1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 */
15
16 /*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/list.h>
32 #include <linux/notifier.h>
33 #include <linux/mutex.h>
34 #include <linux/kthread.h>
35 #include <asm/irq.h>
36 #include <linux/interrupt.h>
37 #include <linux/rcupdate.h>
38 #include <linux/ipmi.h>
39 #include <linux/ipmi_smi.h>
40 #include "ipmi_si.h"
41 #include <linux/string.h>
42 #include <linux/ctype.h>
43
44 #define PFX "ipmi_si: "
45
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC 10000
51 #define SI_USEC_PER_JIFFY (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
54 short timeout */
55
56 enum si_intf_state {
57 SI_NORMAL,
58 SI_GETTING_FLAGS,
59 SI_GETTING_EVENTS,
60 SI_CLEARING_FLAGS,
61 SI_GETTING_MESSAGES,
62 SI_CHECKING_ENABLES,
63 SI_SETTING_ENABLES
64 /* FIXME - add watchdog stuff. */
65 };
66
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG 2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
71
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73
74 static int initialized;
75
76 /*
77 * Indexes into stats[] in smi_info below.
78 */
79 enum si_stat_indexes {
80 /*
81 * Number of times the driver requested a timer while an operation
82 * was in progress.
83 */
84 SI_STAT_short_timeouts = 0,
85
86 /*
87 * Number of times the driver requested a timer while nothing was in
88 * progress.
89 */
90 SI_STAT_long_timeouts,
91
92 /* Number of times the interface was idle while being polled. */
93 SI_STAT_idles,
94
95 /* Number of interrupts the driver handled. */
96 SI_STAT_interrupts,
97
98 /* Number of time the driver got an ATTN from the hardware. */
99 SI_STAT_attentions,
100
101 /* Number of times the driver requested flags from the hardware. */
102 SI_STAT_flag_fetches,
103
104 /* Number of times the hardware didn't follow the state machine. */
105 SI_STAT_hosed_count,
106
107 /* Number of completed messages. */
108 SI_STAT_complete_transactions,
109
110 /* Number of IPMI events received from the hardware. */
111 SI_STAT_events,
112
113 /* Number of watchdog pretimeouts. */
114 SI_STAT_watchdog_pretimeouts,
115
116 /* Number of asynchronous messages received. */
117 SI_STAT_incoming_messages,
118
119
120 /* This *must* remain last, add new values above this. */
121 SI_NUM_STATS
122 };
123
124 struct smi_info {
125 int si_num;
126 struct ipmi_smi *intf;
127 struct si_sm_data *si_sm;
128 const struct si_sm_handlers *handlers;
129 spinlock_t si_lock;
130 struct ipmi_smi_msg *waiting_msg;
131 struct ipmi_smi_msg *curr_msg;
132 enum si_intf_state si_state;
133
134 /*
135 * Used to handle the various types of I/O that can occur with
136 * IPMI
137 */
138 struct si_sm_io io;
139
140 /*
141 * Per-OEM handler, called from handle_flags(). Returns 1
142 * when handle_flags() needs to be re-run or 0 indicating it
143 * set si_state itself.
144 */
145 int (*oem_data_avail_handler)(struct smi_info *smi_info);
146
147 /*
148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 * is set to hold the flags until we are done handling everything
150 * from the flags.
151 */
152 #define RECEIVE_MSG_AVAIL 0x01
153 #define EVENT_MSG_BUFFER_FULL 0x02
154 #define WDT_PRE_TIMEOUT_INT 0x08
155 #define OEM0_DATA_AVAIL 0x20
156 #define OEM1_DATA_AVAIL 0x40
157 #define OEM2_DATA_AVAIL 0x80
158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
159 OEM1_DATA_AVAIL | \
160 OEM2_DATA_AVAIL)
161 unsigned char msg_flags;
162
163 /* Does the BMC have an event buffer? */
164 bool has_event_buffer;
165
166 /*
167 * If set to true, this will request events the next time the
168 * state machine is idle.
169 */
170 atomic_t req_events;
171
172 /*
173 * If true, run the state machine to completion on every send
174 * call. Generally used after a panic to make sure stuff goes
175 * out.
176 */
177 bool run_to_completion;
178
179 /* The timer for this si. */
180 struct timer_list si_timer;
181
182 /* This flag is set, if the timer can be set */
183 bool timer_can_start;
184
185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
186 bool timer_running;
187
188 /* The time (in jiffies) the last timeout occurred at. */
189 unsigned long last_timeout_jiffies;
190
191 /* Are we waiting for the events, pretimeouts, received msgs? */
192 atomic_t need_watch;
193
194 /*
195 * The driver will disable interrupts when it gets into a
196 * situation where it cannot handle messages due to lack of
197 * memory. Once that situation clears up, it will re-enable
198 * interrupts.
199 */
200 bool interrupt_disabled;
201
202 /*
203 * Does the BMC support events?
204 */
205 bool supports_event_msg_buff;
206
207 /*
208 * Can we disable interrupts the global enables receive irq
209 * bit? There are currently two forms of brokenness, some
210 * systems cannot disable the bit (which is technically within
211 * the spec but a bad idea) and some systems have the bit
212 * forced to zero even though interrupts work (which is
213 * clearly outside the spec). The next bool tells which form
214 * of brokenness is present.
215 */
216 bool cannot_disable_irq;
217
218 /*
219 * Some systems are broken and cannot set the irq enable
220 * bit, even if they support interrupts.
221 */
222 bool irq_enable_broken;
223
224 /*
225 * Did we get an attention that we did not handle?
226 */
227 bool got_attn;
228
229 /* From the get device id response... */
230 struct ipmi_device_id device_id;
231
232 /* Default driver model device. */
233 struct platform_device *pdev;
234
235 /* Have we added the device group to the device? */
236 bool dev_group_added;
237
238 /* Have we added the platform device? */
239 bool pdev_registered;
240
241 /* Counters and things for the proc filesystem. */
242 atomic_t stats[SI_NUM_STATS];
243
244 struct task_struct *thread;
245
246 struct list_head link;
247 };
248
249 #define smi_inc_stat(smi, stat) \
250 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251 #define smi_get_stat(smi, stat) \
252 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253
254 #define IPMI_MAX_INTFS 4
255 static int force_kipmid[IPMI_MAX_INTFS];
256 static int num_force_kipmid;
257
258 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
259 static int num_max_busy_us;
260
261 static bool unload_when_empty = true;
262
263 static int try_smi_init(struct smi_info *smi);
264 static void cleanup_one_si(struct smi_info *smi_info);
265 static void cleanup_ipmi_si(void);
266
267 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)268 void debug_timestamp(char *msg)
269 {
270 struct timespec64 t;
271
272 getnstimeofday64(&t);
273 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
274 }
275 #else
276 #define debug_timestamp(x)
277 #endif
278
279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)280 static int register_xaction_notifier(struct notifier_block *nb)
281 {
282 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
283 }
284
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)285 static void deliver_recv_msg(struct smi_info *smi_info,
286 struct ipmi_smi_msg *msg)
287 {
288 /* Deliver the message to the upper layer. */
289 ipmi_smi_msg_received(smi_info->intf, msg);
290 }
291
return_hosed_msg(struct smi_info * smi_info,int cCode)292 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
293 {
294 struct ipmi_smi_msg *msg = smi_info->curr_msg;
295
296 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
297 cCode = IPMI_ERR_UNSPECIFIED;
298 /* else use it as is */
299
300 /* Make it a response */
301 msg->rsp[0] = msg->data[0] | 4;
302 msg->rsp[1] = msg->data[1];
303 msg->rsp[2] = cCode;
304 msg->rsp_size = 3;
305
306 smi_info->curr_msg = NULL;
307 deliver_recv_msg(smi_info, msg);
308 }
309
start_next_msg(struct smi_info * smi_info)310 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
311 {
312 int rv;
313
314 if (!smi_info->waiting_msg) {
315 smi_info->curr_msg = NULL;
316 rv = SI_SM_IDLE;
317 } else {
318 int err;
319
320 smi_info->curr_msg = smi_info->waiting_msg;
321 smi_info->waiting_msg = NULL;
322 debug_timestamp("Start2");
323 err = atomic_notifier_call_chain(&xaction_notifier_list,
324 0, smi_info);
325 if (err & NOTIFY_STOP_MASK) {
326 rv = SI_SM_CALL_WITHOUT_DELAY;
327 goto out;
328 }
329 err = smi_info->handlers->start_transaction(
330 smi_info->si_sm,
331 smi_info->curr_msg->data,
332 smi_info->curr_msg->data_size);
333 if (err)
334 return_hosed_msg(smi_info, err);
335
336 rv = SI_SM_CALL_WITHOUT_DELAY;
337 }
338 out:
339 return rv;
340 }
341
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)342 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
343 {
344 if (!smi_info->timer_can_start)
345 return;
346 smi_info->last_timeout_jiffies = jiffies;
347 mod_timer(&smi_info->si_timer, new_val);
348 smi_info->timer_running = true;
349 }
350
351 /*
352 * Start a new message and (re)start the timer and thread.
353 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)354 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
355 unsigned int size)
356 {
357 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
358
359 if (smi_info->thread)
360 wake_up_process(smi_info->thread);
361
362 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
363 }
364
start_check_enables(struct smi_info * smi_info)365 static void start_check_enables(struct smi_info *smi_info)
366 {
367 unsigned char msg[2];
368
369 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
371
372 start_new_msg(smi_info, msg, 2);
373 smi_info->si_state = SI_CHECKING_ENABLES;
374 }
375
start_clear_flags(struct smi_info * smi_info)376 static void start_clear_flags(struct smi_info *smi_info)
377 {
378 unsigned char msg[3];
379
380 /* Make sure the watchdog pre-timeout flag is not set at startup. */
381 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
382 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
383 msg[2] = WDT_PRE_TIMEOUT_INT;
384
385 start_new_msg(smi_info, msg, 3);
386 smi_info->si_state = SI_CLEARING_FLAGS;
387 }
388
start_getting_msg_queue(struct smi_info * smi_info)389 static void start_getting_msg_queue(struct smi_info *smi_info)
390 {
391 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
392 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
393 smi_info->curr_msg->data_size = 2;
394
395 start_new_msg(smi_info, smi_info->curr_msg->data,
396 smi_info->curr_msg->data_size);
397 smi_info->si_state = SI_GETTING_MESSAGES;
398 }
399
start_getting_events(struct smi_info * smi_info)400 static void start_getting_events(struct smi_info *smi_info)
401 {
402 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
404 smi_info->curr_msg->data_size = 2;
405
406 start_new_msg(smi_info, smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 smi_info->si_state = SI_GETTING_EVENTS;
409 }
410
411 /*
412 * When we have a situtaion where we run out of memory and cannot
413 * allocate messages, we just leave them in the BMC and run the system
414 * polled until we can allocate some memory. Once we have some
415 * memory, we will re-enable the interrupt.
416 *
417 * Note that we cannot just use disable_irq(), since the interrupt may
418 * be shared.
419 */
disable_si_irq(struct smi_info * smi_info)420 static inline bool disable_si_irq(struct smi_info *smi_info)
421 {
422 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
423 smi_info->interrupt_disabled = true;
424 start_check_enables(smi_info);
425 return true;
426 }
427 return false;
428 }
429
enable_si_irq(struct smi_info * smi_info)430 static inline bool enable_si_irq(struct smi_info *smi_info)
431 {
432 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
433 smi_info->interrupt_disabled = false;
434 start_check_enables(smi_info);
435 return true;
436 }
437 return false;
438 }
439
440 /*
441 * Allocate a message. If unable to allocate, start the interrupt
442 * disable process and return NULL. If able to allocate but
443 * interrupts are disabled, free the message and return NULL after
444 * starting the interrupt enable process.
445 */
alloc_msg_handle_irq(struct smi_info * smi_info)446 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
447 {
448 struct ipmi_smi_msg *msg;
449
450 msg = ipmi_alloc_smi_msg();
451 if (!msg) {
452 if (!disable_si_irq(smi_info))
453 smi_info->si_state = SI_NORMAL;
454 } else if (enable_si_irq(smi_info)) {
455 ipmi_free_smi_msg(msg);
456 msg = NULL;
457 }
458 return msg;
459 }
460
handle_flags(struct smi_info * smi_info)461 static void handle_flags(struct smi_info *smi_info)
462 {
463 retry:
464 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
465 /* Watchdog pre-timeout */
466 smi_inc_stat(smi_info, watchdog_pretimeouts);
467
468 start_clear_flags(smi_info);
469 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
470 ipmi_smi_watchdog_pretimeout(smi_info->intf);
471 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472 /* Messages available. */
473 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
474 if (!smi_info->curr_msg)
475 return;
476
477 start_getting_msg_queue(smi_info);
478 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
479 /* Events available. */
480 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
481 if (!smi_info->curr_msg)
482 return;
483
484 start_getting_events(smi_info);
485 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
486 smi_info->oem_data_avail_handler) {
487 if (smi_info->oem_data_avail_handler(smi_info))
488 goto retry;
489 } else
490 smi_info->si_state = SI_NORMAL;
491 }
492
493 /*
494 * Global enables we care about.
495 */
496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
497 IPMI_BMC_EVT_MSG_INTR)
498
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)499 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
500 bool *irq_on)
501 {
502 u8 enables = 0;
503
504 if (smi_info->supports_event_msg_buff)
505 enables |= IPMI_BMC_EVT_MSG_BUFF;
506
507 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
508 smi_info->cannot_disable_irq) &&
509 !smi_info->irq_enable_broken)
510 enables |= IPMI_BMC_RCV_MSG_INTR;
511
512 if (smi_info->supports_event_msg_buff &&
513 smi_info->io.irq && !smi_info->interrupt_disabled &&
514 !smi_info->irq_enable_broken)
515 enables |= IPMI_BMC_EVT_MSG_INTR;
516
517 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
518
519 return enables;
520 }
521
check_bt_irq(struct smi_info * smi_info,bool irq_on)522 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
523 {
524 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
525
526 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
527
528 if ((bool)irqstate == irq_on)
529 return;
530
531 if (irq_on)
532 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
533 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
534 else
535 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
536 }
537
handle_transaction_done(struct smi_info * smi_info)538 static void handle_transaction_done(struct smi_info *smi_info)
539 {
540 struct ipmi_smi_msg *msg;
541
542 debug_timestamp("Done");
543 switch (smi_info->si_state) {
544 case SI_NORMAL:
545 if (!smi_info->curr_msg)
546 break;
547
548 smi_info->curr_msg->rsp_size
549 = smi_info->handlers->get_result(
550 smi_info->si_sm,
551 smi_info->curr_msg->rsp,
552 IPMI_MAX_MSG_LENGTH);
553
554 /*
555 * Do this here becase deliver_recv_msg() releases the
556 * lock, and a new message can be put in during the
557 * time the lock is released.
558 */
559 msg = smi_info->curr_msg;
560 smi_info->curr_msg = NULL;
561 deliver_recv_msg(smi_info, msg);
562 break;
563
564 case SI_GETTING_FLAGS:
565 {
566 unsigned char msg[4];
567 unsigned int len;
568
569 /* We got the flags from the SMI, now handle them. */
570 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571 if (msg[2] != 0) {
572 /* Error fetching flags, just give up for now. */
573 smi_info->si_state = SI_NORMAL;
574 } else if (len < 4) {
575 /*
576 * Hmm, no flags. That's technically illegal, but
577 * don't use uninitialized data.
578 */
579 smi_info->si_state = SI_NORMAL;
580 } else {
581 smi_info->msg_flags = msg[3];
582 handle_flags(smi_info);
583 }
584 break;
585 }
586
587 case SI_CLEARING_FLAGS:
588 {
589 unsigned char msg[3];
590
591 /* We cleared the flags. */
592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593 if (msg[2] != 0) {
594 /* Error clearing flags */
595 dev_warn(smi_info->io.dev,
596 "Error clearing flags: %2.2x\n", msg[2]);
597 }
598 smi_info->si_state = SI_NORMAL;
599 break;
600 }
601
602 case SI_GETTING_EVENTS:
603 {
604 smi_info->curr_msg->rsp_size
605 = smi_info->handlers->get_result(
606 smi_info->si_sm,
607 smi_info->curr_msg->rsp,
608 IPMI_MAX_MSG_LENGTH);
609
610 /*
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
614 */
615 msg = smi_info->curr_msg;
616 smi_info->curr_msg = NULL;
617 if (msg->rsp[2] != 0) {
618 /* Error getting event, probably done. */
619 msg->done(msg);
620
621 /* Take off the event flag. */
622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 handle_flags(smi_info);
624 } else {
625 smi_inc_stat(smi_info, events);
626
627 /*
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
631 * state.
632 */
633 handle_flags(smi_info);
634
635 deliver_recv_msg(smi_info, msg);
636 }
637 break;
638 }
639
640 case SI_GETTING_MESSAGES:
641 {
642 smi_info->curr_msg->rsp_size
643 = smi_info->handlers->get_result(
644 smi_info->si_sm,
645 smi_info->curr_msg->rsp,
646 IPMI_MAX_MSG_LENGTH);
647
648 /*
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
652 */
653 msg = smi_info->curr_msg;
654 smi_info->curr_msg = NULL;
655 if (msg->rsp[2] != 0) {
656 /* Error getting event, probably done. */
657 msg->done(msg);
658
659 /* Take off the msg flag. */
660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 handle_flags(smi_info);
662 } else {
663 smi_inc_stat(smi_info, incoming_messages);
664
665 /*
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
669 * state.
670 */
671 handle_flags(smi_info);
672
673 deliver_recv_msg(smi_info, msg);
674 }
675 break;
676 }
677
678 case SI_CHECKING_ENABLES:
679 {
680 unsigned char msg[4];
681 u8 enables;
682 bool irq_on;
683
684 /* We got the flags from the SMI, now handle them. */
685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686 if (msg[2] != 0) {
687 dev_warn(smi_info->io.dev,
688 "Couldn't get irq info: %x.\n", msg[2]);
689 dev_warn(smi_info->io.dev,
690 "Maybe ok, but ipmi might run very slowly.\n");
691 smi_info->si_state = SI_NORMAL;
692 break;
693 }
694 enables = current_global_enables(smi_info, 0, &irq_on);
695 if (smi_info->io.si_type == SI_BT)
696 /* BT has its own interrupt enable bit. */
697 check_bt_irq(smi_info, irq_on);
698 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
699 /* Enables are not correct, fix them. */
700 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
701 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
702 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
703 smi_info->handlers->start_transaction(
704 smi_info->si_sm, msg, 3);
705 smi_info->si_state = SI_SETTING_ENABLES;
706 } else if (smi_info->supports_event_msg_buff) {
707 smi_info->curr_msg = ipmi_alloc_smi_msg();
708 if (!smi_info->curr_msg) {
709 smi_info->si_state = SI_NORMAL;
710 break;
711 }
712 start_getting_events(smi_info);
713 } else {
714 smi_info->si_state = SI_NORMAL;
715 }
716 break;
717 }
718
719 case SI_SETTING_ENABLES:
720 {
721 unsigned char msg[4];
722
723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724 if (msg[2] != 0)
725 dev_warn(smi_info->io.dev,
726 "Could not set the global enables: 0x%x.\n",
727 msg[2]);
728
729 if (smi_info->supports_event_msg_buff) {
730 smi_info->curr_msg = ipmi_alloc_smi_msg();
731 if (!smi_info->curr_msg) {
732 smi_info->si_state = SI_NORMAL;
733 break;
734 }
735 start_getting_events(smi_info);
736 } else {
737 smi_info->si_state = SI_NORMAL;
738 }
739 break;
740 }
741 }
742 }
743
744 /*
745 * Called on timeouts and events. Timeouts should pass the elapsed
746 * time, interrupts should pass in zero. Must be called with
747 * si_lock held and interrupts disabled.
748 */
smi_event_handler(struct smi_info * smi_info,int time)749 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
750 int time)
751 {
752 enum si_sm_result si_sm_result;
753
754 restart:
755 /*
756 * There used to be a loop here that waited a little while
757 * (around 25us) before giving up. That turned out to be
758 * pointless, the minimum delays I was seeing were in the 300us
759 * range, which is far too long to wait in an interrupt. So
760 * we just run until the state machine tells us something
761 * happened or it needs a delay.
762 */
763 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
764 time = 0;
765 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
766 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
767
768 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
769 smi_inc_stat(smi_info, complete_transactions);
770
771 handle_transaction_done(smi_info);
772 goto restart;
773 } else if (si_sm_result == SI_SM_HOSED) {
774 smi_inc_stat(smi_info, hosed_count);
775
776 /*
777 * Do the before return_hosed_msg, because that
778 * releases the lock.
779 */
780 smi_info->si_state = SI_NORMAL;
781 if (smi_info->curr_msg != NULL) {
782 /*
783 * If we were handling a user message, format
784 * a response to send to the upper layer to
785 * tell it about the error.
786 */
787 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
788 }
789 goto restart;
790 }
791
792 /*
793 * We prefer handling attn over new messages. But don't do
794 * this if there is not yet an upper layer to handle anything.
795 */
796 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
797 unsigned char msg[2];
798
799 if (smi_info->si_state != SI_NORMAL) {
800 /*
801 * We got an ATTN, but we are doing something else.
802 * Handle the ATTN later.
803 */
804 smi_info->got_attn = true;
805 } else {
806 smi_info->got_attn = false;
807 smi_inc_stat(smi_info, attentions);
808
809 /*
810 * Got a attn, send down a get message flags to see
811 * what's causing it. It would be better to handle
812 * this in the upper layer, but due to the way
813 * interrupts work with the SMI, that's not really
814 * possible.
815 */
816 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
817 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
818
819 start_new_msg(smi_info, msg, 2);
820 smi_info->si_state = SI_GETTING_FLAGS;
821 goto restart;
822 }
823 }
824
825 /* If we are currently idle, try to start the next message. */
826 if (si_sm_result == SI_SM_IDLE) {
827 smi_inc_stat(smi_info, idles);
828
829 si_sm_result = start_next_msg(smi_info);
830 if (si_sm_result != SI_SM_IDLE)
831 goto restart;
832 }
833
834 if ((si_sm_result == SI_SM_IDLE)
835 && (atomic_read(&smi_info->req_events))) {
836 /*
837 * We are idle and the upper layer requested that I fetch
838 * events, so do so.
839 */
840 atomic_set(&smi_info->req_events, 0);
841
842 /*
843 * Take this opportunity to check the interrupt and
844 * message enable state for the BMC. The BMC can be
845 * asynchronously reset, and may thus get interrupts
846 * disable and messages disabled.
847 */
848 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
849 start_check_enables(smi_info);
850 } else {
851 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
852 if (!smi_info->curr_msg)
853 goto out;
854
855 start_getting_events(smi_info);
856 }
857 goto restart;
858 }
859
860 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
861 /* Ok it if fails, the timer will just go off. */
862 if (del_timer(&smi_info->si_timer))
863 smi_info->timer_running = false;
864 }
865
866 out:
867 return si_sm_result;
868 }
869
check_start_timer_thread(struct smi_info * smi_info)870 static void check_start_timer_thread(struct smi_info *smi_info)
871 {
872 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
873 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
874
875 if (smi_info->thread)
876 wake_up_process(smi_info->thread);
877
878 start_next_msg(smi_info);
879 smi_event_handler(smi_info, 0);
880 }
881 }
882
flush_messages(void * send_info)883 static void flush_messages(void *send_info)
884 {
885 struct smi_info *smi_info = send_info;
886 enum si_sm_result result;
887
888 /*
889 * Currently, this function is called only in run-to-completion
890 * mode. This means we are single-threaded, no need for locks.
891 */
892 result = smi_event_handler(smi_info, 0);
893 while (result != SI_SM_IDLE) {
894 udelay(SI_SHORT_TIMEOUT_USEC);
895 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
896 }
897 }
898
sender(void * send_info,struct ipmi_smi_msg * msg)899 static void sender(void *send_info,
900 struct ipmi_smi_msg *msg)
901 {
902 struct smi_info *smi_info = send_info;
903 unsigned long flags;
904
905 debug_timestamp("Enqueue");
906
907 if (smi_info->run_to_completion) {
908 /*
909 * If we are running to completion, start it. Upper
910 * layer will call flush_messages to clear it out.
911 */
912 smi_info->waiting_msg = msg;
913 return;
914 }
915
916 spin_lock_irqsave(&smi_info->si_lock, flags);
917 /*
918 * The following two lines don't need to be under the lock for
919 * the lock's sake, but they do need SMP memory barriers to
920 * avoid getting things out of order. We are already claiming
921 * the lock, anyway, so just do it under the lock to avoid the
922 * ordering problem.
923 */
924 BUG_ON(smi_info->waiting_msg);
925 smi_info->waiting_msg = msg;
926 check_start_timer_thread(smi_info);
927 spin_unlock_irqrestore(&smi_info->si_lock, flags);
928 }
929
set_run_to_completion(void * send_info,bool i_run_to_completion)930 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
931 {
932 struct smi_info *smi_info = send_info;
933
934 smi_info->run_to_completion = i_run_to_completion;
935 if (i_run_to_completion)
936 flush_messages(smi_info);
937 }
938
939 /*
940 * Use -1 in the nsec value of the busy waiting timespec to tell that
941 * we are spinning in kipmid looking for something and not delaying
942 * between checks
943 */
ipmi_si_set_not_busy(struct timespec64 * ts)944 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
945 {
946 ts->tv_nsec = -1;
947 }
ipmi_si_is_busy(struct timespec64 * ts)948 static inline int ipmi_si_is_busy(struct timespec64 *ts)
949 {
950 return ts->tv_nsec != -1;
951 }
952
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)953 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
954 const struct smi_info *smi_info,
955 struct timespec64 *busy_until)
956 {
957 unsigned int max_busy_us = 0;
958
959 if (smi_info->si_num < num_max_busy_us)
960 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
961 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
962 ipmi_si_set_not_busy(busy_until);
963 else if (!ipmi_si_is_busy(busy_until)) {
964 getnstimeofday64(busy_until);
965 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
966 } else {
967 struct timespec64 now;
968
969 getnstimeofday64(&now);
970 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
971 ipmi_si_set_not_busy(busy_until);
972 return 0;
973 }
974 }
975 return 1;
976 }
977
978
979 /*
980 * A busy-waiting loop for speeding up IPMI operation.
981 *
982 * Lousy hardware makes this hard. This is only enabled for systems
983 * that are not BT and do not have interrupts. It starts spinning
984 * when an operation is complete or until max_busy tells it to stop
985 * (if that is enabled). See the paragraph on kimid_max_busy_us in
986 * Documentation/IPMI.txt for details.
987 */
ipmi_thread(void * data)988 static int ipmi_thread(void *data)
989 {
990 struct smi_info *smi_info = data;
991 unsigned long flags;
992 enum si_sm_result smi_result;
993 struct timespec64 busy_until;
994
995 ipmi_si_set_not_busy(&busy_until);
996 set_user_nice(current, MAX_NICE);
997 while (!kthread_should_stop()) {
998 int busy_wait;
999
1000 spin_lock_irqsave(&(smi_info->si_lock), flags);
1001 smi_result = smi_event_handler(smi_info, 0);
1002
1003 /*
1004 * If the driver is doing something, there is a possible
1005 * race with the timer. If the timer handler see idle,
1006 * and the thread here sees something else, the timer
1007 * handler won't restart the timer even though it is
1008 * required. So start it here if necessary.
1009 */
1010 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1011 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1012
1013 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1014 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1015 &busy_until);
1016 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1017 ; /* do nothing */
1018 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1019 schedule();
1020 else if (smi_result == SI_SM_IDLE) {
1021 if (atomic_read(&smi_info->need_watch)) {
1022 schedule_timeout_interruptible(100);
1023 } else {
1024 /* Wait to be woken up when we are needed. */
1025 __set_current_state(TASK_INTERRUPTIBLE);
1026 schedule();
1027 }
1028 } else
1029 schedule_timeout_interruptible(1);
1030 }
1031 return 0;
1032 }
1033
1034
poll(void * send_info)1035 static void poll(void *send_info)
1036 {
1037 struct smi_info *smi_info = send_info;
1038 unsigned long flags = 0;
1039 bool run_to_completion = smi_info->run_to_completion;
1040
1041 /*
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1044 */
1045 udelay(10);
1046 if (!run_to_completion)
1047 spin_lock_irqsave(&smi_info->si_lock, flags);
1048 smi_event_handler(smi_info, 10);
1049 if (!run_to_completion)
1050 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1051 }
1052
request_events(void * send_info)1053 static void request_events(void *send_info)
1054 {
1055 struct smi_info *smi_info = send_info;
1056
1057 if (!smi_info->has_event_buffer)
1058 return;
1059
1060 atomic_set(&smi_info->req_events, 1);
1061 }
1062
set_need_watch(void * send_info,bool enable)1063 static void set_need_watch(void *send_info, bool enable)
1064 {
1065 struct smi_info *smi_info = send_info;
1066 unsigned long flags;
1067
1068 atomic_set(&smi_info->need_watch, enable);
1069 spin_lock_irqsave(&smi_info->si_lock, flags);
1070 check_start_timer_thread(smi_info);
1071 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1072 }
1073
smi_timeout(struct timer_list * t)1074 static void smi_timeout(struct timer_list *t)
1075 {
1076 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1077 enum si_sm_result smi_result;
1078 unsigned long flags;
1079 unsigned long jiffies_now;
1080 long time_diff;
1081 long timeout;
1082
1083 spin_lock_irqsave(&(smi_info->si_lock), flags);
1084 debug_timestamp("Timer");
1085
1086 jiffies_now = jiffies;
1087 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1088 * SI_USEC_PER_JIFFY);
1089 smi_result = smi_event_handler(smi_info, time_diff);
1090
1091 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1092 /* Running with interrupts, only do long timeouts. */
1093 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1094 smi_inc_stat(smi_info, long_timeouts);
1095 goto do_mod_timer;
1096 }
1097
1098 /*
1099 * If the state machine asks for a short delay, then shorten
1100 * the timer timeout.
1101 */
1102 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1103 smi_inc_stat(smi_info, short_timeouts);
1104 timeout = jiffies + 1;
1105 } else {
1106 smi_inc_stat(smi_info, long_timeouts);
1107 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1108 }
1109
1110 do_mod_timer:
1111 if (smi_result != SI_SM_IDLE)
1112 smi_mod_timer(smi_info, timeout);
1113 else
1114 smi_info->timer_running = false;
1115 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1116 }
1117
ipmi_si_irq_handler(int irq,void * data)1118 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1119 {
1120 struct smi_info *smi_info = data;
1121 unsigned long flags;
1122
1123 if (smi_info->io.si_type == SI_BT)
1124 /* We need to clear the IRQ flag for the BT interface. */
1125 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1126 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1127 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1128
1129 spin_lock_irqsave(&(smi_info->si_lock), flags);
1130
1131 smi_inc_stat(smi_info, interrupts);
1132
1133 debug_timestamp("Interrupt");
1134
1135 smi_event_handler(smi_info, 0);
1136 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1137 return IRQ_HANDLED;
1138 }
1139
smi_start_processing(void * send_info,struct ipmi_smi * intf)1140 static int smi_start_processing(void *send_info,
1141 struct ipmi_smi *intf)
1142 {
1143 struct smi_info *new_smi = send_info;
1144 int enable = 0;
1145
1146 new_smi->intf = intf;
1147
1148 /* Set up the timer that drives the interface. */
1149 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1150 new_smi->timer_can_start = true;
1151 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1152
1153 /* Try to claim any interrupts. */
1154 if (new_smi->io.irq_setup) {
1155 new_smi->io.irq_handler_data = new_smi;
1156 new_smi->io.irq_setup(&new_smi->io);
1157 }
1158
1159 /*
1160 * Check if the user forcefully enabled the daemon.
1161 */
1162 if (new_smi->si_num < num_force_kipmid)
1163 enable = force_kipmid[new_smi->si_num];
1164 /*
1165 * The BT interface is efficient enough to not need a thread,
1166 * and there is no need for a thread if we have interrupts.
1167 */
1168 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1169 enable = 1;
1170
1171 if (enable) {
1172 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173 "kipmi%d", new_smi->si_num);
1174 if (IS_ERR(new_smi->thread)) {
1175 dev_notice(new_smi->io.dev, "Could not start"
1176 " kernel thread due to error %ld, only using"
1177 " timers to drive the interface\n",
1178 PTR_ERR(new_smi->thread));
1179 new_smi->thread = NULL;
1180 }
1181 }
1182
1183 return 0;
1184 }
1185
get_smi_info(void * send_info,struct ipmi_smi_info * data)1186 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1187 {
1188 struct smi_info *smi = send_info;
1189
1190 data->addr_src = smi->io.addr_source;
1191 data->dev = smi->io.dev;
1192 data->addr_info = smi->io.addr_info;
1193 get_device(smi->io.dev);
1194
1195 return 0;
1196 }
1197
set_maintenance_mode(void * send_info,bool enable)1198 static void set_maintenance_mode(void *send_info, bool enable)
1199 {
1200 struct smi_info *smi_info = send_info;
1201
1202 if (!enable)
1203 atomic_set(&smi_info->req_events, 0);
1204 }
1205
1206 static void shutdown_smi(void *send_info);
1207 static const struct ipmi_smi_handlers handlers = {
1208 .owner = THIS_MODULE,
1209 .start_processing = smi_start_processing,
1210 .shutdown = shutdown_smi,
1211 .get_smi_info = get_smi_info,
1212 .sender = sender,
1213 .request_events = request_events,
1214 .set_need_watch = set_need_watch,
1215 .set_maintenance_mode = set_maintenance_mode,
1216 .set_run_to_completion = set_run_to_completion,
1217 .flush_messages = flush_messages,
1218 .poll = poll,
1219 };
1220
1221 static LIST_HEAD(smi_infos);
1222 static DEFINE_MUTEX(smi_infos_lock);
1223 static int smi_num; /* Used to sequence the SMIs */
1224
1225 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1226
1227 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1228 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1229 " disabled(0). Normally the IPMI driver auto-detects"
1230 " this, but the value may be overridden by this parm.");
1231 module_param(unload_when_empty, bool, 0);
1232 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1233 " specified or found, default is 1. Setting to 0"
1234 " is useful for hot add of devices using hotmod.");
1235 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1236 MODULE_PARM_DESC(kipmid_max_busy_us,
1237 "Max time (in microseconds) to busy-wait for IPMI data before"
1238 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1239 " if kipmid is using up a lot of CPU time.");
1240
ipmi_irq_finish_setup(struct si_sm_io * io)1241 void ipmi_irq_finish_setup(struct si_sm_io *io)
1242 {
1243 if (io->si_type == SI_BT)
1244 /* Enable the interrupt in the BT interface. */
1245 io->outputb(io, IPMI_BT_INTMASK_REG,
1246 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1247 }
1248
ipmi_irq_start_cleanup(struct si_sm_io * io)1249 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1250 {
1251 if (io->si_type == SI_BT)
1252 /* Disable the interrupt in the BT interface. */
1253 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1254 }
1255
std_irq_cleanup(struct si_sm_io * io)1256 static void std_irq_cleanup(struct si_sm_io *io)
1257 {
1258 ipmi_irq_start_cleanup(io);
1259 free_irq(io->irq, io->irq_handler_data);
1260 }
1261
ipmi_std_irq_setup(struct si_sm_io * io)1262 int ipmi_std_irq_setup(struct si_sm_io *io)
1263 {
1264 int rv;
1265
1266 if (!io->irq)
1267 return 0;
1268
1269 rv = request_irq(io->irq,
1270 ipmi_si_irq_handler,
1271 IRQF_SHARED,
1272 DEVICE_NAME,
1273 io->irq_handler_data);
1274 if (rv) {
1275 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1276 " running polled\n",
1277 DEVICE_NAME, io->irq);
1278 io->irq = 0;
1279 } else {
1280 io->irq_cleanup = std_irq_cleanup;
1281 ipmi_irq_finish_setup(io);
1282 dev_info(io->dev, "Using irq %d\n", io->irq);
1283 }
1284
1285 return rv;
1286 }
1287
wait_for_msg_done(struct smi_info * smi_info)1288 static int wait_for_msg_done(struct smi_info *smi_info)
1289 {
1290 enum si_sm_result smi_result;
1291
1292 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1293 for (;;) {
1294 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1295 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1296 schedule_timeout_uninterruptible(1);
1297 smi_result = smi_info->handlers->event(
1298 smi_info->si_sm, jiffies_to_usecs(1));
1299 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1300 smi_result = smi_info->handlers->event(
1301 smi_info->si_sm, 0);
1302 } else
1303 break;
1304 }
1305 if (smi_result == SI_SM_HOSED)
1306 /*
1307 * We couldn't get the state machine to run, so whatever's at
1308 * the port is probably not an IPMI SMI interface.
1309 */
1310 return -ENODEV;
1311
1312 return 0;
1313 }
1314
try_get_dev_id(struct smi_info * smi_info)1315 static int try_get_dev_id(struct smi_info *smi_info)
1316 {
1317 unsigned char msg[2];
1318 unsigned char *resp;
1319 unsigned long resp_len;
1320 int rv = 0;
1321
1322 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1323 if (!resp)
1324 return -ENOMEM;
1325
1326 /*
1327 * Do a Get Device ID command, since it comes back with some
1328 * useful info.
1329 */
1330 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1331 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1332 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1333
1334 rv = wait_for_msg_done(smi_info);
1335 if (rv)
1336 goto out;
1337
1338 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1339 resp, IPMI_MAX_MSG_LENGTH);
1340
1341 /* Check and record info from the get device id, in case we need it. */
1342 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1343 resp + 2, resp_len - 2, &smi_info->device_id);
1344
1345 out:
1346 kfree(resp);
1347 return rv;
1348 }
1349
get_global_enables(struct smi_info * smi_info,u8 * enables)1350 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1351 {
1352 unsigned char msg[3];
1353 unsigned char *resp;
1354 unsigned long resp_len;
1355 int rv;
1356
1357 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1358 if (!resp)
1359 return -ENOMEM;
1360
1361 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1362 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1363 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1364
1365 rv = wait_for_msg_done(smi_info);
1366 if (rv) {
1367 dev_warn(smi_info->io.dev,
1368 "Error getting response from get global enables command: %d\n",
1369 rv);
1370 goto out;
1371 }
1372
1373 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1374 resp, IPMI_MAX_MSG_LENGTH);
1375
1376 if (resp_len < 4 ||
1377 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1378 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1379 resp[2] != 0) {
1380 dev_warn(smi_info->io.dev,
1381 "Invalid return from get global enables command: %ld %x %x %x\n",
1382 resp_len, resp[0], resp[1], resp[2]);
1383 rv = -EINVAL;
1384 goto out;
1385 } else {
1386 *enables = resp[3];
1387 }
1388
1389 out:
1390 kfree(resp);
1391 return rv;
1392 }
1393
1394 /*
1395 * Returns 1 if it gets an error from the command.
1396 */
set_global_enables(struct smi_info * smi_info,u8 enables)1397 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1398 {
1399 unsigned char msg[3];
1400 unsigned char *resp;
1401 unsigned long resp_len;
1402 int rv;
1403
1404 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1405 if (!resp)
1406 return -ENOMEM;
1407
1408 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1409 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1410 msg[2] = enables;
1411 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1412
1413 rv = wait_for_msg_done(smi_info);
1414 if (rv) {
1415 dev_warn(smi_info->io.dev,
1416 "Error getting response from set global enables command: %d\n",
1417 rv);
1418 goto out;
1419 }
1420
1421 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1422 resp, IPMI_MAX_MSG_LENGTH);
1423
1424 if (resp_len < 3 ||
1425 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1426 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1427 dev_warn(smi_info->io.dev,
1428 "Invalid return from set global enables command: %ld %x %x\n",
1429 resp_len, resp[0], resp[1]);
1430 rv = -EINVAL;
1431 goto out;
1432 }
1433
1434 if (resp[2] != 0)
1435 rv = 1;
1436
1437 out:
1438 kfree(resp);
1439 return rv;
1440 }
1441
1442 /*
1443 * Some BMCs do not support clearing the receive irq bit in the global
1444 * enables (even if they don't support interrupts on the BMC). Check
1445 * for this and handle it properly.
1446 */
check_clr_rcv_irq(struct smi_info * smi_info)1447 static void check_clr_rcv_irq(struct smi_info *smi_info)
1448 {
1449 u8 enables = 0;
1450 int rv;
1451
1452 rv = get_global_enables(smi_info, &enables);
1453 if (!rv) {
1454 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1455 /* Already clear, should work ok. */
1456 return;
1457
1458 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1459 rv = set_global_enables(smi_info, enables);
1460 }
1461
1462 if (rv < 0) {
1463 dev_err(smi_info->io.dev,
1464 "Cannot check clearing the rcv irq: %d\n", rv);
1465 return;
1466 }
1467
1468 if (rv) {
1469 /*
1470 * An error when setting the event buffer bit means
1471 * clearing the bit is not supported.
1472 */
1473 dev_warn(smi_info->io.dev,
1474 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1475 smi_info->cannot_disable_irq = true;
1476 }
1477 }
1478
1479 /*
1480 * Some BMCs do not support setting the interrupt bits in the global
1481 * enables even if they support interrupts. Clearly bad, but we can
1482 * compensate.
1483 */
check_set_rcv_irq(struct smi_info * smi_info)1484 static void check_set_rcv_irq(struct smi_info *smi_info)
1485 {
1486 u8 enables = 0;
1487 int rv;
1488
1489 if (!smi_info->io.irq)
1490 return;
1491
1492 rv = get_global_enables(smi_info, &enables);
1493 if (!rv) {
1494 enables |= IPMI_BMC_RCV_MSG_INTR;
1495 rv = set_global_enables(smi_info, enables);
1496 }
1497
1498 if (rv < 0) {
1499 dev_err(smi_info->io.dev,
1500 "Cannot check setting the rcv irq: %d\n", rv);
1501 return;
1502 }
1503
1504 if (rv) {
1505 /*
1506 * An error when setting the event buffer bit means
1507 * setting the bit is not supported.
1508 */
1509 dev_warn(smi_info->io.dev,
1510 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1511 smi_info->cannot_disable_irq = true;
1512 smi_info->irq_enable_broken = true;
1513 }
1514 }
1515
try_enable_event_buffer(struct smi_info * smi_info)1516 static int try_enable_event_buffer(struct smi_info *smi_info)
1517 {
1518 unsigned char msg[3];
1519 unsigned char *resp;
1520 unsigned long resp_len;
1521 int rv = 0;
1522
1523 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1524 if (!resp)
1525 return -ENOMEM;
1526
1527 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1528 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1529 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1530
1531 rv = wait_for_msg_done(smi_info);
1532 if (rv) {
1533 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1534 goto out;
1535 }
1536
1537 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1538 resp, IPMI_MAX_MSG_LENGTH);
1539
1540 if (resp_len < 4 ||
1541 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1542 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1543 resp[2] != 0) {
1544 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1545 rv = -EINVAL;
1546 goto out;
1547 }
1548
1549 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1550 /* buffer is already enabled, nothing to do. */
1551 smi_info->supports_event_msg_buff = true;
1552 goto out;
1553 }
1554
1555 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1556 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1557 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1558 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1559
1560 rv = wait_for_msg_done(smi_info);
1561 if (rv) {
1562 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1563 goto out;
1564 }
1565
1566 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1567 resp, IPMI_MAX_MSG_LENGTH);
1568
1569 if (resp_len < 3 ||
1570 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1571 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1572 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1573 rv = -EINVAL;
1574 goto out;
1575 }
1576
1577 if (resp[2] != 0)
1578 /*
1579 * An error when setting the event buffer bit means
1580 * that the event buffer is not supported.
1581 */
1582 rv = -ENOENT;
1583 else
1584 smi_info->supports_event_msg_buff = true;
1585
1586 out:
1587 kfree(resp);
1588 return rv;
1589 }
1590
1591 #define IPMI_SI_ATTR(name) \
1592 static ssize_t ipmi_##name##_show(struct device *dev, \
1593 struct device_attribute *attr, \
1594 char *buf) \
1595 { \
1596 struct smi_info *smi_info = dev_get_drvdata(dev); \
1597 \
1598 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1599 } \
1600 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1601
ipmi_type_show(struct device * dev,struct device_attribute * attr,char * buf)1602 static ssize_t ipmi_type_show(struct device *dev,
1603 struct device_attribute *attr,
1604 char *buf)
1605 {
1606 struct smi_info *smi_info = dev_get_drvdata(dev);
1607
1608 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1609 }
1610 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1611
ipmi_interrupts_enabled_show(struct device * dev,struct device_attribute * attr,char * buf)1612 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1613 struct device_attribute *attr,
1614 char *buf)
1615 {
1616 struct smi_info *smi_info = dev_get_drvdata(dev);
1617 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1618
1619 return snprintf(buf, 10, "%d\n", enabled);
1620 }
1621 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1622 ipmi_interrupts_enabled_show, NULL);
1623
1624 IPMI_SI_ATTR(short_timeouts);
1625 IPMI_SI_ATTR(long_timeouts);
1626 IPMI_SI_ATTR(idles);
1627 IPMI_SI_ATTR(interrupts);
1628 IPMI_SI_ATTR(attentions);
1629 IPMI_SI_ATTR(flag_fetches);
1630 IPMI_SI_ATTR(hosed_count);
1631 IPMI_SI_ATTR(complete_transactions);
1632 IPMI_SI_ATTR(events);
1633 IPMI_SI_ATTR(watchdog_pretimeouts);
1634 IPMI_SI_ATTR(incoming_messages);
1635
ipmi_params_show(struct device * dev,struct device_attribute * attr,char * buf)1636 static ssize_t ipmi_params_show(struct device *dev,
1637 struct device_attribute *attr,
1638 char *buf)
1639 {
1640 struct smi_info *smi_info = dev_get_drvdata(dev);
1641
1642 return snprintf(buf, 200,
1643 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1644 si_to_str[smi_info->io.si_type],
1645 addr_space_to_str[smi_info->io.addr_type],
1646 smi_info->io.addr_data,
1647 smi_info->io.regspacing,
1648 smi_info->io.regsize,
1649 smi_info->io.regshift,
1650 smi_info->io.irq,
1651 smi_info->io.slave_addr);
1652 }
1653 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1654
1655 static struct attribute *ipmi_si_dev_attrs[] = {
1656 &dev_attr_type.attr,
1657 &dev_attr_interrupts_enabled.attr,
1658 &dev_attr_short_timeouts.attr,
1659 &dev_attr_long_timeouts.attr,
1660 &dev_attr_idles.attr,
1661 &dev_attr_interrupts.attr,
1662 &dev_attr_attentions.attr,
1663 &dev_attr_flag_fetches.attr,
1664 &dev_attr_hosed_count.attr,
1665 &dev_attr_complete_transactions.attr,
1666 &dev_attr_events.attr,
1667 &dev_attr_watchdog_pretimeouts.attr,
1668 &dev_attr_incoming_messages.attr,
1669 &dev_attr_params.attr,
1670 NULL
1671 };
1672
1673 static const struct attribute_group ipmi_si_dev_attr_group = {
1674 .attrs = ipmi_si_dev_attrs,
1675 };
1676
1677 /*
1678 * oem_data_avail_to_receive_msg_avail
1679 * @info - smi_info structure with msg_flags set
1680 *
1681 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1682 * Returns 1 indicating need to re-run handle_flags().
1683 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)1684 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1685 {
1686 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1687 RECEIVE_MSG_AVAIL);
1688 return 1;
1689 }
1690
1691 /*
1692 * setup_dell_poweredge_oem_data_handler
1693 * @info - smi_info.device_id must be populated
1694 *
1695 * Systems that match, but have firmware version < 1.40 may assert
1696 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1697 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1698 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1699 * as RECEIVE_MSG_AVAIL instead.
1700 *
1701 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1702 * assert the OEM[012] bits, and if it did, the driver would have to
1703 * change to handle that properly, we don't actually check for the
1704 * firmware version.
1705 * Device ID = 0x20 BMC on PowerEdge 8G servers
1706 * Device Revision = 0x80
1707 * Firmware Revision1 = 0x01 BMC version 1.40
1708 * Firmware Revision2 = 0x40 BCD encoded
1709 * IPMI Version = 0x51 IPMI 1.5
1710 * Manufacturer ID = A2 02 00 Dell IANA
1711 *
1712 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1713 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1714 *
1715 */
1716 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1717 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1718 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1719 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)1720 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1721 {
1722 struct ipmi_device_id *id = &smi_info->device_id;
1723 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1724 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1725 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1726 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1727 smi_info->oem_data_avail_handler =
1728 oem_data_avail_to_receive_msg_avail;
1729 } else if (ipmi_version_major(id) < 1 ||
1730 (ipmi_version_major(id) == 1 &&
1731 ipmi_version_minor(id) < 5)) {
1732 smi_info->oem_data_avail_handler =
1733 oem_data_avail_to_receive_msg_avail;
1734 }
1735 }
1736 }
1737
1738 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)1739 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1740 {
1741 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1742
1743 /* Make it a response */
1744 msg->rsp[0] = msg->data[0] | 4;
1745 msg->rsp[1] = msg->data[1];
1746 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1747 msg->rsp_size = 3;
1748 smi_info->curr_msg = NULL;
1749 deliver_recv_msg(smi_info, msg);
1750 }
1751
1752 /*
1753 * dell_poweredge_bt_xaction_handler
1754 * @info - smi_info.device_id must be populated
1755 *
1756 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1757 * not respond to a Get SDR command if the length of the data
1758 * requested is exactly 0x3A, which leads to command timeouts and no
1759 * data returned. This intercepts such commands, and causes userspace
1760 * callers to try again with a different-sized buffer, which succeeds.
1761 */
1762
1763 #define STORAGE_NETFN 0x0A
1764 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)1765 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1766 unsigned long unused,
1767 void *in)
1768 {
1769 struct smi_info *smi_info = in;
1770 unsigned char *data = smi_info->curr_msg->data;
1771 unsigned int size = smi_info->curr_msg->data_size;
1772 if (size >= 8 &&
1773 (data[0]>>2) == STORAGE_NETFN &&
1774 data[1] == STORAGE_CMD_GET_SDR &&
1775 data[7] == 0x3A) {
1776 return_hosed_msg_badsize(smi_info);
1777 return NOTIFY_STOP;
1778 }
1779 return NOTIFY_DONE;
1780 }
1781
1782 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1783 .notifier_call = dell_poweredge_bt_xaction_handler,
1784 };
1785
1786 /*
1787 * setup_dell_poweredge_bt_xaction_handler
1788 * @info - smi_info.device_id must be filled in already
1789 *
1790 * Fills in smi_info.device_id.start_transaction_pre_hook
1791 * when we know what function to use there.
1792 */
1793 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)1794 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1795 {
1796 struct ipmi_device_id *id = &smi_info->device_id;
1797 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1798 smi_info->io.si_type == SI_BT)
1799 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1800 }
1801
1802 /*
1803 * setup_oem_data_handler
1804 * @info - smi_info.device_id must be filled in already
1805 *
1806 * Fills in smi_info.device_id.oem_data_available_handler
1807 * when we know what function to use there.
1808 */
1809
setup_oem_data_handler(struct smi_info * smi_info)1810 static void setup_oem_data_handler(struct smi_info *smi_info)
1811 {
1812 setup_dell_poweredge_oem_data_handler(smi_info);
1813 }
1814
setup_xaction_handlers(struct smi_info * smi_info)1815 static void setup_xaction_handlers(struct smi_info *smi_info)
1816 {
1817 setup_dell_poweredge_bt_xaction_handler(smi_info);
1818 }
1819
check_for_broken_irqs(struct smi_info * smi_info)1820 static void check_for_broken_irqs(struct smi_info *smi_info)
1821 {
1822 check_clr_rcv_irq(smi_info);
1823 check_set_rcv_irq(smi_info);
1824 }
1825
stop_timer_and_thread(struct smi_info * smi_info)1826 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1827 {
1828 if (smi_info->thread != NULL) {
1829 kthread_stop(smi_info->thread);
1830 smi_info->thread = NULL;
1831 }
1832
1833 smi_info->timer_can_start = false;
1834 if (smi_info->timer_running)
1835 del_timer_sync(&smi_info->si_timer);
1836 }
1837
find_dup_si(struct smi_info * info)1838 static struct smi_info *find_dup_si(struct smi_info *info)
1839 {
1840 struct smi_info *e;
1841
1842 list_for_each_entry(e, &smi_infos, link) {
1843 if (e->io.addr_type != info->io.addr_type)
1844 continue;
1845 if (e->io.addr_data == info->io.addr_data) {
1846 /*
1847 * This is a cheap hack, ACPI doesn't have a defined
1848 * slave address but SMBIOS does. Pick it up from
1849 * any source that has it available.
1850 */
1851 if (info->io.slave_addr && !e->io.slave_addr)
1852 e->io.slave_addr = info->io.slave_addr;
1853 return e;
1854 }
1855 }
1856
1857 return NULL;
1858 }
1859
ipmi_si_add_smi(struct si_sm_io * io)1860 int ipmi_si_add_smi(struct si_sm_io *io)
1861 {
1862 int rv = 0;
1863 struct smi_info *new_smi, *dup;
1864
1865 if (!io->io_setup) {
1866 if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1867 io->io_setup = ipmi_si_port_setup;
1868 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1869 io->io_setup = ipmi_si_mem_setup;
1870 } else {
1871 return -EINVAL;
1872 }
1873 }
1874
1875 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1876 if (!new_smi)
1877 return -ENOMEM;
1878 spin_lock_init(&new_smi->si_lock);
1879
1880 new_smi->io = *io;
1881
1882 mutex_lock(&smi_infos_lock);
1883 dup = find_dup_si(new_smi);
1884 if (dup) {
1885 if (new_smi->io.addr_source == SI_ACPI &&
1886 dup->io.addr_source == SI_SMBIOS) {
1887 /* We prefer ACPI over SMBIOS. */
1888 dev_info(dup->io.dev,
1889 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1890 si_to_str[new_smi->io.si_type]);
1891 cleanup_one_si(dup);
1892 } else {
1893 dev_info(new_smi->io.dev,
1894 "%s-specified %s state machine: duplicate\n",
1895 ipmi_addr_src_to_str(new_smi->io.addr_source),
1896 si_to_str[new_smi->io.si_type]);
1897 rv = -EBUSY;
1898 kfree(new_smi);
1899 goto out_err;
1900 }
1901 }
1902
1903 pr_info(PFX "Adding %s-specified %s state machine\n",
1904 ipmi_addr_src_to_str(new_smi->io.addr_source),
1905 si_to_str[new_smi->io.si_type]);
1906
1907 list_add_tail(&new_smi->link, &smi_infos);
1908
1909 if (initialized)
1910 rv = try_smi_init(new_smi);
1911 out_err:
1912 mutex_unlock(&smi_infos_lock);
1913 return rv;
1914 }
1915
1916 /*
1917 * Try to start up an interface. Must be called with smi_infos_lock
1918 * held, primarily to keep smi_num consistent, we only one to do these
1919 * one at a time.
1920 */
try_smi_init(struct smi_info * new_smi)1921 static int try_smi_init(struct smi_info *new_smi)
1922 {
1923 int rv = 0;
1924 int i;
1925 char *init_name = NULL;
1926
1927 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1928 ipmi_addr_src_to_str(new_smi->io.addr_source),
1929 si_to_str[new_smi->io.si_type],
1930 addr_space_to_str[new_smi->io.addr_type],
1931 new_smi->io.addr_data,
1932 new_smi->io.slave_addr, new_smi->io.irq);
1933
1934 switch (new_smi->io.si_type) {
1935 case SI_KCS:
1936 new_smi->handlers = &kcs_smi_handlers;
1937 break;
1938
1939 case SI_SMIC:
1940 new_smi->handlers = &smic_smi_handlers;
1941 break;
1942
1943 case SI_BT:
1944 new_smi->handlers = &bt_smi_handlers;
1945 break;
1946
1947 default:
1948 /* No support for anything else yet. */
1949 rv = -EIO;
1950 goto out_err;
1951 }
1952
1953 new_smi->si_num = smi_num;
1954
1955 /* Do this early so it's available for logs. */
1956 if (!new_smi->io.dev) {
1957 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
1958 new_smi->si_num);
1959
1960 /*
1961 * If we don't already have a device from something
1962 * else (like PCI), then register a new one.
1963 */
1964 new_smi->pdev = platform_device_alloc("ipmi_si",
1965 new_smi->si_num);
1966 if (!new_smi->pdev) {
1967 pr_err(PFX "Unable to allocate platform device\n");
1968 rv = -ENOMEM;
1969 goto out_err;
1970 }
1971 new_smi->io.dev = &new_smi->pdev->dev;
1972 new_smi->io.dev->driver = &ipmi_platform_driver.driver;
1973 /* Nulled by device_add() */
1974 new_smi->io.dev->init_name = init_name;
1975 }
1976
1977 /* Allocate the state machine's data and initialize it. */
1978 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1979 if (!new_smi->si_sm) {
1980 rv = -ENOMEM;
1981 goto out_err;
1982 }
1983 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1984 &new_smi->io);
1985
1986 /* Now that we know the I/O size, we can set up the I/O. */
1987 rv = new_smi->io.io_setup(&new_smi->io);
1988 if (rv) {
1989 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1990 goto out_err;
1991 }
1992
1993 /* Do low-level detection first. */
1994 if (new_smi->handlers->detect(new_smi->si_sm)) {
1995 if (new_smi->io.addr_source)
1996 dev_err(new_smi->io.dev,
1997 "Interface detection failed\n");
1998 rv = -ENODEV;
1999 goto out_err;
2000 }
2001
2002 /*
2003 * Attempt a get device id command. If it fails, we probably
2004 * don't have a BMC here.
2005 */
2006 rv = try_get_dev_id(new_smi);
2007 if (rv) {
2008 if (new_smi->io.addr_source)
2009 dev_err(new_smi->io.dev,
2010 "There appears to be no BMC at this location\n");
2011 goto out_err;
2012 }
2013
2014 setup_oem_data_handler(new_smi);
2015 setup_xaction_handlers(new_smi);
2016 check_for_broken_irqs(new_smi);
2017
2018 new_smi->waiting_msg = NULL;
2019 new_smi->curr_msg = NULL;
2020 atomic_set(&new_smi->req_events, 0);
2021 new_smi->run_to_completion = false;
2022 for (i = 0; i < SI_NUM_STATS; i++)
2023 atomic_set(&new_smi->stats[i], 0);
2024
2025 new_smi->interrupt_disabled = true;
2026 atomic_set(&new_smi->need_watch, 0);
2027
2028 rv = try_enable_event_buffer(new_smi);
2029 if (rv == 0)
2030 new_smi->has_event_buffer = true;
2031
2032 /*
2033 * Start clearing the flags before we enable interrupts or the
2034 * timer to avoid racing with the timer.
2035 */
2036 start_clear_flags(new_smi);
2037
2038 /*
2039 * IRQ is defined to be set when non-zero. req_events will
2040 * cause a global flags check that will enable interrupts.
2041 */
2042 if (new_smi->io.irq) {
2043 new_smi->interrupt_disabled = false;
2044 atomic_set(&new_smi->req_events, 1);
2045 }
2046
2047 if (new_smi->pdev && !new_smi->pdev_registered) {
2048 rv = platform_device_add(new_smi->pdev);
2049 if (rv) {
2050 dev_err(new_smi->io.dev,
2051 "Unable to register system interface device: %d\n",
2052 rv);
2053 goto out_err;
2054 }
2055 new_smi->pdev_registered = true;
2056 }
2057
2058 dev_set_drvdata(new_smi->io.dev, new_smi);
2059 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2060 if (rv) {
2061 dev_err(new_smi->io.dev,
2062 "Unable to add device attributes: error %d\n",
2063 rv);
2064 goto out_err;
2065 }
2066 new_smi->dev_group_added = true;
2067
2068 rv = ipmi_register_smi(&handlers,
2069 new_smi,
2070 new_smi->io.dev,
2071 new_smi->io.slave_addr);
2072 if (rv) {
2073 dev_err(new_smi->io.dev,
2074 "Unable to register device: error %d\n",
2075 rv);
2076 goto out_err;
2077 }
2078
2079 /* Don't increment till we know we have succeeded. */
2080 smi_num++;
2081
2082 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2083 si_to_str[new_smi->io.si_type]);
2084
2085 WARN_ON(new_smi->io.dev->init_name != NULL);
2086
2087 out_err:
2088 kfree(init_name);
2089 return rv;
2090 }
2091
init_ipmi_si(void)2092 static int init_ipmi_si(void)
2093 {
2094 struct smi_info *e;
2095 enum ipmi_addr_src type = SI_INVALID;
2096
2097 if (initialized)
2098 return 0;
2099
2100 pr_info("IPMI System Interface driver.\n");
2101
2102 /* If the user gave us a device, they presumably want us to use it */
2103 if (!ipmi_si_hardcode_find_bmc())
2104 goto do_scan;
2105
2106 ipmi_si_platform_init();
2107
2108 ipmi_si_pci_init();
2109
2110 ipmi_si_parisc_init();
2111
2112 /* We prefer devices with interrupts, but in the case of a machine
2113 with multiple BMCs we assume that there will be several instances
2114 of a given type so if we succeed in registering a type then also
2115 try to register everything else of the same type */
2116 do_scan:
2117 mutex_lock(&smi_infos_lock);
2118 list_for_each_entry(e, &smi_infos, link) {
2119 /* Try to register a device if it has an IRQ and we either
2120 haven't successfully registered a device yet or this
2121 device has the same type as one we successfully registered */
2122 if (e->io.irq && (!type || e->io.addr_source == type)) {
2123 if (!try_smi_init(e)) {
2124 type = e->io.addr_source;
2125 }
2126 }
2127 }
2128
2129 /* type will only have been set if we successfully registered an si */
2130 if (type)
2131 goto skip_fallback_noirq;
2132
2133 /* Fall back to the preferred device */
2134
2135 list_for_each_entry(e, &smi_infos, link) {
2136 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2137 if (!try_smi_init(e)) {
2138 type = e->io.addr_source;
2139 }
2140 }
2141 }
2142
2143 skip_fallback_noirq:
2144 initialized = 1;
2145 mutex_unlock(&smi_infos_lock);
2146
2147 if (type)
2148 return 0;
2149
2150 mutex_lock(&smi_infos_lock);
2151 if (unload_when_empty && list_empty(&smi_infos)) {
2152 mutex_unlock(&smi_infos_lock);
2153 cleanup_ipmi_si();
2154 pr_warn(PFX "Unable to find any System Interface(s)\n");
2155 return -ENODEV;
2156 } else {
2157 mutex_unlock(&smi_infos_lock);
2158 return 0;
2159 }
2160 }
2161 module_init(init_ipmi_si);
2162
shutdown_smi(void * send_info)2163 static void shutdown_smi(void *send_info)
2164 {
2165 struct smi_info *smi_info = send_info;
2166
2167 if (smi_info->dev_group_added) {
2168 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2169 smi_info->dev_group_added = false;
2170 }
2171 if (smi_info->io.dev)
2172 dev_set_drvdata(smi_info->io.dev, NULL);
2173
2174 /*
2175 * Make sure that interrupts, the timer and the thread are
2176 * stopped and will not run again.
2177 */
2178 smi_info->interrupt_disabled = true;
2179 if (smi_info->io.irq_cleanup) {
2180 smi_info->io.irq_cleanup(&smi_info->io);
2181 smi_info->io.irq_cleanup = NULL;
2182 }
2183 stop_timer_and_thread(smi_info);
2184
2185 /*
2186 * Wait until we know that we are out of any interrupt
2187 * handlers might have been running before we freed the
2188 * interrupt.
2189 */
2190 synchronize_sched();
2191
2192 /*
2193 * Timeouts are stopped, now make sure the interrupts are off
2194 * in the BMC. Note that timers and CPU interrupts are off,
2195 * so no need for locks.
2196 */
2197 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2198 poll(smi_info);
2199 schedule_timeout_uninterruptible(1);
2200 }
2201 if (smi_info->handlers)
2202 disable_si_irq(smi_info);
2203 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2204 poll(smi_info);
2205 schedule_timeout_uninterruptible(1);
2206 }
2207 if (smi_info->handlers)
2208 smi_info->handlers->cleanup(smi_info->si_sm);
2209
2210 if (smi_info->io.addr_source_cleanup) {
2211 smi_info->io.addr_source_cleanup(&smi_info->io);
2212 smi_info->io.addr_source_cleanup = NULL;
2213 }
2214 if (smi_info->io.io_cleanup) {
2215 smi_info->io.io_cleanup(&smi_info->io);
2216 smi_info->io.io_cleanup = NULL;
2217 }
2218
2219 kfree(smi_info->si_sm);
2220 smi_info->si_sm = NULL;
2221
2222 smi_info->intf = NULL;
2223 }
2224
2225 /*
2226 * Must be called with smi_infos_lock held, to serialize the
2227 * smi_info->intf check.
2228 */
cleanup_one_si(struct smi_info * smi_info)2229 static void cleanup_one_si(struct smi_info *smi_info)
2230 {
2231 if (!smi_info)
2232 return;
2233
2234 list_del(&smi_info->link);
2235
2236 if (smi_info->intf)
2237 ipmi_unregister_smi(smi_info->intf);
2238
2239 if (smi_info->pdev) {
2240 if (smi_info->pdev_registered)
2241 platform_device_unregister(smi_info->pdev);
2242 else
2243 platform_device_put(smi_info->pdev);
2244 }
2245
2246 kfree(smi_info);
2247 }
2248
ipmi_si_remove_by_dev(struct device * dev)2249 int ipmi_si_remove_by_dev(struct device *dev)
2250 {
2251 struct smi_info *e;
2252 int rv = -ENOENT;
2253
2254 mutex_lock(&smi_infos_lock);
2255 list_for_each_entry(e, &smi_infos, link) {
2256 if (e->io.dev == dev) {
2257 cleanup_one_si(e);
2258 rv = 0;
2259 break;
2260 }
2261 }
2262 mutex_unlock(&smi_infos_lock);
2263
2264 return rv;
2265 }
2266
ipmi_si_remove_by_data(int addr_space,enum si_type si_type,unsigned long addr)2267 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2268 unsigned long addr)
2269 {
2270 /* remove */
2271 struct smi_info *e, *tmp_e;
2272
2273 mutex_lock(&smi_infos_lock);
2274 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2275 if (e->io.addr_type != addr_space)
2276 continue;
2277 if (e->io.si_type != si_type)
2278 continue;
2279 if (e->io.addr_data == addr)
2280 cleanup_one_si(e);
2281 }
2282 mutex_unlock(&smi_infos_lock);
2283 }
2284
cleanup_ipmi_si(void)2285 static void cleanup_ipmi_si(void)
2286 {
2287 struct smi_info *e, *tmp_e;
2288
2289 if (!initialized)
2290 return;
2291
2292 ipmi_si_pci_shutdown();
2293
2294 ipmi_si_parisc_shutdown();
2295
2296 ipmi_si_platform_shutdown();
2297
2298 mutex_lock(&smi_infos_lock);
2299 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2300 cleanup_one_si(e);
2301 mutex_unlock(&smi_infos_lock);
2302 }
2303 module_exit(cleanup_ipmi_si);
2304
2305 MODULE_ALIAS("platform:dmi-ipmi-si");
2306 MODULE_LICENSE("GPL");
2307 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2308 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2309 " system interfaces.");
2310