1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>	/* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31 
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/time.h>
41 
42 #include <asm/octeon/octeon.h>
43 #include <asm/octeon/pci-octeon.h>
44 #include <asm/octeon/cvmx-rst-defs.h>
45 
46 /*
47  * TRUE for devices having registers with little-endian byte
48  * order, FALSE for registers with native-endian byte order.
49  * PCI mandates little-endian, USB and SATA are configuraable,
50  * but we chose little-endian for these.
51  */
52 const bool octeon_should_swizzle_table[256] = {
53 	[0x00] = true,	/* bootbus/CF */
54 	[0x1b] = true,	/* PCI mmio window */
55 	[0x1c] = true,	/* PCI mmio window */
56 	[0x1d] = true,	/* PCI mmio window */
57 	[0x1e] = true,	/* PCI mmio window */
58 	[0x68] = true,	/* OCTEON III USB */
59 	[0x69] = true,	/* OCTEON III USB */
60 	[0x6c] = true,	/* OCTEON III SATA */
61 	[0x6f] = true,	/* OCTEON II USB */
62 };
63 EXPORT_SYMBOL(octeon_should_swizzle_table);
64 
65 #ifdef CONFIG_PCI
66 extern void pci_console_init(const char *arg);
67 #endif
68 
69 static unsigned long long max_memory = ULLONG_MAX;
70 static unsigned long long reserve_low_mem;
71 
72 DEFINE_SEMAPHORE(octeon_bootbus_sem);
73 EXPORT_SYMBOL(octeon_bootbus_sem);
74 
75 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
76 
77 struct cvmx_bootinfo *octeon_bootinfo;
78 EXPORT_SYMBOL(octeon_bootinfo);
79 
80 #ifdef CONFIG_KEXEC
81 #ifdef CONFIG_SMP
82 /*
83  * Wait for relocation code is prepared and send
84  * secondary CPUs to spin until kernel is relocated.
85  */
octeon_kexec_smp_down(void * ignored)86 static void octeon_kexec_smp_down(void *ignored)
87 {
88 	int cpu = smp_processor_id();
89 
90 	local_irq_disable();
91 	set_cpu_online(cpu, false);
92 	while (!atomic_read(&kexec_ready_to_reboot))
93 		cpu_relax();
94 
95 	asm volatile (
96 	"	sync						\n"
97 	"	synci	($0)					\n");
98 
99 	relocated_kexec_smp_wait(NULL);
100 }
101 #endif
102 
103 #define OCTEON_DDR0_BASE    (0x0ULL)
104 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
105 #define OCTEON_DDR1_BASE    (0x410000000ULL)
106 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
107 #define OCTEON_DDR2_BASE    (0x020000000ULL)
108 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
109 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
110 
111 static struct kimage *kimage_ptr;
112 
kexec_bootmem_init(uint64_t mem_size,uint32_t low_reserved_bytes)113 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
114 {
115 	int64_t addr;
116 	struct cvmx_bootmem_desc *bootmem_desc;
117 
118 	bootmem_desc = cvmx_bootmem_get_desc();
119 
120 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
121 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
122 		pr_err("Error: requested memory too large,"
123 		       "truncating to maximum size\n");
124 	}
125 
126 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
127 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
128 
129 	addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
130 	bootmem_desc->head_addr = 0;
131 
132 	if (mem_size <= OCTEON_DDR0_SIZE) {
133 		__cvmx_bootmem_phy_free(addr,
134 				mem_size - reserve_low_mem -
135 				low_reserved_bytes, 0);
136 		return;
137 	}
138 
139 	__cvmx_bootmem_phy_free(addr,
140 			OCTEON_DDR0_SIZE - reserve_low_mem -
141 			low_reserved_bytes, 0);
142 
143 	mem_size -= OCTEON_DDR0_SIZE;
144 
145 	if (mem_size > OCTEON_DDR1_SIZE) {
146 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
147 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
148 				mem_size - OCTEON_DDR1_SIZE, 0);
149 	} else
150 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
151 }
152 
octeon_kexec_prepare(struct kimage * image)153 static int octeon_kexec_prepare(struct kimage *image)
154 {
155 	int i;
156 	char *bootloader = "kexec";
157 
158 	octeon_boot_desc_ptr->argc = 0;
159 	for (i = 0; i < image->nr_segments; i++) {
160 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
161 				strlen(bootloader))) {
162 			/*
163 			 * convert command line string to array
164 			 * of parameters (as bootloader does).
165 			 */
166 			int argc = 0, offt;
167 			char *str = (char *)image->segment[i].buf;
168 			char *ptr = strchr(str, ' ');
169 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
170 				*ptr = '\0';
171 				if (ptr[1] != ' ') {
172 					offt = (int)(ptr - str + 1);
173 					octeon_boot_desc_ptr->argv[argc] =
174 						image->segment[i].mem + offt;
175 					argc++;
176 				}
177 				ptr = strchr(ptr + 1, ' ');
178 			}
179 			octeon_boot_desc_ptr->argc = argc;
180 			break;
181 		}
182 	}
183 
184 	/*
185 	 * Information about segments will be needed during pre-boot memory
186 	 * initialization.
187 	 */
188 	kimage_ptr = image;
189 	return 0;
190 }
191 
octeon_generic_shutdown(void)192 static void octeon_generic_shutdown(void)
193 {
194 	int i;
195 #ifdef CONFIG_SMP
196 	int cpu;
197 #endif
198 	struct cvmx_bootmem_desc *bootmem_desc;
199 	void *named_block_array_ptr;
200 
201 	bootmem_desc = cvmx_bootmem_get_desc();
202 	named_block_array_ptr =
203 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
204 
205 #ifdef CONFIG_SMP
206 	/* disable watchdogs */
207 	for_each_online_cpu(cpu)
208 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
209 #else
210 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
211 #endif
212 	if (kimage_ptr != kexec_crash_image) {
213 		memset(named_block_array_ptr,
214 			0x0,
215 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
216 			sizeof(struct cvmx_bootmem_named_block_desc));
217 		/*
218 		 * Mark all memory (except low 0x100000 bytes) as free.
219 		 * It is the same thing that bootloader does.
220 		 */
221 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
222 				0x100000);
223 		/*
224 		 * Allocate all segments to avoid their corruption during boot.
225 		 */
226 		for (i = 0; i < kimage_ptr->nr_segments; i++)
227 			cvmx_bootmem_alloc_address(
228 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
229 				kimage_ptr->segment[i].mem - PAGE_SIZE,
230 				PAGE_SIZE);
231 	} else {
232 		/*
233 		 * Do not mark all memory as free. Free only named sections
234 		 * leaving the rest of memory unchanged.
235 		 */
236 		struct cvmx_bootmem_named_block_desc *ptr =
237 			(struct cvmx_bootmem_named_block_desc *)
238 			named_block_array_ptr;
239 
240 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
241 			if (ptr[i].size)
242 				cvmx_bootmem_free_named(ptr[i].name);
243 	}
244 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
245 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
246 #ifdef CONFIG_SMP
247 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
248 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249 #endif
250 }
251 
octeon_shutdown(void)252 static void octeon_shutdown(void)
253 {
254 	octeon_generic_shutdown();
255 #ifdef CONFIG_SMP
256 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
257 	smp_wmb();
258 	while (num_online_cpus() > 1) {
259 		cpu_relax();
260 		mdelay(1);
261 	}
262 #endif
263 }
264 
octeon_crash_shutdown(struct pt_regs * regs)265 static void octeon_crash_shutdown(struct pt_regs *regs)
266 {
267 	octeon_generic_shutdown();
268 	default_machine_crash_shutdown(regs);
269 }
270 
271 #ifdef CONFIG_SMP
octeon_crash_smp_send_stop(void)272 void octeon_crash_smp_send_stop(void)
273 {
274 	int cpu;
275 
276 	/* disable watchdogs */
277 	for_each_online_cpu(cpu)
278 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
279 }
280 #endif
281 
282 #endif /* CONFIG_KEXEC */
283 
284 #ifdef CONFIG_CAVIUM_RESERVE32
285 uint64_t octeon_reserve32_memory;
286 EXPORT_SYMBOL(octeon_reserve32_memory);
287 #endif
288 
289 #ifdef CONFIG_KEXEC
290 /* crashkernel cmdline parameter is parsed _after_ memory setup
291  * we also parse it here (workaround for EHB5200) */
292 static uint64_t crashk_size, crashk_base;
293 #endif
294 
295 static int octeon_uart;
296 
297 extern asmlinkage void handle_int(void);
298 
299 /**
300  * Return non zero if we are currently running in the Octeon simulator
301  *
302  * Returns
303  */
octeon_is_simulation(void)304 int octeon_is_simulation(void)
305 {
306 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
307 }
308 EXPORT_SYMBOL(octeon_is_simulation);
309 
310 /**
311  * Return true if Octeon is in PCI Host mode. This means
312  * Linux can control the PCI bus.
313  *
314  * Returns Non zero if Octeon in host mode.
315  */
octeon_is_pci_host(void)316 int octeon_is_pci_host(void)
317 {
318 #ifdef CONFIG_PCI
319 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
320 #else
321 	return 0;
322 #endif
323 }
324 
325 /**
326  * Get the clock rate of Octeon
327  *
328  * Returns Clock rate in HZ
329  */
octeon_get_clock_rate(void)330 uint64_t octeon_get_clock_rate(void)
331 {
332 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
333 
334 	return sysinfo->cpu_clock_hz;
335 }
336 EXPORT_SYMBOL(octeon_get_clock_rate);
337 
338 static u64 octeon_io_clock_rate;
339 
octeon_get_io_clock_rate(void)340 u64 octeon_get_io_clock_rate(void)
341 {
342 	return octeon_io_clock_rate;
343 }
344 EXPORT_SYMBOL(octeon_get_io_clock_rate);
345 
346 
347 /**
348  * Write to the LCD display connected to the bootbus. This display
349  * exists on most Cavium evaluation boards. If it doesn't exist, then
350  * this function doesn't do anything.
351  *
352  * @s:	    String to write
353  */
octeon_write_lcd(const char * s)354 void octeon_write_lcd(const char *s)
355 {
356 	if (octeon_bootinfo->led_display_base_addr) {
357 		void __iomem *lcd_address =
358 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
359 					8);
360 		int i;
361 		for (i = 0; i < 8; i++, s++) {
362 			if (*s)
363 				iowrite8(*s, lcd_address + i);
364 			else
365 				iowrite8(' ', lcd_address + i);
366 		}
367 		iounmap(lcd_address);
368 	}
369 }
370 
371 /**
372  * Return the console uart passed by the bootloader
373  *
374  * Returns uart	  (0 or 1)
375  */
octeon_get_boot_uart(void)376 int octeon_get_boot_uart(void)
377 {
378 	return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
379 		1 : 0;
380 }
381 
382 /**
383  * Get the coremask Linux was booted on.
384  *
385  * Returns Core mask
386  */
octeon_get_boot_coremask(void)387 int octeon_get_boot_coremask(void)
388 {
389 	return octeon_boot_desc_ptr->core_mask;
390 }
391 
392 /**
393  * Check the hardware BIST results for a CPU
394  */
octeon_check_cpu_bist(void)395 void octeon_check_cpu_bist(void)
396 {
397 	const int coreid = cvmx_get_core_num();
398 	unsigned long long mask;
399 	unsigned long long bist_val;
400 
401 	/* Check BIST results for COP0 registers */
402 	mask = 0x1f00000000ull;
403 	bist_val = read_octeon_c0_icacheerr();
404 	if (bist_val & mask)
405 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
406 		       coreid, bist_val);
407 
408 	bist_val = read_octeon_c0_dcacheerr();
409 	if (bist_val & 1)
410 		pr_err("Core%d L1 Dcache parity error: "
411 		       "CacheErr(dcache) = 0x%llx\n",
412 		       coreid, bist_val);
413 
414 	mask = 0xfc00000000000000ull;
415 	bist_val = read_c0_cvmmemctl();
416 	if (bist_val & mask)
417 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
418 		       coreid, bist_val);
419 
420 	write_octeon_c0_dcacheerr(0);
421 }
422 
423 /**
424  * Reboot Octeon
425  *
426  * @command: Command to pass to the bootloader. Currently ignored.
427  */
octeon_restart(char * command)428 static void octeon_restart(char *command)
429 {
430 	/* Disable all watchdogs before soft reset. They don't get cleared */
431 #ifdef CONFIG_SMP
432 	int cpu;
433 	for_each_online_cpu(cpu)
434 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
435 #else
436 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
437 #endif
438 
439 	mb();
440 	while (1)
441 		if (OCTEON_IS_OCTEON3())
442 			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
443 		else
444 			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
445 }
446 
447 
448 /**
449  * Permanently stop a core.
450  *
451  * @arg: Ignored.
452  */
octeon_kill_core(void * arg)453 static void octeon_kill_core(void *arg)
454 {
455 	if (octeon_is_simulation())
456 		/* A break instruction causes the simulator stop a core */
457 		asm volatile ("break" ::: "memory");
458 
459 	local_irq_disable();
460 	/* Disable watchdog on this core. */
461 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
462 	/* Spin in a low power mode. */
463 	while (true)
464 		asm volatile ("wait" ::: "memory");
465 }
466 
467 
468 /**
469  * Halt the system
470  */
octeon_halt(void)471 static void octeon_halt(void)
472 {
473 	smp_call_function(octeon_kill_core, NULL, 0);
474 
475 	switch (octeon_bootinfo->board_type) {
476 	case CVMX_BOARD_TYPE_NAO38:
477 		/* Driving a 1 to GPIO 12 shuts off this board */
478 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
479 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
480 		break;
481 	default:
482 		octeon_write_lcd("PowerOff");
483 		break;
484 	}
485 
486 	octeon_kill_core(NULL);
487 }
488 
489 static char __read_mostly octeon_system_type[80];
490 
init_octeon_system_type(void)491 static void __init init_octeon_system_type(void)
492 {
493 	char const *board_type;
494 
495 	board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
496 	if (board_type == NULL) {
497 		struct device_node *root;
498 		int ret;
499 
500 		root = of_find_node_by_path("/");
501 		ret = of_property_read_string(root, "model", &board_type);
502 		of_node_put(root);
503 		if (ret)
504 			board_type = "Unsupported Board";
505 	}
506 
507 	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
508 		 board_type, octeon_model_get_string(read_c0_prid()));
509 }
510 
511 /**
512  * Return a string representing the system type
513  *
514  * Returns
515  */
octeon_board_type_string(void)516 const char *octeon_board_type_string(void)
517 {
518 	return octeon_system_type;
519 }
520 
521 const char *get_system_type(void)
522 	__attribute__ ((alias("octeon_board_type_string")));
523 
octeon_user_io_init(void)524 void octeon_user_io_init(void)
525 {
526 	union octeon_cvmemctl cvmmemctl;
527 
528 	/* Get the current settings for CP0_CVMMEMCTL_REG */
529 	cvmmemctl.u64 = read_c0_cvmmemctl();
530 	/* R/W If set, marked write-buffer entries time out the same
531 	 * as as other entries; if clear, marked write-buffer entries
532 	 * use the maximum timeout. */
533 	cvmmemctl.s.dismarkwblongto = 1;
534 	/* R/W If set, a merged store does not clear the write-buffer
535 	 * entry timeout state. */
536 	cvmmemctl.s.dismrgclrwbto = 0;
537 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
538 	 * word location for an IOBDMA. The other 8 bits come from the
539 	 * SCRADDR field of the IOBDMA. */
540 	cvmmemctl.s.iobdmascrmsb = 0;
541 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
542 	 * clear, SYNCWS and SYNCS only order unmarked
543 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
544 	 * set. */
545 	cvmmemctl.s.syncwsmarked = 0;
546 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
547 	cvmmemctl.s.dissyncws = 0;
548 	/* R/W If set, no stall happens on write buffer full. */
549 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
550 		cvmmemctl.s.diswbfst = 1;
551 	else
552 		cvmmemctl.s.diswbfst = 0;
553 	/* R/W If set (and SX set), supervisor-level loads/stores can
554 	 * use XKPHYS addresses with <48>==0 */
555 	cvmmemctl.s.xkmemenas = 0;
556 
557 	/* R/W If set (and UX set), user-level loads/stores can use
558 	 * XKPHYS addresses with VA<48>==0 */
559 	cvmmemctl.s.xkmemenau = 0;
560 
561 	/* R/W If set (and SX set), supervisor-level loads/stores can
562 	 * use XKPHYS addresses with VA<48>==1 */
563 	cvmmemctl.s.xkioenas = 0;
564 
565 	/* R/W If set (and UX set), user-level loads/stores can use
566 	 * XKPHYS addresses with VA<48>==1 */
567 	cvmmemctl.s.xkioenau = 0;
568 
569 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
570 	 * when this is set) RW, reset to 0. */
571 	cvmmemctl.s.allsyncw = 0;
572 
573 	/* R/W If set, no stores merge, and all stores reach the
574 	 * coherent bus in order. */
575 	cvmmemctl.s.nomerge = 0;
576 	/* R/W Selects the bit in the counter used for DID time-outs 0
577 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
578 	 * between 1x and 2x this interval. For example, with
579 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
580 	cvmmemctl.s.didtto = 0;
581 	/* R/W If set, the (mem) CSR clock never turns off. */
582 	cvmmemctl.s.csrckalwys = 0;
583 	/* R/W If set, mclk never turns off. */
584 	cvmmemctl.s.mclkalwys = 0;
585 	/* R/W Selects the bit in the counter used for write buffer
586 	 * flush time-outs (WBFLT+11) is the bit position in an
587 	 * internal counter used to determine expiration. The write
588 	 * buffer expires between 1x and 2x this interval. For
589 	 * example, with WBFLT = 0, a write buffer expires between 2K
590 	 * and 4K cycles after the write buffer entry is allocated. */
591 	cvmmemctl.s.wbfltime = 0;
592 	/* R/W If set, do not put Istream in the L2 cache. */
593 	cvmmemctl.s.istrnol2 = 0;
594 
595 	/*
596 	 * R/W The write buffer threshold. As per erratum Core-14752
597 	 * for CN63XX, a sc/scd might fail if the write buffer is
598 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
599 	 * write buffer ever being full and triggering the erratum.
600 	 */
601 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
602 		cvmmemctl.s.wbthresh = 4;
603 	else
604 		cvmmemctl.s.wbthresh = 10;
605 
606 	/* R/W If set, CVMSEG is available for loads/stores in
607 	 * kernel/debug mode. */
608 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
609 	cvmmemctl.s.cvmsegenak = 1;
610 #else
611 	cvmmemctl.s.cvmsegenak = 0;
612 #endif
613 	/* R/W If set, CVMSEG is available for loads/stores in
614 	 * supervisor mode. */
615 	cvmmemctl.s.cvmsegenas = 0;
616 	/* R/W If set, CVMSEG is available for loads/stores in user
617 	 * mode. */
618 	cvmmemctl.s.cvmsegenau = 0;
619 
620 	write_c0_cvmmemctl(cvmmemctl.u64);
621 
622 	/* Setup of CVMSEG is done in kernel-entry-init.h */
623 	if (smp_processor_id() == 0)
624 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
625 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
626 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
627 
628 	if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
629 		union cvmx_iob_fau_timeout fau_timeout;
630 
631 		/* Set a default for the hardware timeouts */
632 		fau_timeout.u64 = 0;
633 		fau_timeout.s.tout_val = 0xfff;
634 		/* Disable tagwait FAU timeout */
635 		fau_timeout.s.tout_enb = 0;
636 		cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
637 	}
638 
639 	if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
640 	     !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
641 	    OCTEON_IS_MODEL(OCTEON_CN70XX)) {
642 		union cvmx_pow_nw_tim nm_tim;
643 
644 		nm_tim.u64 = 0;
645 		/* 4096 cycles */
646 		nm_tim.s.nw_tim = 3;
647 		cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
648 	}
649 
650 	write_octeon_c0_icacheerr(0);
651 	write_c0_derraddr1(0);
652 }
653 
654 /**
655  * Early entry point for arch setup
656  */
prom_init(void)657 void __init prom_init(void)
658 {
659 	struct cvmx_sysinfo *sysinfo;
660 	const char *arg;
661 	char *p;
662 	int i;
663 	u64 t;
664 	int argc;
665 #ifdef CONFIG_CAVIUM_RESERVE32
666 	int64_t addr = -1;
667 #endif
668 	/*
669 	 * The bootloader passes a pointer to the boot descriptor in
670 	 * $a3, this is available as fw_arg3.
671 	 */
672 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
673 	octeon_bootinfo =
674 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
675 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
676 
677 	sysinfo = cvmx_sysinfo_get();
678 	memset(sysinfo, 0, sizeof(*sysinfo));
679 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
680 	sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
681 
682 	if ((octeon_bootinfo->major_version > 1) ||
683 	    (octeon_bootinfo->major_version == 1 &&
684 	     octeon_bootinfo->minor_version >= 4))
685 		cvmx_coremask_copy(&sysinfo->core_mask,
686 				   &octeon_bootinfo->ext_core_mask);
687 	else
688 		cvmx_coremask_set64(&sysinfo->core_mask,
689 				    octeon_bootinfo->core_mask);
690 
691 	/* Some broken u-boot pass garbage in upper bits, clear them out */
692 	if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
693 		for (i = 512; i < 1024; i++)
694 			cvmx_coremask_clear_core(&sysinfo->core_mask, i);
695 
696 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
697 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
698 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
699 	sysinfo->board_type = octeon_bootinfo->board_type;
700 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
701 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
702 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
703 	       sizeof(sysinfo->mac_addr_base));
704 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
705 	memcpy(sysinfo->board_serial_number,
706 	       octeon_bootinfo->board_serial_number,
707 	       sizeof(sysinfo->board_serial_number));
708 	sysinfo->compact_flash_common_base_addr =
709 		octeon_bootinfo->compact_flash_common_base_addr;
710 	sysinfo->compact_flash_attribute_base_addr =
711 		octeon_bootinfo->compact_flash_attribute_base_addr;
712 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
713 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
714 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
715 
716 	if (OCTEON_IS_OCTEON2()) {
717 		/* I/O clock runs at a different rate than the CPU. */
718 		union cvmx_mio_rst_boot rst_boot;
719 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
720 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
721 	} else if (OCTEON_IS_OCTEON3()) {
722 		/* I/O clock runs at a different rate than the CPU. */
723 		union cvmx_rst_boot rst_boot;
724 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
725 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
726 	} else {
727 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
728 	}
729 
730 	t = read_c0_cvmctl();
731 	if ((t & (1ull << 27)) == 0) {
732 		/*
733 		 * Setup the multiplier save/restore code if
734 		 * CvmCtl[NOMUL] clear.
735 		 */
736 		void *save;
737 		void *save_end;
738 		void *restore;
739 		void *restore_end;
740 		int save_len;
741 		int restore_len;
742 		int save_max = (char *)octeon_mult_save_end -
743 			(char *)octeon_mult_save;
744 		int restore_max = (char *)octeon_mult_restore_end -
745 			(char *)octeon_mult_restore;
746 		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
747 			save = octeon_mult_save3;
748 			save_end = octeon_mult_save3_end;
749 			restore = octeon_mult_restore3;
750 			restore_end = octeon_mult_restore3_end;
751 		} else {
752 			save = octeon_mult_save2;
753 			save_end = octeon_mult_save2_end;
754 			restore = octeon_mult_restore2;
755 			restore_end = octeon_mult_restore2_end;
756 		}
757 		save_len = (char *)save_end - (char *)save;
758 		restore_len = (char *)restore_end - (char *)restore;
759 		if (!WARN_ON(save_len > save_max ||
760 				restore_len > restore_max)) {
761 			memcpy(octeon_mult_save, save, save_len);
762 			memcpy(octeon_mult_restore, restore, restore_len);
763 		}
764 	}
765 
766 	/*
767 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
768 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
769 	 */
770 	if (!octeon_is_simulation() &&
771 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
772 		cvmx_write_csr(CVMX_LED_EN, 0);
773 		cvmx_write_csr(CVMX_LED_PRT, 0);
774 		cvmx_write_csr(CVMX_LED_DBG, 0);
775 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
776 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
777 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
778 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
779 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
780 		cvmx_write_csr(CVMX_LED_EN, 1);
781 	}
782 #ifdef CONFIG_CAVIUM_RESERVE32
783 	/*
784 	 * We need to temporarily allocate all memory in the reserve32
785 	 * region. This makes sure the kernel doesn't allocate this
786 	 * memory when it is getting memory from the
787 	 * bootloader. Later, after the memory allocations are
788 	 * complete, the reserve32 will be freed.
789 	 *
790 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
791 	 * is in case we later use hugetlb entries with it.
792 	 */
793 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
794 						0, 0, 2 << 20,
795 						"CAVIUM_RESERVE32", 0);
796 	if (addr < 0)
797 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
798 	else
799 		octeon_reserve32_memory = addr;
800 #endif
801 
802 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
803 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
804 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
805 	} else {
806 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
807 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
808 		/* TLB refill */
809 		cvmx_l2c_lock_mem_region(ebase, 0x100);
810 #endif
811 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
812 		/* General exception */
813 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
814 #endif
815 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
816 		/* Interrupt handler */
817 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
818 #endif
819 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
820 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
821 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
822 #endif
823 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
824 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
825 #endif
826 	}
827 #endif
828 
829 	octeon_check_cpu_bist();
830 
831 	octeon_uart = octeon_get_boot_uart();
832 
833 #ifdef CONFIG_SMP
834 	octeon_write_lcd("LinuxSMP");
835 #else
836 	octeon_write_lcd("Linux");
837 #endif
838 
839 	octeon_setup_delays();
840 
841 	/*
842 	 * BIST should always be enabled when doing a soft reset. L2
843 	 * Cache locking for instance is not cleared unless BIST is
844 	 * enabled.  Unfortunately due to a chip errata G-200 for
845 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
846 	 */
847 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
848 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
849 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
850 	else
851 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
852 
853 	/* Default to 64MB in the simulator to speed things up */
854 	if (octeon_is_simulation())
855 		max_memory = 64ull << 20;
856 
857 	arg = strstr(arcs_cmdline, "mem=");
858 	if (arg) {
859 		max_memory = memparse(arg + 4, &p);
860 		if (max_memory == 0)
861 			max_memory = 32ull << 30;
862 		if (*p == '@')
863 			reserve_low_mem = memparse(p + 1, &p);
864 	}
865 
866 	arcs_cmdline[0] = 0;
867 	argc = octeon_boot_desc_ptr->argc;
868 	for (i = 0; i < argc; i++) {
869 		const char *arg =
870 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
871 		if ((strncmp(arg, "MEM=", 4) == 0) ||
872 		    (strncmp(arg, "mem=", 4) == 0)) {
873 			max_memory = memparse(arg + 4, &p);
874 			if (max_memory == 0)
875 				max_memory = 32ull << 30;
876 			if (*p == '@')
877 				reserve_low_mem = memparse(p + 1, &p);
878 #ifdef CONFIG_KEXEC
879 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
880 			crashk_size = memparse(arg+12, &p);
881 			if (*p == '@')
882 				crashk_base = memparse(p+1, &p);
883 			strcat(arcs_cmdline, " ");
884 			strcat(arcs_cmdline, arg);
885 			/*
886 			 * To do: switch parsing to new style, something like:
887 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
888 			 *		  &crashk_size, &crashk_base);
889 			 */
890 #endif
891 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
892 			   sizeof(arcs_cmdline) - 1) {
893 			strcat(arcs_cmdline, " ");
894 			strcat(arcs_cmdline, arg);
895 		}
896 	}
897 
898 	if (strstr(arcs_cmdline, "console=") == NULL) {
899 		if (octeon_uart == 1)
900 			strcat(arcs_cmdline, " console=ttyS1,115200");
901 		else
902 			strcat(arcs_cmdline, " console=ttyS0,115200");
903 	}
904 
905 	mips_hpt_frequency = octeon_get_clock_rate();
906 
907 	octeon_init_cvmcount();
908 
909 	_machine_restart = octeon_restart;
910 	_machine_halt = octeon_halt;
911 
912 #ifdef CONFIG_KEXEC
913 	_machine_kexec_shutdown = octeon_shutdown;
914 	_machine_crash_shutdown = octeon_crash_shutdown;
915 	_machine_kexec_prepare = octeon_kexec_prepare;
916 #ifdef CONFIG_SMP
917 	_crash_smp_send_stop = octeon_crash_smp_send_stop;
918 #endif
919 #endif
920 
921 	octeon_user_io_init();
922 	octeon_setup_smp();
923 }
924 
925 /* Exclude a single page from the regions obtained in plat_mem_setup. */
926 #ifndef CONFIG_CRASH_DUMP
memory_exclude_page(u64 addr,u64 * mem,u64 * size)927 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
928 {
929 	if (addr > *mem && addr < *mem + *size) {
930 		u64 inc = addr - *mem;
931 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
932 		*mem += inc;
933 		*size -= inc;
934 	}
935 
936 	if (addr == *mem && *size > PAGE_SIZE) {
937 		*mem += PAGE_SIZE;
938 		*size -= PAGE_SIZE;
939 	}
940 }
941 #endif /* CONFIG_CRASH_DUMP */
942 
fw_init_cmdline(void)943 void __init fw_init_cmdline(void)
944 {
945 	int i;
946 
947 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
948 	for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
949 		const char *arg =
950 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
951 		if (strlen(arcs_cmdline) + strlen(arg) + 1 <
952 			   sizeof(arcs_cmdline) - 1) {
953 			strcat(arcs_cmdline, " ");
954 			strcat(arcs_cmdline, arg);
955 		}
956 	}
957 }
958 
plat_get_fdt(void)959 void __init *plat_get_fdt(void)
960 {
961 	octeon_bootinfo =
962 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
963 	return phys_to_virt(octeon_bootinfo->fdt_addr);
964 }
965 
plat_mem_setup(void)966 void __init plat_mem_setup(void)
967 {
968 	uint64_t mem_alloc_size;
969 	uint64_t total;
970 	uint64_t crashk_end;
971 #ifndef CONFIG_CRASH_DUMP
972 	int64_t memory;
973 	uint64_t kernel_start;
974 	uint64_t kernel_size;
975 #endif
976 
977 	total = 0;
978 	crashk_end = 0;
979 
980 	/*
981 	 * The Mips memory init uses the first memory location for
982 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
983 	 * verify that the size is big enough for the final
984 	 * vectors. Making the smallest chuck 4MB seems to be enough
985 	 * to consistently work.
986 	 */
987 	mem_alloc_size = 4 << 20;
988 	if (mem_alloc_size > max_memory)
989 		mem_alloc_size = max_memory;
990 
991 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
992 #ifdef CONFIG_CRASH_DUMP
993 	add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
994 	total += max_memory;
995 #else
996 #ifdef CONFIG_KEXEC
997 	if (crashk_size > 0) {
998 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
999 		crashk_end = crashk_base + crashk_size;
1000 	}
1001 #endif
1002 	/*
1003 	 * When allocating memory, we want incrementing addresses from
1004 	 * bootmem_alloc so the code in add_memory_region can merge
1005 	 * regions next to each other.
1006 	 */
1007 	cvmx_bootmem_lock();
1008 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
1009 		&& (total < max_memory)) {
1010 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1011 						__pa_symbol(&_end), -1,
1012 						0x100000,
1013 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
1014 		if (memory >= 0) {
1015 			u64 size = mem_alloc_size;
1016 #ifdef CONFIG_KEXEC
1017 			uint64_t end;
1018 #endif
1019 
1020 			/*
1021 			 * exclude a page at the beginning and end of
1022 			 * the 256MB PCIe 'hole' so the kernel will not
1023 			 * try to allocate multi-page buffers that
1024 			 * span the discontinuity.
1025 			 */
1026 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1027 					    &memory, &size);
1028 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1029 					    CVMX_PCIE_BAR1_PHYS_SIZE,
1030 					    &memory, &size);
1031 #ifdef CONFIG_KEXEC
1032 			end = memory + mem_alloc_size;
1033 
1034 			/*
1035 			 * This function automatically merges address regions
1036 			 * next to each other if they are received in
1037 			 * incrementing order
1038 			 */
1039 			if (memory < crashk_base && end >  crashk_end) {
1040 				/* region is fully in */
1041 				add_memory_region(memory,
1042 						  crashk_base - memory,
1043 						  BOOT_MEM_RAM);
1044 				total += crashk_base - memory;
1045 				add_memory_region(crashk_end,
1046 						  end - crashk_end,
1047 						  BOOT_MEM_RAM);
1048 				total += end - crashk_end;
1049 				continue;
1050 			}
1051 
1052 			if (memory >= crashk_base && end <= crashk_end)
1053 				/*
1054 				 * Entire memory region is within the new
1055 				 *  kernel's memory, ignore it.
1056 				 */
1057 				continue;
1058 
1059 			if (memory > crashk_base && memory < crashk_end &&
1060 			    end > crashk_end) {
1061 				/*
1062 				 * Overlap with the beginning of the region,
1063 				 * reserve the beginning.
1064 				  */
1065 				mem_alloc_size -= crashk_end - memory;
1066 				memory = crashk_end;
1067 			} else if (memory < crashk_base && end > crashk_base &&
1068 				   end < crashk_end)
1069 				/*
1070 				 * Overlap with the beginning of the region,
1071 				 * chop of end.
1072 				 */
1073 				mem_alloc_size -= end - crashk_base;
1074 #endif
1075 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1076 			total += mem_alloc_size;
1077 			/* Recovering mem_alloc_size */
1078 			mem_alloc_size = 4 << 20;
1079 		} else {
1080 			break;
1081 		}
1082 	}
1083 	cvmx_bootmem_unlock();
1084 	/* Add the memory region for the kernel. */
1085 	kernel_start = (unsigned long) _text;
1086 	kernel_size = _end - _text;
1087 
1088 	/* Adjust for physical offset. */
1089 	kernel_start &= ~0xffffffff80000000ULL;
1090 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1091 #endif /* CONFIG_CRASH_DUMP */
1092 
1093 #ifdef CONFIG_CAVIUM_RESERVE32
1094 	/*
1095 	 * Now that we've allocated the kernel memory it is safe to
1096 	 * free the reserved region. We free it here so that builtin
1097 	 * drivers can use the memory.
1098 	 */
1099 	if (octeon_reserve32_memory)
1100 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1101 #endif /* CONFIG_CAVIUM_RESERVE32 */
1102 
1103 	if (total == 0)
1104 		panic("Unable to allocate memory from "
1105 		      "cvmx_bootmem_phy_alloc");
1106 }
1107 
1108 /*
1109  * Emit one character to the boot UART.	 Exported for use by the
1110  * watchdog timer.
1111  */
prom_putchar(char c)1112 void prom_putchar(char c)
1113 {
1114 	uint64_t lsrval;
1115 
1116 	/* Spin until there is room */
1117 	do {
1118 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1119 	} while ((lsrval & 0x20) == 0);
1120 
1121 	/* Write the byte */
1122 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1123 }
1124 EXPORT_SYMBOL(prom_putchar);
1125 
prom_free_prom_memory(void)1126 void __init prom_free_prom_memory(void)
1127 {
1128 	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1129 		/* Check for presence of Core-14449 fix.  */
1130 		u32 insn;
1131 		u32 *foo;
1132 
1133 		foo = &insn;
1134 
1135 		asm volatile("# before" : : : "memory");
1136 		prefetch(foo);
1137 		asm volatile(
1138 			".set push\n\t"
1139 			".set noreorder\n\t"
1140 			"bal 1f\n\t"
1141 			"nop\n"
1142 			"1:\tlw %0,-12($31)\n\t"
1143 			".set pop\n\t"
1144 			: "=r" (insn) : : "$31", "memory");
1145 
1146 		if ((insn >> 26) != 0x33)
1147 			panic("No PREF instruction at Core-14449 probe point.");
1148 
1149 		if (((insn >> 16) & 0x1f) != 28)
1150 			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1151 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1152 			      insn);
1153 	}
1154 }
1155 
1156 void __init octeon_fill_mac_addresses(void);
1157 
device_tree_init(void)1158 void __init device_tree_init(void)
1159 {
1160 	const void *fdt;
1161 	bool do_prune;
1162 	bool fill_mac;
1163 
1164 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1165 	if (!fdt_check_header(&__appended_dtb)) {
1166 		fdt = &__appended_dtb;
1167 		do_prune = false;
1168 		fill_mac = true;
1169 		pr_info("Using appended Device Tree.\n");
1170 	} else
1171 #endif
1172 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1173 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1174 		if (fdt_check_header(fdt))
1175 			panic("Corrupt Device Tree passed to kernel.");
1176 		do_prune = false;
1177 		fill_mac = false;
1178 		pr_info("Using passed Device Tree.\n");
1179 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1180 		fdt = &__dtb_octeon_68xx_begin;
1181 		do_prune = true;
1182 		fill_mac = true;
1183 	} else {
1184 		fdt = &__dtb_octeon_3xxx_begin;
1185 		do_prune = true;
1186 		fill_mac = true;
1187 	}
1188 
1189 	initial_boot_params = (void *)fdt;
1190 
1191 	if (do_prune) {
1192 		octeon_prune_device_tree();
1193 		pr_info("Using internal Device Tree.\n");
1194 	}
1195 	if (fill_mac)
1196 		octeon_fill_mac_addresses();
1197 	unflatten_and_copy_device_tree();
1198 	init_octeon_system_type();
1199 }
1200 
1201 static int __initdata disable_octeon_edac_p;
1202 
disable_octeon_edac(char * str)1203 static int __init disable_octeon_edac(char *str)
1204 {
1205 	disable_octeon_edac_p = 1;
1206 	return 0;
1207 }
1208 early_param("disable_octeon_edac", disable_octeon_edac);
1209 
1210 static char *edac_device_names[] = {
1211 	"octeon_l2c_edac",
1212 	"octeon_pc_edac",
1213 };
1214 
edac_devinit(void)1215 static int __init edac_devinit(void)
1216 {
1217 	struct platform_device *dev;
1218 	int i, err = 0;
1219 	int num_lmc;
1220 	char *name;
1221 
1222 	if (disable_octeon_edac_p)
1223 		return 0;
1224 
1225 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1226 		name = edac_device_names[i];
1227 		dev = platform_device_register_simple(name, -1, NULL, 0);
1228 		if (IS_ERR(dev)) {
1229 			pr_err("Registration of %s failed!\n", name);
1230 			err = PTR_ERR(dev);
1231 		}
1232 	}
1233 
1234 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1235 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1236 	for (i = 0; i < num_lmc; i++) {
1237 		dev = platform_device_register_simple("octeon_lmc_edac",
1238 						      i, NULL, 0);
1239 		if (IS_ERR(dev)) {
1240 			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1241 			err = PTR_ERR(dev);
1242 		}
1243 	}
1244 
1245 	return err;
1246 }
1247 device_initcall(edac_devinit);
1248 
1249 static void __initdata *octeon_dummy_iospace;
1250 
octeon_no_pci_init(void)1251 static int __init octeon_no_pci_init(void)
1252 {
1253 	/*
1254 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1255 	 * later re-initialize these to correct values if they are present.
1256 	 */
1257 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1258 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1259 	ioport_resource.start = MAX_RESOURCE;
1260 	ioport_resource.end = 0;
1261 	return 0;
1262 }
1263 core_initcall(octeon_no_pci_init);
1264 
octeon_no_pci_release(void)1265 static int __init octeon_no_pci_release(void)
1266 {
1267 	/*
1268 	 * Release the allocated memory if a real IO space is there.
1269 	 */
1270 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1271 		vfree(octeon_dummy_iospace);
1272 	return 0;
1273 }
1274 late_initcall(octeon_no_pci_release);
1275