1 /*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Authors:
17 * Jesse Barnes <jbarnes@virtuousgeek.org>
18 */
19
20 /*
21 * Some Intel Ibex Peak based platforms support so-called "intelligent
22 * power sharing", which allows the CPU and GPU to cooperate to maximize
23 * performance within a given TDP (thermal design point). This driver
24 * performs the coordination between the CPU and GPU, monitors thermal and
25 * power statistics in the platform, and initializes power monitoring
26 * hardware. It also provides a few tunables to control behavior. Its
27 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
28 * by tracking power and thermal budget; secondarily it can boost turbo
29 * performance by allocating more power or thermal budget to the CPU or GPU
30 * based on available headroom and activity.
31 *
32 * The basic algorithm is driven by a 5s moving average of temperature. If
33 * thermal headroom is available, the CPU and/or GPU power clamps may be
34 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
35 * we scale back the clamp. Aside from trigger events (when we're critically
36 * close or over our TDP) we don't adjust the clamps more than once every
37 * five seconds.
38 *
39 * The thermal device (device 31, function 6) has a set of registers that
40 * are updated by the ME firmware. The ME should also take the clamp values
41 * written to those registers and write them to the CPU, but we currently
42 * bypass that functionality and write the CPU MSR directly.
43 *
44 * UNSUPPORTED:
45 * - dual MCP configs
46 *
47 * TODO:
48 * - handle CPU hotplug
49 * - provide turbo enable/disable api
50 *
51 * Related documents:
52 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
53 * - CDI 401376 - Ibex Peak EDS
54 * - ref 26037, 26641 - IPS BIOS spec
55 * - ref 26489 - Nehalem BIOS writer's guide
56 * - ref 26921 - Ibex Peak BIOS Specification
57 */
58
59 #include <linux/debugfs.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/kernel.h>
63 #include <linux/kthread.h>
64 #include <linux/module.h>
65 #include <linux/pci.h>
66 #include <linux/sched.h>
67 #include <linux/sched/loadavg.h>
68 #include <linux/seq_file.h>
69 #include <linux/string.h>
70 #include <linux/tick.h>
71 #include <linux/timer.h>
72 #include <linux/dmi.h>
73 #include <drm/i915_drm.h>
74 #include <asm/msr.h>
75 #include <asm/processor.h>
76 #include "intel_ips.h"
77
78 #include <linux/io-64-nonatomic-lo-hi.h>
79
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81
82 /*
83 * Package level MSRs for monitor/control
84 */
85 #define PLATFORM_INFO 0xce
86 #define PLATFORM_TDP (1<<29)
87 #define PLATFORM_RATIO (1<<28)
88
89 #define IA32_MISC_ENABLE 0x1a0
90 #define IA32_MISC_TURBO_EN (1ULL<<38)
91
92 #define TURBO_POWER_CURRENT_LIMIT 0x1ac
93 #define TURBO_TDC_OVR_EN (1UL<<31)
94 #define TURBO_TDC_MASK (0x000000007fff0000UL)
95 #define TURBO_TDC_SHIFT (16)
96 #define TURBO_TDP_OVR_EN (1UL<<15)
97 #define TURBO_TDP_MASK (0x0000000000003fffUL)
98
99 /*
100 * Core/thread MSRs for monitoring
101 */
102 #define IA32_PERF_CTL 0x199
103 #define IA32_PERF_TURBO_DIS (1ULL<<32)
104
105 /*
106 * Thermal PCI device regs
107 */
108 #define THM_CFG_TBAR 0x10
109 #define THM_CFG_TBAR_HI 0x14
110
111 #define THM_TSIU 0x00
112 #define THM_TSE 0x01
113 #define TSE_EN 0xb8
114 #define THM_TSS 0x02
115 #define THM_TSTR 0x03
116 #define THM_TSTTP 0x04
117 #define THM_TSCO 0x08
118 #define THM_TSES 0x0c
119 #define THM_TSGPEN 0x0d
120 #define TSGPEN_HOT_LOHI (1<<1)
121 #define TSGPEN_CRIT_LOHI (1<<2)
122 #define THM_TSPC 0x0e
123 #define THM_PPEC 0x10
124 #define THM_CTA 0x12
125 #define THM_PTA 0x14
126 #define PTA_SLOPE_MASK (0xff00)
127 #define PTA_SLOPE_SHIFT 8
128 #define PTA_OFFSET_MASK (0x00ff)
129 #define THM_MGTA 0x16
130 #define MGTA_SLOPE_MASK (0xff00)
131 #define MGTA_SLOPE_SHIFT 8
132 #define MGTA_OFFSET_MASK (0x00ff)
133 #define THM_TRC 0x1a
134 #define TRC_CORE2_EN (1<<15)
135 #define TRC_THM_EN (1<<12)
136 #define TRC_C6_WAR (1<<8)
137 #define TRC_CORE1_EN (1<<7)
138 #define TRC_CORE_PWR (1<<6)
139 #define TRC_PCH_EN (1<<5)
140 #define TRC_MCH_EN (1<<4)
141 #define TRC_DIMM4 (1<<3)
142 #define TRC_DIMM3 (1<<2)
143 #define TRC_DIMM2 (1<<1)
144 #define TRC_DIMM1 (1<<0)
145 #define THM_TES 0x20
146 #define THM_TEN 0x21
147 #define TEN_UPDATE_EN 1
148 #define THM_PSC 0x24
149 #define PSC_NTG (1<<0) /* No GFX turbo support */
150 #define PSC_NTPC (1<<1) /* No CPU turbo support */
151 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
152 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
153 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
154 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
155 #define PSP_PBRT (1<<4) /* BIOS run time support */
156 #define THM_CTV1 0x30
157 #define CTV_TEMP_ERROR (1<<15)
158 #define CTV_TEMP_MASK 0x3f
159 #define CTV_
160 #define THM_CTV2 0x32
161 #define THM_CEC 0x34 /* undocumented power accumulator in joules */
162 #define THM_AE 0x3f
163 #define THM_HTS 0x50 /* 32 bits */
164 #define HTS_PCPL_MASK (0x7fe00000)
165 #define HTS_PCPL_SHIFT 21
166 #define HTS_GPL_MASK (0x001ff000)
167 #define HTS_GPL_SHIFT 12
168 #define HTS_PP_MASK (0x00000c00)
169 #define HTS_PP_SHIFT 10
170 #define HTS_PP_DEF 0
171 #define HTS_PP_PROC 1
172 #define HTS_PP_BAL 2
173 #define HTS_PP_GFX 3
174 #define HTS_PCTD_DIS (1<<9)
175 #define HTS_GTD_DIS (1<<8)
176 #define HTS_PTL_MASK (0x000000fe)
177 #define HTS_PTL_SHIFT 1
178 #define HTS_NVV (1<<0)
179 #define THM_HTSHI 0x54 /* 16 bits */
180 #define HTS2_PPL_MASK (0x03ff)
181 #define HTS2_PRST_MASK (0x3c00)
182 #define HTS2_PRST_SHIFT 10
183 #define HTS2_PRST_UNLOADED 0
184 #define HTS2_PRST_RUNNING 1
185 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
186 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
187 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
188 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
189 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
190 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
191 #define THM_PTL 0x56
192 #define THM_MGTV 0x58
193 #define TV_MASK 0x000000000000ff00
194 #define TV_SHIFT 8
195 #define THM_PTV 0x60
196 #define PTV_MASK 0x00ff
197 #define THM_MMGPC 0x64
198 #define THM_MPPC 0x66
199 #define THM_MPCPC 0x68
200 #define THM_TSPIEN 0x82
201 #define TSPIEN_AUX_LOHI (1<<0)
202 #define TSPIEN_HOT_LOHI (1<<1)
203 #define TSPIEN_CRIT_LOHI (1<<2)
204 #define TSPIEN_AUX2_LOHI (1<<3)
205 #define THM_TSLOCK 0x83
206 #define THM_ATR 0x84
207 #define THM_TOF 0x87
208 #define THM_STS 0x98
209 #define STS_PCPL_MASK (0x7fe00000)
210 #define STS_PCPL_SHIFT 21
211 #define STS_GPL_MASK (0x001ff000)
212 #define STS_GPL_SHIFT 12
213 #define STS_PP_MASK (0x00000c00)
214 #define STS_PP_SHIFT 10
215 #define STS_PP_DEF 0
216 #define STS_PP_PROC 1
217 #define STS_PP_BAL 2
218 #define STS_PP_GFX 3
219 #define STS_PCTD_DIS (1<<9)
220 #define STS_GTD_DIS (1<<8)
221 #define STS_PTL_MASK (0x000000fe)
222 #define STS_PTL_SHIFT 1
223 #define STS_NVV (1<<0)
224 #define THM_SEC 0x9c
225 #define SEC_ACK (1<<0)
226 #define THM_TC3 0xa4
227 #define THM_TC1 0xa8
228 #define STS_PPL_MASK (0x0003ff00)
229 #define STS_PPL_SHIFT 16
230 #define THM_TC2 0xac
231 #define THM_DTV 0xb0
232 #define THM_ITV 0xd8
233 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234 #define ITV_ME_SEQNO_SHIFT (16)
235 #define ITV_MCH_TEMP_MASK 0x0000ff00
236 #define ITV_MCH_TEMP_SHIFT (8)
237 #define ITV_PCH_TEMP_MASK 0x000000ff
238
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
243
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
247
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 static bool late_i915_load = false;
250
251 /* For initial average collection */
252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
255
256 /* Per-SKU limits */
257 struct ips_mcp_limits {
258 int mcp_power_limit; /* mW units */
259 int core_power_limit;
260 int mch_power_limit;
261 int core_temp_limit; /* degrees C */
262 int mch_temp_limit;
263 };
264
265 /* Max temps are -10 degrees C to avoid PROCHOT# */
266
267 static struct ips_mcp_limits ips_sv_limits = {
268 .mcp_power_limit = 35000,
269 .core_power_limit = 29000,
270 .mch_power_limit = 20000,
271 .core_temp_limit = 95,
272 .mch_temp_limit = 90
273 };
274
275 static struct ips_mcp_limits ips_lv_limits = {
276 .mcp_power_limit = 25000,
277 .core_power_limit = 21000,
278 .mch_power_limit = 13000,
279 .core_temp_limit = 95,
280 .mch_temp_limit = 90
281 };
282
283 static struct ips_mcp_limits ips_ulv_limits = {
284 .mcp_power_limit = 18000,
285 .core_power_limit = 14000,
286 .mch_power_limit = 11000,
287 .core_temp_limit = 95,
288 .mch_temp_limit = 90
289 };
290
291 struct ips_driver {
292 struct device *dev;
293 void __iomem *regmap;
294 int irq;
295
296 struct task_struct *monitor;
297 struct task_struct *adjust;
298 struct dentry *debug_root;
299 struct timer_list timer;
300
301 /* Average CPU core temps (all averages in .01 degrees C for precision) */
302 u16 ctv1_avg_temp;
303 u16 ctv2_avg_temp;
304 /* GMCH average */
305 u16 mch_avg_temp;
306 /* Average for the CPU (both cores?) */
307 u16 mcp_avg_temp;
308 /* Average power consumption (in mW) */
309 u32 cpu_avg_power;
310 u32 mch_avg_power;
311
312 /* Offset values */
313 u16 cta_val;
314 u16 pta_val;
315 u16 mgta_val;
316
317 /* Maximums & prefs, protected by turbo status lock */
318 spinlock_t turbo_status_lock;
319 u16 mcp_temp_limit;
320 u16 mcp_power_limit;
321 u16 core_power_limit;
322 u16 mch_power_limit;
323 bool cpu_turbo_enabled;
324 bool __cpu_turbo_on;
325 bool gpu_turbo_enabled;
326 bool __gpu_turbo_on;
327 bool gpu_preferred;
328 bool poll_turbo_status;
329 bool second_cpu;
330 bool turbo_toggle_allowed;
331 struct ips_mcp_limits *limits;
332
333 /* Optional MCH interfaces for if i915 is in use */
334 unsigned long (*read_mch_val)(void);
335 bool (*gpu_raise)(void);
336 bool (*gpu_lower)(void);
337 bool (*gpu_busy)(void);
338 bool (*gpu_turbo_disable)(void);
339
340 /* For restoration at unload */
341 u64 orig_turbo_limit;
342 u64 orig_turbo_ratios;
343 };
344
345 static bool
346 ips_gpu_turbo_enabled(struct ips_driver *ips);
347
348 /**
349 * ips_cpu_busy - is CPU busy?
350 * @ips: IPS driver struct
351 *
352 * Check CPU for load to see whether we should increase its thermal budget.
353 *
354 * RETURNS:
355 * True if the CPU could use more power, false otherwise.
356 */
ips_cpu_busy(struct ips_driver * ips)357 static bool ips_cpu_busy(struct ips_driver *ips)
358 {
359 if ((avenrun[0] >> FSHIFT) > 1)
360 return true;
361
362 return false;
363 }
364
365 /**
366 * ips_cpu_raise - raise CPU power clamp
367 * @ips: IPS driver struct
368 *
369 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
370 * this platform.
371 *
372 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
373 * long as we haven't hit the TDP limit for the SKU).
374 */
ips_cpu_raise(struct ips_driver * ips)375 static void ips_cpu_raise(struct ips_driver *ips)
376 {
377 u64 turbo_override;
378 u16 cur_tdp_limit, new_tdp_limit;
379
380 if (!ips->cpu_turbo_enabled)
381 return;
382
383 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
384
385 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
386 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
387
388 /* Clamp to SKU TDP limit */
389 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
390 new_tdp_limit = cur_tdp_limit;
391
392 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
393
394 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
395 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
396
397 turbo_override &= ~TURBO_TDP_MASK;
398 turbo_override |= new_tdp_limit;
399
400 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
401 }
402
403 /**
404 * ips_cpu_lower - lower CPU power clamp
405 * @ips: IPS driver struct
406 *
407 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
408 *
409 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
410 * as low as the platform limits will allow (though we could go lower there
411 * wouldn't be much point).
412 */
ips_cpu_lower(struct ips_driver * ips)413 static void ips_cpu_lower(struct ips_driver *ips)
414 {
415 u64 turbo_override;
416 u16 cur_limit, new_limit;
417
418 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
419
420 cur_limit = turbo_override & TURBO_TDP_MASK;
421 new_limit = cur_limit - 8; /* 1W decrease */
422
423 /* Clamp to SKU TDP limit */
424 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
425 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
426
427 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
428
429 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
430 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
431
432 turbo_override &= ~TURBO_TDP_MASK;
433 turbo_override |= new_limit;
434
435 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
436 }
437
438 /**
439 * do_enable_cpu_turbo - internal turbo enable function
440 * @data: unused
441 *
442 * Internal function for actually updating MSRs. When we enable/disable
443 * turbo, we need to do it on each CPU; this function is the one called
444 * by on_each_cpu() when needed.
445 */
do_enable_cpu_turbo(void * data)446 static void do_enable_cpu_turbo(void *data)
447 {
448 u64 perf_ctl;
449
450 rdmsrl(IA32_PERF_CTL, perf_ctl);
451 if (perf_ctl & IA32_PERF_TURBO_DIS) {
452 perf_ctl &= ~IA32_PERF_TURBO_DIS;
453 wrmsrl(IA32_PERF_CTL, perf_ctl);
454 }
455 }
456
457 /**
458 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
459 * @ips: IPS driver struct
460 *
461 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
462 * all logical threads.
463 */
ips_enable_cpu_turbo(struct ips_driver * ips)464 static void ips_enable_cpu_turbo(struct ips_driver *ips)
465 {
466 /* Already on, no need to mess with MSRs */
467 if (ips->__cpu_turbo_on)
468 return;
469
470 if (ips->turbo_toggle_allowed)
471 on_each_cpu(do_enable_cpu_turbo, ips, 1);
472
473 ips->__cpu_turbo_on = true;
474 }
475
476 /**
477 * do_disable_cpu_turbo - internal turbo disable function
478 * @data: unused
479 *
480 * Internal function for actually updating MSRs. When we enable/disable
481 * turbo, we need to do it on each CPU; this function is the one called
482 * by on_each_cpu() when needed.
483 */
do_disable_cpu_turbo(void * data)484 static void do_disable_cpu_turbo(void *data)
485 {
486 u64 perf_ctl;
487
488 rdmsrl(IA32_PERF_CTL, perf_ctl);
489 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
490 perf_ctl |= IA32_PERF_TURBO_DIS;
491 wrmsrl(IA32_PERF_CTL, perf_ctl);
492 }
493 }
494
495 /**
496 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
497 * @ips: IPS driver struct
498 *
499 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
500 * all logical threads.
501 */
ips_disable_cpu_turbo(struct ips_driver * ips)502 static void ips_disable_cpu_turbo(struct ips_driver *ips)
503 {
504 /* Already off, leave it */
505 if (!ips->__cpu_turbo_on)
506 return;
507
508 if (ips->turbo_toggle_allowed)
509 on_each_cpu(do_disable_cpu_turbo, ips, 1);
510
511 ips->__cpu_turbo_on = false;
512 }
513
514 /**
515 * ips_gpu_busy - is GPU busy?
516 * @ips: IPS driver struct
517 *
518 * Check GPU for load to see whether we should increase its thermal budget.
519 * We need to call into the i915 driver in this case.
520 *
521 * RETURNS:
522 * True if the GPU could use more power, false otherwise.
523 */
ips_gpu_busy(struct ips_driver * ips)524 static bool ips_gpu_busy(struct ips_driver *ips)
525 {
526 if (!ips_gpu_turbo_enabled(ips))
527 return false;
528
529 return ips->gpu_busy();
530 }
531
532 /**
533 * ips_gpu_raise - raise GPU power clamp
534 * @ips: IPS driver struct
535 *
536 * Raise the GPU frequency/power if possible. We need to call into the
537 * i915 driver in this case.
538 */
ips_gpu_raise(struct ips_driver * ips)539 static void ips_gpu_raise(struct ips_driver *ips)
540 {
541 if (!ips_gpu_turbo_enabled(ips))
542 return;
543
544 if (!ips->gpu_raise())
545 ips->gpu_turbo_enabled = false;
546
547 return;
548 }
549
550 /**
551 * ips_gpu_lower - lower GPU power clamp
552 * @ips: IPS driver struct
553 *
554 * Lower GPU frequency/power if possible. Need to call i915.
555 */
ips_gpu_lower(struct ips_driver * ips)556 static void ips_gpu_lower(struct ips_driver *ips)
557 {
558 if (!ips_gpu_turbo_enabled(ips))
559 return;
560
561 if (!ips->gpu_lower())
562 ips->gpu_turbo_enabled = false;
563
564 return;
565 }
566
567 /**
568 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
569 * @ips: IPS driver struct
570 *
571 * Call into the graphics driver indicating that it can safely use
572 * turbo mode.
573 */
ips_enable_gpu_turbo(struct ips_driver * ips)574 static void ips_enable_gpu_turbo(struct ips_driver *ips)
575 {
576 if (ips->__gpu_turbo_on)
577 return;
578 ips->__gpu_turbo_on = true;
579 }
580
581 /**
582 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
583 * @ips: IPS driver struct
584 *
585 * Request that the graphics driver disable turbo mode.
586 */
ips_disable_gpu_turbo(struct ips_driver * ips)587 static void ips_disable_gpu_turbo(struct ips_driver *ips)
588 {
589 /* Avoid calling i915 if turbo is already disabled */
590 if (!ips->__gpu_turbo_on)
591 return;
592
593 if (!ips->gpu_turbo_disable())
594 dev_err(ips->dev, "failed to disable graphics turbo\n");
595 else
596 ips->__gpu_turbo_on = false;
597 }
598
599 /**
600 * mcp_exceeded - check whether we're outside our thermal & power limits
601 * @ips: IPS driver struct
602 *
603 * Check whether the MCP is over its thermal or power budget.
604 */
mcp_exceeded(struct ips_driver * ips)605 static bool mcp_exceeded(struct ips_driver *ips)
606 {
607 unsigned long flags;
608 bool ret = false;
609 u32 temp_limit;
610 u32 avg_power;
611
612 spin_lock_irqsave(&ips->turbo_status_lock, flags);
613
614 temp_limit = ips->mcp_temp_limit * 100;
615 if (ips->mcp_avg_temp > temp_limit)
616 ret = true;
617
618 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
619 if (avg_power > ips->mcp_power_limit)
620 ret = true;
621
622 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
623
624 return ret;
625 }
626
627 /**
628 * cpu_exceeded - check whether a CPU core is outside its limits
629 * @ips: IPS driver struct
630 * @cpu: CPU number to check
631 *
632 * Check a given CPU's average temp or power is over its limit.
633 */
cpu_exceeded(struct ips_driver * ips,int cpu)634 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
635 {
636 unsigned long flags;
637 int avg;
638 bool ret = false;
639
640 spin_lock_irqsave(&ips->turbo_status_lock, flags);
641 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
642 if (avg > (ips->limits->core_temp_limit * 100))
643 ret = true;
644 if (ips->cpu_avg_power > ips->core_power_limit * 100)
645 ret = true;
646 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
647
648 if (ret)
649 dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
650
651 return ret;
652 }
653
654 /**
655 * mch_exceeded - check whether the GPU is over budget
656 * @ips: IPS driver struct
657 *
658 * Check the MCH temp & power against their maximums.
659 */
mch_exceeded(struct ips_driver * ips)660 static bool mch_exceeded(struct ips_driver *ips)
661 {
662 unsigned long flags;
663 bool ret = false;
664
665 spin_lock_irqsave(&ips->turbo_status_lock, flags);
666 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
667 ret = true;
668 if (ips->mch_avg_power > ips->mch_power_limit)
669 ret = true;
670 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
671
672 return ret;
673 }
674
675 /**
676 * verify_limits - verify BIOS provided limits
677 * @ips: IPS structure
678 *
679 * BIOS can optionally provide non-default limits for power and temp. Check
680 * them here and use the defaults if the BIOS values are not provided or
681 * are otherwise unusable.
682 */
verify_limits(struct ips_driver * ips)683 static void verify_limits(struct ips_driver *ips)
684 {
685 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
686 ips->mcp_power_limit > 35000)
687 ips->mcp_power_limit = ips->limits->mcp_power_limit;
688
689 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
690 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
691 ips->mcp_temp_limit > 150)
692 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
693 ips->limits->mch_temp_limit);
694 }
695
696 /**
697 * update_turbo_limits - get various limits & settings from regs
698 * @ips: IPS driver struct
699 *
700 * Update the IPS power & temp limits, along with turbo enable flags,
701 * based on latest register contents.
702 *
703 * Used at init time and for runtime BIOS support, which requires polling
704 * the regs for updates (as a result of AC->DC transition for example).
705 *
706 * LOCKING:
707 * Caller must hold turbo_status_lock (outside of init)
708 */
update_turbo_limits(struct ips_driver * ips)709 static void update_turbo_limits(struct ips_driver *ips)
710 {
711 u32 hts = thm_readl(THM_HTS);
712
713 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
714 /*
715 * Disable turbo for now, until we can figure out why the power figures
716 * are wrong
717 */
718 ips->cpu_turbo_enabled = false;
719
720 if (ips->gpu_busy)
721 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
722
723 ips->core_power_limit = thm_readw(THM_MPCPC);
724 ips->mch_power_limit = thm_readw(THM_MMGPC);
725 ips->mcp_temp_limit = thm_readw(THM_PTL);
726 ips->mcp_power_limit = thm_readw(THM_MPPC);
727
728 verify_limits(ips);
729 /* Ignore BIOS CPU vs GPU pref */
730 }
731
732 /**
733 * ips_adjust - adjust power clamp based on thermal state
734 * @data: ips driver structure
735 *
736 * Wake up every 5s or so and check whether we should adjust the power clamp.
737 * Check CPU and GPU load to determine which needs adjustment. There are
738 * several things to consider here:
739 * - do we need to adjust up or down?
740 * - is CPU busy?
741 * - is GPU busy?
742 * - is CPU in turbo?
743 * - is GPU in turbo?
744 * - is CPU or GPU preferred? (CPU is default)
745 *
746 * So, given the above, we do the following:
747 * - up (TDP available)
748 * - CPU not busy, GPU not busy - nothing
749 * - CPU busy, GPU not busy - adjust CPU up
750 * - CPU not busy, GPU busy - adjust GPU up
751 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
752 * non-preferred unit if necessary
753 * - down (at TDP limit)
754 * - adjust both CPU and GPU down if possible
755 *
756 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
757 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
758 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
759 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
760 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
761 *
762 */
ips_adjust(void * data)763 static int ips_adjust(void *data)
764 {
765 struct ips_driver *ips = data;
766 unsigned long flags;
767
768 dev_dbg(ips->dev, "starting ips-adjust thread\n");
769
770 /*
771 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
772 * often isn't recommended due to ME interaction.
773 */
774 do {
775 bool cpu_busy = ips_cpu_busy(ips);
776 bool gpu_busy = ips_gpu_busy(ips);
777
778 spin_lock_irqsave(&ips->turbo_status_lock, flags);
779 if (ips->poll_turbo_status)
780 update_turbo_limits(ips);
781 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
782
783 /* Update turbo status if necessary */
784 if (ips->cpu_turbo_enabled)
785 ips_enable_cpu_turbo(ips);
786 else
787 ips_disable_cpu_turbo(ips);
788
789 if (ips->gpu_turbo_enabled)
790 ips_enable_gpu_turbo(ips);
791 else
792 ips_disable_gpu_turbo(ips);
793
794 /* We're outside our comfort zone, crank them down */
795 if (mcp_exceeded(ips)) {
796 ips_cpu_lower(ips);
797 ips_gpu_lower(ips);
798 goto sleep;
799 }
800
801 if (!cpu_exceeded(ips, 0) && cpu_busy)
802 ips_cpu_raise(ips);
803 else
804 ips_cpu_lower(ips);
805
806 if (!mch_exceeded(ips) && gpu_busy)
807 ips_gpu_raise(ips);
808 else
809 ips_gpu_lower(ips);
810
811 sleep:
812 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
813 } while (!kthread_should_stop());
814
815 dev_dbg(ips->dev, "ips-adjust thread stopped\n");
816
817 return 0;
818 }
819
820 /*
821 * Helpers for reading out temp/power values and calculating their
822 * averages for the decision making and monitoring functions.
823 */
824
calc_avg_temp(struct ips_driver * ips,u16 * array)825 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
826 {
827 u64 total = 0;
828 int i;
829 u16 avg;
830
831 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
832 total += (u64)(array[i] * 100);
833
834 do_div(total, IPS_SAMPLE_COUNT);
835
836 avg = (u16)total;
837
838 return avg;
839 }
840
read_mgtv(struct ips_driver * ips)841 static u16 read_mgtv(struct ips_driver *ips)
842 {
843 u16 ret;
844 u64 slope, offset;
845 u64 val;
846
847 val = thm_readq(THM_MGTV);
848 val = (val & TV_MASK) >> TV_SHIFT;
849
850 slope = offset = thm_readw(THM_MGTA);
851 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
852 offset = offset & MGTA_OFFSET_MASK;
853
854 ret = ((val * slope + 0x40) >> 7) + offset;
855
856 return 0; /* MCH temp reporting buggy */
857 }
858
read_ptv(struct ips_driver * ips)859 static u16 read_ptv(struct ips_driver *ips)
860 {
861 u16 val;
862
863 val = thm_readw(THM_PTV) & PTV_MASK;
864
865 return val;
866 }
867
read_ctv(struct ips_driver * ips,int cpu)868 static u16 read_ctv(struct ips_driver *ips, int cpu)
869 {
870 int reg = cpu ? THM_CTV2 : THM_CTV1;
871 u16 val;
872
873 val = thm_readw(reg);
874 if (!(val & CTV_TEMP_ERROR))
875 val = (val) >> 6; /* discard fractional component */
876 else
877 val = 0;
878
879 return val;
880 }
881
get_cpu_power(struct ips_driver * ips,u32 * last,int period)882 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
883 {
884 u32 val;
885 u32 ret;
886
887 /*
888 * CEC is in joules/65535. Take difference over time to
889 * get watts.
890 */
891 val = thm_readl(THM_CEC);
892
893 /* period is in ms and we want mW */
894 ret = (((val - *last) * 1000) / period);
895 ret = (ret * 1000) / 65535;
896 *last = val;
897
898 return 0;
899 }
900
901 static const u16 temp_decay_factor = 2;
update_average_temp(u16 avg,u16 val)902 static u16 update_average_temp(u16 avg, u16 val)
903 {
904 u16 ret;
905
906 /* Multiply by 100 for extra precision */
907 ret = (val * 100 / temp_decay_factor) +
908 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
909 return ret;
910 }
911
912 static const u16 power_decay_factor = 2;
update_average_power(u32 avg,u32 val)913 static u16 update_average_power(u32 avg, u32 val)
914 {
915 u32 ret;
916
917 ret = (val / power_decay_factor) +
918 (((power_decay_factor - 1) * avg) / power_decay_factor);
919
920 return ret;
921 }
922
calc_avg_power(struct ips_driver * ips,u32 * array)923 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
924 {
925 u64 total = 0;
926 u32 avg;
927 int i;
928
929 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
930 total += array[i];
931
932 do_div(total, IPS_SAMPLE_COUNT);
933 avg = (u32)total;
934
935 return avg;
936 }
937
monitor_timeout(struct timer_list * t)938 static void monitor_timeout(struct timer_list *t)
939 {
940 struct ips_driver *ips = from_timer(ips, t, timer);
941 wake_up_process(ips->monitor);
942 }
943
944 /**
945 * ips_monitor - temp/power monitoring thread
946 * @data: ips driver structure
947 *
948 * This is the main function for the IPS driver. It monitors power and
949 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
950 *
951 * We keep a 5s moving average of power consumption and tempurature. Using
952 * that data, along with CPU vs GPU preference, we adjust the power clamps
953 * up or down.
954 */
ips_monitor(void * data)955 static int ips_monitor(void *data)
956 {
957 struct ips_driver *ips = data;
958 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
959 int i;
960 u32 *cpu_samples, *mchp_samples, old_cpu_power;
961 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
962 u8 cur_seqno, last_seqno;
963
964 mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
965 ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
966 ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
967 mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
968 cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
969 mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
970 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
971 !cpu_samples || !mchp_samples) {
972 dev_err(ips->dev,
973 "failed to allocate sample array, ips disabled\n");
974 kfree(mcp_samples);
975 kfree(ctv1_samples);
976 kfree(ctv2_samples);
977 kfree(mch_samples);
978 kfree(cpu_samples);
979 kfree(mchp_samples);
980 return -ENOMEM;
981 }
982
983 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
984 ITV_ME_SEQNO_SHIFT;
985 seqno_timestamp = get_jiffies_64();
986
987 old_cpu_power = thm_readl(THM_CEC);
988 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
989
990 /* Collect an initial average */
991 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
992 u32 mchp, cpu_power;
993 u16 val;
994
995 mcp_samples[i] = read_ptv(ips);
996
997 val = read_ctv(ips, 0);
998 ctv1_samples[i] = val;
999
1000 val = read_ctv(ips, 1);
1001 ctv2_samples[i] = val;
1002
1003 val = read_mgtv(ips);
1004 mch_samples[i] = val;
1005
1006 cpu_power = get_cpu_power(ips, &old_cpu_power,
1007 IPS_SAMPLE_PERIOD);
1008 cpu_samples[i] = cpu_power;
1009
1010 if (ips->read_mch_val) {
1011 mchp = ips->read_mch_val();
1012 mchp_samples[i] = mchp;
1013 }
1014
1015 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1016 if (kthread_should_stop())
1017 break;
1018 }
1019
1020 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1021 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1022 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1023 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1024 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1025 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1026 kfree(mcp_samples);
1027 kfree(ctv1_samples);
1028 kfree(ctv2_samples);
1029 kfree(mch_samples);
1030 kfree(cpu_samples);
1031 kfree(mchp_samples);
1032
1033 /* Start the adjustment thread now that we have data */
1034 wake_up_process(ips->adjust);
1035
1036 /*
1037 * Ok, now we have an initial avg. From here on out, we track the
1038 * running avg using a decaying average calculation. This allows
1039 * us to reduce the sample frequency if the CPU and GPU are idle.
1040 */
1041 old_cpu_power = thm_readl(THM_CEC);
1042 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1043 last_sample_period = IPS_SAMPLE_PERIOD;
1044
1045 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1046 do {
1047 u32 cpu_val, mch_val;
1048 u16 val;
1049
1050 /* MCP itself */
1051 val = read_ptv(ips);
1052 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1053
1054 /* Processor 0 */
1055 val = read_ctv(ips, 0);
1056 ips->ctv1_avg_temp =
1057 update_average_temp(ips->ctv1_avg_temp, val);
1058 /* Power */
1059 cpu_val = get_cpu_power(ips, &old_cpu_power,
1060 last_sample_period);
1061 ips->cpu_avg_power =
1062 update_average_power(ips->cpu_avg_power, cpu_val);
1063
1064 if (ips->second_cpu) {
1065 /* Processor 1 */
1066 val = read_ctv(ips, 1);
1067 ips->ctv2_avg_temp =
1068 update_average_temp(ips->ctv2_avg_temp, val);
1069 }
1070
1071 /* MCH */
1072 val = read_mgtv(ips);
1073 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1074 /* Power */
1075 if (ips->read_mch_val) {
1076 mch_val = ips->read_mch_val();
1077 ips->mch_avg_power =
1078 update_average_power(ips->mch_avg_power,
1079 mch_val);
1080 }
1081
1082 /*
1083 * Make sure ME is updating thermal regs.
1084 * Note:
1085 * If it's been more than a second since the last update,
1086 * the ME is probably hung.
1087 */
1088 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1089 ITV_ME_SEQNO_SHIFT;
1090 if (cur_seqno == last_seqno &&
1091 time_after(jiffies, seqno_timestamp + HZ)) {
1092 dev_warn(ips->dev,
1093 "ME failed to update for more than 1s, likely hung\n");
1094 } else {
1095 seqno_timestamp = get_jiffies_64();
1096 last_seqno = cur_seqno;
1097 }
1098
1099 last_msecs = jiffies_to_msecs(jiffies);
1100 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1101
1102 __set_current_state(TASK_INTERRUPTIBLE);
1103 mod_timer(&ips->timer, expire);
1104 schedule();
1105
1106 /* Calculate actual sample period for power averaging */
1107 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1108 if (!last_sample_period)
1109 last_sample_period = 1;
1110 } while (!kthread_should_stop());
1111
1112 del_timer_sync(&ips->timer);
1113
1114 dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1115
1116 return 0;
1117 }
1118
1119 #if 0
1120 #define THM_DUMPW(reg) \
1121 { \
1122 u16 val = thm_readw(reg); \
1123 dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \
1124 }
1125 #define THM_DUMPL(reg) \
1126 { \
1127 u32 val = thm_readl(reg); \
1128 dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \
1129 }
1130 #define THM_DUMPQ(reg) \
1131 { \
1132 u64 val = thm_readq(reg); \
1133 dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \
1134 }
1135
1136 static void dump_thermal_info(struct ips_driver *ips)
1137 {
1138 u16 ptl;
1139
1140 ptl = thm_readw(THM_PTL);
1141 dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl);
1142
1143 THM_DUMPW(THM_CTA);
1144 THM_DUMPW(THM_TRC);
1145 THM_DUMPW(THM_CTV1);
1146 THM_DUMPL(THM_STS);
1147 THM_DUMPW(THM_PTV);
1148 THM_DUMPQ(THM_MGTV);
1149 }
1150 #endif
1151
1152 /**
1153 * ips_irq_handler - handle temperature triggers and other IPS events
1154 * @irq: irq number
1155 * @arg: unused
1156 *
1157 * Handle temperature limit trigger events, generally by lowering the clamps.
1158 * If we're at a critical limit, we clamp back to the lowest possible value
1159 * to prevent emergency shutdown.
1160 */
ips_irq_handler(int irq,void * arg)1161 static irqreturn_t ips_irq_handler(int irq, void *arg)
1162 {
1163 struct ips_driver *ips = arg;
1164 u8 tses = thm_readb(THM_TSES);
1165 u8 tes = thm_readb(THM_TES);
1166
1167 if (!tses && !tes)
1168 return IRQ_NONE;
1169
1170 dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1171 dev_info(ips->dev, "TES: 0x%02x\n", tes);
1172
1173 /* STS update from EC? */
1174 if (tes & 1) {
1175 u32 sts, tc1;
1176
1177 sts = thm_readl(THM_STS);
1178 tc1 = thm_readl(THM_TC1);
1179
1180 if (sts & STS_NVV) {
1181 spin_lock(&ips->turbo_status_lock);
1182 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1183 STS_PCPL_SHIFT;
1184 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1185 STS_GPL_SHIFT;
1186 /* ignore EC CPU vs GPU pref */
1187 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1188 /*
1189 * Disable turbo for now, until we can figure
1190 * out why the power figures are wrong
1191 */
1192 ips->cpu_turbo_enabled = false;
1193 if (ips->gpu_busy)
1194 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1195 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1196 STS_PTL_SHIFT;
1197 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1198 STS_PPL_SHIFT;
1199 verify_limits(ips);
1200 spin_unlock(&ips->turbo_status_lock);
1201
1202 thm_writeb(THM_SEC, SEC_ACK);
1203 }
1204 thm_writeb(THM_TES, tes);
1205 }
1206
1207 /* Thermal trip */
1208 if (tses) {
1209 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1210 tses);
1211 thm_writeb(THM_TSES, tses);
1212 }
1213
1214 return IRQ_HANDLED;
1215 }
1216
1217 #ifndef CONFIG_DEBUG_FS
ips_debugfs_init(struct ips_driver * ips)1218 static void ips_debugfs_init(struct ips_driver *ips) { return; }
ips_debugfs_cleanup(struct ips_driver * ips)1219 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1220 #else
1221
1222 /* Expose current state and limits in debugfs if possible */
1223
1224 struct ips_debugfs_node {
1225 struct ips_driver *ips;
1226 char *name;
1227 int (*show)(struct seq_file *m, void *data);
1228 };
1229
show_cpu_temp(struct seq_file * m,void * data)1230 static int show_cpu_temp(struct seq_file *m, void *data)
1231 {
1232 struct ips_driver *ips = m->private;
1233
1234 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1235 ips->ctv1_avg_temp % 100);
1236
1237 return 0;
1238 }
1239
show_cpu_power(struct seq_file * m,void * data)1240 static int show_cpu_power(struct seq_file *m, void *data)
1241 {
1242 struct ips_driver *ips = m->private;
1243
1244 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1245
1246 return 0;
1247 }
1248
show_cpu_clamp(struct seq_file * m,void * data)1249 static int show_cpu_clamp(struct seq_file *m, void *data)
1250 {
1251 u64 turbo_override;
1252 int tdp, tdc;
1253
1254 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1255
1256 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1257 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1258
1259 /* Convert to .1W/A units */
1260 tdp = tdp * 10 / 8;
1261 tdc = tdc * 10 / 8;
1262
1263 /* Watts Amperes */
1264 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1265 tdc / 10, tdc % 10);
1266
1267 return 0;
1268 }
1269
show_mch_temp(struct seq_file * m,void * data)1270 static int show_mch_temp(struct seq_file *m, void *data)
1271 {
1272 struct ips_driver *ips = m->private;
1273
1274 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1275 ips->mch_avg_temp % 100);
1276
1277 return 0;
1278 }
1279
show_mch_power(struct seq_file * m,void * data)1280 static int show_mch_power(struct seq_file *m, void *data)
1281 {
1282 struct ips_driver *ips = m->private;
1283
1284 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1285
1286 return 0;
1287 }
1288
1289 static struct ips_debugfs_node ips_debug_files[] = {
1290 { NULL, "cpu_temp", show_cpu_temp },
1291 { NULL, "cpu_power", show_cpu_power },
1292 { NULL, "cpu_clamp", show_cpu_clamp },
1293 { NULL, "mch_temp", show_mch_temp },
1294 { NULL, "mch_power", show_mch_power },
1295 };
1296
ips_debugfs_open(struct inode * inode,struct file * file)1297 static int ips_debugfs_open(struct inode *inode, struct file *file)
1298 {
1299 struct ips_debugfs_node *node = inode->i_private;
1300
1301 return single_open(file, node->show, node->ips);
1302 }
1303
1304 static const struct file_operations ips_debugfs_ops = {
1305 .owner = THIS_MODULE,
1306 .open = ips_debugfs_open,
1307 .read = seq_read,
1308 .llseek = seq_lseek,
1309 .release = single_release,
1310 };
1311
ips_debugfs_cleanup(struct ips_driver * ips)1312 static void ips_debugfs_cleanup(struct ips_driver *ips)
1313 {
1314 if (ips->debug_root)
1315 debugfs_remove_recursive(ips->debug_root);
1316 return;
1317 }
1318
ips_debugfs_init(struct ips_driver * ips)1319 static void ips_debugfs_init(struct ips_driver *ips)
1320 {
1321 int i;
1322
1323 ips->debug_root = debugfs_create_dir("ips", NULL);
1324 if (!ips->debug_root) {
1325 dev_err(ips->dev, "failed to create debugfs entries: %ld\n",
1326 PTR_ERR(ips->debug_root));
1327 return;
1328 }
1329
1330 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1331 struct dentry *ent;
1332 struct ips_debugfs_node *node = &ips_debug_files[i];
1333
1334 node->ips = ips;
1335 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1336 ips->debug_root, node,
1337 &ips_debugfs_ops);
1338 if (!ent) {
1339 dev_err(ips->dev, "failed to create debug file: %ld\n",
1340 PTR_ERR(ent));
1341 goto err_cleanup;
1342 }
1343 }
1344
1345 return;
1346
1347 err_cleanup:
1348 ips_debugfs_cleanup(ips);
1349 return;
1350 }
1351 #endif /* CONFIG_DEBUG_FS */
1352
1353 /**
1354 * ips_detect_cpu - detect whether CPU supports IPS
1355 *
1356 * Walk our list and see if we're on a supported CPU. If we find one,
1357 * return the limits for it.
1358 */
ips_detect_cpu(struct ips_driver * ips)1359 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1360 {
1361 u64 turbo_power, misc_en;
1362 struct ips_mcp_limits *limits = NULL;
1363 u16 tdp;
1364
1365 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1366 dev_info(ips->dev, "Non-IPS CPU detected.\n");
1367 return NULL;
1368 }
1369
1370 rdmsrl(IA32_MISC_ENABLE, misc_en);
1371 /*
1372 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1373 * turbo manually or we'll get an illegal MSR access, even though
1374 * turbo will still be available.
1375 */
1376 if (misc_en & IA32_MISC_TURBO_EN)
1377 ips->turbo_toggle_allowed = true;
1378 else
1379 ips->turbo_toggle_allowed = false;
1380
1381 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1382 limits = &ips_sv_limits;
1383 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1384 limits = &ips_lv_limits;
1385 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1386 limits = &ips_ulv_limits;
1387 else {
1388 dev_info(ips->dev, "No CPUID match found.\n");
1389 return NULL;
1390 }
1391
1392 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1393 tdp = turbo_power & TURBO_TDP_MASK;
1394
1395 /* Sanity check TDP against CPU */
1396 if (limits->core_power_limit != (tdp / 8) * 1000) {
1397 dev_info(ips->dev,
1398 "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1399 tdp / 8, limits->core_power_limit / 1000);
1400 limits->core_power_limit = (tdp / 8) * 1000;
1401 }
1402
1403 return limits;
1404 }
1405
1406 /**
1407 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1408 * @ips: IPS driver
1409 *
1410 * The i915 driver exports several interfaces to allow the IPS driver to
1411 * monitor and control graphics turbo mode. If we can find them, we can
1412 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1413 * thermal and power limits in the MCP.
1414 */
ips_get_i915_syms(struct ips_driver * ips)1415 static bool ips_get_i915_syms(struct ips_driver *ips)
1416 {
1417 ips->read_mch_val = symbol_get(i915_read_mch_val);
1418 if (!ips->read_mch_val)
1419 goto out_err;
1420 ips->gpu_raise = symbol_get(i915_gpu_raise);
1421 if (!ips->gpu_raise)
1422 goto out_put_mch;
1423 ips->gpu_lower = symbol_get(i915_gpu_lower);
1424 if (!ips->gpu_lower)
1425 goto out_put_raise;
1426 ips->gpu_busy = symbol_get(i915_gpu_busy);
1427 if (!ips->gpu_busy)
1428 goto out_put_lower;
1429 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1430 if (!ips->gpu_turbo_disable)
1431 goto out_put_busy;
1432
1433 return true;
1434
1435 out_put_busy:
1436 symbol_put(i915_gpu_busy);
1437 out_put_lower:
1438 symbol_put(i915_gpu_lower);
1439 out_put_raise:
1440 symbol_put(i915_gpu_raise);
1441 out_put_mch:
1442 symbol_put(i915_read_mch_val);
1443 out_err:
1444 return false;
1445 }
1446
1447 static bool
ips_gpu_turbo_enabled(struct ips_driver * ips)1448 ips_gpu_turbo_enabled(struct ips_driver *ips)
1449 {
1450 if (!ips->gpu_busy && late_i915_load) {
1451 if (ips_get_i915_syms(ips)) {
1452 dev_info(ips->dev,
1453 "i915 driver attached, reenabling gpu turbo\n");
1454 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1455 }
1456 }
1457
1458 return ips->gpu_turbo_enabled;
1459 }
1460
1461 void
ips_link_to_i915_driver(void)1462 ips_link_to_i915_driver(void)
1463 {
1464 /* We can't cleanly get at the various ips_driver structs from
1465 * this caller (the i915 driver), so just set a flag saying
1466 * that it's time to try getting the symbols again.
1467 */
1468 late_i915_load = true;
1469 }
1470 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1471
1472 static const struct pci_device_id ips_id_table[] = {
1473 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1474 { 0, }
1475 };
1476
1477 MODULE_DEVICE_TABLE(pci, ips_id_table);
1478
ips_blacklist_callback(const struct dmi_system_id * id)1479 static int ips_blacklist_callback(const struct dmi_system_id *id)
1480 {
1481 pr_info("Blacklisted intel_ips for %s\n", id->ident);
1482 return 1;
1483 }
1484
1485 static const struct dmi_system_id ips_blacklist[] = {
1486 {
1487 .callback = ips_blacklist_callback,
1488 .ident = "HP ProBook",
1489 .matches = {
1490 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1491 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1492 },
1493 },
1494 { } /* terminating entry */
1495 };
1496
ips_probe(struct pci_dev * dev,const struct pci_device_id * id)1497 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1498 {
1499 u64 platform_info;
1500 struct ips_driver *ips;
1501 u32 hts;
1502 int ret = 0;
1503 u16 htshi, trc, trc_required_mask;
1504 u8 tse;
1505
1506 if (dmi_check_system(ips_blacklist))
1507 return -ENODEV;
1508
1509 ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
1510 if (!ips)
1511 return -ENOMEM;
1512
1513 spin_lock_init(&ips->turbo_status_lock);
1514 ips->dev = &dev->dev;
1515
1516 ips->limits = ips_detect_cpu(ips);
1517 if (!ips->limits) {
1518 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1519 return -ENXIO;
1520 }
1521
1522 ret = pcim_enable_device(dev);
1523 if (ret) {
1524 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1525 return ret;
1526 }
1527
1528 ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
1529 if (ret) {
1530 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1531 return ret;
1532 }
1533 ips->regmap = pcim_iomap_table(dev)[0];
1534
1535 pci_set_drvdata(dev, ips);
1536
1537 tse = thm_readb(THM_TSE);
1538 if (tse != TSE_EN) {
1539 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1540 return -ENXIO;
1541 }
1542
1543 trc = thm_readw(THM_TRC);
1544 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1545 if ((trc & trc_required_mask) != trc_required_mask) {
1546 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1547 return -ENXIO;
1548 }
1549
1550 if (trc & TRC_CORE2_EN)
1551 ips->second_cpu = true;
1552
1553 update_turbo_limits(ips);
1554 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1555 ips->mcp_power_limit / 10);
1556 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1557 ips->core_power_limit / 10);
1558 /* BIOS may update limits at runtime */
1559 if (thm_readl(THM_PSC) & PSP_PBRT)
1560 ips->poll_turbo_status = true;
1561
1562 if (!ips_get_i915_syms(ips)) {
1563 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1564 ips->gpu_turbo_enabled = false;
1565 } else {
1566 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1567 ips->gpu_turbo_enabled = true;
1568 }
1569
1570 /*
1571 * Check PLATFORM_INFO MSR to make sure this chip is
1572 * turbo capable.
1573 */
1574 rdmsrl(PLATFORM_INFO, platform_info);
1575 if (!(platform_info & PLATFORM_TDP)) {
1576 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1577 return -ENODEV;
1578 }
1579
1580 /*
1581 * IRQ handler for ME interaction
1582 * Note: don't use MSI here as the PCH has bugs.
1583 */
1584 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY);
1585 if (ret < 0)
1586 return ret;
1587
1588 ips->irq = pci_irq_vector(dev, 0);
1589
1590 ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
1591 if (ret) {
1592 dev_err(&dev->dev, "request irq failed, aborting\n");
1593 return ret;
1594 }
1595
1596 /* Enable aux, hot & critical interrupts */
1597 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1598 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1599 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1600
1601 /* Collect adjustment values */
1602 ips->cta_val = thm_readw(THM_CTA);
1603 ips->pta_val = thm_readw(THM_PTA);
1604 ips->mgta_val = thm_readw(THM_MGTA);
1605
1606 /* Save turbo limits & ratios */
1607 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1608
1609 ips_disable_cpu_turbo(ips);
1610 ips->cpu_turbo_enabled = false;
1611
1612 /* Create thermal adjust thread */
1613 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1614 if (IS_ERR(ips->adjust)) {
1615 dev_err(&dev->dev,
1616 "failed to create thermal adjust thread, aborting\n");
1617 ret = -ENOMEM;
1618 goto error_free_irq;
1619
1620 }
1621
1622 /*
1623 * Set up the work queue and monitor thread. The monitor thread
1624 * will wake up ips_adjust thread.
1625 */
1626 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1627 if (IS_ERR(ips->monitor)) {
1628 dev_err(&dev->dev,
1629 "failed to create thermal monitor thread, aborting\n");
1630 ret = -ENOMEM;
1631 goto error_thread_cleanup;
1632 }
1633
1634 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1635 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1636 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1637
1638 thm_writew(THM_HTSHI, htshi);
1639 thm_writel(THM_HTS, hts);
1640
1641 ips_debugfs_init(ips);
1642
1643 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1644 ips->mcp_temp_limit);
1645 return ret;
1646
1647 error_thread_cleanup:
1648 kthread_stop(ips->adjust);
1649 error_free_irq:
1650 free_irq(ips->irq, ips);
1651 pci_free_irq_vectors(dev);
1652 return ret;
1653 }
1654
ips_remove(struct pci_dev * dev)1655 static void ips_remove(struct pci_dev *dev)
1656 {
1657 struct ips_driver *ips = pci_get_drvdata(dev);
1658 u64 turbo_override;
1659
1660 if (!ips)
1661 return;
1662
1663 ips_debugfs_cleanup(ips);
1664
1665 /* Release i915 driver */
1666 if (ips->read_mch_val)
1667 symbol_put(i915_read_mch_val);
1668 if (ips->gpu_raise)
1669 symbol_put(i915_gpu_raise);
1670 if (ips->gpu_lower)
1671 symbol_put(i915_gpu_lower);
1672 if (ips->gpu_busy)
1673 symbol_put(i915_gpu_busy);
1674 if (ips->gpu_turbo_disable)
1675 symbol_put(i915_gpu_turbo_disable);
1676
1677 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1678 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1679 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1680 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1681
1682 free_irq(ips->irq, ips);
1683 pci_free_irq_vectors(dev);
1684 if (ips->adjust)
1685 kthread_stop(ips->adjust);
1686 if (ips->monitor)
1687 kthread_stop(ips->monitor);
1688 dev_dbg(&dev->dev, "IPS driver removed\n");
1689 }
1690
1691 static struct pci_driver ips_pci_driver = {
1692 .name = "intel ips",
1693 .id_table = ips_id_table,
1694 .probe = ips_probe,
1695 .remove = ips_remove,
1696 };
1697
1698 module_pci_driver(ips_pci_driver);
1699
1700 MODULE_LICENSE("GPL");
1701 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1702 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1703