1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29
30 #include <linux/types.h>
31 #include <linux/scatterlist.h>
32 #include <linux/list.h>
33 #include <linux/timer.h>
34 #include <linux/completion.h>
35 #include <linux/device.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/interrupt.h>
38 #include <linux/reciprocal_div.h>
39
40 #define MAX_PAGE_BUFFER_COUNT 32
41 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
42
43 #pragma pack(push, 1)
44
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 u32 len;
48 u32 offset;
49 u64 pfn;
50 };
51
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 /* Length and Offset determines the # of pfns in the array */
55 u32 len;
56 u32 offset;
57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59
60 /*
61 * Multiple-page buffer array; the pfn array is variable size:
62 * The number of entries in the PFN array is determined by
63 * "len" and "offset".
64 */
65 struct hv_mpb_array {
66 /* Length and Offset determines the # of pfns in the array */
67 u32 len;
68 u32 offset;
69 u64 pfn_array[];
70 };
71
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
74 (sizeof(struct hv_page_buffer) * \
75 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
77 sizeof(struct hv_multipage_buffer))
78
79
80 #pragma pack(pop)
81
82 struct hv_ring_buffer {
83 /* Offset in bytes from the start of ring data below */
84 u32 write_index;
85
86 /* Offset in bytes from the start of ring data below */
87 u32 read_index;
88
89 u32 interrupt_mask;
90
91 /*
92 * WS2012/Win8 and later versions of Hyper-V implement interrupt
93 * driven flow management. The feature bit feat_pending_send_sz
94 * is set by the host on the host->guest ring buffer, and by the
95 * guest on the guest->host ring buffer.
96 *
97 * The meaning of the feature bit is a bit complex in that it has
98 * semantics that apply to both ring buffers. If the guest sets
99 * the feature bit in the guest->host ring buffer, the guest is
100 * telling the host that:
101 * 1) It will set the pending_send_sz field in the guest->host ring
102 * buffer when it is waiting for space to become available, and
103 * 2) It will read the pending_send_sz field in the host->guest
104 * ring buffer and interrupt the host when it frees enough space
105 *
106 * Similarly, if the host sets the feature bit in the host->guest
107 * ring buffer, the host is telling the guest that:
108 * 1) It will set the pending_send_sz field in the host->guest ring
109 * buffer when it is waiting for space to become available, and
110 * 2) It will read the pending_send_sz field in the guest->host
111 * ring buffer and interrupt the guest when it frees enough space
112 *
113 * If either the guest or host does not set the feature bit that it
114 * owns, that guest or host must do polling if it encounters a full
115 * ring buffer, and not signal the other end with an interrupt.
116 */
117 u32 pending_send_sz;
118 u32 reserved1[12];
119 union {
120 struct {
121 u32 feat_pending_send_sz:1;
122 };
123 u32 value;
124 } feature_bits;
125
126 /* Pad it to PAGE_SIZE so that data starts on page boundary */
127 u8 reserved2[4028];
128
129 /*
130 * Ring data starts here + RingDataStartOffset
131 * !!! DO NOT place any fields below this !!!
132 */
133 u8 buffer[0];
134 } __packed;
135
136 struct hv_ring_buffer_info {
137 struct hv_ring_buffer *ring_buffer;
138 u32 ring_size; /* Include the shared header */
139 struct reciprocal_value ring_size_div10_reciprocal;
140 spinlock_t ring_lock;
141
142 u32 ring_datasize; /* < ring_size */
143 u32 priv_read_index;
144 };
145
146
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)147 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
148 {
149 u32 read_loc, write_loc, dsize, read;
150
151 dsize = rbi->ring_datasize;
152 read_loc = rbi->ring_buffer->read_index;
153 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
154
155 read = write_loc >= read_loc ? (write_loc - read_loc) :
156 (dsize - read_loc) + write_loc;
157
158 return read;
159 }
160
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)161 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
162 {
163 u32 read_loc, write_loc, dsize, write;
164
165 dsize = rbi->ring_datasize;
166 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
167 write_loc = rbi->ring_buffer->write_index;
168
169 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
170 read_loc - write_loc;
171 return write;
172 }
173
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)174 static inline u32 hv_get_avail_to_write_percent(
175 const struct hv_ring_buffer_info *rbi)
176 {
177 u32 avail_write = hv_get_bytes_to_write(rbi);
178
179 return reciprocal_divide(
180 (avail_write << 3) + (avail_write << 1),
181 rbi->ring_size_div10_reciprocal);
182 }
183
184 /*
185 * VMBUS version is 32 bit entity broken up into
186 * two 16 bit quantities: major_number. minor_number.
187 *
188 * 0 . 13 (Windows Server 2008)
189 * 1 . 1 (Windows 7)
190 * 2 . 4 (Windows 8)
191 * 3 . 0 (Windows 8 R2)
192 * 4 . 0 (Windows 10)
193 * 5 . 0 (Newer Windows 10)
194 */
195
196 #define VERSION_WS2008 ((0 << 16) | (13))
197 #define VERSION_WIN7 ((1 << 16) | (1))
198 #define VERSION_WIN8 ((2 << 16) | (4))
199 #define VERSION_WIN8_1 ((3 << 16) | (0))
200 #define VERSION_WIN10 ((4 << 16) | (0))
201 #define VERSION_WIN10_V5 ((5 << 16) | (0))
202
203 #define VERSION_INVAL -1
204
205 #define VERSION_CURRENT VERSION_WIN10_V5
206
207 /* Make maximum size of pipe payload of 16K */
208 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
209
210 /* Define PipeMode values. */
211 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
212 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
213
214 /* The size of the user defined data buffer for non-pipe offers. */
215 #define MAX_USER_DEFINED_BYTES 120
216
217 /* The size of the user defined data buffer for pipe offers. */
218 #define MAX_PIPE_USER_DEFINED_BYTES 116
219
220 /*
221 * At the center of the Channel Management library is the Channel Offer. This
222 * struct contains the fundamental information about an offer.
223 */
224 struct vmbus_channel_offer {
225 uuid_le if_type;
226 uuid_le if_instance;
227
228 /*
229 * These two fields are not currently used.
230 */
231 u64 reserved1;
232 u64 reserved2;
233
234 u16 chn_flags;
235 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
236
237 union {
238 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
239 struct {
240 unsigned char user_def[MAX_USER_DEFINED_BYTES];
241 } std;
242
243 /*
244 * Pipes:
245 * The following sructure is an integrated pipe protocol, which
246 * is implemented on top of standard user-defined data. Pipe
247 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
248 * use.
249 */
250 struct {
251 u32 pipe_mode;
252 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
253 } pipe;
254 } u;
255 /*
256 * The sub_channel_index is defined in win8.
257 */
258 u16 sub_channel_index;
259 u16 reserved3;
260 } __packed;
261
262 /* Server Flags */
263 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
264 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
265 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
266 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
267 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
268 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
269 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
270 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
271
272 struct vmpacket_descriptor {
273 u16 type;
274 u16 offset8;
275 u16 len8;
276 u16 flags;
277 u64 trans_id;
278 } __packed;
279
280 struct vmpacket_header {
281 u32 prev_pkt_start_offset;
282 struct vmpacket_descriptor descriptor;
283 } __packed;
284
285 struct vmtransfer_page_range {
286 u32 byte_count;
287 u32 byte_offset;
288 } __packed;
289
290 struct vmtransfer_page_packet_header {
291 struct vmpacket_descriptor d;
292 u16 xfer_pageset_id;
293 u8 sender_owns_set;
294 u8 reserved;
295 u32 range_cnt;
296 struct vmtransfer_page_range ranges[1];
297 } __packed;
298
299 struct vmgpadl_packet_header {
300 struct vmpacket_descriptor d;
301 u32 gpadl;
302 u32 reserved;
303 } __packed;
304
305 struct vmadd_remove_transfer_page_set {
306 struct vmpacket_descriptor d;
307 u32 gpadl;
308 u16 xfer_pageset_id;
309 u16 reserved;
310 } __packed;
311
312 /*
313 * This structure defines a range in guest physical space that can be made to
314 * look virtually contiguous.
315 */
316 struct gpa_range {
317 u32 byte_count;
318 u32 byte_offset;
319 u64 pfn_array[0];
320 };
321
322 /*
323 * This is the format for an Establish Gpadl packet, which contains a handle by
324 * which this GPADL will be known and a set of GPA ranges associated with it.
325 * This can be converted to a MDL by the guest OS. If there are multiple GPA
326 * ranges, then the resulting MDL will be "chained," representing multiple VA
327 * ranges.
328 */
329 struct vmestablish_gpadl {
330 struct vmpacket_descriptor d;
331 u32 gpadl;
332 u32 range_cnt;
333 struct gpa_range range[1];
334 } __packed;
335
336 /*
337 * This is the format for a Teardown Gpadl packet, which indicates that the
338 * GPADL handle in the Establish Gpadl packet will never be referenced again.
339 */
340 struct vmteardown_gpadl {
341 struct vmpacket_descriptor d;
342 u32 gpadl;
343 u32 reserved; /* for alignment to a 8-byte boundary */
344 } __packed;
345
346 /*
347 * This is the format for a GPA-Direct packet, which contains a set of GPA
348 * ranges, in addition to commands and/or data.
349 */
350 struct vmdata_gpa_direct {
351 struct vmpacket_descriptor d;
352 u32 reserved;
353 u32 range_cnt;
354 struct gpa_range range[1];
355 } __packed;
356
357 /* This is the format for a Additional Data Packet. */
358 struct vmadditional_data {
359 struct vmpacket_descriptor d;
360 u64 total_bytes;
361 u32 offset;
362 u32 byte_cnt;
363 unsigned char data[1];
364 } __packed;
365
366 union vmpacket_largest_possible_header {
367 struct vmpacket_descriptor simple_hdr;
368 struct vmtransfer_page_packet_header xfer_page_hdr;
369 struct vmgpadl_packet_header gpadl_hdr;
370 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
371 struct vmestablish_gpadl establish_gpadl_hdr;
372 struct vmteardown_gpadl teardown_gpadl_hdr;
373 struct vmdata_gpa_direct data_gpa_direct_hdr;
374 };
375
376 #define VMPACKET_DATA_START_ADDRESS(__packet) \
377 (void *)(((unsigned char *)__packet) + \
378 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
379
380 #define VMPACKET_DATA_LENGTH(__packet) \
381 ((((struct vmpacket_descriptor)__packet)->len8 - \
382 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
383
384 #define VMPACKET_TRANSFER_MODE(__packet) \
385 (((struct IMPACT)__packet)->type)
386
387 enum vmbus_packet_type {
388 VM_PKT_INVALID = 0x0,
389 VM_PKT_SYNCH = 0x1,
390 VM_PKT_ADD_XFER_PAGESET = 0x2,
391 VM_PKT_RM_XFER_PAGESET = 0x3,
392 VM_PKT_ESTABLISH_GPADL = 0x4,
393 VM_PKT_TEARDOWN_GPADL = 0x5,
394 VM_PKT_DATA_INBAND = 0x6,
395 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
396 VM_PKT_DATA_USING_GPADL = 0x8,
397 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
398 VM_PKT_CANCEL_REQUEST = 0xa,
399 VM_PKT_COMP = 0xb,
400 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
401 VM_PKT_ADDITIONAL_DATA = 0xd
402 };
403
404 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
405
406
407 /* Version 1 messages */
408 enum vmbus_channel_message_type {
409 CHANNELMSG_INVALID = 0,
410 CHANNELMSG_OFFERCHANNEL = 1,
411 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
412 CHANNELMSG_REQUESTOFFERS = 3,
413 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
414 CHANNELMSG_OPENCHANNEL = 5,
415 CHANNELMSG_OPENCHANNEL_RESULT = 6,
416 CHANNELMSG_CLOSECHANNEL = 7,
417 CHANNELMSG_GPADL_HEADER = 8,
418 CHANNELMSG_GPADL_BODY = 9,
419 CHANNELMSG_GPADL_CREATED = 10,
420 CHANNELMSG_GPADL_TEARDOWN = 11,
421 CHANNELMSG_GPADL_TORNDOWN = 12,
422 CHANNELMSG_RELID_RELEASED = 13,
423 CHANNELMSG_INITIATE_CONTACT = 14,
424 CHANNELMSG_VERSION_RESPONSE = 15,
425 CHANNELMSG_UNLOAD = 16,
426 CHANNELMSG_UNLOAD_RESPONSE = 17,
427 CHANNELMSG_18 = 18,
428 CHANNELMSG_19 = 19,
429 CHANNELMSG_20 = 20,
430 CHANNELMSG_TL_CONNECT_REQUEST = 21,
431 CHANNELMSG_COUNT
432 };
433
434 struct vmbus_channel_message_header {
435 enum vmbus_channel_message_type msgtype;
436 u32 padding;
437 } __packed;
438
439 /* Query VMBus Version parameters */
440 struct vmbus_channel_query_vmbus_version {
441 struct vmbus_channel_message_header header;
442 u32 version;
443 } __packed;
444
445 /* VMBus Version Supported parameters */
446 struct vmbus_channel_version_supported {
447 struct vmbus_channel_message_header header;
448 u8 version_supported;
449 } __packed;
450
451 /* Offer Channel parameters */
452 struct vmbus_channel_offer_channel {
453 struct vmbus_channel_message_header header;
454 struct vmbus_channel_offer offer;
455 u32 child_relid;
456 u8 monitorid;
457 /*
458 * win7 and beyond splits this field into a bit field.
459 */
460 u8 monitor_allocated:1;
461 u8 reserved:7;
462 /*
463 * These are new fields added in win7 and later.
464 * Do not access these fields without checking the
465 * negotiated protocol.
466 *
467 * If "is_dedicated_interrupt" is set, we must not set the
468 * associated bit in the channel bitmap while sending the
469 * interrupt to the host.
470 *
471 * connection_id is to be used in signaling the host.
472 */
473 u16 is_dedicated_interrupt:1;
474 u16 reserved1:15;
475 u32 connection_id;
476 } __packed;
477
478 /* Rescind Offer parameters */
479 struct vmbus_channel_rescind_offer {
480 struct vmbus_channel_message_header header;
481 u32 child_relid;
482 } __packed;
483
484 static inline u32
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info * rbi)485 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
486 {
487 return rbi->ring_buffer->pending_send_sz;
488 }
489
490 /*
491 * Request Offer -- no parameters, SynIC message contains the partition ID
492 * Set Snoop -- no parameters, SynIC message contains the partition ID
493 * Clear Snoop -- no parameters, SynIC message contains the partition ID
494 * All Offers Delivered -- no parameters, SynIC message contains the partition
495 * ID
496 * Flush Client -- no parameters, SynIC message contains the partition ID
497 */
498
499 /* Open Channel parameters */
500 struct vmbus_channel_open_channel {
501 struct vmbus_channel_message_header header;
502
503 /* Identifies the specific VMBus channel that is being opened. */
504 u32 child_relid;
505
506 /* ID making a particular open request at a channel offer unique. */
507 u32 openid;
508
509 /* GPADL for the channel's ring buffer. */
510 u32 ringbuffer_gpadlhandle;
511
512 /*
513 * Starting with win8, this field will be used to specify
514 * the target virtual processor on which to deliver the interrupt for
515 * the host to guest communication.
516 * Prior to win8, incoming channel interrupts would only
517 * be delivered on cpu 0. Setting this value to 0 would
518 * preserve the earlier behavior.
519 */
520 u32 target_vp;
521
522 /*
523 * The upstream ring buffer begins at offset zero in the memory
524 * described by RingBufferGpadlHandle. The downstream ring buffer
525 * follows it at this offset (in pages).
526 */
527 u32 downstream_ringbuffer_pageoffset;
528
529 /* User-specific data to be passed along to the server endpoint. */
530 unsigned char userdata[MAX_USER_DEFINED_BYTES];
531 } __packed;
532
533 /* Open Channel Result parameters */
534 struct vmbus_channel_open_result {
535 struct vmbus_channel_message_header header;
536 u32 child_relid;
537 u32 openid;
538 u32 status;
539 } __packed;
540
541 /* Close channel parameters; */
542 struct vmbus_channel_close_channel {
543 struct vmbus_channel_message_header header;
544 u32 child_relid;
545 } __packed;
546
547 /* Channel Message GPADL */
548 #define GPADL_TYPE_RING_BUFFER 1
549 #define GPADL_TYPE_SERVER_SAVE_AREA 2
550 #define GPADL_TYPE_TRANSACTION 8
551
552 /*
553 * The number of PFNs in a GPADL message is defined by the number of
554 * pages that would be spanned by ByteCount and ByteOffset. If the
555 * implied number of PFNs won't fit in this packet, there will be a
556 * follow-up packet that contains more.
557 */
558 struct vmbus_channel_gpadl_header {
559 struct vmbus_channel_message_header header;
560 u32 child_relid;
561 u32 gpadl;
562 u16 range_buflen;
563 u16 rangecount;
564 struct gpa_range range[0];
565 } __packed;
566
567 /* This is the followup packet that contains more PFNs. */
568 struct vmbus_channel_gpadl_body {
569 struct vmbus_channel_message_header header;
570 u32 msgnumber;
571 u32 gpadl;
572 u64 pfn[0];
573 } __packed;
574
575 struct vmbus_channel_gpadl_created {
576 struct vmbus_channel_message_header header;
577 u32 child_relid;
578 u32 gpadl;
579 u32 creation_status;
580 } __packed;
581
582 struct vmbus_channel_gpadl_teardown {
583 struct vmbus_channel_message_header header;
584 u32 child_relid;
585 u32 gpadl;
586 } __packed;
587
588 struct vmbus_channel_gpadl_torndown {
589 struct vmbus_channel_message_header header;
590 u32 gpadl;
591 } __packed;
592
593 struct vmbus_channel_relid_released {
594 struct vmbus_channel_message_header header;
595 u32 child_relid;
596 } __packed;
597
598 struct vmbus_channel_initiate_contact {
599 struct vmbus_channel_message_header header;
600 u32 vmbus_version_requested;
601 u32 target_vcpu; /* The VCPU the host should respond to */
602 union {
603 u64 interrupt_page;
604 struct {
605 u8 msg_sint;
606 u8 padding1[3];
607 u32 padding2;
608 };
609 };
610 u64 monitor_page1;
611 u64 monitor_page2;
612 } __packed;
613
614 /* Hyper-V socket: guest's connect()-ing to host */
615 struct vmbus_channel_tl_connect_request {
616 struct vmbus_channel_message_header header;
617 uuid_le guest_endpoint_id;
618 uuid_le host_service_id;
619 } __packed;
620
621 struct vmbus_channel_version_response {
622 struct vmbus_channel_message_header header;
623 u8 version_supported;
624
625 u8 connection_state;
626 u16 padding;
627
628 /*
629 * On new hosts that support VMBus protocol 5.0, we must use
630 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
631 * and for subsequent messages, we must use the Message Connection ID
632 * field in the host-returned Version Response Message.
633 *
634 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
635 */
636 u32 msg_conn_id;
637 } __packed;
638
639 enum vmbus_channel_state {
640 CHANNEL_OFFER_STATE,
641 CHANNEL_OPENING_STATE,
642 CHANNEL_OPEN_STATE,
643 CHANNEL_OPENED_STATE,
644 };
645
646 /*
647 * Represents each channel msg on the vmbus connection This is a
648 * variable-size data structure depending on the msg type itself
649 */
650 struct vmbus_channel_msginfo {
651 /* Bookkeeping stuff */
652 struct list_head msglistentry;
653
654 /* So far, this is only used to handle gpadl body message */
655 struct list_head submsglist;
656
657 /* Synchronize the request/response if needed */
658 struct completion waitevent;
659 struct vmbus_channel *waiting_channel;
660 union {
661 struct vmbus_channel_version_supported version_supported;
662 struct vmbus_channel_open_result open_result;
663 struct vmbus_channel_gpadl_torndown gpadl_torndown;
664 struct vmbus_channel_gpadl_created gpadl_created;
665 struct vmbus_channel_version_response version_response;
666 } response;
667
668 u32 msgsize;
669 /*
670 * The channel message that goes out on the "wire".
671 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
672 */
673 unsigned char msg[0];
674 };
675
676 struct vmbus_close_msg {
677 struct vmbus_channel_msginfo info;
678 struct vmbus_channel_close_channel msg;
679 };
680
681 /* Define connection identifier type. */
682 union hv_connection_id {
683 u32 asu32;
684 struct {
685 u32 id:24;
686 u32 reserved:8;
687 } u;
688 };
689
690 enum hv_numa_policy {
691 HV_BALANCED = 0,
692 HV_LOCALIZED,
693 };
694
695 enum vmbus_device_type {
696 HV_IDE = 0,
697 HV_SCSI,
698 HV_FC,
699 HV_NIC,
700 HV_ND,
701 HV_PCIE,
702 HV_FB,
703 HV_KBD,
704 HV_MOUSE,
705 HV_KVP,
706 HV_TS,
707 HV_HB,
708 HV_SHUTDOWN,
709 HV_FCOPY,
710 HV_BACKUP,
711 HV_DM,
712 HV_UNKNOWN,
713 };
714
715 struct vmbus_device {
716 u16 dev_type;
717 uuid_le guid;
718 bool perf_device;
719 };
720
721 struct vmbus_channel {
722 struct list_head listentry;
723
724 struct hv_device *device_obj;
725
726 enum vmbus_channel_state state;
727
728 struct vmbus_channel_offer_channel offermsg;
729 /*
730 * These are based on the OfferMsg.MonitorId.
731 * Save it here for easy access.
732 */
733 u8 monitor_grp;
734 u8 monitor_bit;
735
736 bool rescind; /* got rescind msg */
737 struct completion rescind_event;
738
739 u32 ringbuffer_gpadlhandle;
740
741 /* Allocated memory for ring buffer */
742 void *ringbuffer_pages;
743 u32 ringbuffer_pagecount;
744 struct hv_ring_buffer_info outbound; /* send to parent */
745 struct hv_ring_buffer_info inbound; /* receive from parent */
746
747 struct vmbus_close_msg close_msg;
748
749 /* Statistics */
750 u64 interrupts; /* Host to Guest interrupts */
751 u64 sig_events; /* Guest to Host events */
752
753 /* Channel callback's invoked in softirq context */
754 struct tasklet_struct callback_event;
755 void (*onchannel_callback)(void *context);
756 void *channel_callback_context;
757
758 /*
759 * A channel can be marked for one of three modes of reading:
760 * BATCHED - callback called from taslket and should read
761 * channel until empty. Interrupts from the host
762 * are masked while read is in process (default).
763 * DIRECT - callback called from tasklet (softirq).
764 * ISR - callback called in interrupt context and must
765 * invoke its own deferred processing.
766 * Host interrupts are disabled and must be re-enabled
767 * when ring is empty.
768 */
769 enum hv_callback_mode {
770 HV_CALL_BATCHED,
771 HV_CALL_DIRECT,
772 HV_CALL_ISR
773 } callback_mode;
774
775 bool is_dedicated_interrupt;
776 u64 sig_event;
777
778 /*
779 * Starting with win8, this field will be used to specify
780 * the target virtual processor on which to deliver the interrupt for
781 * the host to guest communication.
782 * Prior to win8, incoming channel interrupts would only
783 * be delivered on cpu 0. Setting this value to 0 would
784 * preserve the earlier behavior.
785 */
786 u32 target_vp;
787 /* The corresponding CPUID in the guest */
788 u32 target_cpu;
789 /*
790 * State to manage the CPU affiliation of channels.
791 */
792 struct cpumask alloced_cpus_in_node;
793 int numa_node;
794 /*
795 * Support for sub-channels. For high performance devices,
796 * it will be useful to have multiple sub-channels to support
797 * a scalable communication infrastructure with the host.
798 * The support for sub-channels is implemented as an extention
799 * to the current infrastructure.
800 * The initial offer is considered the primary channel and this
801 * offer message will indicate if the host supports sub-channels.
802 * The guest is free to ask for sub-channels to be offerred and can
803 * open these sub-channels as a normal "primary" channel. However,
804 * all sub-channels will have the same type and instance guids as the
805 * primary channel. Requests sent on a given channel will result in a
806 * response on the same channel.
807 */
808
809 /*
810 * Sub-channel creation callback. This callback will be called in
811 * process context when a sub-channel offer is received from the host.
812 * The guest can open the sub-channel in the context of this callback.
813 */
814 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
815
816 /*
817 * Channel rescind callback. Some channels (the hvsock ones), need to
818 * register a callback which is invoked in vmbus_onoffer_rescind().
819 */
820 void (*chn_rescind_callback)(struct vmbus_channel *channel);
821
822 /*
823 * The spinlock to protect the structure. It is being used to protect
824 * test-and-set access to various attributes of the structure as well
825 * as all sc_list operations.
826 */
827 spinlock_t lock;
828 /*
829 * All Sub-channels of a primary channel are linked here.
830 */
831 struct list_head sc_list;
832 /*
833 * Current number of sub-channels.
834 */
835 int num_sc;
836 /*
837 * Number of a sub-channel (position within sc_list) which is supposed
838 * to be used as the next outgoing channel.
839 */
840 int next_oc;
841 /*
842 * The primary channel this sub-channel belongs to.
843 * This will be NULL for the primary channel.
844 */
845 struct vmbus_channel *primary_channel;
846 /*
847 * Support per-channel state for use by vmbus drivers.
848 */
849 void *per_channel_state;
850 /*
851 * To support per-cpu lookup mapping of relid to channel,
852 * link up channels based on their CPU affinity.
853 */
854 struct list_head percpu_list;
855
856 /*
857 * Defer freeing channel until after all cpu's have
858 * gone through grace period.
859 */
860 struct rcu_head rcu;
861
862 /*
863 * For sysfs per-channel properties.
864 */
865 struct kobject kobj;
866
867 /*
868 * For performance critical channels (storage, networking
869 * etc,), Hyper-V has a mechanism to enhance the throughput
870 * at the expense of latency:
871 * When the host is to be signaled, we just set a bit in a shared page
872 * and this bit will be inspected by the hypervisor within a certain
873 * window and if the bit is set, the host will be signaled. The window
874 * of time is the monitor latency - currently around 100 usecs. This
875 * mechanism improves throughput by:
876 *
877 * A) Making the host more efficient - each time it wakes up,
878 * potentially it will process morev number of packets. The
879 * monitor latency allows a batch to build up.
880 * B) By deferring the hypercall to signal, we will also minimize
881 * the interrupts.
882 *
883 * Clearly, these optimizations improve throughput at the expense of
884 * latency. Furthermore, since the channel is shared for both
885 * control and data messages, control messages currently suffer
886 * unnecessary latency adversley impacting performance and boot
887 * time. To fix this issue, permit tagging the channel as being
888 * in "low latency" mode. In this mode, we will bypass the monitor
889 * mechanism.
890 */
891 bool low_latency;
892
893 /*
894 * NUMA distribution policy:
895 * We support two policies:
896 * 1) Balanced: Here all performance critical channels are
897 * distributed evenly amongst all the NUMA nodes.
898 * This policy will be the default policy.
899 * 2) Localized: All channels of a given instance of a
900 * performance critical service will be assigned CPUs
901 * within a selected NUMA node.
902 */
903 enum hv_numa_policy affinity_policy;
904
905 bool probe_done;
906
907 };
908
is_hvsock_channel(const struct vmbus_channel * c)909 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
910 {
911 return !!(c->offermsg.offer.chn_flags &
912 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
913 }
914
set_channel_affinity_state(struct vmbus_channel * c,enum hv_numa_policy policy)915 static inline void set_channel_affinity_state(struct vmbus_channel *c,
916 enum hv_numa_policy policy)
917 {
918 c->affinity_policy = policy;
919 }
920
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)921 static inline void set_channel_read_mode(struct vmbus_channel *c,
922 enum hv_callback_mode mode)
923 {
924 c->callback_mode = mode;
925 }
926
set_per_channel_state(struct vmbus_channel * c,void * s)927 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
928 {
929 c->per_channel_state = s;
930 }
931
get_per_channel_state(struct vmbus_channel * c)932 static inline void *get_per_channel_state(struct vmbus_channel *c)
933 {
934 return c->per_channel_state;
935 }
936
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)937 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
938 u32 size)
939 {
940 c->outbound.ring_buffer->pending_send_sz = size;
941 }
942
set_low_latency_mode(struct vmbus_channel * c)943 static inline void set_low_latency_mode(struct vmbus_channel *c)
944 {
945 c->low_latency = true;
946 }
947
clear_low_latency_mode(struct vmbus_channel * c)948 static inline void clear_low_latency_mode(struct vmbus_channel *c)
949 {
950 c->low_latency = false;
951 }
952
953 void vmbus_onmessage(void *context);
954
955 int vmbus_request_offers(void);
956
957 /*
958 * APIs for managing sub-channels.
959 */
960
961 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
962 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
963
964 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
965 void (*chn_rescind_cb)(struct vmbus_channel *));
966
967 /*
968 * Retrieve the (sub) channel on which to send an outgoing request.
969 * When a primary channel has multiple sub-channels, we choose a
970 * channel whose VCPU binding is closest to the VCPU on which
971 * this call is being made.
972 */
973 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
974
975 /*
976 * Check if sub-channels have already been offerred. This API will be useful
977 * when the driver is unloaded after establishing sub-channels. In this case,
978 * when the driver is re-loaded, the driver would have to check if the
979 * subchannels have already been established before attempting to request
980 * the creation of sub-channels.
981 * This function returns TRUE to indicate that subchannels have already been
982 * created.
983 * This function should be invoked after setting the callback function for
984 * sub-channel creation.
985 */
986 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
987
988 /* The format must be the same as struct vmdata_gpa_direct */
989 struct vmbus_channel_packet_page_buffer {
990 u16 type;
991 u16 dataoffset8;
992 u16 length8;
993 u16 flags;
994 u64 transactionid;
995 u32 reserved;
996 u32 rangecount;
997 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
998 } __packed;
999
1000 /* The format must be the same as struct vmdata_gpa_direct */
1001 struct vmbus_channel_packet_multipage_buffer {
1002 u16 type;
1003 u16 dataoffset8;
1004 u16 length8;
1005 u16 flags;
1006 u64 transactionid;
1007 u32 reserved;
1008 u32 rangecount; /* Always 1 in this case */
1009 struct hv_multipage_buffer range;
1010 } __packed;
1011
1012 /* The format must be the same as struct vmdata_gpa_direct */
1013 struct vmbus_packet_mpb_array {
1014 u16 type;
1015 u16 dataoffset8;
1016 u16 length8;
1017 u16 flags;
1018 u64 transactionid;
1019 u32 reserved;
1020 u32 rangecount; /* Always 1 in this case */
1021 struct hv_mpb_array range;
1022 } __packed;
1023
1024
1025 extern int vmbus_open(struct vmbus_channel *channel,
1026 u32 send_ringbuffersize,
1027 u32 recv_ringbuffersize,
1028 void *userdata,
1029 u32 userdatalen,
1030 void (*onchannel_callback)(void *context),
1031 void *context);
1032
1033 extern void vmbus_close(struct vmbus_channel *channel);
1034
1035 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1036 void *buffer,
1037 u32 bufferLen,
1038 u64 requestid,
1039 enum vmbus_packet_type type,
1040 u32 flags);
1041
1042 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1043 struct hv_page_buffer pagebuffers[],
1044 u32 pagecount,
1045 void *buffer,
1046 u32 bufferlen,
1047 u64 requestid);
1048
1049 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1050 struct vmbus_packet_mpb_array *mpb,
1051 u32 desc_size,
1052 void *buffer,
1053 u32 bufferlen,
1054 u64 requestid);
1055
1056 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1057 void *kbuffer,
1058 u32 size,
1059 u32 *gpadl_handle);
1060
1061 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1062 u32 gpadl_handle);
1063
1064 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1065
1066 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1067 void *buffer,
1068 u32 bufferlen,
1069 u32 *buffer_actual_len,
1070 u64 *requestid);
1071
1072 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1073 void *buffer,
1074 u32 bufferlen,
1075 u32 *buffer_actual_len,
1076 u64 *requestid);
1077
1078
1079 extern void vmbus_ontimer(unsigned long data);
1080
1081 /* Base driver object */
1082 struct hv_driver {
1083 const char *name;
1084
1085 /*
1086 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1087 * channel flag, actually doesn't mean a synthetic device because the
1088 * offer's if_type/if_instance can change for every new hvsock
1089 * connection.
1090 *
1091 * However, to facilitate the notification of new-offer/rescind-offer
1092 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1093 * a special vmbus device, and hence we need the below flag to
1094 * indicate if the driver is the hvsock driver or not: we need to
1095 * specially treat the hvosck offer & driver in vmbus_match().
1096 */
1097 bool hvsock;
1098
1099 /* the device type supported by this driver */
1100 uuid_le dev_type;
1101 const struct hv_vmbus_device_id *id_table;
1102
1103 struct device_driver driver;
1104
1105 /* dynamic device GUID's */
1106 struct {
1107 spinlock_t lock;
1108 struct list_head list;
1109 } dynids;
1110
1111 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1112 int (*remove)(struct hv_device *);
1113 void (*shutdown)(struct hv_device *);
1114
1115 };
1116
1117 /* Base device object */
1118 struct hv_device {
1119 /* the device type id of this device */
1120 uuid_le dev_type;
1121
1122 /* the device instance id of this device */
1123 uuid_le dev_instance;
1124 u16 vendor_id;
1125 u16 device_id;
1126
1127 struct device device;
1128
1129 struct vmbus_channel *channel;
1130 struct kset *channels_kset;
1131 };
1132
1133
device_to_hv_device(struct device * d)1134 static inline struct hv_device *device_to_hv_device(struct device *d)
1135 {
1136 return container_of(d, struct hv_device, device);
1137 }
1138
drv_to_hv_drv(struct device_driver * d)1139 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1140 {
1141 return container_of(d, struct hv_driver, driver);
1142 }
1143
hv_set_drvdata(struct hv_device * dev,void * data)1144 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1145 {
1146 dev_set_drvdata(&dev->device, data);
1147 }
1148
hv_get_drvdata(struct hv_device * dev)1149 static inline void *hv_get_drvdata(struct hv_device *dev)
1150 {
1151 return dev_get_drvdata(&dev->device);
1152 }
1153
1154 struct hv_ring_buffer_debug_info {
1155 u32 current_interrupt_mask;
1156 u32 current_read_index;
1157 u32 current_write_index;
1158 u32 bytes_avail_toread;
1159 u32 bytes_avail_towrite;
1160 };
1161
1162 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1163 struct hv_ring_buffer_debug_info *debug_info);
1164
1165 /* Vmbus interface */
1166 #define vmbus_driver_register(driver) \
1167 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1168 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1169 struct module *owner,
1170 const char *mod_name);
1171 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1172
1173 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1174
1175 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1176 resource_size_t min, resource_size_t max,
1177 resource_size_t size, resource_size_t align,
1178 bool fb_overlap_ok);
1179 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1180
1181 /*
1182 * GUID definitions of various offer types - services offered to the guest.
1183 */
1184
1185 /*
1186 * Network GUID
1187 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1188 */
1189 #define HV_NIC_GUID \
1190 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1191 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1192
1193 /*
1194 * IDE GUID
1195 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1196 */
1197 #define HV_IDE_GUID \
1198 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1199 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1200
1201 /*
1202 * SCSI GUID
1203 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1204 */
1205 #define HV_SCSI_GUID \
1206 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1207 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1208
1209 /*
1210 * Shutdown GUID
1211 * {0e0b6031-5213-4934-818b-38d90ced39db}
1212 */
1213 #define HV_SHUTDOWN_GUID \
1214 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1215 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1216
1217 /*
1218 * Time Synch GUID
1219 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1220 */
1221 #define HV_TS_GUID \
1222 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1223 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1224
1225 /*
1226 * Heartbeat GUID
1227 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1228 */
1229 #define HV_HEART_BEAT_GUID \
1230 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1231 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1232
1233 /*
1234 * KVP GUID
1235 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1236 */
1237 #define HV_KVP_GUID \
1238 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1239 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1240
1241 /*
1242 * Dynamic memory GUID
1243 * {525074dc-8985-46e2-8057-a307dc18a502}
1244 */
1245 #define HV_DM_GUID \
1246 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1247 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1248
1249 /*
1250 * Mouse GUID
1251 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1252 */
1253 #define HV_MOUSE_GUID \
1254 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1255 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1256
1257 /*
1258 * Keyboard GUID
1259 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1260 */
1261 #define HV_KBD_GUID \
1262 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1263 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1264
1265 /*
1266 * VSS (Backup/Restore) GUID
1267 */
1268 #define HV_VSS_GUID \
1269 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1270 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1271 /*
1272 * Synthetic Video GUID
1273 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1274 */
1275 #define HV_SYNTHVID_GUID \
1276 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1277 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1278
1279 /*
1280 * Synthetic FC GUID
1281 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1282 */
1283 #define HV_SYNTHFC_GUID \
1284 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1285 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1286
1287 /*
1288 * Guest File Copy Service
1289 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1290 */
1291
1292 #define HV_FCOPY_GUID \
1293 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1294 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1295
1296 /*
1297 * NetworkDirect. This is the guest RDMA service.
1298 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1299 */
1300 #define HV_ND_GUID \
1301 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1302 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1303
1304 /*
1305 * PCI Express Pass Through
1306 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1307 */
1308
1309 #define HV_PCIE_GUID \
1310 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1311 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1312
1313 /*
1314 * Linux doesn't support the 3 devices: the first two are for
1315 * Automatic Virtual Machine Activation, and the third is for
1316 * Remote Desktop Virtualization.
1317 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1318 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1319 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1320 */
1321
1322 #define HV_AVMA1_GUID \
1323 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1324 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1325
1326 #define HV_AVMA2_GUID \
1327 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1328 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1329
1330 #define HV_RDV_GUID \
1331 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1332 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1333
1334 /*
1335 * Common header for Hyper-V ICs
1336 */
1337
1338 #define ICMSGTYPE_NEGOTIATE 0
1339 #define ICMSGTYPE_HEARTBEAT 1
1340 #define ICMSGTYPE_KVPEXCHANGE 2
1341 #define ICMSGTYPE_SHUTDOWN 3
1342 #define ICMSGTYPE_TIMESYNC 4
1343 #define ICMSGTYPE_VSS 5
1344
1345 #define ICMSGHDRFLAG_TRANSACTION 1
1346 #define ICMSGHDRFLAG_REQUEST 2
1347 #define ICMSGHDRFLAG_RESPONSE 4
1348
1349
1350 /*
1351 * While we want to handle util services as regular devices,
1352 * there is only one instance of each of these services; so
1353 * we statically allocate the service specific state.
1354 */
1355
1356 struct hv_util_service {
1357 u8 *recv_buffer;
1358 void *channel;
1359 void (*util_cb)(void *);
1360 int (*util_init)(struct hv_util_service *);
1361 void (*util_deinit)(void);
1362 };
1363
1364 struct vmbuspipe_hdr {
1365 u32 flags;
1366 u32 msgsize;
1367 } __packed;
1368
1369 struct ic_version {
1370 u16 major;
1371 u16 minor;
1372 } __packed;
1373
1374 struct icmsg_hdr {
1375 struct ic_version icverframe;
1376 u16 icmsgtype;
1377 struct ic_version icvermsg;
1378 u16 icmsgsize;
1379 u32 status;
1380 u8 ictransaction_id;
1381 u8 icflags;
1382 u8 reserved[2];
1383 } __packed;
1384
1385 struct icmsg_negotiate {
1386 u16 icframe_vercnt;
1387 u16 icmsg_vercnt;
1388 u32 reserved;
1389 struct ic_version icversion_data[1]; /* any size array */
1390 } __packed;
1391
1392 struct shutdown_msg_data {
1393 u32 reason_code;
1394 u32 timeout_seconds;
1395 u32 flags;
1396 u8 display_message[2048];
1397 } __packed;
1398
1399 struct heartbeat_msg_data {
1400 u64 seq_num;
1401 u32 reserved[8];
1402 } __packed;
1403
1404 /* Time Sync IC defs */
1405 #define ICTIMESYNCFLAG_PROBE 0
1406 #define ICTIMESYNCFLAG_SYNC 1
1407 #define ICTIMESYNCFLAG_SAMPLE 2
1408
1409 #ifdef __x86_64__
1410 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1411 #else
1412 #define WLTIMEDELTA 116444736000000000LL
1413 #endif
1414
1415 struct ictimesync_data {
1416 u64 parenttime;
1417 u64 childtime;
1418 u64 roundtriptime;
1419 u8 flags;
1420 } __packed;
1421
1422 struct ictimesync_ref_data {
1423 u64 parenttime;
1424 u64 vmreferencetime;
1425 u8 flags;
1426 char leapflags;
1427 char stratum;
1428 u8 reserved[3];
1429 } __packed;
1430
1431 struct hyperv_service_callback {
1432 u8 msg_type;
1433 char *log_msg;
1434 uuid_le data;
1435 struct vmbus_channel *channel;
1436 void (*callback)(void *context);
1437 };
1438
1439 #define MAX_SRV_VER 0x7ffffff
1440 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1441 const int *fw_version, int fw_vercnt,
1442 const int *srv_version, int srv_vercnt,
1443 int *nego_fw_version, int *nego_srv_version);
1444
1445 void hv_process_channel_removal(u32 relid);
1446
1447 void vmbus_setevent(struct vmbus_channel *channel);
1448 /*
1449 * Negotiated version with the Host.
1450 */
1451
1452 extern __u32 vmbus_proto_version;
1453
1454 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1455 const uuid_le *shv_host_servie_id);
1456 void vmbus_set_event(struct vmbus_channel *channel);
1457
1458 /* Get the start of the ring buffer. */
1459 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1460 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1461 {
1462 return ring_info->ring_buffer->buffer;
1463 }
1464
1465 /*
1466 * Mask off host interrupt callback notifications
1467 */
hv_begin_read(struct hv_ring_buffer_info * rbi)1468 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1469 {
1470 rbi->ring_buffer->interrupt_mask = 1;
1471
1472 /* make sure mask update is not reordered */
1473 virt_mb();
1474 }
1475
1476 /*
1477 * Re-enable host callback and return number of outstanding bytes
1478 */
hv_end_read(struct hv_ring_buffer_info * rbi)1479 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1480 {
1481
1482 rbi->ring_buffer->interrupt_mask = 0;
1483
1484 /* make sure mask update is not reordered */
1485 virt_mb();
1486
1487 /*
1488 * Now check to see if the ring buffer is still empty.
1489 * If it is not, we raced and we need to process new
1490 * incoming messages.
1491 */
1492 return hv_get_bytes_to_read(rbi);
1493 }
1494
1495 /*
1496 * An API to support in-place processing of incoming VMBUS packets.
1497 */
1498
1499 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1500 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1501 {
1502 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1503 }
1504
1505 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1506 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1507 {
1508 return (desc->len8 << 3) - (desc->offset8 << 3);
1509 }
1510
1511
1512 struct vmpacket_descriptor *
1513 hv_pkt_iter_first(struct vmbus_channel *channel);
1514
1515 struct vmpacket_descriptor *
1516 __hv_pkt_iter_next(struct vmbus_channel *channel,
1517 const struct vmpacket_descriptor *pkt);
1518
1519 void hv_pkt_iter_close(struct vmbus_channel *channel);
1520
1521 /*
1522 * Get next packet descriptor from iterator
1523 * If at end of list, return NULL and update host.
1524 */
1525 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1526 hv_pkt_iter_next(struct vmbus_channel *channel,
1527 const struct vmpacket_descriptor *pkt)
1528 {
1529 struct vmpacket_descriptor *nxt;
1530
1531 nxt = __hv_pkt_iter_next(channel, pkt);
1532 if (!nxt)
1533 hv_pkt_iter_close(channel);
1534
1535 return nxt;
1536 }
1537
1538 #define foreach_vmbus_pkt(pkt, channel) \
1539 for (pkt = hv_pkt_iter_first(channel); pkt; \
1540 pkt = hv_pkt_iter_next(channel, pkt))
1541
1542 #endif /* _HYPERV_H */
1543