1 /*
2  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
3  *                        Steven J. Hill <sjhill@realitydiluted.com>
4  *		          Thomas Gleixner <tglx@linutronix.de>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Info:
11  *	Contains standard defines and IDs for NAND flash devices
12  *
13  * Changelog:
14  *	See git changelog.
15  */
16 #ifndef __LINUX_MTD_RAWNAND_H
17 #define __LINUX_MTD_RAWNAND_H
18 
19 #include <linux/wait.h>
20 #include <linux/spinlock.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/flashchip.h>
23 #include <linux/mtd/bbm.h>
24 #include <linux/of.h>
25 #include <linux/types.h>
26 
27 struct nand_flash_dev;
28 
29 /* Scan and identify a NAND device */
30 int nand_scan_with_ids(struct mtd_info *mtd, int max_chips,
31 		       struct nand_flash_dev *ids);
32 
nand_scan(struct mtd_info * mtd,int max_chips)33 static inline int nand_scan(struct mtd_info *mtd, int max_chips)
34 {
35 	return nand_scan_with_ids(mtd, max_chips, NULL);
36 }
37 
38 /* Internal helper for board drivers which need to override command function */
39 void nand_wait_ready(struct mtd_info *mtd);
40 
41 /* The maximum number of NAND chips in an array */
42 #define NAND_MAX_CHIPS		8
43 
44 /*
45  * Constants for hardware specific CLE/ALE/NCE function
46  *
47  * These are bits which can be or'ed to set/clear multiple
48  * bits in one go.
49  */
50 /* Select the chip by setting nCE to low */
51 #define NAND_NCE		0x01
52 /* Select the command latch by setting CLE to high */
53 #define NAND_CLE		0x02
54 /* Select the address latch by setting ALE to high */
55 #define NAND_ALE		0x04
56 
57 #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
58 #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
59 #define NAND_CTRL_CHANGE	0x80
60 
61 /*
62  * Standard NAND flash commands
63  */
64 #define NAND_CMD_READ0		0
65 #define NAND_CMD_READ1		1
66 #define NAND_CMD_RNDOUT		5
67 #define NAND_CMD_PAGEPROG	0x10
68 #define NAND_CMD_READOOB	0x50
69 #define NAND_CMD_ERASE1		0x60
70 #define NAND_CMD_STATUS		0x70
71 #define NAND_CMD_SEQIN		0x80
72 #define NAND_CMD_RNDIN		0x85
73 #define NAND_CMD_READID		0x90
74 #define NAND_CMD_ERASE2		0xd0
75 #define NAND_CMD_PARAM		0xec
76 #define NAND_CMD_GET_FEATURES	0xee
77 #define NAND_CMD_SET_FEATURES	0xef
78 #define NAND_CMD_RESET		0xff
79 
80 /* Extended commands for large page devices */
81 #define NAND_CMD_READSTART	0x30
82 #define NAND_CMD_RNDOUTSTART	0xE0
83 #define NAND_CMD_CACHEDPROG	0x15
84 
85 #define NAND_CMD_NONE		-1
86 
87 /* Status bits */
88 #define NAND_STATUS_FAIL	0x01
89 #define NAND_STATUS_FAIL_N1	0x02
90 #define NAND_STATUS_TRUE_READY	0x20
91 #define NAND_STATUS_READY	0x40
92 #define NAND_STATUS_WP		0x80
93 
94 #define NAND_DATA_IFACE_CHECK_ONLY	-1
95 
96 /*
97  * Constants for ECC_MODES
98  */
99 typedef enum {
100 	NAND_ECC_NONE,
101 	NAND_ECC_SOFT,
102 	NAND_ECC_HW,
103 	NAND_ECC_HW_SYNDROME,
104 	NAND_ECC_HW_OOB_FIRST,
105 	NAND_ECC_ON_DIE,
106 } nand_ecc_modes_t;
107 
108 enum nand_ecc_algo {
109 	NAND_ECC_UNKNOWN,
110 	NAND_ECC_HAMMING,
111 	NAND_ECC_BCH,
112 	NAND_ECC_RS,
113 };
114 
115 /*
116  * Constants for Hardware ECC
117  */
118 /* Reset Hardware ECC for read */
119 #define NAND_ECC_READ		0
120 /* Reset Hardware ECC for write */
121 #define NAND_ECC_WRITE		1
122 /* Enable Hardware ECC before syndrome is read back from flash */
123 #define NAND_ECC_READSYN	2
124 
125 /*
126  * Enable generic NAND 'page erased' check. This check is only done when
127  * ecc.correct() returns -EBADMSG.
128  * Set this flag if your implementation does not fix bitflips in erased
129  * pages and you want to rely on the default implementation.
130  */
131 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
132 #define NAND_ECC_MAXIMIZE		BIT(1)
133 
134 /* Bit mask for flags passed to do_nand_read_ecc */
135 #define NAND_GET_DEVICE		0x80
136 
137 
138 /*
139  * Option constants for bizarre disfunctionality and real
140  * features.
141  */
142 /* Buswidth is 16 bit */
143 #define NAND_BUSWIDTH_16	0x00000002
144 /* Chip has cache program function */
145 #define NAND_CACHEPRG		0x00000008
146 /*
147  * Chip requires ready check on read (for auto-incremented sequential read).
148  * True only for small page devices; large page devices do not support
149  * autoincrement.
150  */
151 #define NAND_NEED_READRDY	0x00000100
152 
153 /* Chip does not allow subpage writes */
154 #define NAND_NO_SUBPAGE_WRITE	0x00000200
155 
156 /* Device is one of 'new' xD cards that expose fake nand command set */
157 #define NAND_BROKEN_XD		0x00000400
158 
159 /* Device behaves just like nand, but is readonly */
160 #define NAND_ROM		0x00000800
161 
162 /* Device supports subpage reads */
163 #define NAND_SUBPAGE_READ	0x00001000
164 
165 /*
166  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
167  * patterns.
168  */
169 #define NAND_NEED_SCRAMBLING	0x00002000
170 
171 /* Device needs 3rd row address cycle */
172 #define NAND_ROW_ADDR_3		0x00004000
173 
174 /* Options valid for Samsung large page devices */
175 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
176 
177 /* Macros to identify the above */
178 #define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
179 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
180 #define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)
181 
182 /* Non chip related options */
183 /* This option skips the bbt scan during initialization. */
184 #define NAND_SKIP_BBTSCAN	0x00010000
185 /* Chip may not exist, so silence any errors in scan */
186 #define NAND_SCAN_SILENT_NODEV	0x00040000
187 /*
188  * Autodetect nand buswidth with readid/onfi.
189  * This suppose the driver will configure the hardware in 8 bits mode
190  * when calling nand_scan_ident, and update its configuration
191  * before calling nand_scan_tail.
192  */
193 #define NAND_BUSWIDTH_AUTO      0x00080000
194 /*
195  * This option could be defined by controller drivers to protect against
196  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
197  */
198 #define NAND_USE_BOUNCE_BUFFER	0x00100000
199 
200 /*
201  * In case your controller is implementing ->cmd_ctrl() and is relying on the
202  * default ->cmdfunc() implementation, you may want to let the core handle the
203  * tCCS delay which is required when a column change (RNDIN or RNDOUT) is
204  * requested.
205  * If your controller already takes care of this delay, you don't need to set
206  * this flag.
207  */
208 #define NAND_WAIT_TCCS		0x00200000
209 
210 /*
211  * Whether the NAND chip is a boot medium. Drivers might use this information
212  * to select ECC algorithms supported by the boot ROM or similar restrictions.
213  */
214 #define NAND_IS_BOOT_MEDIUM	0x00400000
215 
216 /* Options set by nand scan */
217 /* Nand scan has allocated controller struct */
218 #define NAND_CONTROLLER_ALLOC	0x80000000
219 
220 /* Cell info constants */
221 #define NAND_CI_CHIPNR_MSK	0x03
222 #define NAND_CI_CELLTYPE_MSK	0x0C
223 #define NAND_CI_CELLTYPE_SHIFT	2
224 
225 /* Keep gcc happy */
226 struct nand_chip;
227 
228 /* ONFI version bits */
229 #define ONFI_VERSION_1_0		BIT(1)
230 #define ONFI_VERSION_2_0		BIT(2)
231 #define ONFI_VERSION_2_1		BIT(3)
232 #define ONFI_VERSION_2_2		BIT(4)
233 #define ONFI_VERSION_2_3		BIT(5)
234 #define ONFI_VERSION_3_0		BIT(6)
235 #define ONFI_VERSION_3_1		BIT(7)
236 #define ONFI_VERSION_3_2		BIT(8)
237 #define ONFI_VERSION_4_0		BIT(9)
238 
239 /* ONFI features */
240 #define ONFI_FEATURE_16_BIT_BUS		(1 << 0)
241 #define ONFI_FEATURE_EXT_PARAM_PAGE	(1 << 7)
242 
243 /* ONFI timing mode, used in both asynchronous and synchronous mode */
244 #define ONFI_TIMING_MODE_0		(1 << 0)
245 #define ONFI_TIMING_MODE_1		(1 << 1)
246 #define ONFI_TIMING_MODE_2		(1 << 2)
247 #define ONFI_TIMING_MODE_3		(1 << 3)
248 #define ONFI_TIMING_MODE_4		(1 << 4)
249 #define ONFI_TIMING_MODE_5		(1 << 5)
250 #define ONFI_TIMING_MODE_UNKNOWN	(1 << 6)
251 
252 /* ONFI feature number/address */
253 #define ONFI_FEATURE_NUMBER		256
254 #define ONFI_FEATURE_ADDR_TIMING_MODE	0x1
255 
256 /* Vendor-specific feature address (Micron) */
257 #define ONFI_FEATURE_ADDR_READ_RETRY	0x89
258 #define ONFI_FEATURE_ON_DIE_ECC		0x90
259 #define   ONFI_FEATURE_ON_DIE_ECC_EN	BIT(3)
260 
261 /* ONFI subfeature parameters length */
262 #define ONFI_SUBFEATURE_PARAM_LEN	4
263 
264 /* ONFI optional commands SET/GET FEATURES supported? */
265 #define ONFI_OPT_CMD_SET_GET_FEATURES	(1 << 2)
266 
267 struct nand_onfi_params {
268 	/* rev info and features block */
269 	/* 'O' 'N' 'F' 'I'  */
270 	u8 sig[4];
271 	__le16 revision;
272 	__le16 features;
273 	__le16 opt_cmd;
274 	u8 reserved0[2];
275 	__le16 ext_param_page_length; /* since ONFI 2.1 */
276 	u8 num_of_param_pages;        /* since ONFI 2.1 */
277 	u8 reserved1[17];
278 
279 	/* manufacturer information block */
280 	char manufacturer[12];
281 	char model[20];
282 	u8 jedec_id;
283 	__le16 date_code;
284 	u8 reserved2[13];
285 
286 	/* memory organization block */
287 	__le32 byte_per_page;
288 	__le16 spare_bytes_per_page;
289 	__le32 data_bytes_per_ppage;
290 	__le16 spare_bytes_per_ppage;
291 	__le32 pages_per_block;
292 	__le32 blocks_per_lun;
293 	u8 lun_count;
294 	u8 addr_cycles;
295 	u8 bits_per_cell;
296 	__le16 bb_per_lun;
297 	__le16 block_endurance;
298 	u8 guaranteed_good_blocks;
299 	__le16 guaranteed_block_endurance;
300 	u8 programs_per_page;
301 	u8 ppage_attr;
302 	u8 ecc_bits;
303 	u8 interleaved_bits;
304 	u8 interleaved_ops;
305 	u8 reserved3[13];
306 
307 	/* electrical parameter block */
308 	u8 io_pin_capacitance_max;
309 	__le16 async_timing_mode;
310 	__le16 program_cache_timing_mode;
311 	__le16 t_prog;
312 	__le16 t_bers;
313 	__le16 t_r;
314 	__le16 t_ccs;
315 	__le16 src_sync_timing_mode;
316 	u8 src_ssync_features;
317 	__le16 clk_pin_capacitance_typ;
318 	__le16 io_pin_capacitance_typ;
319 	__le16 input_pin_capacitance_typ;
320 	u8 input_pin_capacitance_max;
321 	u8 driver_strength_support;
322 	__le16 t_int_r;
323 	__le16 t_adl;
324 	u8 reserved4[8];
325 
326 	/* vendor */
327 	__le16 vendor_revision;
328 	u8 vendor[88];
329 
330 	__le16 crc;
331 } __packed;
332 
333 #define ONFI_CRC_BASE	0x4F4E
334 
335 /* Extended ECC information Block Definition (since ONFI 2.1) */
336 struct onfi_ext_ecc_info {
337 	u8 ecc_bits;
338 	u8 codeword_size;
339 	__le16 bb_per_lun;
340 	__le16 block_endurance;
341 	u8 reserved[2];
342 } __packed;
343 
344 #define ONFI_SECTION_TYPE_0	0	/* Unused section. */
345 #define ONFI_SECTION_TYPE_1	1	/* for additional sections. */
346 #define ONFI_SECTION_TYPE_2	2	/* for ECC information. */
347 struct onfi_ext_section {
348 	u8 type;
349 	u8 length;
350 } __packed;
351 
352 #define ONFI_EXT_SECTION_MAX 8
353 
354 /* Extended Parameter Page Definition (since ONFI 2.1) */
355 struct onfi_ext_param_page {
356 	__le16 crc;
357 	u8 sig[4];             /* 'E' 'P' 'P' 'S' */
358 	u8 reserved0[10];
359 	struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX];
360 
361 	/*
362 	 * The actual size of the Extended Parameter Page is in
363 	 * @ext_param_page_length of nand_onfi_params{}.
364 	 * The following are the variable length sections.
365 	 * So we do not add any fields below. Please see the ONFI spec.
366 	 */
367 } __packed;
368 
369 struct jedec_ecc_info {
370 	u8 ecc_bits;
371 	u8 codeword_size;
372 	__le16 bb_per_lun;
373 	__le16 block_endurance;
374 	u8 reserved[2];
375 } __packed;
376 
377 /* JEDEC features */
378 #define JEDEC_FEATURE_16_BIT_BUS	(1 << 0)
379 
380 struct nand_jedec_params {
381 	/* rev info and features block */
382 	/* 'J' 'E' 'S' 'D'  */
383 	u8 sig[4];
384 	__le16 revision;
385 	__le16 features;
386 	u8 opt_cmd[3];
387 	__le16 sec_cmd;
388 	u8 num_of_param_pages;
389 	u8 reserved0[18];
390 
391 	/* manufacturer information block */
392 	char manufacturer[12];
393 	char model[20];
394 	u8 jedec_id[6];
395 	u8 reserved1[10];
396 
397 	/* memory organization block */
398 	__le32 byte_per_page;
399 	__le16 spare_bytes_per_page;
400 	u8 reserved2[6];
401 	__le32 pages_per_block;
402 	__le32 blocks_per_lun;
403 	u8 lun_count;
404 	u8 addr_cycles;
405 	u8 bits_per_cell;
406 	u8 programs_per_page;
407 	u8 multi_plane_addr;
408 	u8 multi_plane_op_attr;
409 	u8 reserved3[38];
410 
411 	/* electrical parameter block */
412 	__le16 async_sdr_speed_grade;
413 	__le16 toggle_ddr_speed_grade;
414 	__le16 sync_ddr_speed_grade;
415 	u8 async_sdr_features;
416 	u8 toggle_ddr_features;
417 	u8 sync_ddr_features;
418 	__le16 t_prog;
419 	__le16 t_bers;
420 	__le16 t_r;
421 	__le16 t_r_multi_plane;
422 	__le16 t_ccs;
423 	__le16 io_pin_capacitance_typ;
424 	__le16 input_pin_capacitance_typ;
425 	__le16 clk_pin_capacitance_typ;
426 	u8 driver_strength_support;
427 	__le16 t_adl;
428 	u8 reserved4[36];
429 
430 	/* ECC and endurance block */
431 	u8 guaranteed_good_blocks;
432 	__le16 guaranteed_block_endurance;
433 	struct jedec_ecc_info ecc_info[4];
434 	u8 reserved5[29];
435 
436 	/* reserved */
437 	u8 reserved6[148];
438 
439 	/* vendor */
440 	__le16 vendor_rev_num;
441 	u8 reserved7[88];
442 
443 	/* CRC for Parameter Page */
444 	__le16 crc;
445 } __packed;
446 
447 /**
448  * struct onfi_params - ONFI specific parameters that will be reused
449  * @version: ONFI version (BCD encoded), 0 if ONFI is not supported
450  * @tPROG: Page program time
451  * @tBERS: Block erase time
452  * @tR: Page read time
453  * @tCCS: Change column setup time
454  * @async_timing_mode: Supported asynchronous timing mode
455  * @vendor_revision: Vendor specific revision number
456  * @vendor: Vendor specific data
457  */
458 struct onfi_params {
459 	int version;
460 	u16 tPROG;
461 	u16 tBERS;
462 	u16 tR;
463 	u16 tCCS;
464 	u16 async_timing_mode;
465 	u16 vendor_revision;
466 	u8 vendor[88];
467 };
468 
469 /**
470  * struct nand_parameters - NAND generic parameters from the parameter page
471  * @model: Model name
472  * @supports_set_get_features: The NAND chip supports setting/getting features
473  * @set_feature_list: Bitmap of features that can be set
474  * @get_feature_list: Bitmap of features that can be get
475  * @onfi: ONFI specific parameters
476  */
477 struct nand_parameters {
478 	/* Generic parameters */
479 	const char *model;
480 	bool supports_set_get_features;
481 	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
482 	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
483 
484 	/* ONFI parameters */
485 	struct onfi_params *onfi;
486 };
487 
488 /* The maximum expected count of bytes in the NAND ID sequence */
489 #define NAND_MAX_ID_LEN 8
490 
491 /**
492  * struct nand_id - NAND id structure
493  * @data: buffer containing the id bytes.
494  * @len: ID length.
495  */
496 struct nand_id {
497 	u8 data[NAND_MAX_ID_LEN];
498 	int len;
499 };
500 
501 /**
502  * struct nand_controller_ops - Controller operations
503  *
504  * @attach_chip: this method is called after the NAND detection phase after
505  *		 flash ID and MTD fields such as erase size, page size and OOB
506  *		 size have been set up. ECC requirements are available if
507  *		 provided by the NAND chip or device tree. Typically used to
508  *		 choose the appropriate ECC configuration and allocate
509  *		 associated resources.
510  *		 This hook is optional.
511  * @detach_chip: free all resources allocated/claimed in
512  *		 nand_controller_ops->attach_chip().
513  *		 This hook is optional.
514  */
515 struct nand_controller_ops {
516 	int (*attach_chip)(struct nand_chip *chip);
517 	void (*detach_chip)(struct nand_chip *chip);
518 };
519 
520 /**
521  * struct nand_controller - Structure used to describe a NAND controller
522  *
523  * @lock:               protection lock
524  * @active:		the mtd device which holds the controller currently
525  * @wq:			wait queue to sleep on if a NAND operation is in
526  *			progress used instead of the per chip wait queue
527  *			when a hw controller is available.
528  * @ops:		NAND controller operations.
529  */
530 struct nand_controller {
531 	spinlock_t lock;
532 	struct nand_chip *active;
533 	wait_queue_head_t wq;
534 	const struct nand_controller_ops *ops;
535 };
536 
nand_controller_init(struct nand_controller * nfc)537 static inline void nand_controller_init(struct nand_controller *nfc)
538 {
539 	nfc->active = NULL;
540 	spin_lock_init(&nfc->lock);
541 	init_waitqueue_head(&nfc->wq);
542 }
543 
544 /**
545  * struct nand_ecc_step_info - ECC step information of ECC engine
546  * @stepsize: data bytes per ECC step
547  * @strengths: array of supported strengths
548  * @nstrengths: number of supported strengths
549  */
550 struct nand_ecc_step_info {
551 	int stepsize;
552 	const int *strengths;
553 	int nstrengths;
554 };
555 
556 /**
557  * struct nand_ecc_caps - capability of ECC engine
558  * @stepinfos: array of ECC step information
559  * @nstepinfos: number of ECC step information
560  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
561  */
562 struct nand_ecc_caps {
563 	const struct nand_ecc_step_info *stepinfos;
564 	int nstepinfos;
565 	int (*calc_ecc_bytes)(int step_size, int strength);
566 };
567 
568 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
569 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
570 static const int __name##_strengths[] = { __VA_ARGS__ };	\
571 static const struct nand_ecc_step_info __name##_stepinfo = {	\
572 	.stepsize = __step,					\
573 	.strengths = __name##_strengths,			\
574 	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
575 };								\
576 static const struct nand_ecc_caps __name = {			\
577 	.stepinfos = &__name##_stepinfo,			\
578 	.nstepinfos = 1,					\
579 	.calc_ecc_bytes = __calc,				\
580 }
581 
582 /**
583  * struct nand_ecc_ctrl - Control structure for ECC
584  * @mode:	ECC mode
585  * @algo:	ECC algorithm
586  * @steps:	number of ECC steps per page
587  * @size:	data bytes per ECC step
588  * @bytes:	ECC bytes per step
589  * @strength:	max number of correctible bits per ECC step
590  * @total:	total number of ECC bytes per page
591  * @prepad:	padding information for syndrome based ECC generators
592  * @postpad:	padding information for syndrome based ECC generators
593  * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
594  * @priv:	pointer to private ECC control data
595  * @calc_buf:	buffer for calculated ECC, size is oobsize.
596  * @code_buf:	buffer for ECC read from flash, size is oobsize.
597  * @hwctl:	function to control hardware ECC generator. Must only
598  *		be provided if an hardware ECC is available
599  * @calculate:	function for ECC calculation or readback from ECC hardware
600  * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
601  *		Should return a positive number representing the number of
602  *		corrected bitflips, -EBADMSG if the number of bitflips exceed
603  *		ECC strength, or any other error code if the error is not
604  *		directly related to correction.
605  *		If -EBADMSG is returned the input buffers should be left
606  *		untouched.
607  * @read_page_raw:	function to read a raw page without ECC. This function
608  *			should hide the specific layout used by the ECC
609  *			controller and always return contiguous in-band and
610  *			out-of-band data even if they're not stored
611  *			contiguously on the NAND chip (e.g.
612  *			NAND_ECC_HW_SYNDROME interleaves in-band and
613  *			out-of-band data).
614  * @write_page_raw:	function to write a raw page without ECC. This function
615  *			should hide the specific layout used by the ECC
616  *			controller and consider the passed data as contiguous
617  *			in-band and out-of-band data. ECC controller is
618  *			responsible for doing the appropriate transformations
619  *			to adapt to its specific layout (e.g.
620  *			NAND_ECC_HW_SYNDROME interleaves in-band and
621  *			out-of-band data).
622  * @read_page:	function to read a page according to the ECC generator
623  *		requirements; returns maximum number of bitflips corrected in
624  *		any single ECC step, -EIO hw error
625  * @read_subpage:	function to read parts of the page covered by ECC;
626  *			returns same as read_page()
627  * @write_subpage:	function to write parts of the page covered by ECC.
628  * @write_page:	function to write a page according to the ECC generator
629  *		requirements.
630  * @write_oob_raw:	function to write chip OOB data without ECC
631  * @read_oob_raw:	function to read chip OOB data without ECC
632  * @read_oob:	function to read chip OOB data
633  * @write_oob:	function to write chip OOB data
634  */
635 struct nand_ecc_ctrl {
636 	nand_ecc_modes_t mode;
637 	enum nand_ecc_algo algo;
638 	int steps;
639 	int size;
640 	int bytes;
641 	int total;
642 	int strength;
643 	int prepad;
644 	int postpad;
645 	unsigned int options;
646 	void *priv;
647 	u8 *calc_buf;
648 	u8 *code_buf;
649 	void (*hwctl)(struct mtd_info *mtd, int mode);
650 	int (*calculate)(struct mtd_info *mtd, const uint8_t *dat,
651 			uint8_t *ecc_code);
652 	int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc,
653 			uint8_t *calc_ecc);
654 	int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
655 			uint8_t *buf, int oob_required, int page);
656 	int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
657 			const uint8_t *buf, int oob_required, int page);
658 	int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
659 			uint8_t *buf, int oob_required, int page);
660 	int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
661 			uint32_t offs, uint32_t len, uint8_t *buf, int page);
662 	int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
663 			uint32_t offset, uint32_t data_len,
664 			const uint8_t *data_buf, int oob_required, int page);
665 	int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
666 			const uint8_t *buf, int oob_required, int page);
667 	int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
668 			int page);
669 	int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
670 			int page);
671 	int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page);
672 	int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip,
673 			int page);
674 };
675 
676 /**
677  * struct nand_sdr_timings - SDR NAND chip timings
678  *
679  * This struct defines the timing requirements of a SDR NAND chip.
680  * These information can be found in every NAND datasheets and the timings
681  * meaning are described in the ONFI specifications:
682  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
683  * Parameters)
684  *
685  * All these timings are expressed in picoseconds.
686  *
687  * @tBERS_max: Block erase time
688  * @tCCS_min: Change column setup time
689  * @tPROG_max: Page program time
690  * @tR_max: Page read time
691  * @tALH_min: ALE hold time
692  * @tADL_min: ALE to data loading time
693  * @tALS_min: ALE setup time
694  * @tAR_min: ALE to RE# delay
695  * @tCEA_max: CE# access time
696  * @tCEH_min: CE# high hold time
697  * @tCH_min:  CE# hold time
698  * @tCHZ_max: CE# high to output hi-Z
699  * @tCLH_min: CLE hold time
700  * @tCLR_min: CLE to RE# delay
701  * @tCLS_min: CLE setup time
702  * @tCOH_min: CE# high to output hold
703  * @tCS_min: CE# setup time
704  * @tDH_min: Data hold time
705  * @tDS_min: Data setup time
706  * @tFEAT_max: Busy time for Set Features and Get Features
707  * @tIR_min: Output hi-Z to RE# low
708  * @tITC_max: Interface and Timing Mode Change time
709  * @tRC_min: RE# cycle time
710  * @tREA_max: RE# access time
711  * @tREH_min: RE# high hold time
712  * @tRHOH_min: RE# high to output hold
713  * @tRHW_min: RE# high to WE# low
714  * @tRHZ_max: RE# high to output hi-Z
715  * @tRLOH_min: RE# low to output hold
716  * @tRP_min: RE# pulse width
717  * @tRR_min: Ready to RE# low (data only)
718  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
719  *	      rising edge of R/B#.
720  * @tWB_max: WE# high to SR[6] low
721  * @tWC_min: WE# cycle time
722  * @tWH_min: WE# high hold time
723  * @tWHR_min: WE# high to RE# low
724  * @tWP_min: WE# pulse width
725  * @tWW_min: WP# transition to WE# low
726  */
727 struct nand_sdr_timings {
728 	u64 tBERS_max;
729 	u32 tCCS_min;
730 	u64 tPROG_max;
731 	u64 tR_max;
732 	u32 tALH_min;
733 	u32 tADL_min;
734 	u32 tALS_min;
735 	u32 tAR_min;
736 	u32 tCEA_max;
737 	u32 tCEH_min;
738 	u32 tCH_min;
739 	u32 tCHZ_max;
740 	u32 tCLH_min;
741 	u32 tCLR_min;
742 	u32 tCLS_min;
743 	u32 tCOH_min;
744 	u32 tCS_min;
745 	u32 tDH_min;
746 	u32 tDS_min;
747 	u32 tFEAT_max;
748 	u32 tIR_min;
749 	u32 tITC_max;
750 	u32 tRC_min;
751 	u32 tREA_max;
752 	u32 tREH_min;
753 	u32 tRHOH_min;
754 	u32 tRHW_min;
755 	u32 tRHZ_max;
756 	u32 tRLOH_min;
757 	u32 tRP_min;
758 	u32 tRR_min;
759 	u64 tRST_max;
760 	u32 tWB_max;
761 	u32 tWC_min;
762 	u32 tWH_min;
763 	u32 tWHR_min;
764 	u32 tWP_min;
765 	u32 tWW_min;
766 };
767 
768 /**
769  * enum nand_data_interface_type - NAND interface timing type
770  * @NAND_SDR_IFACE:	Single Data Rate interface
771  */
772 enum nand_data_interface_type {
773 	NAND_SDR_IFACE,
774 };
775 
776 /**
777  * struct nand_data_interface - NAND interface timing
778  * @type:	 type of the timing
779  * @timings:	 The timing, type according to @type
780  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
781  */
782 struct nand_data_interface {
783 	enum nand_data_interface_type type;
784 	union {
785 		struct nand_sdr_timings sdr;
786 	} timings;
787 };
788 
789 /**
790  * nand_get_sdr_timings - get SDR timing from data interface
791  * @conf:	The data interface
792  */
793 static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_data_interface * conf)794 nand_get_sdr_timings(const struct nand_data_interface *conf)
795 {
796 	if (conf->type != NAND_SDR_IFACE)
797 		return ERR_PTR(-EINVAL);
798 
799 	return &conf->timings.sdr;
800 }
801 
802 /**
803  * struct nand_manufacturer_ops - NAND Manufacturer operations
804  * @detect: detect the NAND memory organization and capabilities
805  * @init: initialize all vendor specific fields (like the ->read_retry()
806  *	  implementation) if any.
807  * @cleanup: the ->init() function may have allocated resources, ->cleanup()
808  *	     is here to let vendor specific code release those resources.
809  * @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter
810  *			   page. This is called after the checksum is verified.
811  */
812 struct nand_manufacturer_ops {
813 	void (*detect)(struct nand_chip *chip);
814 	int (*init)(struct nand_chip *chip);
815 	void (*cleanup)(struct nand_chip *chip);
816 	void (*fixup_onfi_param_page)(struct nand_chip *chip,
817 				      struct nand_onfi_params *p);
818 };
819 
820 /**
821  * struct nand_op_cmd_instr - Definition of a command instruction
822  * @opcode: the command to issue in one cycle
823  */
824 struct nand_op_cmd_instr {
825 	u8 opcode;
826 };
827 
828 /**
829  * struct nand_op_addr_instr - Definition of an address instruction
830  * @naddrs: length of the @addrs array
831  * @addrs: array containing the address cycles to issue
832  */
833 struct nand_op_addr_instr {
834 	unsigned int naddrs;
835 	const u8 *addrs;
836 };
837 
838 /**
839  * struct nand_op_data_instr - Definition of a data instruction
840  * @len: number of data bytes to move
841  * @buf: buffer to fill
842  * @buf.in: buffer to fill when reading from the NAND chip
843  * @buf.out: buffer to read from when writing to the NAND chip
844  * @force_8bit: force 8-bit access
845  *
846  * Please note that "in" and "out" are inverted from the ONFI specification
847  * and are from the controller perspective, so a "in" is a read from the NAND
848  * chip while a "out" is a write to the NAND chip.
849  */
850 struct nand_op_data_instr {
851 	unsigned int len;
852 	union {
853 		void *in;
854 		const void *out;
855 	} buf;
856 	bool force_8bit;
857 };
858 
859 /**
860  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
861  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
862  */
863 struct nand_op_waitrdy_instr {
864 	unsigned int timeout_ms;
865 };
866 
867 /**
868  * enum nand_op_instr_type - Definition of all instruction types
869  * @NAND_OP_CMD_INSTR: command instruction
870  * @NAND_OP_ADDR_INSTR: address instruction
871  * @NAND_OP_DATA_IN_INSTR: data in instruction
872  * @NAND_OP_DATA_OUT_INSTR: data out instruction
873  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
874  */
875 enum nand_op_instr_type {
876 	NAND_OP_CMD_INSTR,
877 	NAND_OP_ADDR_INSTR,
878 	NAND_OP_DATA_IN_INSTR,
879 	NAND_OP_DATA_OUT_INSTR,
880 	NAND_OP_WAITRDY_INSTR,
881 };
882 
883 /**
884  * struct nand_op_instr - Instruction object
885  * @type: the instruction type
886  * @ctx:  extra data associated to the instruction. You'll have to use the
887  *        appropriate element depending on @type
888  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
889  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
890  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
891  *	      or %NAND_OP_DATA_OUT_INSTR
892  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
893  * @delay_ns: delay the controller should apply after the instruction has been
894  *	      issued on the bus. Most modern controllers have internal timings
895  *	      control logic, and in this case, the controller driver can ignore
896  *	      this field.
897  */
898 struct nand_op_instr {
899 	enum nand_op_instr_type type;
900 	union {
901 		struct nand_op_cmd_instr cmd;
902 		struct nand_op_addr_instr addr;
903 		struct nand_op_data_instr data;
904 		struct nand_op_waitrdy_instr waitrdy;
905 	} ctx;
906 	unsigned int delay_ns;
907 };
908 
909 /*
910  * Special handling must be done for the WAITRDY timeout parameter as it usually
911  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
912  * tBERS (during an erase) which all of them are u64 values that cannot be
913  * divided by usual kernel macros and must be handled with the special
914  * DIV_ROUND_UP_ULL() macro.
915  *
916  * Cast to type of dividend is needed here to guarantee that the result won't
917  * be an unsigned long long when the dividend is an unsigned long (or smaller),
918  * which is what the compiler does when it sees ternary operator with 2
919  * different return types (picks the largest type to make sure there's no
920  * loss).
921  */
922 #define __DIVIDE(dividend, divisor) ({						\
923 	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
924 			       DIV_ROUND_UP(dividend, divisor) :		\
925 			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
926 	})
927 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
928 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
929 
930 #define NAND_OP_CMD(id, ns)						\
931 	{								\
932 		.type = NAND_OP_CMD_INSTR,				\
933 		.ctx.cmd.opcode = id,					\
934 		.delay_ns = ns,						\
935 	}
936 
937 #define NAND_OP_ADDR(ncycles, cycles, ns)				\
938 	{								\
939 		.type = NAND_OP_ADDR_INSTR,				\
940 		.ctx.addr = {						\
941 			.naddrs = ncycles,				\
942 			.addrs = cycles,				\
943 		},							\
944 		.delay_ns = ns,						\
945 	}
946 
947 #define NAND_OP_DATA_IN(l, b, ns)					\
948 	{								\
949 		.type = NAND_OP_DATA_IN_INSTR,				\
950 		.ctx.data = {						\
951 			.len = l,					\
952 			.buf.in = b,					\
953 			.force_8bit = false,				\
954 		},							\
955 		.delay_ns = ns,						\
956 	}
957 
958 #define NAND_OP_DATA_OUT(l, b, ns)					\
959 	{								\
960 		.type = NAND_OP_DATA_OUT_INSTR,				\
961 		.ctx.data = {						\
962 			.len = l,					\
963 			.buf.out = b,					\
964 			.force_8bit = false,				\
965 		},							\
966 		.delay_ns = ns,						\
967 	}
968 
969 #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
970 	{								\
971 		.type = NAND_OP_DATA_IN_INSTR,				\
972 		.ctx.data = {						\
973 			.len = l,					\
974 			.buf.in = b,					\
975 			.force_8bit = true,				\
976 		},							\
977 		.delay_ns = ns,						\
978 	}
979 
980 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
981 	{								\
982 		.type = NAND_OP_DATA_OUT_INSTR,				\
983 		.ctx.data = {						\
984 			.len = l,					\
985 			.buf.out = b,					\
986 			.force_8bit = true,				\
987 		},							\
988 		.delay_ns = ns,						\
989 	}
990 
991 #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
992 	{								\
993 		.type = NAND_OP_WAITRDY_INSTR,				\
994 		.ctx.waitrdy.timeout_ms = tout_ms,			\
995 		.delay_ns = ns,						\
996 	}
997 
998 /**
999  * struct nand_subop - a sub operation
1000  * @instrs: array of instructions
1001  * @ninstrs: length of the @instrs array
1002  * @first_instr_start_off: offset to start from for the first instruction
1003  *			   of the sub-operation
1004  * @last_instr_end_off: offset to end at (excluded) for the last instruction
1005  *			of the sub-operation
1006  *
1007  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
1008  * address instructions.
1009  *
1010  * When an operation cannot be handled as is by the NAND controller, it will
1011  * be split by the parser into sub-operations which will be passed to the
1012  * controller driver.
1013  */
1014 struct nand_subop {
1015 	const struct nand_op_instr *instrs;
1016 	unsigned int ninstrs;
1017 	unsigned int first_instr_start_off;
1018 	unsigned int last_instr_end_off;
1019 };
1020 
1021 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
1022 					   unsigned int op_id);
1023 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
1024 					 unsigned int op_id);
1025 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
1026 					   unsigned int op_id);
1027 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
1028 				     unsigned int op_id);
1029 
1030 /**
1031  * struct nand_op_parser_addr_constraints - Constraints for address instructions
1032  * @maxcycles: maximum number of address cycles the controller can issue in a
1033  *	       single step
1034  */
1035 struct nand_op_parser_addr_constraints {
1036 	unsigned int maxcycles;
1037 };
1038 
1039 /**
1040  * struct nand_op_parser_data_constraints - Constraints for data instructions
1041  * @maxlen: maximum data length that the controller can handle in a single step
1042  */
1043 struct nand_op_parser_data_constraints {
1044 	unsigned int maxlen;
1045 };
1046 
1047 /**
1048  * struct nand_op_parser_pattern_elem - One element of a pattern
1049  * @type: the instructuction type
1050  * @optional: whether this element of the pattern is optional or mandatory
1051  * @ctx: address or data constraint
1052  * @ctx.addr: address constraint (number of cycles)
1053  * @ctx.data: data constraint (data length)
1054  */
1055 struct nand_op_parser_pattern_elem {
1056 	enum nand_op_instr_type type;
1057 	bool optional;
1058 	union {
1059 		struct nand_op_parser_addr_constraints addr;
1060 		struct nand_op_parser_data_constraints data;
1061 	} ctx;
1062 };
1063 
1064 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
1065 	{							\
1066 		.type = NAND_OP_CMD_INSTR,			\
1067 		.optional = _opt,				\
1068 	}
1069 
1070 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
1071 	{							\
1072 		.type = NAND_OP_ADDR_INSTR,			\
1073 		.optional = _opt,				\
1074 		.ctx.addr.maxcycles = _maxcycles,		\
1075 	}
1076 
1077 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
1078 	{							\
1079 		.type = NAND_OP_DATA_IN_INSTR,			\
1080 		.optional = _opt,				\
1081 		.ctx.data.maxlen = _maxlen,			\
1082 	}
1083 
1084 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
1085 	{							\
1086 		.type = NAND_OP_DATA_OUT_INSTR,			\
1087 		.optional = _opt,				\
1088 		.ctx.data.maxlen = _maxlen,			\
1089 	}
1090 
1091 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
1092 	{							\
1093 		.type = NAND_OP_WAITRDY_INSTR,			\
1094 		.optional = _opt,				\
1095 	}
1096 
1097 /**
1098  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
1099  * @elems: array of pattern elements
1100  * @nelems: number of pattern elements in @elems array
1101  * @exec: the function that will issue a sub-operation
1102  *
1103  * A pattern is a list of elements, each element reprensenting one instruction
1104  * with its constraints. The pattern itself is used by the core to match NAND
1105  * chip operation with NAND controller operations.
1106  * Once a match between a NAND controller operation pattern and a NAND chip
1107  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
1108  * hook is called so that the controller driver can issue the operation on the
1109  * bus.
1110  *
1111  * Controller drivers should declare as many patterns as they support and pass
1112  * this list of patterns (created with the help of the following macro) to
1113  * the nand_op_parser_exec_op() helper.
1114  */
1115 struct nand_op_parser_pattern {
1116 	const struct nand_op_parser_pattern_elem *elems;
1117 	unsigned int nelems;
1118 	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
1119 };
1120 
1121 #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
1122 	{											\
1123 		.exec = _exec,									\
1124 		.elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
1125 		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
1126 			  sizeof(struct nand_op_parser_pattern_elem),				\
1127 	}
1128 
1129 /**
1130  * struct nand_op_parser - NAND controller operation parser descriptor
1131  * @patterns: array of supported patterns
1132  * @npatterns: length of the @patterns array
1133  *
1134  * The parser descriptor is just an array of supported patterns which will be
1135  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
1136  * NAND operation (or tries to determine if a specific operation is supported).
1137  *
1138  * It is worth mentioning that patterns will be tested in their declaration
1139  * order, and the first match will be taken, so it's important to order patterns
1140  * appropriately so that simple/inefficient patterns are placed at the end of
1141  * the list. Usually, this is where you put single instruction patterns.
1142  */
1143 struct nand_op_parser {
1144 	const struct nand_op_parser_pattern *patterns;
1145 	unsigned int npatterns;
1146 };
1147 
1148 #define NAND_OP_PARSER(...)									\
1149 	{											\
1150 		.patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ },			\
1151 		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
1152 			     sizeof(struct nand_op_parser_pattern),				\
1153 	}
1154 
1155 /**
1156  * struct nand_operation - NAND operation descriptor
1157  * @instrs: array of instructions to execute
1158  * @ninstrs: length of the @instrs array
1159  *
1160  * The actual operation structure that will be passed to chip->exec_op().
1161  */
1162 struct nand_operation {
1163 	const struct nand_op_instr *instrs;
1164 	unsigned int ninstrs;
1165 };
1166 
1167 #define NAND_OPERATION(_instrs)					\
1168 	{							\
1169 		.instrs = _instrs,				\
1170 		.ninstrs = ARRAY_SIZE(_instrs),			\
1171 	}
1172 
1173 int nand_op_parser_exec_op(struct nand_chip *chip,
1174 			   const struct nand_op_parser *parser,
1175 			   const struct nand_operation *op, bool check_only);
1176 
1177 /**
1178  * struct nand_chip - NAND Private Flash Chip Data
1179  * @mtd:		MTD device registered to the MTD framework
1180  * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the
1181  *			flash device
1182  * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the
1183  *			flash device.
1184  * @read_byte:		[REPLACEABLE] read one byte from the chip
1185  * @read_word:		[REPLACEABLE] read one word from the chip
1186  * @write_byte:		[REPLACEABLE] write a single byte to the chip on the
1187  *			low 8 I/O lines
1188  * @write_buf:		[REPLACEABLE] write data from the buffer to the chip
1189  * @read_buf:		[REPLACEABLE] read data from the chip into the buffer
1190  * @select_chip:	[REPLACEABLE] select chip nr
1191  * @block_bad:		[REPLACEABLE] check if a block is bad, using OOB markers
1192  * @block_markbad:	[REPLACEABLE] mark a block bad
1193  * @cmd_ctrl:		[BOARDSPECIFIC] hardwarespecific function for controlling
1194  *			ALE/CLE/nCE. Also used to write command and address
1195  * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accessing
1196  *			device ready/busy line. If set to NULL no access to
1197  *			ready/busy is available and the ready/busy information
1198  *			is read from the chip status register.
1199  * @cmdfunc:		[REPLACEABLE] hardwarespecific function for writing
1200  *			commands to the chip.
1201  * @waitfunc:		[REPLACEABLE] hardwarespecific function for wait on
1202  *			ready.
1203  * @exec_op:		controller specific method to execute NAND operations.
1204  *			This method replaces ->cmdfunc(),
1205  *			->{read,write}_{buf,byte,word}(), ->dev_ready() and
1206  *			->waifunc().
1207  * @setup_read_retry:	[FLASHSPECIFIC] flash (vendor) specific function for
1208  *			setting the read-retry mode. Mostly needed for MLC NAND.
1209  * @ecc:		[BOARDSPECIFIC] ECC control structure
1210  * @buf_align:		minimum buffer alignment required by a platform
1211  * @dummy_controller:	dummy controller implementation for drivers that can
1212  *			only control a single chip
1213  * @erase:		[REPLACEABLE] erase function
1214  * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transferring
1215  *			data from array to read regs (tR).
1216  * @state:		[INTERN] the current state of the NAND device
1217  * @oob_poi:		"poison value buffer," used for laying out OOB data
1218  *			before writing
1219  * @page_shift:		[INTERN] number of address bits in a page (column
1220  *			address bits).
1221  * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
1222  * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
1223  * @chip_shift:		[INTERN] number of address bits in one chip
1224  * @options:		[BOARDSPECIFIC] various chip options. They can partly
1225  *			be set to inform nand_scan about special functionality.
1226  *			See the defines for further explanation.
1227  * @bbt_options:	[INTERN] bad block specific options. All options used
1228  *			here must come from bbm.h. By default, these options
1229  *			will be copied to the appropriate nand_bbt_descr's.
1230  * @badblockpos:	[INTERN] position of the bad block marker in the oob
1231  *			area.
1232  * @badblockbits:	[INTERN] minimum number of set bits in a good block's
1233  *			bad block marker position; i.e., BBM == 11110111b is
1234  *			not bad when badblockbits == 7
1235  * @bits_per_cell:	[INTERN] number of bits per cell. i.e., 1 means SLC.
1236  * @ecc_strength_ds:	[INTERN] ECC correctability from the datasheet.
1237  *			Minimum amount of bit errors per @ecc_step_ds guaranteed
1238  *			to be correctable. If unknown, set to zero.
1239  * @ecc_step_ds:	[INTERN] ECC step required by the @ecc_strength_ds,
1240  *			also from the datasheet. It is the recommended ECC step
1241  *			size, if known; if unknown, set to zero.
1242  * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1243  *			      set to the actually used ONFI mode if the chip is
1244  *			      ONFI compliant or deduced from the datasheet if
1245  *			      the NAND chip is not ONFI compliant.
1246  * @numchips:		[INTERN] number of physical chips
1247  * @chipsize:		[INTERN] the size of one chip for multichip arrays
1248  * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
1249  * @data_buf:		[INTERN] buffer for data, size is (page size + oobsize).
1250  * @pagebuf:		[INTERN] holds the pagenumber which is currently in
1251  *			data_buf.
1252  * @pagebuf_bitflips:	[INTERN] holds the bitflip count for the page which is
1253  *			currently in data_buf.
1254  * @subpagesize:	[INTERN] holds the subpagesize
1255  * @id:			[INTERN] holds NAND ID
1256  * @parameters:		[INTERN] holds generic parameters under an easily
1257  *			readable form.
1258  * @max_bb_per_die:	[INTERN] the max number of bad blocks each die of a
1259  *			this nand device will encounter their life times.
1260  * @blocks_per_die:	[INTERN] The number of PEBs in a die
1261  * @data_interface:	[INTERN] NAND interface timing information
1262  * @read_retries:	[INTERN] the number of read retry modes supported
1263  * @set_features:	[REPLACEABLE] set the NAND chip features
1264  * @get_features:	[REPLACEABLE] get the NAND chip features
1265  * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
1266  *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
1267  *			  means the configuration should not be applied but
1268  *			  only checked.
1269  * @bbt:		[INTERN] bad block table pointer
1270  * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
1271  *			lookup.
1272  * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
1273  * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial
1274  *			bad block scan.
1275  * @controller:		[REPLACEABLE] a pointer to a hardware controller
1276  *			structure which is shared among multiple independent
1277  *			devices.
1278  * @priv:		[OPTIONAL] pointer to private chip data
1279  * @manufacturer:	[INTERN] Contains manufacturer information
1280  * @manufacturer.desc:	[INTERN] Contains manufacturer's description
1281  * @manufacturer.priv:	[INTERN] Contains manufacturer private information
1282  */
1283 
1284 struct nand_chip {
1285 	struct mtd_info mtd;
1286 	void __iomem *IO_ADDR_R;
1287 	void __iomem *IO_ADDR_W;
1288 
1289 	uint8_t (*read_byte)(struct mtd_info *mtd);
1290 	u16 (*read_word)(struct mtd_info *mtd);
1291 	void (*write_byte)(struct mtd_info *mtd, uint8_t byte);
1292 	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
1293 	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
1294 	void (*select_chip)(struct mtd_info *mtd, int chip);
1295 	int (*block_bad)(struct mtd_info *mtd, loff_t ofs);
1296 	int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
1297 	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
1298 	int (*dev_ready)(struct mtd_info *mtd);
1299 	void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column,
1300 			int page_addr);
1301 	int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
1302 	int (*exec_op)(struct nand_chip *chip,
1303 		       const struct nand_operation *op,
1304 		       bool check_only);
1305 	int (*erase)(struct mtd_info *mtd, int page);
1306 	int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip,
1307 			    int feature_addr, uint8_t *subfeature_para);
1308 	int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip,
1309 			    int feature_addr, uint8_t *subfeature_para);
1310 	int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
1311 	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
1312 				    const struct nand_data_interface *conf);
1313 
1314 	int chip_delay;
1315 	unsigned int options;
1316 	unsigned int bbt_options;
1317 
1318 	int page_shift;
1319 	int phys_erase_shift;
1320 	int bbt_erase_shift;
1321 	int chip_shift;
1322 	int numchips;
1323 	uint64_t chipsize;
1324 	int pagemask;
1325 	u8 *data_buf;
1326 	int pagebuf;
1327 	unsigned int pagebuf_bitflips;
1328 	int subpagesize;
1329 	uint8_t bits_per_cell;
1330 	uint16_t ecc_strength_ds;
1331 	uint16_t ecc_step_ds;
1332 	int onfi_timing_mode_default;
1333 	int badblockpos;
1334 	int badblockbits;
1335 
1336 	struct nand_id id;
1337 	struct nand_parameters parameters;
1338 	u16 max_bb_per_die;
1339 	u32 blocks_per_die;
1340 
1341 	struct nand_data_interface data_interface;
1342 
1343 	int read_retries;
1344 
1345 	flstate_t state;
1346 
1347 	uint8_t *oob_poi;
1348 	struct nand_controller *controller;
1349 
1350 	struct nand_ecc_ctrl ecc;
1351 	unsigned long buf_align;
1352 	struct nand_controller dummy_controller;
1353 
1354 	uint8_t *bbt;
1355 	struct nand_bbt_descr *bbt_td;
1356 	struct nand_bbt_descr *bbt_md;
1357 
1358 	struct nand_bbt_descr *badblock_pattern;
1359 
1360 	void *priv;
1361 
1362 	struct {
1363 		const struct nand_manufacturer *desc;
1364 		void *priv;
1365 	} manufacturer;
1366 };
1367 
nand_exec_op(struct nand_chip * chip,const struct nand_operation * op)1368 static inline int nand_exec_op(struct nand_chip *chip,
1369 			       const struct nand_operation *op)
1370 {
1371 	if (!chip->exec_op)
1372 		return -ENOTSUPP;
1373 
1374 	return chip->exec_op(chip, op, false);
1375 }
1376 
1377 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1378 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1379 
nand_set_flash_node(struct nand_chip * chip,struct device_node * np)1380 static inline void nand_set_flash_node(struct nand_chip *chip,
1381 				       struct device_node *np)
1382 {
1383 	mtd_set_of_node(&chip->mtd, np);
1384 }
1385 
nand_get_flash_node(struct nand_chip * chip)1386 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1387 {
1388 	return mtd_get_of_node(&chip->mtd);
1389 }
1390 
mtd_to_nand(struct mtd_info * mtd)1391 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1392 {
1393 	return container_of(mtd, struct nand_chip, mtd);
1394 }
1395 
nand_to_mtd(struct nand_chip * chip)1396 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1397 {
1398 	return &chip->mtd;
1399 }
1400 
nand_get_controller_data(struct nand_chip * chip)1401 static inline void *nand_get_controller_data(struct nand_chip *chip)
1402 {
1403 	return chip->priv;
1404 }
1405 
nand_set_controller_data(struct nand_chip * chip,void * priv)1406 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1407 {
1408 	chip->priv = priv;
1409 }
1410 
nand_set_manufacturer_data(struct nand_chip * chip,void * priv)1411 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1412 					      void *priv)
1413 {
1414 	chip->manufacturer.priv = priv;
1415 }
1416 
nand_get_manufacturer_data(struct nand_chip * chip)1417 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1418 {
1419 	return chip->manufacturer.priv;
1420 }
1421 
1422 /*
1423  * NAND Flash Manufacturer ID Codes
1424  */
1425 #define NAND_MFR_TOSHIBA	0x98
1426 #define NAND_MFR_ESMT		0xc8
1427 #define NAND_MFR_SAMSUNG	0xec
1428 #define NAND_MFR_FUJITSU	0x04
1429 #define NAND_MFR_NATIONAL	0x8f
1430 #define NAND_MFR_RENESAS	0x07
1431 #define NAND_MFR_STMICRO	0x20
1432 #define NAND_MFR_HYNIX		0xad
1433 #define NAND_MFR_MICRON		0x2c
1434 #define NAND_MFR_AMD		0x01
1435 #define NAND_MFR_MACRONIX	0xc2
1436 #define NAND_MFR_EON		0x92
1437 #define NAND_MFR_SANDISK	0x45
1438 #define NAND_MFR_INTEL		0x89
1439 #define NAND_MFR_ATO		0x9b
1440 #define NAND_MFR_WINBOND	0xef
1441 
1442 
1443 /*
1444  * A helper for defining older NAND chips where the second ID byte fully
1445  * defined the chip, including the geometry (chip size, eraseblock size, page
1446  * size). All these chips have 512 bytes NAND page size.
1447  */
1448 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1449 	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1450 	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1451 
1452 /*
1453  * A helper for defining newer chips which report their page size and
1454  * eraseblock size via the extended ID bytes.
1455  *
1456  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1457  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1458  * device ID now only represented a particular total chip size (and voltage,
1459  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1460  * using the same device ID.
1461  */
1462 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1463 	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1464 	  .options = (opts) }
1465 
1466 #define NAND_ECC_INFO(_strength, _step)	\
1467 			{ .strength_ds = (_strength), .step_ds = (_step) }
1468 #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1469 #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1470 
1471 /**
1472  * struct nand_flash_dev - NAND Flash Device ID Structure
1473  * @name: a human-readable name of the NAND chip
1474  * @dev_id: the device ID (the second byte of the full chip ID array)
1475  * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1476  *          memory address as @id[0])
1477  * @dev_id: device ID part of the full chip ID array (refers the same memory
1478  *          address as @id[1])
1479  * @id: full device ID array
1480  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1481  *            well as the eraseblock size) is determined from the extended NAND
1482  *            chip ID array)
1483  * @chipsize: total chip size in MiB
1484  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1485  * @options: stores various chip bit options
1486  * @id_len: The valid length of the @id.
1487  * @oobsize: OOB size
1488  * @ecc: ECC correctability and step information from the datasheet.
1489  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1490  *                   @ecc_strength_ds in nand_chip{}.
1491  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1492  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1493  *               For example, the "4bit ECC for each 512Byte" can be set with
1494  *               NAND_ECC_INFO(4, 512).
1495  * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1496  *			      reset. Should be deduced from timings described
1497  *			      in the datasheet.
1498  *
1499  */
1500 struct nand_flash_dev {
1501 	char *name;
1502 	union {
1503 		struct {
1504 			uint8_t mfr_id;
1505 			uint8_t dev_id;
1506 		};
1507 		uint8_t id[NAND_MAX_ID_LEN];
1508 	};
1509 	unsigned int pagesize;
1510 	unsigned int chipsize;
1511 	unsigned int erasesize;
1512 	unsigned int options;
1513 	uint16_t id_len;
1514 	uint16_t oobsize;
1515 	struct {
1516 		uint16_t strength_ds;
1517 		uint16_t step_ds;
1518 	} ecc;
1519 	int onfi_timing_mode_default;
1520 };
1521 
1522 /**
1523  * struct nand_manufacturer - NAND Flash Manufacturer structure
1524  * @name:	Manufacturer name
1525  * @id:		manufacturer ID code of device.
1526  * @ops:	manufacturer operations
1527 */
1528 struct nand_manufacturer {
1529 	int id;
1530 	char *name;
1531 	const struct nand_manufacturer_ops *ops;
1532 };
1533 
1534 const struct nand_manufacturer *nand_get_manufacturer(u8 id);
1535 
1536 static inline const char *
nand_manufacturer_name(const struct nand_manufacturer * manufacturer)1537 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
1538 {
1539 	return manufacturer ? manufacturer->name : "Unknown";
1540 }
1541 
1542 extern struct nand_flash_dev nand_flash_ids[];
1543 
1544 extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops;
1545 extern const struct nand_manufacturer_ops samsung_nand_manuf_ops;
1546 extern const struct nand_manufacturer_ops hynix_nand_manuf_ops;
1547 extern const struct nand_manufacturer_ops micron_nand_manuf_ops;
1548 extern const struct nand_manufacturer_ops amd_nand_manuf_ops;
1549 extern const struct nand_manufacturer_ops macronix_nand_manuf_ops;
1550 
1551 int nand_create_bbt(struct nand_chip *chip);
1552 int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
1553 int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
1554 int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
1555 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1556 		    int allowbbt);
1557 
1558 /**
1559  * struct platform_nand_chip - chip level device structure
1560  * @nr_chips:		max. number of chips to scan for
1561  * @chip_offset:	chip number offset
1562  * @nr_partitions:	number of partitions pointed to by partitions (or zero)
1563  * @partitions:		mtd partition list
1564  * @chip_delay:		R/B delay value in us
1565  * @options:		Option flags, e.g. 16bit buswidth
1566  * @bbt_options:	BBT option flags, e.g. NAND_BBT_USE_FLASH
1567  * @part_probe_types:	NULL-terminated array of probe types
1568  */
1569 struct platform_nand_chip {
1570 	int nr_chips;
1571 	int chip_offset;
1572 	int nr_partitions;
1573 	struct mtd_partition *partitions;
1574 	int chip_delay;
1575 	unsigned int options;
1576 	unsigned int bbt_options;
1577 	const char **part_probe_types;
1578 };
1579 
1580 /* Keep gcc happy */
1581 struct platform_device;
1582 
1583 /**
1584  * struct platform_nand_ctrl - controller level device structure
1585  * @probe:		platform specific function to probe/setup hardware
1586  * @remove:		platform specific function to remove/teardown hardware
1587  * @dev_ready:		platform specific function to read ready/busy pin
1588  * @select_chip:	platform specific chip select function
1589  * @cmd_ctrl:		platform specific function for controlling
1590  *			ALE/CLE/nCE. Also used to write command and address
1591  * @write_buf:		platform specific function for write buffer
1592  * @read_buf:		platform specific function for read buffer
1593  * @priv:		private data to transport driver specific settings
1594  *
1595  * All fields are optional and depend on the hardware driver requirements
1596  */
1597 struct platform_nand_ctrl {
1598 	int (*probe)(struct platform_device *pdev);
1599 	void (*remove)(struct platform_device *pdev);
1600 	int (*dev_ready)(struct mtd_info *mtd);
1601 	void (*select_chip)(struct mtd_info *mtd, int chip);
1602 	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
1603 	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
1604 	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
1605 	void *priv;
1606 };
1607 
1608 /**
1609  * struct platform_nand_data - container structure for platform-specific data
1610  * @chip:		chip level chip structure
1611  * @ctrl:		controller level device structure
1612  */
1613 struct platform_nand_data {
1614 	struct platform_nand_chip chip;
1615 	struct platform_nand_ctrl ctrl;
1616 };
1617 
1618 /* return the supported asynchronous timing mode. */
onfi_get_async_timing_mode(struct nand_chip * chip)1619 static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
1620 {
1621 	if (!chip->parameters.onfi)
1622 		return ONFI_TIMING_MODE_UNKNOWN;
1623 
1624 	return chip->parameters.onfi->async_timing_mode;
1625 }
1626 
1627 int onfi_fill_data_interface(struct nand_chip *chip,
1628 			     enum nand_data_interface_type type,
1629 			     int timing_mode);
1630 
1631 /*
1632  * Check if it is a SLC nand.
1633  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1634  * We do not distinguish the MLC and TLC now.
1635  */
nand_is_slc(struct nand_chip * chip)1636 static inline bool nand_is_slc(struct nand_chip *chip)
1637 {
1638 	WARN(chip->bits_per_cell == 0,
1639 	     "chip->bits_per_cell is used uninitialized\n");
1640 	return chip->bits_per_cell == 1;
1641 }
1642 
1643 /**
1644  * Check if the opcode's address should be sent only on the lower 8 bits
1645  * @command: opcode to check
1646  */
nand_opcode_8bits(unsigned int command)1647 static inline int nand_opcode_8bits(unsigned int command)
1648 {
1649 	switch (command) {
1650 	case NAND_CMD_READID:
1651 	case NAND_CMD_PARAM:
1652 	case NAND_CMD_GET_FEATURES:
1653 	case NAND_CMD_SET_FEATURES:
1654 		return 1;
1655 	default:
1656 		break;
1657 	}
1658 	return 0;
1659 }
1660 
1661 /* get timing characteristics from ONFI timing mode. */
1662 const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
1663 
1664 int nand_check_erased_ecc_chunk(void *data, int datalen,
1665 				void *ecc, int ecclen,
1666 				void *extraoob, int extraooblen,
1667 				int threshold);
1668 
1669 int nand_ecc_choose_conf(struct nand_chip *chip,
1670 			 const struct nand_ecc_caps *caps, int oobavail);
1671 
1672 /* Default write_oob implementation */
1673 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
1674 
1675 /* Default write_oob syndrome implementation */
1676 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1677 			    int page);
1678 
1679 /* Default read_oob implementation */
1680 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
1681 
1682 /* Default read_oob syndrome implementation */
1683 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1684 			   int page);
1685 
1686 /* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */
1687 int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
1688 int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
1689 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1690 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
1691 				  int addr, u8 *subfeature_param);
1692 
1693 /* Default read_page_raw implementation */
1694 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1695 		       uint8_t *buf, int oob_required, int page);
1696 int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
1697 			       u8 *buf, int oob_required, int page);
1698 
1699 /* Default write_page_raw implementation */
1700 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1701 			const uint8_t *buf, int oob_required, int page);
1702 int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
1703 				const u8 *buf, int oob_required, int page);
1704 
1705 /* Reset and initialize a NAND device */
1706 int nand_reset(struct nand_chip *chip, int chipnr);
1707 
1708 /* NAND operation helpers */
1709 int nand_reset_op(struct nand_chip *chip);
1710 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1711 		   unsigned int len);
1712 int nand_status_op(struct nand_chip *chip, u8 *status);
1713 int nand_exit_status_op(struct nand_chip *chip);
1714 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1715 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1716 		      unsigned int offset_in_page, void *buf, unsigned int len);
1717 int nand_change_read_column_op(struct nand_chip *chip,
1718 			       unsigned int offset_in_page, void *buf,
1719 			       unsigned int len, bool force_8bit);
1720 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1721 		     unsigned int offset_in_page, void *buf, unsigned int len);
1722 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1723 			    unsigned int offset_in_page, const void *buf,
1724 			    unsigned int len);
1725 int nand_prog_page_end_op(struct nand_chip *chip);
1726 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1727 		      unsigned int offset_in_page, const void *buf,
1728 		      unsigned int len);
1729 int nand_change_write_column_op(struct nand_chip *chip,
1730 				unsigned int offset_in_page, const void *buf,
1731 				unsigned int len, bool force_8bit);
1732 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1733 		      bool force_8bit);
1734 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1735 		       unsigned int len, bool force_8bit);
1736 
1737 /*
1738  * Free resources held by the NAND device, must be called on error after a
1739  * sucessful nand_scan().
1740  */
1741 void nand_cleanup(struct nand_chip *chip);
1742 /* Unregister the MTD device and calls nand_cleanup() */
1743 void nand_release(struct mtd_info *mtd);
1744 
1745 /* Default extended ID decoding function */
1746 void nand_decode_ext_id(struct nand_chip *chip);
1747 
1748 /*
1749  * External helper for controller drivers that have to implement the WAITRDY
1750  * instruction and have no physical pin to check it.
1751  */
1752 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1753 
1754 #endif /* __LINUX_MTD_RAWNAND_H */
1755