1352 char *buf)
1353 {
1354 return sprintf(buf, "%d\n",
1355 channel_latency(channel,
1356 vmbus_connection.monitor_pages[1]));
1357 }
1358 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1359
channel_interrupts_show(const struct vmbus_channel * channel,char * buf)1360 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1361 {
1362 return sprintf(buf, "%llu\n", channel->interrupts);
1363 }
1364 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1365
channel_events_show(const struct vmbus_channel * channel,char * buf)1366 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1367 {
1368 return sprintf(buf, "%llu\n", channel->sig_events);
1369 }
1370 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1371
subchannel_monitor_id_show(const struct vmbus_channel * channel,char * buf)1372 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1373 char *buf)
1374 {
1375 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1376 }
1377 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1378
subchannel_id_show(const struct vmbus_channel * channel,char * buf)1379 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1380 char *buf)
1381 {
1382 return sprintf(buf, "%u\n",
1383 channel->offermsg.offer.sub_channel_index);
1384 }
1385 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1386
1387 static struct attribute *vmbus_chan_attrs[] = {
1388 &chan_attr_out_mask.attr,
1389 &chan_attr_in_mask.attr,
1390 &chan_attr_read_avail.attr,
1391 &chan_attr_write_avail.attr,
1392 &chan_attr_cpu.attr,
1393 &chan_attr_pending.attr,
1394 &chan_attr_latency.attr,
1395 &chan_attr_interrupts.attr,
1396 &chan_attr_events.attr,
1397 &chan_attr_monitor_id.attr,
1398 &chan_attr_subchannel_id.attr,
1399 NULL
1400 };
1401
1402 static struct kobj_type vmbus_chan_ktype = {
1403 .sysfs_ops = &vmbus_chan_sysfs_ops,
1404 .release = vmbus_chan_release,
1405 .default_attrs = vmbus_chan_attrs,
1406 };
1407
1408 /*
1409 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1410 */
vmbus_add_channel_kobj(struct hv_device * dev,struct vmbus_channel * channel)1411 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1412 {
1413 struct kobject *kobj = &channel->kobj;
1414 u32 relid = channel->offermsg.child_relid;
1415 int ret;
1416
1417 kobj->kset = dev->channels_kset;
1418 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1419 "%u", relid);
1420 if (ret)
1421 return ret;
1422
1423 kobject_uevent(kobj, KOBJ_ADD);
1424
1425 return 0;
1426 }
1427
1428 /*
1429 * vmbus_device_create - Creates and registers a new child device
1430 * on the vmbus.
1431 */
vmbus_device_create(const uuid_le * type,const uuid_le * instance,struct vmbus_channel * channel)1432 struct hv_device *vmbus_device_create(const uuid_le *type,
1433 const uuid_le *instance,
1434 struct vmbus_channel *channel)
1435 {
1436 struct hv_device *child_device_obj;
1437
1438 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1439 if (!child_device_obj) {
1440 pr_err("Unable to allocate device object for child device\n");
1441 return NULL;
1442 }
1443
1444 child_device_obj->channel = channel;
1445 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1446 memcpy(&child_device_obj->dev_instance, instance,
1447 sizeof(uuid_le));
1448 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1449
1450
1451 return child_device_obj;
1452 }
1453
1454 /*
1455 * vmbus_device_register - Register the child device
1456 */
vmbus_device_register(struct hv_device * child_device_obj)1457 int vmbus_device_register(struct hv_device *child_device_obj)
1458 {
1459 struct kobject *kobj = &child_device_obj->device.kobj;
1460 int ret;
1461
1462 dev_set_name(&child_device_obj->device, "%pUl",
1463 child_device_obj->channel->offermsg.offer.if_instance.b);
1464
1465 child_device_obj->device.bus = &hv_bus;
1466 child_device_obj->device.parent = &hv_acpi_dev->dev;
1467 child_device_obj->device.release = vmbus_device_release;
1468
1469 /*
1470 * Register with the LDM. This will kick off the driver/device
1471 * binding...which will eventually call vmbus_match() and vmbus_probe()
1472 */
1473 ret = device_register(&child_device_obj->device);
1474 if (ret) {
1475 pr_err("Unable to register child device\n");
1476 return ret;
1477 }
1478
1479 child_device_obj->channels_kset = kset_create_and_add("channels",
1480 NULL, kobj);
1481 if (!child_device_obj->channels_kset) {
1482 ret = -ENOMEM;
1483 goto err_dev_unregister;
1484 }
1485
1486 ret = vmbus_add_channel_kobj(child_device_obj,
1487 child_device_obj->channel);
1488 if (ret) {
1489 pr_err("Unable to register primary channeln");
1490 goto err_kset_unregister;
1491 }
1492
1493 return 0;
1494
1495 err_kset_unregister:
1496 kset_unregister(child_device_obj->channels_kset);
1497
1498 err_dev_unregister:
1499 device_unregister(&child_device_obj->device);
1500 return ret;
1501 }
1502
1503 /*
1504 * vmbus_device_unregister - Remove the specified child device
1505 * from the vmbus.
1506 */
vmbus_device_unregister(struct hv_device * device_obj)1507 void vmbus_device_unregister(struct hv_device *device_obj)
1508 {
1509 pr_debug("child device %s unregistered\n",
1510 dev_name(&device_obj->device));
1511
1512 kset_unregister(device_obj->channels_kset);
1513
1514 /*
1515 * Kick off the process of unregistering the device.
1516 * This will call vmbus_remove() and eventually vmbus_device_release()
1517 */
1518 device_unregister(&device_obj->device);
1519 }
1520
1521
1522 /*
1523 * VMBUS is an acpi enumerated device. Get the information we
1524 * need from DSDT.
1525 */
1526 #define VTPM_BASE_ADDRESS 0xfed40000
vmbus_walk_resources(struct acpi_resource * res,void * ctx)1527 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1528 {
1529 resource_size_t start = 0;
1530 resource_size_t end = 0;
1531 struct resource *new_res;
1532 struct resource **old_res = &hyperv_mmio;
1533 struct resource **prev_res = NULL;
1534
1535 switch (res->type) {
1536
1537 /*
1538 * "Address" descriptors are for bus windows. Ignore
1539 * "memory" descriptors, which are for registers on
1540 * devices.
1541 */
1542 case ACPI_RESOURCE_TYPE_ADDRESS32:
1543 start = res->data.address32.address.minimum;
1544 end = res->data.address32.address.maximum;
1545 break;
1546
1547 case ACPI_RESOURCE_TYPE_ADDRESS64:
1548 start = res->data.address64.address.minimum;
1549 end = res->data.address64.address.maximum;
1550 break;
1551
1552 default:
1553 /* Unused resource type */
1554 return AE_OK;
1555
1556 }
1557 /*
1558 * Ignore ranges that are below 1MB, as they're not
1559 * necessary or useful here.
1560 */
1561 if (end < 0x100000)
1562 return AE_OK;
1563
1564 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1565 if (!new_res)
1566 return AE_NO_MEMORY;
1567
1568 /* If this range overlaps the virtual TPM, truncate it. */
1569 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1570 end = VTPM_BASE_ADDRESS;
1571
1572 new_res->name = "hyperv mmio";
1573 new_res->flags = IORESOURCE_MEM;
1574 new_res->start = start;
1575 new_res->end = end;
1576
1577 /*
1578 * If two ranges are adjacent, merge them.
1579 */
1580 do {
1581 if (!*old_res) {
1582 *old_res = new_res;
1583 break;
1584 }
1585
1586 if (((*old_res)->end + 1) == new_res->start) {
1587 (*old_res)->end = new_res->end;
1588 kfree(new_res);
1589 break;
1590 }
1591
1592 if ((*old_res)->start == new_res->end + 1) {
1593 (*old_res)->start = new_res->start;
1594 kfree(new_res);
1595 break;
1596 }
1597
1598 if ((*old_res)->start > new_res->end) {
1599 new_res->sibling = *old_res;
1600 if (prev_res)
1601 (*prev_res)->sibling = new_res;
1602 *old_res = new_res;
1603 break;
1604 }
1605
1606 prev_res = old_res;
1607 old_res = &(*old_res)->sibling;
1608
1609 } while (1);
1610
1611 return AE_OK;
1612 }
1613
vmbus_acpi_remove(struct acpi_device * device)1614 static int vmbus_acpi_remove(struct acpi_device *device)
1615 {
1616 struct resource *cur_res;
1617 struct resource *next_res;
1618
1619 if (hyperv_mmio) {
1620 if (fb_mmio) {
1621 __release_region(hyperv_mmio, fb_mmio->start,
1622 resource_size(fb_mmio));
1623 fb_mmio = NULL;
1624 }
1625
1626 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1627 next_res = cur_res->sibling;
1628 kfree(cur_res);
1629 }
1630 }
1631
1632 return 0;
1633 }
1634
vmbus_reserve_fb(void)1635 static void vmbus_reserve_fb(void)
1636 {
1637 int size;
1638 /*
1639 * Make a claim for the frame buffer in the resource tree under the
1640 * first node, which will be the one below 4GB. The length seems to
1641 * be underreported, particularly in a Generation 1 VM. So start out
1642 * reserving a larger area and make it smaller until it succeeds.
1643 */
1644
1645 if (screen_info.lfb_base) {
1646 if (efi_enabled(EFI_BOOT))
1647 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1648 else
1649 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1650
1651 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1652 fb_mmio = __request_region(hyperv_mmio,
1653 screen_info.lfb_base, size,
1654 fb_mmio_name, 0);
1655 }
1656 }
1657 }
1658
1659 /**
1660 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1661 * @new: If successful, supplied a pointer to the
1662 * allocated MMIO space.
1663 * @device_obj: Identifies the caller
1664 * @min: Minimum guest physical address of the
1665 * allocation
1666 * @max: Maximum guest physical address
1667 * @size: Size of the range to be allocated
1668 * @align: Alignment of the range to be allocated
1669 * @fb_overlap_ok: Whether this allocation can be allowed
1670 * to overlap the video frame buffer.
1671 *
1672 * This function walks the resources granted to VMBus by the
1673 * _CRS object in the ACPI namespace underneath the parent
1674 * "bridge" whether that's a root PCI bus in the Generation 1
1675 * case or a Module Device in the Generation 2 case. It then
1676 * attempts to allocate from the global MMIO pool in a way that
1677 * matches the constraints supplied in these parameters and by
1678 * that _CRS.
1679 *
1680 * Return: 0 on success, -errno on failure
1681 */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)1682 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1683 resource_size_t min, resource_size_t max,
1684 resource_size_t size, resource_size_t align,
1685 bool fb_overlap_ok)
1686 {
1687 struct resource *iter, *shadow;
1688 resource_size_t range_min, range_max, start;
1689 const char *dev_n = dev_name(&device_obj->device);
1690 int retval;
1691
1692 retval = -ENXIO;
1693 down(&hyperv_mmio_lock);
1694
1695 /*
1696 * If overlaps with frame buffers are allowed, then first attempt to
1697 * make the allocation from within the reserved region. Because it
1698 * is already reserved, no shadow allocation is necessary.
1699 */
1700 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1701 !(max < fb_mmio->start)) {
1702
1703 range_min = fb_mmio->start;
1704 range_max = fb_mmio->end;
1705 start = (range_min + align - 1) & ~(align - 1);
1706 for (; start + size - 1 <= range_max; start += align) {
1707 *new = request_mem_region_exclusive(start, size, dev_n);
1708 if (*new) {
1709 retval = 0;
1710 goto exit;
1711 }
1712 }
1713 }
1714
1715 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1716 if ((iter->start >= max) || (iter->end <= min))
1717 continue;
1718
1719 range_min = iter->start;
1720 range_max = iter->end;
1721 start = (range_min + align - 1) & ~(align - 1);
1722 for (; start + size - 1 <= range_max; start += align) {
1723 shadow = __request_region(iter, start, size, NULL,
1724 IORESOURCE_BUSY);
1725 if (!shadow)
1726 continue;
1727
1728 *new = request_mem_region_exclusive(start, size, dev_n);
1729 if (*new) {
1730 shadow->name = (char *)*new;
1731 retval = 0;
1732 goto exit;
1733 }
1734
1735 __release_region(iter, start, size);
1736 }
1737 }
1738
1739 exit:
1740 up(&hyperv_mmio_lock);
1741 return retval;
1742 }
1743 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1744
1745 /**
1746 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1747 * @start: Base address of region to release.
1748 * @size: Size of the range to be allocated
1749 *
1750 * This function releases anything requested by
1751 * vmbus_mmio_allocate().
1752 */
vmbus_free_mmio(resource_size_t start,resource_size_t size)1753 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1754 {
1755 struct resource *iter;
1756
1757 down(&hyperv_mmio_lock);
1758 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1759 if ((iter->start >= start + size) || (iter->end <= start))
1760 continue;
1761
1762 __release_region(iter, start, size);
1763 }
1764 release_mem_region(start, size);
1765 up(&hyperv_mmio_lock);
1766
1767 }
1768 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1769
vmbus_acpi_add(struct acpi_device * device)1770 static int vmbus_acpi_add(struct acpi_device *device)
1771 {
1772 acpi_status result;
1773 int ret_val = -ENODEV;
1774 struct acpi_device *ancestor;
1775
1776 hv_acpi_dev = device;
1777
1778 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1779 vmbus_walk_resources, NULL);
1780
1781 if (ACPI_FAILURE(result))
1782 goto acpi_walk_err;
1783 /*
1784 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1785 * firmware) is the VMOD that has the mmio ranges. Get that.
1786 */
1787 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1788 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1789 vmbus_walk_resources, NULL);
1790
1791 if (ACPI_FAILURE(result))
1792 continue;
1793 if (hyperv_mmio) {
1794 vmbus_reserve_fb();
1795 break;
1796 }
1797 }
1798 ret_val = 0;
1799
1800 acpi_walk_err:
1801 complete(&probe_event);
1802 if (ret_val)
1803 vmbus_acpi_remove(device);
1804 return ret_val;
1805 }
1806
1807 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1808 {"VMBUS", 0},
1809 {"VMBus", 0},
1810 {"", 0},
1811 };
1812 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1813
1814 static struct acpi_driver vmbus_acpi_driver = {
1815 .name = "vmbus",
1816 .ids = vmbus_acpi_device_ids,
1817 .ops = {
1818 .add = vmbus_acpi_add,
1819 .remove = vmbus_acpi_remove,
1820 },
1821 };
1822
hv_kexec_handler(void)1823 static void hv_kexec_handler(void)
1824 {
1825 hv_synic_clockevents_cleanup();
1826 vmbus_initiate_unload(false);
1827 vmbus_connection.conn_state = DISCONNECTED;
1828 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1829 mb();
1830 cpuhp_remove_state(hyperv_cpuhp_online);
1831 hyperv_cleanup();
1832 };
1833
hv_crash_handler(struct pt_regs * regs)1834 static void hv_crash_handler(struct pt_regs *regs)
1835 {
1836 vmbus_initiate_unload(true);
1837 /*
1838 * In crash handler we can't schedule synic cleanup for all CPUs,
1839 * doing the cleanup for current CPU only. This should be sufficient
1840 * for kdump.
1841 */
1842 vmbus_connection.conn_state = DISCONNECTED;
1843 hv_synic_cleanup(smp_processor_id());
1844 hyperv_cleanup();
1845 };
1846
hv_acpi_init(void)1847 static int __init hv_acpi_init(void)
1848 {
1849 int ret, t;
1850
1851 if (!hv_is_hyperv_initialized())
1852 return -ENODEV;
1853
1854 init_completion(&probe_event);
1855
1856 /*
1857 * Get ACPI resources first.
1858 */
1859 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1860
1861 if (ret)
1862 return ret;
1863
1864 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1865 if (t == 0) {
1866 ret = -ETIMEDOUT;
1867 goto cleanup;
1868 }
1869
1870 ret = vmbus_bus_init();
1871 if (ret)
1872 goto cleanup;
1873
1874 hv_setup_kexec_handler(hv_kexec_handler);
1875 hv_setup_crash_handler(hv_crash_handler);
1876
1877 return 0;
1878
1879 cleanup:
1880 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1881 hv_acpi_dev = NULL;
1882 return ret;
1883 }
1884
vmbus_exit(void)1885 static void __exit vmbus_exit(void)
1886 {
1887 int cpu;
1888
1889 hv_remove_kexec_handler();
1890 hv_remove_crash_handler();
1891 vmbus_connection.conn_state = DISCONNECTED;
1892 hv_synic_clockevents_cleanup();
1893 vmbus_disconnect();
1894 hv_remove_vmbus_irq();
1895 for_each_online_cpu(cpu) {
1896 struct hv_per_cpu_context *hv_cpu
1897 = per_cpu_ptr(hv_context.cpu_context, cpu);
1898
1899 tasklet_kill(&hv_cpu->msg_dpc);
1900 }
1901 vmbus_free_channels();
1902
1903 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1904 kmsg_dump_unregister(&hv_kmsg_dumper);
1905 unregister_die_notifier(&hyperv_die_block);
1906 atomic_notifier_chain_unregister(&panic_notifier_list,
1907 &hyperv_panic_block);
1908 }
1909
1910 free_page((unsigned long)hv_panic_page);
1911 unregister_sysctl_table(hv_ctl_table_hdr);
1912 hv_ctl_table_hdr = NULL;
1913 bus_unregister(&hv_bus);
1914
1915 cpuhp_remove_state(hyperv_cpuhp_online);
1916 hv_synic_free();
1917 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1918 }
1919
1920
1921 MODULE_LICENSE("GPL");
1922
1923 subsys_initcall(hv_acpi_init);
1924 module_exit(vmbus_exit);
1925