1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h> /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/time.h>
41
42 #include <asm/octeon/octeon.h>
43 #include <asm/octeon/pci-octeon.h>
44 #include <asm/octeon/cvmx-rst-defs.h>
45
46 /*
47 * TRUE for devices having registers with little-endian byte
48 * order, FALSE for registers with native-endian byte order.
49 * PCI mandates little-endian, USB and SATA are configuraable,
50 * but we chose little-endian for these.
51 */
52 const bool octeon_should_swizzle_table[256] = {
53 [0x00] = true, /* bootbus/CF */
54 [0x1b] = true, /* PCI mmio window */
55 [0x1c] = true, /* PCI mmio window */
56 [0x1d] = true, /* PCI mmio window */
57 [0x1e] = true, /* PCI mmio window */
58 [0x68] = true, /* OCTEON III USB */
59 [0x69] = true, /* OCTEON III USB */
60 [0x6c] = true, /* OCTEON III SATA */
61 [0x6f] = true, /* OCTEON II USB */
62 };
63 EXPORT_SYMBOL(octeon_should_swizzle_table);
64
65 #ifdef CONFIG_PCI
66 extern void pci_console_init(const char *arg);
67 #endif
68
69 static unsigned long long max_memory = ULLONG_MAX;
70 static unsigned long long reserve_low_mem;
71
72 DEFINE_SEMAPHORE(octeon_bootbus_sem);
73 EXPORT_SYMBOL(octeon_bootbus_sem);
74
75 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
76
77 struct cvmx_bootinfo *octeon_bootinfo;
78 EXPORT_SYMBOL(octeon_bootinfo);
79
80 #ifdef CONFIG_KEXEC
81 #ifdef CONFIG_SMP
82 /*
83 * Wait for relocation code is prepared and send
84 * secondary CPUs to spin until kernel is relocated.
85 */
octeon_kexec_smp_down(void * ignored)86 static void octeon_kexec_smp_down(void *ignored)
87 {
88 int cpu = smp_processor_id();
89
90 local_irq_disable();
91 set_cpu_online(cpu, false);
92 while (!atomic_read(&kexec_ready_to_reboot))
93 cpu_relax();
94
95 asm volatile (
96 " sync \n"
97 " synci ($0) \n");
98
99 relocated_kexec_smp_wait(NULL);
100 }
101 #endif
102
103 #define OCTEON_DDR0_BASE (0x0ULL)
104 #define OCTEON_DDR0_SIZE (0x010000000ULL)
105 #define OCTEON_DDR1_BASE (0x410000000ULL)
106 #define OCTEON_DDR1_SIZE (0x010000000ULL)
107 #define OCTEON_DDR2_BASE (0x020000000ULL)
108 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
109 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
110
111 static struct kimage *kimage_ptr;
112
kexec_bootmem_init(uint64_t mem_size,uint32_t low_reserved_bytes)113 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
114 {
115 int64_t addr;
116 struct cvmx_bootmem_desc *bootmem_desc;
117
118 bootmem_desc = cvmx_bootmem_get_desc();
119
120 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
121 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
122 pr_err("Error: requested memory too large,"
123 "truncating to maximum size\n");
124 }
125
126 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
127 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
128
129 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
130 bootmem_desc->head_addr = 0;
131
132 if (mem_size <= OCTEON_DDR0_SIZE) {
133 __cvmx_bootmem_phy_free(addr,
134 mem_size - reserve_low_mem -
135 low_reserved_bytes, 0);
136 return;
137 }
138
139 __cvmx_bootmem_phy_free(addr,
140 OCTEON_DDR0_SIZE - reserve_low_mem -
141 low_reserved_bytes, 0);
142
143 mem_size -= OCTEON_DDR0_SIZE;
144
145 if (mem_size > OCTEON_DDR1_SIZE) {
146 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
147 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
148 mem_size - OCTEON_DDR1_SIZE, 0);
149 } else
150 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
151 }
152
octeon_kexec_prepare(struct kimage * image)153 static int octeon_kexec_prepare(struct kimage *image)
154 {
155 int i;
156 char *bootloader = "kexec";
157
158 octeon_boot_desc_ptr->argc = 0;
159 for (i = 0; i < image->nr_segments; i++) {
160 if (!strncmp(bootloader, (char *)image->segment[i].buf,
161 strlen(bootloader))) {
162 /*
163 * convert command line string to array
164 * of parameters (as bootloader does).
165 */
166 int argc = 0, offt;
167 char *str = (char *)image->segment[i].buf;
168 char *ptr = strchr(str, ' ');
169 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
170 *ptr = '\0';
171 if (ptr[1] != ' ') {
172 offt = (int)(ptr - str + 1);
173 octeon_boot_desc_ptr->argv[argc] =
174 image->segment[i].mem + offt;
175 argc++;
176 }
177 ptr = strchr(ptr + 1, ' ');
178 }
179 octeon_boot_desc_ptr->argc = argc;
180 break;
181 }
182 }
183
184 /*
185 * Information about segments will be needed during pre-boot memory
186 * initialization.
187 */
188 kimage_ptr = image;
189 return 0;
190 }
191
octeon_generic_shutdown(void)192 static void octeon_generic_shutdown(void)
193 {
194 int i;
195 #ifdef CONFIG_SMP
196 int cpu;
197 #endif
198 struct cvmx_bootmem_desc *bootmem_desc;
199 void *named_block_array_ptr;
200
201 bootmem_desc = cvmx_bootmem_get_desc();
202 named_block_array_ptr =
203 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
204
205 #ifdef CONFIG_SMP
206 /* disable watchdogs */
207 for_each_online_cpu(cpu)
208 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
209 #else
210 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
211 #endif
212 if (kimage_ptr != kexec_crash_image) {
213 memset(named_block_array_ptr,
214 0x0,
215 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
216 sizeof(struct cvmx_bootmem_named_block_desc));
217 /*
218 * Mark all memory (except low 0x100000 bytes) as free.
219 * It is the same thing that bootloader does.
220 */
221 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
222 0x100000);
223 /*
224 * Allocate all segments to avoid their corruption during boot.
225 */
226 for (i = 0; i < kimage_ptr->nr_segments; i++)
227 cvmx_bootmem_alloc_address(
228 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
229 kimage_ptr->segment[i].mem - PAGE_SIZE,
230 PAGE_SIZE);
231 } else {
232 /*
233 * Do not mark all memory as free. Free only named sections
234 * leaving the rest of memory unchanged.
235 */
236 struct cvmx_bootmem_named_block_desc *ptr =
237 (struct cvmx_bootmem_named_block_desc *)
238 named_block_array_ptr;
239
240 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
241 if (ptr[i].size)
242 cvmx_bootmem_free_named(ptr[i].name);
243 }
244 kexec_args[2] = 1UL; /* running on octeon_main_processor */
245 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
246 #ifdef CONFIG_SMP
247 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
248 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249 #endif
250 }
251
octeon_shutdown(void)252 static void octeon_shutdown(void)
253 {
254 octeon_generic_shutdown();
255 #ifdef CONFIG_SMP
256 smp_call_function(octeon_kexec_smp_down, NULL, 0);
257 smp_wmb();
258 while (num_online_cpus() > 1) {
259 cpu_relax();
260 mdelay(1);
261 }
262 #endif
263 }
264
octeon_crash_shutdown(struct pt_regs * regs)265 static void octeon_crash_shutdown(struct pt_regs *regs)
266 {
267 octeon_generic_shutdown();
268 default_machine_crash_shutdown(regs);
269 }
270
271 #ifdef CONFIG_SMP
octeon_crash_smp_send_stop(void)272 void octeon_crash_smp_send_stop(void)
273 {
274 int cpu;
275
276 /* disable watchdogs */
277 for_each_online_cpu(cpu)
278 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
279 }
280 #endif
281
282 #endif /* CONFIG_KEXEC */
283
284 #ifdef CONFIG_CAVIUM_RESERVE32
285 uint64_t octeon_reserve32_memory;
286 EXPORT_SYMBOL(octeon_reserve32_memory);
287 #endif
288
289 #ifdef CONFIG_KEXEC
290 /* crashkernel cmdline parameter is parsed _after_ memory setup
291 * we also parse it here (workaround for EHB5200) */
292 static uint64_t crashk_size, crashk_base;
293 #endif
294
295 static int octeon_uart;
296
297 extern asmlinkage void handle_int(void);
298
299 /**
300 * Return non zero if we are currently running in the Octeon simulator
301 *
302 * Returns
303 */
octeon_is_simulation(void)304 int octeon_is_simulation(void)
305 {
306 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
307 }
308 EXPORT_SYMBOL(octeon_is_simulation);
309
310 /**
311 * Return true if Octeon is in PCI Host mode. This means
312 * Linux can control the PCI bus.
313 *
314 * Returns Non zero if Octeon in host mode.
315 */
octeon_is_pci_host(void)316 int octeon_is_pci_host(void)
317 {
318 #ifdef CONFIG_PCI
319 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
320 #else
321 return 0;
322 #endif
323 }
324
325 /**
326 * Get the clock rate of Octeon
327 *
328 * Returns Clock rate in HZ
329 */
octeon_get_clock_rate(void)330 uint64_t octeon_get_clock_rate(void)
331 {
332 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
333
334 return sysinfo->cpu_clock_hz;
335 }
336 EXPORT_SYMBOL(octeon_get_clock_rate);
337
338 static u64 octeon_io_clock_rate;
339
octeon_get_io_clock_rate(void)340 u64 octeon_get_io_clock_rate(void)
341 {
342 return octeon_io_clock_rate;
343 }
344 EXPORT_SYMBOL(octeon_get_io_clock_rate);
345
346
347 /**
348 * Write to the LCD display connected to the bootbus. This display
349 * exists on most Cavium evaluation boards. If it doesn't exist, then
350 * this function doesn't do anything.
351 *
352 * @s: String to write
353 */
octeon_write_lcd(const char * s)354 void octeon_write_lcd(const char *s)
355 {
356 if (octeon_bootinfo->led_display_base_addr) {
357 void __iomem *lcd_address =
358 ioremap_nocache(octeon_bootinfo->led_display_base_addr,
359 8);
360 int i;
361 for (i = 0; i < 8; i++, s++) {
362 if (*s)
363 iowrite8(*s, lcd_address + i);
364 else
365 iowrite8(' ', lcd_address + i);
366 }
367 iounmap(lcd_address);
368 }
369 }
370
371 /**
372 * Return the console uart passed by the bootloader
373 *
374 * Returns uart (0 or 1)
375 */
octeon_get_boot_uart(void)376 int octeon_get_boot_uart(void)
377 {
378 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
379 1 : 0;
380 }
381
382 /**
383 * Get the coremask Linux was booted on.
384 *
385 * Returns Core mask
386 */
octeon_get_boot_coremask(void)387 int octeon_get_boot_coremask(void)
388 {
389 return octeon_boot_desc_ptr->core_mask;
390 }
391
392 /**
393 * Check the hardware BIST results for a CPU
394 */
octeon_check_cpu_bist(void)395 void octeon_check_cpu_bist(void)
396 {
397 const int coreid = cvmx_get_core_num();
398 unsigned long long mask;
399 unsigned long long bist_val;
400
401 /* Check BIST results for COP0 registers */
402 mask = 0x1f00000000ull;
403 bist_val = read_octeon_c0_icacheerr();
404 if (bist_val & mask)
405 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
406 coreid, bist_val);
407
408 bist_val = read_octeon_c0_dcacheerr();
409 if (bist_val & 1)
410 pr_err("Core%d L1 Dcache parity error: "
411 "CacheErr(dcache) = 0x%llx\n",
412 coreid, bist_val);
413
414 mask = 0xfc00000000000000ull;
415 bist_val = read_c0_cvmmemctl();
416 if (bist_val & mask)
417 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
418 coreid, bist_val);
419
420 write_octeon_c0_dcacheerr(0);
421 }
422
423 /**
424 * Reboot Octeon
425 *
426 * @command: Command to pass to the bootloader. Currently ignored.
427 */
octeon_restart(char * command)428 static void octeon_restart(char *command)
429 {
430 /* Disable all watchdogs before soft reset. They don't get cleared */
431 #ifdef CONFIG_SMP
432 int cpu;
433 for_each_online_cpu(cpu)
434 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
435 #else
436 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
437 #endif
438
439 mb();
440 while (1)
441 if (OCTEON_IS_OCTEON3())
442 cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
443 else
444 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
445 }
446
447
448 /**
449 * Permanently stop a core.
450 *
451 * @arg: Ignored.
452 */
octeon_kill_core(void * arg)453 static void octeon_kill_core(void *arg)
454 {
455 if (octeon_is_simulation())
456 /* A break instruction causes the simulator stop a core */
457 asm volatile ("break" ::: "memory");
458
459 local_irq_disable();
460 /* Disable watchdog on this core. */
461 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
462 /* Spin in a low power mode. */
463 while (true)
464 asm volatile ("wait" ::: "memory");
465 }
466
467
468 /**
469 * Halt the system
470 */
octeon_halt(void)471 static void octeon_halt(void)
472 {
473 smp_call_function(octeon_kill_core, NULL, 0);
474
475 switch (octeon_bootinfo->board_type) {
476 case CVMX_BOARD_TYPE_NAO38:
477 /* Driving a 1 to GPIO 12 shuts off this board */
478 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
479 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
480 break;
481 default:
482 octeon_write_lcd("PowerOff");
483 break;
484 }
485
486 octeon_kill_core(NULL);
487 }
488
489 static char __read_mostly octeon_system_type[80];
490
init_octeon_system_type(void)491 static void __init init_octeon_system_type(void)
492 {
493 char const *board_type;
494
495 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
496 if (board_type == NULL) {
497 struct device_node *root;
498 int ret;
499
500 root = of_find_node_by_path("/");
501 ret = of_property_read_string(root, "model", &board_type);
502 of_node_put(root);
503 if (ret)
504 board_type = "Unsupported Board";
505 }
506
507 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
508 board_type, octeon_model_get_string(read_c0_prid()));
509 }
510
511 /**
512 * Return a string representing the system type
513 *
514 * Returns
515 */
octeon_board_type_string(void)516 const char *octeon_board_type_string(void)
517 {
518 return octeon_system_type;
519 }
520
521 const char *get_system_type(void)
522 __attribute__ ((alias("octeon_board_type_string")));
523
octeon_user_io_init(void)524 void octeon_user_io_init(void)
525 {
526 union octeon_cvmemctl cvmmemctl;
527
528 /* Get the current settings for CP0_CVMMEMCTL_REG */
529 cvmmemctl.u64 = read_c0_cvmmemctl();
530 /* R/W If set, marked write-buffer entries time out the same
531 * as as other entries; if clear, marked write-buffer entries
532 * use the maximum timeout. */
533 cvmmemctl.s.dismarkwblongto = 1;
534 /* R/W If set, a merged store does not clear the write-buffer
535 * entry timeout state. */
536 cvmmemctl.s.dismrgclrwbto = 0;
537 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
538 * word location for an IOBDMA. The other 8 bits come from the
539 * SCRADDR field of the IOBDMA. */
540 cvmmemctl.s.iobdmascrmsb = 0;
541 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
542 * clear, SYNCWS and SYNCS only order unmarked
543 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
544 * set. */
545 cvmmemctl.s.syncwsmarked = 0;
546 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
547 cvmmemctl.s.dissyncws = 0;
548 /* R/W If set, no stall happens on write buffer full. */
549 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
550 cvmmemctl.s.diswbfst = 1;
551 else
552 cvmmemctl.s.diswbfst = 0;
553 /* R/W If set (and SX set), supervisor-level loads/stores can
554 * use XKPHYS addresses with <48>==0 */
555 cvmmemctl.s.xkmemenas = 0;
556
557 /* R/W If set (and UX set), user-level loads/stores can use
558 * XKPHYS addresses with VA<48>==0 */
559 cvmmemctl.s.xkmemenau = 0;
560
561 /* R/W If set (and SX set), supervisor-level loads/stores can
562 * use XKPHYS addresses with VA<48>==1 */
563 cvmmemctl.s.xkioenas = 0;
564
565 /* R/W If set (and UX set), user-level loads/stores can use
566 * XKPHYS addresses with VA<48>==1 */
567 cvmmemctl.s.xkioenau = 0;
568
569 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
570 * when this is set) RW, reset to 0. */
571 cvmmemctl.s.allsyncw = 0;
572
573 /* R/W If set, no stores merge, and all stores reach the
574 * coherent bus in order. */
575 cvmmemctl.s.nomerge = 0;
576 /* R/W Selects the bit in the counter used for DID time-outs 0
577 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
578 * between 1x and 2x this interval. For example, with
579 * DIDTTO=3, expiration interval is between 16K and 32K. */
580 cvmmemctl.s.didtto = 0;
581 /* R/W If set, the (mem) CSR clock never turns off. */
582 cvmmemctl.s.csrckalwys = 0;
583 /* R/W If set, mclk never turns off. */
584 cvmmemctl.s.mclkalwys = 0;
585 /* R/W Selects the bit in the counter used for write buffer
586 * flush time-outs (WBFLT+11) is the bit position in an
587 * internal counter used to determine expiration. The write
588 * buffer expires between 1x and 2x this interval. For
589 * example, with WBFLT = 0, a write buffer expires between 2K
590 * and 4K cycles after the write buffer entry is allocated. */
591 cvmmemctl.s.wbfltime = 0;
592 /* R/W If set, do not put Istream in the L2 cache. */
593 cvmmemctl.s.istrnol2 = 0;
594
595 /*
596 * R/W The write buffer threshold. As per erratum Core-14752
597 * for CN63XX, a sc/scd might fail if the write buffer is
598 * full. Lowering WBTHRESH greatly lowers the chances of the
599 * write buffer ever being full and triggering the erratum.
600 */
601 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
602 cvmmemctl.s.wbthresh = 4;
603 else
604 cvmmemctl.s.wbthresh = 10;
605
606 /* R/W If set, CVMSEG is available for loads/stores in
607 * kernel/debug mode. */
608 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
609 cvmmemctl.s.cvmsegenak = 1;
610 #else
611 cvmmemctl.s.cvmsegenak = 0;
612 #endif
613 /* R/W If set, CVMSEG is available for loads/stores in
614 * supervisor mode. */
615 cvmmemctl.s.cvmsegenas = 0;
616 /* R/W If set, CVMSEG is available for loads/stores in user
617 * mode. */
618 cvmmemctl.s.cvmsegenau = 0;
619
620 write_c0_cvmmemctl(cvmmemctl.u64);
621
622 /* Setup of CVMSEG is done in kernel-entry-init.h */
623 if (smp_processor_id() == 0)
624 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
625 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
626 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
627
628 if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
629 union cvmx_iob_fau_timeout fau_timeout;
630
631 /* Set a default for the hardware timeouts */
632 fau_timeout.u64 = 0;
633 fau_timeout.s.tout_val = 0xfff;
634 /* Disable tagwait FAU timeout */
635 fau_timeout.s.tout_enb = 0;
636 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
637 }
638
639 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
640 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
641 OCTEON_IS_MODEL(OCTEON_CN70XX)) {
642 union cvmx_pow_nw_tim nm_tim;
643
644 nm_tim.u64 = 0;
645 /* 4096 cycles */
646 nm_tim.s.nw_tim = 3;
647 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
648 }
649
650 write_octeon_c0_icacheerr(0);
651 write_c0_derraddr1(0);
652 }
653
654 /**
655 * Early entry point for arch setup
656 */
prom_init(void)657 void __init prom_init(void)
658 {
659 struct cvmx_sysinfo *sysinfo;
660 const char *arg;
661 char *p;
662 int i;
663 u64 t;
664 int argc;
665 #ifdef CONFIG_CAVIUM_RESERVE32
666 int64_t addr = -1;
667 #endif
668 /*
669 * The bootloader passes a pointer to the boot descriptor in
670 * $a3, this is available as fw_arg3.
671 */
672 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
673 octeon_bootinfo =
674 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
675 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
676
677 sysinfo = cvmx_sysinfo_get();
678 memset(sysinfo, 0, sizeof(*sysinfo));
679 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
680 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
681
682 if ((octeon_bootinfo->major_version > 1) ||
683 (octeon_bootinfo->major_version == 1 &&
684 octeon_bootinfo->minor_version >= 4))
685 cvmx_coremask_copy(&sysinfo->core_mask,
686 &octeon_bootinfo->ext_core_mask);
687 else
688 cvmx_coremask_set64(&sysinfo->core_mask,
689 octeon_bootinfo->core_mask);
690
691 /* Some broken u-boot pass garbage in upper bits, clear them out */
692 if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
693 for (i = 512; i < 1024; i++)
694 cvmx_coremask_clear_core(&sysinfo->core_mask, i);
695
696 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
697 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
698 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
699 sysinfo->board_type = octeon_bootinfo->board_type;
700 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
701 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
702 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
703 sizeof(sysinfo->mac_addr_base));
704 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
705 memcpy(sysinfo->board_serial_number,
706 octeon_bootinfo->board_serial_number,
707 sizeof(sysinfo->board_serial_number));
708 sysinfo->compact_flash_common_base_addr =
709 octeon_bootinfo->compact_flash_common_base_addr;
710 sysinfo->compact_flash_attribute_base_addr =
711 octeon_bootinfo->compact_flash_attribute_base_addr;
712 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
713 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
714 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
715
716 if (OCTEON_IS_OCTEON2()) {
717 /* I/O clock runs at a different rate than the CPU. */
718 union cvmx_mio_rst_boot rst_boot;
719 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
720 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
721 } else if (OCTEON_IS_OCTEON3()) {
722 /* I/O clock runs at a different rate than the CPU. */
723 union cvmx_rst_boot rst_boot;
724 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
725 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
726 } else {
727 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
728 }
729
730 t = read_c0_cvmctl();
731 if ((t & (1ull << 27)) == 0) {
732 /*
733 * Setup the multiplier save/restore code if
734 * CvmCtl[NOMUL] clear.
735 */
736 void *save;
737 void *save_end;
738 void *restore;
739 void *restore_end;
740 int save_len;
741 int restore_len;
742 int save_max = (char *)octeon_mult_save_end -
743 (char *)octeon_mult_save;
744 int restore_max = (char *)octeon_mult_restore_end -
745 (char *)octeon_mult_restore;
746 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
747 save = octeon_mult_save3;
748 save_end = octeon_mult_save3_end;
749 restore = octeon_mult_restore3;
750 restore_end = octeon_mult_restore3_end;
751 } else {
752 save = octeon_mult_save2;
753 save_end = octeon_mult_save2_end;
754 restore = octeon_mult_restore2;
755 restore_end = octeon_mult_restore2_end;
756 }
757 save_len = (char *)save_end - (char *)save;
758 restore_len = (char *)restore_end - (char *)restore;
759 if (!WARN_ON(save_len > save_max ||
760 restore_len > restore_max)) {
761 memcpy(octeon_mult_save, save, save_len);
762 memcpy(octeon_mult_restore, restore, restore_len);
763 }
764 }
765
766 /*
767 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
768 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
769 */
770 if (!octeon_is_simulation() &&
771 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
772 cvmx_write_csr(CVMX_LED_EN, 0);
773 cvmx_write_csr(CVMX_LED_PRT, 0);
774 cvmx_write_csr(CVMX_LED_DBG, 0);
775 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
776 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
777 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
778 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
779 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
780 cvmx_write_csr(CVMX_LED_EN, 1);
781 }
782 #ifdef CONFIG_CAVIUM_RESERVE32
783 /*
784 * We need to temporarily allocate all memory in the reserve32
785 * region. This makes sure the kernel doesn't allocate this
786 * memory when it is getting memory from the
787 * bootloader. Later, after the memory allocations are
788 * complete, the reserve32 will be freed.
789 *
790 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
791 * is in case we later use hugetlb entries with it.
792 */
793 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
794 0, 0, 2 << 20,
795 "CAVIUM_RESERVE32", 0);
796 if (addr < 0)
797 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
798 else
799 octeon_reserve32_memory = addr;
800 #endif
801
802 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
803 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
804 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
805 } else {
806 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
807 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
808 /* TLB refill */
809 cvmx_l2c_lock_mem_region(ebase, 0x100);
810 #endif
811 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
812 /* General exception */
813 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
814 #endif
815 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
816 /* Interrupt handler */
817 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
818 #endif
819 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
820 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
821 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
822 #endif
823 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
824 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
825 #endif
826 }
827 #endif
828
829 octeon_check_cpu_bist();
830
831 octeon_uart = octeon_get_boot_uart();
832
833 #ifdef CONFIG_SMP
834 octeon_write_lcd("LinuxSMP");
835 #else
836 octeon_write_lcd("Linux");
837 #endif
838
839 octeon_setup_delays();
840
841 /*
842 * BIST should always be enabled when doing a soft reset. L2
843 * Cache locking for instance is not cleared unless BIST is
844 * enabled. Unfortunately due to a chip errata G-200 for
845 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
846 */
847 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
848 OCTEON_IS_MODEL(OCTEON_CN31XX))
849 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
850 else
851 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
852
853 /* Default to 64MB in the simulator to speed things up */
854 if (octeon_is_simulation())
855 max_memory = 64ull << 20;
856
857 arg = strstr(arcs_cmdline, "mem=");
858 if (arg) {
859 max_memory = memparse(arg + 4, &p);
860 if (max_memory == 0)
861 max_memory = 32ull << 30;
862 if (*p == '@')
863 reserve_low_mem = memparse(p + 1, &p);
864 }
865
866 arcs_cmdline[0] = 0;
867 argc = octeon_boot_desc_ptr->argc;
868 for (i = 0; i < argc; i++) {
869 const char *arg =
870 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
871 if ((strncmp(arg, "MEM=", 4) == 0) ||
872 (strncmp(arg, "mem=", 4) == 0)) {
873 max_memory = memparse(arg + 4, &p);
874 if (max_memory == 0)
875 max_memory = 32ull << 30;
876 if (*p == '@')
877 reserve_low_mem = memparse(p + 1, &p);
878 #ifdef CONFIG_KEXEC
879 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
880 crashk_size = memparse(arg+12, &p);
881 if (*p == '@')
882 crashk_base = memparse(p+1, &p);
883 strcat(arcs_cmdline, " ");
884 strcat(arcs_cmdline, arg);
885 /*
886 * To do: switch parsing to new style, something like:
887 * parse_crashkernel(arg, sysinfo->system_dram_size,
888 * &crashk_size, &crashk_base);
889 */
890 #endif
891 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
892 sizeof(arcs_cmdline) - 1) {
893 strcat(arcs_cmdline, " ");
894 strcat(arcs_cmdline, arg);
895 }
896 }
897
898 if (strstr(arcs_cmdline, "console=") == NULL) {
899 if (octeon_uart == 1)
900 strcat(arcs_cmdline, " console=ttyS1,115200");
901 else
902 strcat(arcs_cmdline, " console=ttyS0,115200");
903 }
904
905 mips_hpt_frequency = octeon_get_clock_rate();
906
907 octeon_init_cvmcount();
908
909 _machine_restart = octeon_restart;
910 _machine_halt = octeon_halt;
911
912 #ifdef CONFIG_KEXEC
913 _machine_kexec_shutdown = octeon_shutdown;
914 _machine_crash_shutdown = octeon_crash_shutdown;
915 _machine_kexec_prepare = octeon_kexec_prepare;
916 #ifdef CONFIG_SMP
917 _crash_smp_send_stop = octeon_crash_smp_send_stop;
918 #endif
919 #endif
920
921 octeon_user_io_init();
922 octeon_setup_smp();
923 }
924
925 /* Exclude a single page from the regions obtained in plat_mem_setup. */
926 #ifndef CONFIG_CRASH_DUMP
memory_exclude_page(u64 addr,u64 * mem,u64 * size)927 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
928 {
929 if (addr > *mem && addr < *mem + *size) {
930 u64 inc = addr - *mem;
931 add_memory_region(*mem, inc, BOOT_MEM_RAM);
932 *mem += inc;
933 *size -= inc;
934 }
935
936 if (addr == *mem && *size > PAGE_SIZE) {
937 *mem += PAGE_SIZE;
938 *size -= PAGE_SIZE;
939 }
940 }
941 #endif /* CONFIG_CRASH_DUMP */
942
fw_init_cmdline(void)943 void __init fw_init_cmdline(void)
944 {
945 int i;
946
947 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
948 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
949 const char *arg =
950 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
951 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
952 sizeof(arcs_cmdline) - 1) {
953 strcat(arcs_cmdline, " ");
954 strcat(arcs_cmdline, arg);
955 }
956 }
957 }
958
plat_get_fdt(void)959 void __init *plat_get_fdt(void)
960 {
961 octeon_bootinfo =
962 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
963 return phys_to_virt(octeon_bootinfo->fdt_addr);
964 }
965
plat_mem_setup(void)966 void __init plat_mem_setup(void)
967 {
968 uint64_t mem_alloc_size;
969 uint64_t total;
970 uint64_t crashk_end;
971 #ifndef CONFIG_CRASH_DUMP
972 int64_t memory;
973 uint64_t kernel_start;
974 uint64_t kernel_size;
975 #endif
976
977 total = 0;
978 crashk_end = 0;
979
980 /*
981 * The Mips memory init uses the first memory location for
982 * some memory vectors. When SPARSEMEM is in use, it doesn't
983 * verify that the size is big enough for the final
984 * vectors. Making the smallest chuck 4MB seems to be enough
985 * to consistently work.
986 */
987 mem_alloc_size = 4 << 20;
988 if (mem_alloc_size > max_memory)
989 mem_alloc_size = max_memory;
990
991 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
992 #ifdef CONFIG_CRASH_DUMP
993 add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
994 total += max_memory;
995 #else
996 #ifdef CONFIG_KEXEC
997 if (crashk_size > 0) {
998 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
999 crashk_end = crashk_base + crashk_size;
1000 }
1001 #endif
1002 /*
1003 * When allocating memory, we want incrementing addresses from
1004 * bootmem_alloc so the code in add_memory_region can merge
1005 * regions next to each other.
1006 */
1007 cvmx_bootmem_lock();
1008 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
1009 && (total < max_memory)) {
1010 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1011 __pa_symbol(&_end), -1,
1012 0x100000,
1013 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1014 if (memory >= 0) {
1015 u64 size = mem_alloc_size;
1016 #ifdef CONFIG_KEXEC
1017 uint64_t end;
1018 #endif
1019
1020 /*
1021 * exclude a page at the beginning and end of
1022 * the 256MB PCIe 'hole' so the kernel will not
1023 * try to allocate multi-page buffers that
1024 * span the discontinuity.
1025 */
1026 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1027 &memory, &size);
1028 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1029 CVMX_PCIE_BAR1_PHYS_SIZE,
1030 &memory, &size);
1031 #ifdef CONFIG_KEXEC
1032 end = memory + mem_alloc_size;
1033
1034 /*
1035 * This function automatically merges address regions
1036 * next to each other if they are received in
1037 * incrementing order
1038 */
1039 if (memory < crashk_base && end > crashk_end) {
1040 /* region is fully in */
1041 add_memory_region(memory,
1042 crashk_base - memory,
1043 BOOT_MEM_RAM);
1044 total += crashk_base - memory;
1045 add_memory_region(crashk_end,
1046 end - crashk_end,
1047 BOOT_MEM_RAM);
1048 total += end - crashk_end;
1049 continue;
1050 }
1051
1052 if (memory >= crashk_base && end <= crashk_end)
1053 /*
1054 * Entire memory region is within the new
1055 * kernel's memory, ignore it.
1056 */
1057 continue;
1058
1059 if (memory > crashk_base && memory < crashk_end &&
1060 end > crashk_end) {
1061 /*
1062 * Overlap with the beginning of the region,
1063 * reserve the beginning.
1064 */
1065 mem_alloc_size -= crashk_end - memory;
1066 memory = crashk_end;
1067 } else if (memory < crashk_base && end > crashk_base &&
1068 end < crashk_end)
1069 /*
1070 * Overlap with the beginning of the region,
1071 * chop of end.
1072 */
1073 mem_alloc_size -= end - crashk_base;
1074 #endif
1075 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1076 total += mem_alloc_size;
1077 /* Recovering mem_alloc_size */
1078 mem_alloc_size = 4 << 20;
1079 } else {
1080 break;
1081 }
1082 }
1083 cvmx_bootmem_unlock();
1084 /* Add the memory region for the kernel. */
1085 kernel_start = (unsigned long) _text;
1086 kernel_size = _end - _text;
1087
1088 /* Adjust for physical offset. */
1089 kernel_start &= ~0xffffffff80000000ULL;
1090 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1091 #endif /* CONFIG_CRASH_DUMP */
1092
1093 #ifdef CONFIG_CAVIUM_RESERVE32
1094 /*
1095 * Now that we've allocated the kernel memory it is safe to
1096 * free the reserved region. We free it here so that builtin
1097 * drivers can use the memory.
1098 */
1099 if (octeon_reserve32_memory)
1100 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1101 #endif /* CONFIG_CAVIUM_RESERVE32 */
1102
1103 if (total == 0)
1104 panic("Unable to allocate memory from "
1105 "cvmx_bootmem_phy_alloc");
1106 }
1107
1108 /*
1109 * Emit one character to the boot UART. Exported for use by the
1110 * watchdog timer.
1111 */
prom_putchar(char c)1112 void prom_putchar(char c)
1113 {
1114 uint64_t lsrval;
1115
1116 /* Spin until there is room */
1117 do {
1118 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1119 } while ((lsrval & 0x20) == 0);
1120
1121 /* Write the byte */
1122 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1123 }
1124 EXPORT_SYMBOL(prom_putchar);
1125
prom_free_prom_memory(void)1126 void __init prom_free_prom_memory(void)
1127 {
1128 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1129 /* Check for presence of Core-14449 fix. */
1130 u32 insn;
1131 u32 *foo;
1132
1133 foo = &insn;
1134
1135 asm volatile("# before" : : : "memory");
1136 prefetch(foo);
1137 asm volatile(
1138 ".set push\n\t"
1139 ".set noreorder\n\t"
1140 "bal 1f\n\t"
1141 "nop\n"
1142 "1:\tlw %0,-12($31)\n\t"
1143 ".set pop\n\t"
1144 : "=r" (insn) : : "$31", "memory");
1145
1146 if ((insn >> 26) != 0x33)
1147 panic("No PREF instruction at Core-14449 probe point.");
1148
1149 if (((insn >> 16) & 0x1f) != 28)
1150 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1151 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1152 insn);
1153 }
1154 }
1155
1156 void __init octeon_fill_mac_addresses(void);
1157
device_tree_init(void)1158 void __init device_tree_init(void)
1159 {
1160 const void *fdt;
1161 bool do_prune;
1162 bool fill_mac;
1163
1164 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1165 if (!fdt_check_header(&__appended_dtb)) {
1166 fdt = &__appended_dtb;
1167 do_prune = false;
1168 fill_mac = true;
1169 pr_info("Using appended Device Tree.\n");
1170 } else
1171 #endif
1172 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1173 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1174 if (fdt_check_header(fdt))
1175 panic("Corrupt Device Tree passed to kernel.");
1176 do_prune = false;
1177 fill_mac = false;
1178 pr_info("Using passed Device Tree.\n");
1179 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1180 fdt = &__dtb_octeon_68xx_begin;
1181 do_prune = true;
1182 fill_mac = true;
1183 } else {
1184 fdt = &__dtb_octeon_3xxx_begin;
1185 do_prune = true;
1186 fill_mac = true;
1187 }
1188
1189 initial_boot_params = (void *)fdt;
1190
1191 if (do_prune) {
1192 octeon_prune_device_tree();
1193 pr_info("Using internal Device Tree.\n");
1194 }
1195 if (fill_mac)
1196 octeon_fill_mac_addresses();
1197 unflatten_and_copy_device_tree();
1198 init_octeon_system_type();
1199 }
1200
1201 static int __initdata disable_octeon_edac_p;
1202
disable_octeon_edac(char * str)1203 static int __init disable_octeon_edac(char *str)
1204 {
1205 disable_octeon_edac_p = 1;
1206 return 0;
1207 }
1208 early_param("disable_octeon_edac", disable_octeon_edac);
1209
1210 static char *edac_device_names[] = {
1211 "octeon_l2c_edac",
1212 "octeon_pc_edac",
1213 };
1214
edac_devinit(void)1215 static int __init edac_devinit(void)
1216 {
1217 struct platform_device *dev;
1218 int i, err = 0;
1219 int num_lmc;
1220 char *name;
1221
1222 if (disable_octeon_edac_p)
1223 return 0;
1224
1225 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1226 name = edac_device_names[i];
1227 dev = platform_device_register_simple(name, -1, NULL, 0);
1228 if (IS_ERR(dev)) {
1229 pr_err("Registration of %s failed!\n", name);
1230 err = PTR_ERR(dev);
1231 }
1232 }
1233
1234 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1235 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1236 for (i = 0; i < num_lmc; i++) {
1237 dev = platform_device_register_simple("octeon_lmc_edac",
1238 i, NULL, 0);
1239 if (IS_ERR(dev)) {
1240 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1241 err = PTR_ERR(dev);
1242 }
1243 }
1244
1245 return err;
1246 }
1247 device_initcall(edac_devinit);
1248
1249 static void __initdata *octeon_dummy_iospace;
1250
octeon_no_pci_init(void)1251 static int __init octeon_no_pci_init(void)
1252 {
1253 /*
1254 * Initially assume there is no PCI. The PCI/PCIe platform code will
1255 * later re-initialize these to correct values if they are present.
1256 */
1257 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1258 set_io_port_base((unsigned long)octeon_dummy_iospace);
1259 ioport_resource.start = MAX_RESOURCE;
1260 ioport_resource.end = 0;
1261 return 0;
1262 }
1263 core_initcall(octeon_no_pci_init);
1264
octeon_no_pci_release(void)1265 static int __init octeon_no_pci_release(void)
1266 {
1267 /*
1268 * Release the allocated memory if a real IO space is there.
1269 */
1270 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1271 vfree(octeon_dummy_iospace);
1272 return 0;
1273 }
1274 late_initcall(octeon_no_pci_release);
1275