1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, see <http://www.gnu.org/licenses/>.
30 *
31 * Known bugs:
32 * We suspect that on some hardware no TX done interrupts are generated.
33 * This means recovery from netif_stop_queue only happens if the hw timer
34 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
35 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
36 * If your hardware reliably generates tx done interrupts, then you can remove
37 * DEV_NEED_TIMERIRQ from the driver_data flags.
38 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
39 * superfluous timer interrupts from the nic.
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #define FORCEDETH_VERSION "0.64"
45 #define DRV_NAME "forcedeth"
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/pci.h>
50 #include <linux/interrupt.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/delay.h>
54 #include <linux/sched.h>
55 #include <linux/spinlock.h>
56 #include <linux/ethtool.h>
57 #include <linux/timer.h>
58 #include <linux/skbuff.h>
59 #include <linux/mii.h>
60 #include <linux/random.h>
61 #include <linux/if_vlan.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/slab.h>
64 #include <linux/uaccess.h>
65 #include <linux/prefetch.h>
66 #include <linux/u64_stats_sync.h>
67 #include <linux/io.h>
68
69 #include <asm/irq.h>
70
71 #define TX_WORK_PER_LOOP 64
72 #define RX_WORK_PER_LOOP 64
73
74 /*
75 * Hardware access:
76 */
77
78 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
79 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
80 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
81 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
82 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
83 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
84 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
85 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
86 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
87 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
88 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
89 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
90 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
91 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
92 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
93 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
94 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
95 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
99 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
100 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
101 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
102 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
103 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
104 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
105
106 enum {
107 NvRegIrqStatus = 0x000,
108 #define NVREG_IRQSTAT_MIIEVENT 0x040
109 #define NVREG_IRQSTAT_MASK 0x83ff
110 NvRegIrqMask = 0x004,
111 #define NVREG_IRQ_RX_ERROR 0x0001
112 #define NVREG_IRQ_RX 0x0002
113 #define NVREG_IRQ_RX_NOBUF 0x0004
114 #define NVREG_IRQ_TX_ERR 0x0008
115 #define NVREG_IRQ_TX_OK 0x0010
116 #define NVREG_IRQ_TIMER 0x0020
117 #define NVREG_IRQ_LINK 0x0040
118 #define NVREG_IRQ_RX_FORCED 0x0080
119 #define NVREG_IRQ_TX_FORCED 0x0100
120 #define NVREG_IRQ_RECOVER_ERROR 0x8200
121 #define NVREG_IRQMASK_THROUGHPUT 0x00df
122 #define NVREG_IRQMASK_CPU 0x0060
123 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
124 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
125 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
126
127 NvRegUnknownSetupReg6 = 0x008,
128 #define NVREG_UNKSETUP6_VAL 3
129
130 /*
131 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
132 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
133 */
134 NvRegPollingInterval = 0x00c,
135 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
136 #define NVREG_POLL_DEFAULT_CPU 13
137 NvRegMSIMap0 = 0x020,
138 NvRegMSIMap1 = 0x024,
139 NvRegMSIIrqMask = 0x030,
140 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
141 NvRegMisc1 = 0x080,
142 #define NVREG_MISC1_PAUSE_TX 0x01
143 #define NVREG_MISC1_HD 0x02
144 #define NVREG_MISC1_FORCE 0x3b0f3c
145
146 NvRegMacReset = 0x34,
147 #define NVREG_MAC_RESET_ASSERT 0x0F3
148 NvRegTransmitterControl = 0x084,
149 #define NVREG_XMITCTL_START 0x01
150 #define NVREG_XMITCTL_MGMT_ST 0x40000000
151 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
152 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
153 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
154 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
155 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
156 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
157 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
158 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
159 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
160 #define NVREG_XMITCTL_DATA_START 0x00100000
161 #define NVREG_XMITCTL_DATA_READY 0x00010000
162 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
163 NvRegTransmitterStatus = 0x088,
164 #define NVREG_XMITSTAT_BUSY 0x01
165
166 NvRegPacketFilterFlags = 0x8c,
167 #define NVREG_PFF_PAUSE_RX 0x08
168 #define NVREG_PFF_ALWAYS 0x7F0000
169 #define NVREG_PFF_PROMISC 0x80
170 #define NVREG_PFF_MYADDR 0x20
171 #define NVREG_PFF_LOOPBACK 0x10
172
173 NvRegOffloadConfig = 0x90,
174 #define NVREG_OFFLOAD_HOMEPHY 0x601
175 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
176 NvRegReceiverControl = 0x094,
177 #define NVREG_RCVCTL_START 0x01
178 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
179 NvRegReceiverStatus = 0x98,
180 #define NVREG_RCVSTAT_BUSY 0x01
181
182 NvRegSlotTime = 0x9c,
183 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
184 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
185 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
186 #define NVREG_SLOTTIME_HALF 0x0000ff00
187 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
188 #define NVREG_SLOTTIME_MASK 0x000000ff
189
190 NvRegTxDeferral = 0xA0,
191 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
192 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
193 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
194 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
196 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
197 NvRegRxDeferral = 0xA4,
198 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
199 NvRegMacAddrA = 0xA8,
200 NvRegMacAddrB = 0xAC,
201 NvRegMulticastAddrA = 0xB0,
202 #define NVREG_MCASTADDRA_FORCE 0x01
203 NvRegMulticastAddrB = 0xB4,
204 NvRegMulticastMaskA = 0xB8,
205 #define NVREG_MCASTMASKA_NONE 0xffffffff
206 NvRegMulticastMaskB = 0xBC,
207 #define NVREG_MCASTMASKB_NONE 0xffff
208
209 NvRegPhyInterface = 0xC0,
210 #define PHY_RGMII 0x10000000
211 NvRegBackOffControl = 0xC4,
212 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
213 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
214 #define NVREG_BKOFFCTRL_SELECT 24
215 #define NVREG_BKOFFCTRL_GEAR 12
216
217 NvRegTxRingPhysAddr = 0x100,
218 NvRegRxRingPhysAddr = 0x104,
219 NvRegRingSizes = 0x108,
220 #define NVREG_RINGSZ_TXSHIFT 0
221 #define NVREG_RINGSZ_RXSHIFT 16
222 NvRegTransmitPoll = 0x10c,
223 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
224 NvRegLinkSpeed = 0x110,
225 #define NVREG_LINKSPEED_FORCE 0x10000
226 #define NVREG_LINKSPEED_10 1000
227 #define NVREG_LINKSPEED_100 100
228 #define NVREG_LINKSPEED_1000 50
229 #define NVREG_LINKSPEED_MASK (0xFFF)
230 NvRegUnknownSetupReg5 = 0x130,
231 #define NVREG_UNKSETUP5_BIT31 (1<<31)
232 NvRegTxWatermark = 0x13c,
233 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
234 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
235 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
236 NvRegTxRxControl = 0x144,
237 #define NVREG_TXRXCTL_KICK 0x0001
238 #define NVREG_TXRXCTL_BIT1 0x0002
239 #define NVREG_TXRXCTL_BIT2 0x0004
240 #define NVREG_TXRXCTL_IDLE 0x0008
241 #define NVREG_TXRXCTL_RESET 0x0010
242 #define NVREG_TXRXCTL_RXCHECK 0x0400
243 #define NVREG_TXRXCTL_DESC_1 0
244 #define NVREG_TXRXCTL_DESC_2 0x002100
245 #define NVREG_TXRXCTL_DESC_3 0xc02200
246 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
247 #define NVREG_TXRXCTL_VLANINS 0x00080
248 NvRegTxRingPhysAddrHigh = 0x148,
249 NvRegRxRingPhysAddrHigh = 0x14C,
250 NvRegTxPauseFrame = 0x170,
251 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
252 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
253 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
255 NvRegTxPauseFrameLimit = 0x174,
256 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
257 NvRegMIIStatus = 0x180,
258 #define NVREG_MIISTAT_ERROR 0x0001
259 #define NVREG_MIISTAT_LINKCHANGE 0x0008
260 #define NVREG_MIISTAT_MASK_RW 0x0007
261 #define NVREG_MIISTAT_MASK_ALL 0x000f
262 NvRegMIIMask = 0x184,
263 #define NVREG_MII_LINKCHANGE 0x0008
264
265 NvRegAdapterControl = 0x188,
266 #define NVREG_ADAPTCTL_START 0x02
267 #define NVREG_ADAPTCTL_LINKUP 0x04
268 #define NVREG_ADAPTCTL_PHYVALID 0x40000
269 #define NVREG_ADAPTCTL_RUNNING 0x100000
270 #define NVREG_ADAPTCTL_PHYSHIFT 24
271 NvRegMIISpeed = 0x18c,
272 #define NVREG_MIISPEED_BIT8 (1<<8)
273 #define NVREG_MIIDELAY 5
274 NvRegMIIControl = 0x190,
275 #define NVREG_MIICTL_INUSE 0x08000
276 #define NVREG_MIICTL_WRITE 0x00400
277 #define NVREG_MIICTL_ADDRSHIFT 5
278 NvRegMIIData = 0x194,
279 NvRegTxUnicast = 0x1a0,
280 NvRegTxMulticast = 0x1a4,
281 NvRegTxBroadcast = 0x1a8,
282 NvRegWakeUpFlags = 0x200,
283 #define NVREG_WAKEUPFLAGS_VAL 0x7770
284 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
285 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
286 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
287 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
288 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
289 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
290 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
291 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
292 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
293 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
294
295 NvRegMgmtUnitGetVersion = 0x204,
296 #define NVREG_MGMTUNITGETVERSION 0x01
297 NvRegMgmtUnitVersion = 0x208,
298 #define NVREG_MGMTUNITVERSION 0x08
299 NvRegPowerCap = 0x268,
300 #define NVREG_POWERCAP_D3SUPP (1<<30)
301 #define NVREG_POWERCAP_D2SUPP (1<<26)
302 #define NVREG_POWERCAP_D1SUPP (1<<25)
303 NvRegPowerState = 0x26c,
304 #define NVREG_POWERSTATE_POWEREDUP 0x8000
305 #define NVREG_POWERSTATE_VALID 0x0100
306 #define NVREG_POWERSTATE_MASK 0x0003
307 #define NVREG_POWERSTATE_D0 0x0000
308 #define NVREG_POWERSTATE_D1 0x0001
309 #define NVREG_POWERSTATE_D2 0x0002
310 #define NVREG_POWERSTATE_D3 0x0003
311 NvRegMgmtUnitControl = 0x278,
312 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
313 NvRegTxCnt = 0x280,
314 NvRegTxZeroReXmt = 0x284,
315 NvRegTxOneReXmt = 0x288,
316 NvRegTxManyReXmt = 0x28c,
317 NvRegTxLateCol = 0x290,
318 NvRegTxUnderflow = 0x294,
319 NvRegTxLossCarrier = 0x298,
320 NvRegTxExcessDef = 0x29c,
321 NvRegTxRetryErr = 0x2a0,
322 NvRegRxFrameErr = 0x2a4,
323 NvRegRxExtraByte = 0x2a8,
324 NvRegRxLateCol = 0x2ac,
325 NvRegRxRunt = 0x2b0,
326 NvRegRxFrameTooLong = 0x2b4,
327 NvRegRxOverflow = 0x2b8,
328 NvRegRxFCSErr = 0x2bc,
329 NvRegRxFrameAlignErr = 0x2c0,
330 NvRegRxLenErr = 0x2c4,
331 NvRegRxUnicast = 0x2c8,
332 NvRegRxMulticast = 0x2cc,
333 NvRegRxBroadcast = 0x2d0,
334 NvRegTxDef = 0x2d4,
335 NvRegTxFrame = 0x2d8,
336 NvRegRxCnt = 0x2dc,
337 NvRegTxPause = 0x2e0,
338 NvRegRxPause = 0x2e4,
339 NvRegRxDropFrame = 0x2e8,
340 NvRegVlanControl = 0x300,
341 #define NVREG_VLANCONTROL_ENABLE 0x2000
342 NvRegMSIXMap0 = 0x3e0,
343 NvRegMSIXMap1 = 0x3e4,
344 NvRegMSIXIrqStatus = 0x3f0,
345
346 NvRegPowerState2 = 0x600,
347 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
348 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
349 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
350 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
351 };
352
353 /* Big endian: should work, but is untested */
354 struct ring_desc {
355 __le32 buf;
356 __le32 flaglen;
357 };
358
359 struct ring_desc_ex {
360 __le32 bufhigh;
361 __le32 buflow;
362 __le32 txvlan;
363 __le32 flaglen;
364 };
365
366 union ring_type {
367 struct ring_desc *orig;
368 struct ring_desc_ex *ex;
369 };
370
371 #define FLAG_MASK_V1 0xffff0000
372 #define FLAG_MASK_V2 0xffffc000
373 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
374 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
375
376 #define NV_TX_LASTPACKET (1<<16)
377 #define NV_TX_RETRYERROR (1<<19)
378 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
379 #define NV_TX_FORCED_INTERRUPT (1<<24)
380 #define NV_TX_DEFERRED (1<<26)
381 #define NV_TX_CARRIERLOST (1<<27)
382 #define NV_TX_LATECOLLISION (1<<28)
383 #define NV_TX_UNDERFLOW (1<<29)
384 #define NV_TX_ERROR (1<<30)
385 #define NV_TX_VALID (1<<31)
386
387 #define NV_TX2_LASTPACKET (1<<29)
388 #define NV_TX2_RETRYERROR (1<<18)
389 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
390 #define NV_TX2_FORCED_INTERRUPT (1<<30)
391 #define NV_TX2_DEFERRED (1<<25)
392 #define NV_TX2_CARRIERLOST (1<<26)
393 #define NV_TX2_LATECOLLISION (1<<27)
394 #define NV_TX2_UNDERFLOW (1<<28)
395 /* error and valid are the same for both */
396 #define NV_TX2_ERROR (1<<30)
397 #define NV_TX2_VALID (1<<31)
398 #define NV_TX2_TSO (1<<28)
399 #define NV_TX2_TSO_SHIFT 14
400 #define NV_TX2_TSO_MAX_SHIFT 14
401 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
402 #define NV_TX2_CHECKSUM_L3 (1<<27)
403 #define NV_TX2_CHECKSUM_L4 (1<<26)
404
405 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
406
407 #define NV_RX_DESCRIPTORVALID (1<<16)
408 #define NV_RX_MISSEDFRAME (1<<17)
409 #define NV_RX_SUBTRACT1 (1<<18)
410 #define NV_RX_ERROR1 (1<<23)
411 #define NV_RX_ERROR2 (1<<24)
412 #define NV_RX_ERROR3 (1<<25)
413 #define NV_RX_ERROR4 (1<<26)
414 #define NV_RX_CRCERR (1<<27)
415 #define NV_RX_OVERFLOW (1<<28)
416 #define NV_RX_FRAMINGERR (1<<29)
417 #define NV_RX_ERROR (1<<30)
418 #define NV_RX_AVAIL (1<<31)
419 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
420
421 #define NV_RX2_CHECKSUMMASK (0x1C000000)
422 #define NV_RX2_CHECKSUM_IP (0x10000000)
423 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
424 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
425 #define NV_RX2_DESCRIPTORVALID (1<<29)
426 #define NV_RX2_SUBTRACT1 (1<<25)
427 #define NV_RX2_ERROR1 (1<<18)
428 #define NV_RX2_ERROR2 (1<<19)
429 #define NV_RX2_ERROR3 (1<<20)
430 #define NV_RX2_ERROR4 (1<<21)
431 #define NV_RX2_CRCERR (1<<22)
432 #define NV_RX2_OVERFLOW (1<<23)
433 #define NV_RX2_FRAMINGERR (1<<24)
434 /* error and avail are the same for both */
435 #define NV_RX2_ERROR (1<<30)
436 #define NV_RX2_AVAIL (1<<31)
437 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
438
439 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
440 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
441
442 /* Miscellaneous hardware related defines: */
443 #define NV_PCI_REGSZ_VER1 0x270
444 #define NV_PCI_REGSZ_VER2 0x2d4
445 #define NV_PCI_REGSZ_VER3 0x604
446 #define NV_PCI_REGSZ_MAX 0x604
447
448 /* various timeout delays: all in usec */
449 #define NV_TXRX_RESET_DELAY 4
450 #define NV_TXSTOP_DELAY1 10
451 #define NV_TXSTOP_DELAY1MAX 500000
452 #define NV_TXSTOP_DELAY2 100
453 #define NV_RXSTOP_DELAY1 10
454 #define NV_RXSTOP_DELAY1MAX 500000
455 #define NV_RXSTOP_DELAY2 100
456 #define NV_SETUP5_DELAY 5
457 #define NV_SETUP5_DELAYMAX 50000
458 #define NV_POWERUP_DELAY 5
459 #define NV_POWERUP_DELAYMAX 5000
460 #define NV_MIIBUSY_DELAY 50
461 #define NV_MIIPHY_DELAY 10
462 #define NV_MIIPHY_DELAYMAX 10000
463 #define NV_MAC_RESET_DELAY 64
464
465 #define NV_WAKEUPPATTERNS 5
466 #define NV_WAKEUPMASKENTRIES 4
467
468 /* General driver defaults */
469 #define NV_WATCHDOG_TIMEO (5*HZ)
470
471 #define RX_RING_DEFAULT 512
472 #define TX_RING_DEFAULT 256
473 #define RX_RING_MIN 128
474 #define TX_RING_MIN 64
475 #define RING_MAX_DESC_VER_1 1024
476 #define RING_MAX_DESC_VER_2_3 16384
477
478 /* rx/tx mac addr + type + vlan + align + slack*/
479 #define NV_RX_HEADERS (64)
480 /* even more slack. */
481 #define NV_RX_ALLOC_PAD (64)
482
483 /* maximum mtu size */
484 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
485 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
486
487 #define OOM_REFILL (1+HZ/20)
488 #define POLL_WAIT (1+HZ/100)
489 #define LINK_TIMEOUT (3*HZ)
490 #define STATS_INTERVAL (10*HZ)
491
492 /*
493 * desc_ver values:
494 * The nic supports three different descriptor types:
495 * - DESC_VER_1: Original
496 * - DESC_VER_2: support for jumbo frames.
497 * - DESC_VER_3: 64-bit format.
498 */
499 #define DESC_VER_1 1
500 #define DESC_VER_2 2
501 #define DESC_VER_3 3
502
503 /* PHY defines */
504 #define PHY_OUI_MARVELL 0x5043
505 #define PHY_OUI_CICADA 0x03f1
506 #define PHY_OUI_VITESSE 0x01c1
507 #define PHY_OUI_REALTEK 0x0732
508 #define PHY_OUI_REALTEK2 0x0020
509 #define PHYID1_OUI_MASK 0x03ff
510 #define PHYID1_OUI_SHFT 6
511 #define PHYID2_OUI_MASK 0xfc00
512 #define PHYID2_OUI_SHFT 10
513 #define PHYID2_MODEL_MASK 0x03f0
514 #define PHY_MODEL_REALTEK_8211 0x0110
515 #define PHY_REV_MASK 0x0001
516 #define PHY_REV_REALTEK_8211B 0x0000
517 #define PHY_REV_REALTEK_8211C 0x0001
518 #define PHY_MODEL_REALTEK_8201 0x0200
519 #define PHY_MODEL_MARVELL_E3016 0x0220
520 #define PHY_MARVELL_E3016_INITMASK 0x0300
521 #define PHY_CICADA_INIT1 0x0f000
522 #define PHY_CICADA_INIT2 0x0e00
523 #define PHY_CICADA_INIT3 0x01000
524 #define PHY_CICADA_INIT4 0x0200
525 #define PHY_CICADA_INIT5 0x0004
526 #define PHY_CICADA_INIT6 0x02000
527 #define PHY_VITESSE_INIT_REG1 0x1f
528 #define PHY_VITESSE_INIT_REG2 0x10
529 #define PHY_VITESSE_INIT_REG3 0x11
530 #define PHY_VITESSE_INIT_REG4 0x12
531 #define PHY_VITESSE_INIT_MSK1 0xc
532 #define PHY_VITESSE_INIT_MSK2 0x0180
533 #define PHY_VITESSE_INIT1 0x52b5
534 #define PHY_VITESSE_INIT2 0xaf8a
535 #define PHY_VITESSE_INIT3 0x8
536 #define PHY_VITESSE_INIT4 0x8f8a
537 #define PHY_VITESSE_INIT5 0xaf86
538 #define PHY_VITESSE_INIT6 0x8f86
539 #define PHY_VITESSE_INIT7 0xaf82
540 #define PHY_VITESSE_INIT8 0x0100
541 #define PHY_VITESSE_INIT9 0x8f82
542 #define PHY_VITESSE_INIT10 0x0
543 #define PHY_REALTEK_INIT_REG1 0x1f
544 #define PHY_REALTEK_INIT_REG2 0x19
545 #define PHY_REALTEK_INIT_REG3 0x13
546 #define PHY_REALTEK_INIT_REG4 0x14
547 #define PHY_REALTEK_INIT_REG5 0x18
548 #define PHY_REALTEK_INIT_REG6 0x11
549 #define PHY_REALTEK_INIT_REG7 0x01
550 #define PHY_REALTEK_INIT1 0x0000
551 #define PHY_REALTEK_INIT2 0x8e00
552 #define PHY_REALTEK_INIT3 0x0001
553 #define PHY_REALTEK_INIT4 0xad17
554 #define PHY_REALTEK_INIT5 0xfb54
555 #define PHY_REALTEK_INIT6 0xf5c7
556 #define PHY_REALTEK_INIT7 0x1000
557 #define PHY_REALTEK_INIT8 0x0003
558 #define PHY_REALTEK_INIT9 0x0008
559 #define PHY_REALTEK_INIT10 0x0005
560 #define PHY_REALTEK_INIT11 0x0200
561 #define PHY_REALTEK_INIT_MSK1 0x0003
562
563 #define PHY_GIGABIT 0x0100
564
565 #define PHY_TIMEOUT 0x1
566 #define PHY_ERROR 0x2
567
568 #define PHY_100 0x1
569 #define PHY_1000 0x2
570 #define PHY_HALF 0x100
571
572 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
573 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
574 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
575 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
576 #define NV_PAUSEFRAME_RX_REQ 0x0010
577 #define NV_PAUSEFRAME_TX_REQ 0x0020
578 #define NV_PAUSEFRAME_AUTONEG 0x0040
579
580 /* MSI/MSI-X defines */
581 #define NV_MSI_X_MAX_VECTORS 8
582 #define NV_MSI_X_VECTORS_MASK 0x000f
583 #define NV_MSI_CAPABLE 0x0010
584 #define NV_MSI_X_CAPABLE 0x0020
585 #define NV_MSI_ENABLED 0x0040
586 #define NV_MSI_X_ENABLED 0x0080
587
588 #define NV_MSI_X_VECTOR_ALL 0x0
589 #define NV_MSI_X_VECTOR_RX 0x0
590 #define NV_MSI_X_VECTOR_TX 0x1
591 #define NV_MSI_X_VECTOR_OTHER 0x2
592
593 #define NV_MSI_PRIV_OFFSET 0x68
594 #define NV_MSI_PRIV_VALUE 0xffffffff
595
596 #define NV_RESTART_TX 0x1
597 #define NV_RESTART_RX 0x2
598
599 #define NV_TX_LIMIT_COUNT 16
600
601 #define NV_DYNAMIC_THRESHOLD 4
602 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
603
604 /* statistics */
605 struct nv_ethtool_str {
606 char name[ETH_GSTRING_LEN];
607 };
608
609 static const struct nv_ethtool_str nv_estats_str[] = {
610 { "tx_bytes" }, /* includes Ethernet FCS CRC */
611 { "tx_zero_rexmt" },
612 { "tx_one_rexmt" },
613 { "tx_many_rexmt" },
614 { "tx_late_collision" },
615 { "tx_fifo_errors" },
616 { "tx_carrier_errors" },
617 { "tx_excess_deferral" },
618 { "tx_retry_error" },
619 { "rx_frame_error" },
620 { "rx_extra_byte" },
621 { "rx_late_collision" },
622 { "rx_runt" },
623 { "rx_frame_too_long" },
624 { "rx_over_errors" },
625 { "rx_crc_errors" },
626 { "rx_frame_align_error" },
627 { "rx_length_error" },
628 { "rx_unicast" },
629 { "rx_multicast" },
630 { "rx_broadcast" },
631 { "rx_packets" },
632 { "rx_errors_total" },
633 { "tx_errors_total" },
634
635 /* version 2 stats */
636 { "tx_deferral" },
637 { "tx_packets" },
638 { "rx_bytes" }, /* includes Ethernet FCS CRC */
639 { "tx_pause" },
640 { "rx_pause" },
641 { "rx_drop_frame" },
642
643 /* version 3 stats */
644 { "tx_unicast" },
645 { "tx_multicast" },
646 { "tx_broadcast" }
647 };
648
649 struct nv_ethtool_stats {
650 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
651 u64 tx_zero_rexmt;
652 u64 tx_one_rexmt;
653 u64 tx_many_rexmt;
654 u64 tx_late_collision;
655 u64 tx_fifo_errors;
656 u64 tx_carrier_errors;
657 u64 tx_excess_deferral;
658 u64 tx_retry_error;
659 u64 rx_frame_error;
660 u64 rx_extra_byte;
661 u64 rx_late_collision;
662 u64 rx_runt;
663 u64 rx_frame_too_long;
664 u64 rx_over_errors;
665 u64 rx_crc_errors;
666 u64 rx_frame_align_error;
667 u64 rx_length_error;
668 u64 rx_unicast;
669 u64 rx_multicast;
670 u64 rx_broadcast;
671 u64 rx_packets; /* should be ifconfig->rx_packets */
672 u64 rx_errors_total;
673 u64 tx_errors_total;
674
675 /* version 2 stats */
676 u64 tx_deferral;
677 u64 tx_packets; /* should be ifconfig->tx_packets */
678 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
679 u64 tx_pause;
680 u64 rx_pause;
681 u64 rx_drop_frame;
682
683 /* version 3 stats */
684 u64 tx_unicast;
685 u64 tx_multicast;
686 u64 tx_broadcast;
687 };
688
689 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
690 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
691 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
692
693 /* diagnostics */
694 #define NV_TEST_COUNT_BASE 3
695 #define NV_TEST_COUNT_EXTENDED 4
696
697 static const struct nv_ethtool_str nv_etests_str[] = {
698 { "link (online/offline)" },
699 { "register (offline) " },
700 { "interrupt (offline) " },
701 { "loopback (offline) " }
702 };
703
704 struct register_test {
705 __u32 reg;
706 __u32 mask;
707 };
708
709 static const struct register_test nv_registers_test[] = {
710 { NvRegUnknownSetupReg6, 0x01 },
711 { NvRegMisc1, 0x03c },
712 { NvRegOffloadConfig, 0x03ff },
713 { NvRegMulticastAddrA, 0xffffffff },
714 { NvRegTxWatermark, 0x0ff },
715 { NvRegWakeUpFlags, 0x07777 },
716 { 0, 0 }
717 };
718
719 struct nv_skb_map {
720 struct sk_buff *skb;
721 dma_addr_t dma;
722 unsigned int dma_len:31;
723 unsigned int dma_single:1;
724 struct ring_desc_ex *first_tx_desc;
725 struct nv_skb_map *next_tx_ctx;
726 };
727
728 /*
729 * SMP locking:
730 * All hardware access under netdev_priv(dev)->lock, except the performance
731 * critical parts:
732 * - rx is (pseudo-) lockless: it relies on the single-threading provided
733 * by the arch code for interrupts.
734 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
735 * needs netdev_priv(dev)->lock :-(
736 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
737 *
738 * Hardware stats updates are protected by hwstats_lock:
739 * - updated by nv_do_stats_poll (timer). This is meant to avoid
740 * integer wraparound in the NIC stats registers, at low frequency
741 * (0.1 Hz)
742 * - updated by nv_get_ethtool_stats + nv_get_stats64
743 *
744 * Software stats are accessed only through 64b synchronization points
745 * and are not subject to other synchronization techniques (single
746 * update thread on the TX or RX paths).
747 */
748
749 /* in dev: base, irq */
750 struct fe_priv {
751 spinlock_t lock;
752
753 struct net_device *dev;
754 struct napi_struct napi;
755
756 /* hardware stats are updated in syscall and timer */
757 spinlock_t hwstats_lock;
758 struct nv_ethtool_stats estats;
759
760 int in_shutdown;
761 u32 linkspeed;
762 int duplex;
763 int autoneg;
764 int fixed_mode;
765 int phyaddr;
766 int wolenabled;
767 unsigned int phy_oui;
768 unsigned int phy_model;
769 unsigned int phy_rev;
770 u16 gigabit;
771 int intr_test;
772 int recover_error;
773 int quiet_count;
774
775 /* General data: RO fields */
776 dma_addr_t ring_addr;
777 struct pci_dev *pci_dev;
778 u32 orig_mac[2];
779 u32 events;
780 u32 irqmask;
781 u32 desc_ver;
782 u32 txrxctl_bits;
783 u32 vlanctl_bits;
784 u32 driver_data;
785 u32 device_id;
786 u32 register_size;
787 u32 mac_in_use;
788 int mgmt_version;
789 int mgmt_sema;
790
791 void __iomem *base;
792
793 /* rx specific fields.
794 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
795 */
796 union ring_type get_rx, put_rx, last_rx;
797 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
798 struct nv_skb_map *last_rx_ctx;
799 struct nv_skb_map *rx_skb;
800
801 union ring_type rx_ring;
802 unsigned int rx_buf_sz;
803 unsigned int pkt_limit;
804 struct timer_list oom_kick;
805 struct timer_list nic_poll;
806 struct timer_list stats_poll;
807 u32 nic_poll_irq;
808 int rx_ring_size;
809
810 /* RX software stats */
811 struct u64_stats_sync swstats_rx_syncp;
812 u64 stat_rx_packets;
813 u64 stat_rx_bytes; /* not always available in HW */
814 u64 stat_rx_missed_errors;
815 u64 stat_rx_dropped;
816
817 /* media detection workaround.
818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
819 */
820 int need_linktimer;
821 unsigned long link_timeout;
822 /*
823 * tx specific fields.
824 */
825 union ring_type get_tx, put_tx, last_tx;
826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
827 struct nv_skb_map *last_tx_ctx;
828 struct nv_skb_map *tx_skb;
829
830 union ring_type tx_ring;
831 u32 tx_flags;
832 int tx_ring_size;
833 int tx_limit;
834 u32 tx_pkts_in_progress;
835 struct nv_skb_map *tx_change_owner;
836 struct nv_skb_map *tx_end_flip;
837 int tx_stop;
838
839 /* TX software stats */
840 struct u64_stats_sync swstats_tx_syncp;
841 u64 stat_tx_packets; /* not always available in HW */
842 u64 stat_tx_bytes;
843 u64 stat_tx_dropped;
844
845 /* msi/msi-x fields */
846 u32 msi_flags;
847 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
848
849 /* flow control */
850 u32 pause_flags;
851
852 /* power saved state */
853 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
854
855 /* for different msi-x irq type */
856 char name_rx[IFNAMSIZ + 3]; /* -rx */
857 char name_tx[IFNAMSIZ + 3]; /* -tx */
858 char name_other[IFNAMSIZ + 6]; /* -other */
859 };
860
861 /*
862 * Maximum number of loops until we assume that a bit in the irq mask
863 * is stuck. Overridable with module param.
864 */
865 static int max_interrupt_work = 4;
866
867 /*
868 * Optimization can be either throuput mode or cpu mode
869 *
870 * Throughput Mode: Every tx and rx packet will generate an interrupt.
871 * CPU Mode: Interrupts are controlled by a timer.
872 */
873 enum {
874 NV_OPTIMIZATION_MODE_THROUGHPUT,
875 NV_OPTIMIZATION_MODE_CPU,
876 NV_OPTIMIZATION_MODE_DYNAMIC
877 };
878 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
879
880 /*
881 * Poll interval for timer irq
882 *
883 * This interval determines how frequent an interrupt is generated.
884 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
885 * Min = 0, and Max = 65535
886 */
887 static int poll_interval = -1;
888
889 /*
890 * MSI interrupts
891 */
892 enum {
893 NV_MSI_INT_DISABLED,
894 NV_MSI_INT_ENABLED
895 };
896 static int msi = NV_MSI_INT_ENABLED;
897
898 /*
899 * MSIX interrupts
900 */
901 enum {
902 NV_MSIX_INT_DISABLED,
903 NV_MSIX_INT_ENABLED
904 };
905 static int msix = NV_MSIX_INT_ENABLED;
906
907 /*
908 * DMA 64bit
909 */
910 enum {
911 NV_DMA_64BIT_DISABLED,
912 NV_DMA_64BIT_ENABLED
913 };
914 static int dma_64bit = NV_DMA_64BIT_ENABLED;
915
916 /*
917 * Debug output control for tx_timeout
918 */
919 static bool debug_tx_timeout = false;
920
921 /*
922 * Crossover Detection
923 * Realtek 8201 phy + some OEM boards do not work properly.
924 */
925 enum {
926 NV_CROSSOVER_DETECTION_DISABLED,
927 NV_CROSSOVER_DETECTION_ENABLED
928 };
929 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
930
931 /*
932 * Power down phy when interface is down (persists through reboot;
933 * older Linux and other OSes may not power it up again)
934 */
935 static int phy_power_down;
936
get_nvpriv(struct net_device * dev)937 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
938 {
939 return netdev_priv(dev);
940 }
941
get_hwbase(struct net_device * dev)942 static inline u8 __iomem *get_hwbase(struct net_device *dev)
943 {
944 return ((struct fe_priv *)netdev_priv(dev))->base;
945 }
946
pci_push(u8 __iomem * base)947 static inline void pci_push(u8 __iomem *base)
948 {
949 /* force out pending posted writes */
950 readl(base);
951 }
952
nv_descr_getlength(struct ring_desc * prd,u32 v)953 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
954 {
955 return le32_to_cpu(prd->flaglen)
956 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
957 }
958
nv_descr_getlength_ex(struct ring_desc_ex * prd,u32 v)959 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
960 {
961 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
962 }
963
nv_optimized(struct fe_priv * np)964 static bool nv_optimized(struct fe_priv *np)
965 {
966 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
967 return false;
968 return true;
969 }
970
reg_delay(struct net_device * dev,int offset,u32 mask,u32 target,int delay,int delaymax)971 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
972 int delay, int delaymax)
973 {
974 u8 __iomem *base = get_hwbase(dev);
975
976 pci_push(base);
977 do {
978 udelay(delay);
979 delaymax -= delay;
980 if (delaymax < 0)
981 return 1;
982 } while ((readl(base + offset) & mask) != target);
983 return 0;
984 }
985
986 #define NV_SETUP_RX_RING 0x01
987 #define NV_SETUP_TX_RING 0x02
988
dma_low(dma_addr_t addr)989 static inline u32 dma_low(dma_addr_t addr)
990 {
991 return addr;
992 }
993
dma_high(dma_addr_t addr)994 static inline u32 dma_high(dma_addr_t addr)
995 {
996 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
997 }
998
setup_hw_rings(struct net_device * dev,int rxtx_flags)999 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
1000 {
1001 struct fe_priv *np = get_nvpriv(dev);
1002 u8 __iomem *base = get_hwbase(dev);
1003
1004 if (!nv_optimized(np)) {
1005 if (rxtx_flags & NV_SETUP_RX_RING)
1006 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1007 if (rxtx_flags & NV_SETUP_TX_RING)
1008 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1009 } else {
1010 if (rxtx_flags & NV_SETUP_RX_RING) {
1011 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1012 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
1013 }
1014 if (rxtx_flags & NV_SETUP_TX_RING) {
1015 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1016 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
1017 }
1018 }
1019 }
1020
free_rings(struct net_device * dev)1021 static void free_rings(struct net_device *dev)
1022 {
1023 struct fe_priv *np = get_nvpriv(dev);
1024
1025 if (!nv_optimized(np)) {
1026 if (np->rx_ring.orig)
1027 dma_free_coherent(&np->pci_dev->dev,
1028 sizeof(struct ring_desc) *
1029 (np->rx_ring_size +
1030 np->tx_ring_size),
1031 np->rx_ring.orig, np->ring_addr);
1032 } else {
1033 if (np->rx_ring.ex)
1034 dma_free_coherent(&np->pci_dev->dev,
1035 sizeof(struct ring_desc_ex) *
1036 (np->rx_ring_size +
1037 np->tx_ring_size),
1038 np->rx_ring.ex, np->ring_addr);
1039 }
1040 kfree(np->rx_skb);
1041 kfree(np->tx_skb);
1042 }
1043
using_multi_irqs(struct net_device * dev)1044 static int using_multi_irqs(struct net_device *dev)
1045 {
1046 struct fe_priv *np = get_nvpriv(dev);
1047
1048 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1049 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1050 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1051 return 0;
1052 else
1053 return 1;
1054 }
1055
nv_txrx_gate(struct net_device * dev,bool gate)1056 static void nv_txrx_gate(struct net_device *dev, bool gate)
1057 {
1058 struct fe_priv *np = get_nvpriv(dev);
1059 u8 __iomem *base = get_hwbase(dev);
1060 u32 powerstate;
1061
1062 if (!np->mac_in_use &&
1063 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1064 powerstate = readl(base + NvRegPowerState2);
1065 if (gate)
1066 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1067 else
1068 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1069 writel(powerstate, base + NvRegPowerState2);
1070 }
1071 }
1072
nv_enable_irq(struct net_device * dev)1073 static void nv_enable_irq(struct net_device *dev)
1074 {
1075 struct fe_priv *np = get_nvpriv(dev);
1076
1077 if (!using_multi_irqs(dev)) {
1078 if (np->msi_flags & NV_MSI_X_ENABLED)
1079 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1080 else
1081 enable_irq(np->pci_dev->irq);
1082 } else {
1083 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1084 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1085 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1086 }
1087 }
1088
nv_disable_irq(struct net_device * dev)1089 static void nv_disable_irq(struct net_device *dev)
1090 {
1091 struct fe_priv *np = get_nvpriv(dev);
1092
1093 if (!using_multi_irqs(dev)) {
1094 if (np->msi_flags & NV_MSI_X_ENABLED)
1095 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1096 else
1097 disable_irq(np->pci_dev->irq);
1098 } else {
1099 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1100 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1101 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1102 }
1103 }
1104
1105 /* In MSIX mode, a write to irqmask behaves as XOR */
nv_enable_hw_interrupts(struct net_device * dev,u32 mask)1106 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1107 {
1108 u8 __iomem *base = get_hwbase(dev);
1109
1110 writel(mask, base + NvRegIrqMask);
1111 }
1112
nv_disable_hw_interrupts(struct net_device * dev,u32 mask)1113 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1114 {
1115 struct fe_priv *np = get_nvpriv(dev);
1116 u8 __iomem *base = get_hwbase(dev);
1117
1118 if (np->msi_flags & NV_MSI_X_ENABLED) {
1119 writel(mask, base + NvRegIrqMask);
1120 } else {
1121 if (np->msi_flags & NV_MSI_ENABLED)
1122 writel(0, base + NvRegMSIIrqMask);
1123 writel(0, base + NvRegIrqMask);
1124 }
1125 }
1126
nv_napi_enable(struct net_device * dev)1127 static void nv_napi_enable(struct net_device *dev)
1128 {
1129 struct fe_priv *np = get_nvpriv(dev);
1130
1131 napi_enable(&np->napi);
1132 }
1133
nv_napi_disable(struct net_device * dev)1134 static void nv_napi_disable(struct net_device *dev)
1135 {
1136 struct fe_priv *np = get_nvpriv(dev);
1137
1138 napi_disable(&np->napi);
1139 }
1140
1141 #define MII_READ (-1)
1142 /* mii_rw: read/write a register on the PHY.
1143 *
1144 * Caller must guarantee serialization
1145 */
mii_rw(struct net_device * dev,int addr,int miireg,int value)1146 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1147 {
1148 u8 __iomem *base = get_hwbase(dev);
1149 u32 reg;
1150 int retval;
1151
1152 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1153
1154 reg = readl(base + NvRegMIIControl);
1155 if (reg & NVREG_MIICTL_INUSE) {
1156 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1157 udelay(NV_MIIBUSY_DELAY);
1158 }
1159
1160 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1161 if (value != MII_READ) {
1162 writel(value, base + NvRegMIIData);
1163 reg |= NVREG_MIICTL_WRITE;
1164 }
1165 writel(reg, base + NvRegMIIControl);
1166
1167 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1168 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
1169 retval = -1;
1170 } else if (value != MII_READ) {
1171 /* it was a write operation - fewer failures are detectable */
1172 retval = 0;
1173 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1174 retval = -1;
1175 } else {
1176 retval = readl(base + NvRegMIIData);
1177 }
1178
1179 return retval;
1180 }
1181
phy_reset(struct net_device * dev,u32 bmcr_setup)1182 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1183 {
1184 struct fe_priv *np = netdev_priv(dev);
1185 u32 miicontrol;
1186 unsigned int tries = 0;
1187
1188 miicontrol = BMCR_RESET | bmcr_setup;
1189 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
1190 return -1;
1191
1192 /* wait for 500ms */
1193 msleep(500);
1194
1195 /* must wait till reset is deasserted */
1196 while (miicontrol & BMCR_RESET) {
1197 usleep_range(10000, 20000);
1198 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1199 /* FIXME: 100 tries seem excessive */
1200 if (tries++ > 100)
1201 return -1;
1202 }
1203 return 0;
1204 }
1205
init_realtek_8211b(struct net_device * dev,struct fe_priv * np)1206 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
1207 {
1208 static const struct {
1209 int reg;
1210 int init;
1211 } ri[] = {
1212 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1213 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
1214 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
1215 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
1216 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
1217 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
1218 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1219 };
1220 int i;
1221
1222 for (i = 0; i < ARRAY_SIZE(ri); i++) {
1223 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
1224 return PHY_ERROR;
1225 }
1226
1227 return 0;
1228 }
1229
init_realtek_8211c(struct net_device * dev,struct fe_priv * np)1230 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
1231 {
1232 u32 reg;
1233 u8 __iomem *base = get_hwbase(dev);
1234 u32 powerstate = readl(base + NvRegPowerState2);
1235
1236 /* need to perform hw phy reset */
1237 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1238 writel(powerstate, base + NvRegPowerState2);
1239 msleep(25);
1240
1241 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1242 writel(powerstate, base + NvRegPowerState2);
1243 msleep(25);
1244
1245 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1246 reg |= PHY_REALTEK_INIT9;
1247 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
1248 return PHY_ERROR;
1249 if (mii_rw(dev, np->phyaddr,
1250 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
1251 return PHY_ERROR;
1252 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1253 if (!(reg & PHY_REALTEK_INIT11)) {
1254 reg |= PHY_REALTEK_INIT11;
1255 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
1256 return PHY_ERROR;
1257 }
1258 if (mii_rw(dev, np->phyaddr,
1259 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1260 return PHY_ERROR;
1261
1262 return 0;
1263 }
1264
init_realtek_8201(struct net_device * dev,struct fe_priv * np)1265 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
1266 {
1267 u32 phy_reserved;
1268
1269 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1270 phy_reserved = mii_rw(dev, np->phyaddr,
1271 PHY_REALTEK_INIT_REG6, MII_READ);
1272 phy_reserved |= PHY_REALTEK_INIT7;
1273 if (mii_rw(dev, np->phyaddr,
1274 PHY_REALTEK_INIT_REG6, phy_reserved))
1275 return PHY_ERROR;
1276 }
1277
1278 return 0;
1279 }
1280
init_realtek_8201_cross(struct net_device * dev,struct fe_priv * np)1281 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
1282 {
1283 u32 phy_reserved;
1284
1285 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1286 if (mii_rw(dev, np->phyaddr,
1287 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
1288 return PHY_ERROR;
1289 phy_reserved = mii_rw(dev, np->phyaddr,
1290 PHY_REALTEK_INIT_REG2, MII_READ);
1291 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1292 phy_reserved |= PHY_REALTEK_INIT3;
1293 if (mii_rw(dev, np->phyaddr,
1294 PHY_REALTEK_INIT_REG2, phy_reserved))
1295 return PHY_ERROR;
1296 if (mii_rw(dev, np->phyaddr,
1297 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1298 return PHY_ERROR;
1299 }
1300
1301 return 0;
1302 }
1303
init_cicada(struct net_device * dev,struct fe_priv * np,u32 phyinterface)1304 static int init_cicada(struct net_device *dev, struct fe_priv *np,
1305 u32 phyinterface)
1306 {
1307 u32 phy_reserved;
1308
1309 if (phyinterface & PHY_RGMII) {
1310 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1311 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1312 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1313 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
1314 return PHY_ERROR;
1315 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1316 phy_reserved |= PHY_CICADA_INIT5;
1317 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
1318 return PHY_ERROR;
1319 }
1320 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1321 phy_reserved |= PHY_CICADA_INIT6;
1322 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
1323 return PHY_ERROR;
1324
1325 return 0;
1326 }
1327
init_vitesse(struct net_device * dev,struct fe_priv * np)1328 static int init_vitesse(struct net_device *dev, struct fe_priv *np)
1329 {
1330 u32 phy_reserved;
1331
1332 if (mii_rw(dev, np->phyaddr,
1333 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
1334 return PHY_ERROR;
1335 if (mii_rw(dev, np->phyaddr,
1336 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
1337 return PHY_ERROR;
1338 phy_reserved = mii_rw(dev, np->phyaddr,
1339 PHY_VITESSE_INIT_REG4, MII_READ);
1340 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1341 return PHY_ERROR;
1342 phy_reserved = mii_rw(dev, np->phyaddr,
1343 PHY_VITESSE_INIT_REG3, MII_READ);
1344 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1345 phy_reserved |= PHY_VITESSE_INIT3;
1346 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1347 return PHY_ERROR;
1348 if (mii_rw(dev, np->phyaddr,
1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
1350 return PHY_ERROR;
1351 if (mii_rw(dev, np->phyaddr,
1352 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
1353 return PHY_ERROR;
1354 phy_reserved = mii_rw(dev, np->phyaddr,
1355 PHY_VITESSE_INIT_REG4, MII_READ);
1356 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1357 phy_reserved |= PHY_VITESSE_INIT3;
1358 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1359 return PHY_ERROR;
1360 phy_reserved = mii_rw(dev, np->phyaddr,
1361 PHY_VITESSE_INIT_REG3, MII_READ);
1362 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1363 return PHY_ERROR;
1364 if (mii_rw(dev, np->phyaddr,
1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
1366 return PHY_ERROR;
1367 if (mii_rw(dev, np->phyaddr,
1368 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
1369 return PHY_ERROR;
1370 phy_reserved = mii_rw(dev, np->phyaddr,
1371 PHY_VITESSE_INIT_REG4, MII_READ);
1372 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1373 return PHY_ERROR;
1374 phy_reserved = mii_rw(dev, np->phyaddr,
1375 PHY_VITESSE_INIT_REG3, MII_READ);
1376 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1377 phy_reserved |= PHY_VITESSE_INIT8;
1378 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1379 return PHY_ERROR;
1380 if (mii_rw(dev, np->phyaddr,
1381 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
1382 return PHY_ERROR;
1383 if (mii_rw(dev, np->phyaddr,
1384 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
1385 return PHY_ERROR;
1386
1387 return 0;
1388 }
1389
phy_init(struct net_device * dev)1390 static int phy_init(struct net_device *dev)
1391 {
1392 struct fe_priv *np = get_nvpriv(dev);
1393 u8 __iomem *base = get_hwbase(dev);
1394 u32 phyinterface;
1395 u32 mii_status, mii_control, mii_control_1000, reg;
1396
1397 /* phy errata for E3016 phy */
1398 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1399 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1400 reg &= ~PHY_MARVELL_E3016_INITMASK;
1401 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1402 netdev_info(dev, "%s: phy write to errata reg failed\n",
1403 pci_name(np->pci_dev));
1404 return PHY_ERROR;
1405 }
1406 }
1407 if (np->phy_oui == PHY_OUI_REALTEK) {
1408 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1409 np->phy_rev == PHY_REV_REALTEK_8211B) {
1410 if (init_realtek_8211b(dev, np)) {
1411 netdev_info(dev, "%s: phy init failed\n",
1412 pci_name(np->pci_dev));
1413 return PHY_ERROR;
1414 }
1415 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1416 np->phy_rev == PHY_REV_REALTEK_8211C) {
1417 if (init_realtek_8211c(dev, np)) {
1418 netdev_info(dev, "%s: phy init failed\n",
1419 pci_name(np->pci_dev));
1420 return PHY_ERROR;
1421 }
1422 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1423 if (init_realtek_8201(dev, np)) {
1424 netdev_info(dev, "%s: phy init failed\n",
1425 pci_name(np->pci_dev));
1426 return PHY_ERROR;
1427 }
1428 }
1429 }
1430
1431 /* set advertise register */
1432 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1433 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
1434 ADVERTISE_100HALF | ADVERTISE_100FULL |
1435 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1436 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1437 netdev_info(dev, "%s: phy write to advertise failed\n",
1438 pci_name(np->pci_dev));
1439 return PHY_ERROR;
1440 }
1441
1442 /* get phy interface type */
1443 phyinterface = readl(base + NvRegPhyInterface);
1444
1445 /* see if gigabit phy */
1446 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1447 if (mii_status & PHY_GIGABIT) {
1448 np->gigabit = PHY_GIGABIT;
1449 mii_control_1000 = mii_rw(dev, np->phyaddr,
1450 MII_CTRL1000, MII_READ);
1451 mii_control_1000 &= ~ADVERTISE_1000HALF;
1452 if (phyinterface & PHY_RGMII)
1453 mii_control_1000 |= ADVERTISE_1000FULL;
1454 else
1455 mii_control_1000 &= ~ADVERTISE_1000FULL;
1456
1457 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1458 netdev_info(dev, "%s: phy init failed\n",
1459 pci_name(np->pci_dev));
1460 return PHY_ERROR;
1461 }
1462 } else
1463 np->gigabit = 0;
1464
1465 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1466 mii_control |= BMCR_ANENABLE;
1467
1468 if (np->phy_oui == PHY_OUI_REALTEK &&
1469 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1470 np->phy_rev == PHY_REV_REALTEK_8211C) {
1471 /* start autoneg since we already performed hw reset above */
1472 mii_control |= BMCR_ANRESTART;
1473 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1474 netdev_info(dev, "%s: phy init failed\n",
1475 pci_name(np->pci_dev));
1476 return PHY_ERROR;
1477 }
1478 } else {
1479 /* reset the phy
1480 * (certain phys need bmcr to be setup with reset)
1481 */
1482 if (phy_reset(dev, mii_control)) {
1483 netdev_info(dev, "%s: phy reset failed\n",
1484 pci_name(np->pci_dev));
1485 return PHY_ERROR;
1486 }
1487 }
1488
1489 /* phy vendor specific configuration */
1490 if (np->phy_oui == PHY_OUI_CICADA) {
1491 if (init_cicada(dev, np, phyinterface)) {
1492 netdev_info(dev, "%s: phy init failed\n",
1493 pci_name(np->pci_dev));
1494 return PHY_ERROR;
1495 }
1496 } else if (np->phy_oui == PHY_OUI_VITESSE) {
1497 if (init_vitesse(dev, np)) {
1498 netdev_info(dev, "%s: phy init failed\n",
1499 pci_name(np->pci_dev));
1500 return PHY_ERROR;
1501 }
1502 } else if (np->phy_oui == PHY_OUI_REALTEK) {
1503 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1504 np->phy_rev == PHY_REV_REALTEK_8211B) {
1505 /* reset could have cleared these out, set them back */
1506 if (init_realtek_8211b(dev, np)) {
1507 netdev_info(dev, "%s: phy init failed\n",
1508 pci_name(np->pci_dev));
1509 return PHY_ERROR;
1510 }
1511 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1512 if (init_realtek_8201(dev, np) ||
1513 init_realtek_8201_cross(dev, np)) {
1514 netdev_info(dev, "%s: phy init failed\n",
1515 pci_name(np->pci_dev));
1516 return PHY_ERROR;
1517 }
1518 }
1519 }
1520
1521 /* some phys clear out pause advertisement on reset, set it back */
1522 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1523
1524 /* restart auto negotiation, power down phy */
1525 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1526 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1527 if (phy_power_down)
1528 mii_control |= BMCR_PDOWN;
1529 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
1530 return PHY_ERROR;
1531
1532 return 0;
1533 }
1534
nv_start_rx(struct net_device * dev)1535 static void nv_start_rx(struct net_device *dev)
1536 {
1537 struct fe_priv *np = netdev_priv(dev);
1538 u8 __iomem *base = get_hwbase(dev);
1539 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1540
1541 /* Already running? Stop it. */
1542 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1543 rx_ctrl &= ~NVREG_RCVCTL_START;
1544 writel(rx_ctrl, base + NvRegReceiverControl);
1545 pci_push(base);
1546 }
1547 writel(np->linkspeed, base + NvRegLinkSpeed);
1548 pci_push(base);
1549 rx_ctrl |= NVREG_RCVCTL_START;
1550 if (np->mac_in_use)
1551 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1552 writel(rx_ctrl, base + NvRegReceiverControl);
1553 pci_push(base);
1554 }
1555
nv_stop_rx(struct net_device * dev)1556 static void nv_stop_rx(struct net_device *dev)
1557 {
1558 struct fe_priv *np = netdev_priv(dev);
1559 u8 __iomem *base = get_hwbase(dev);
1560 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1561
1562 if (!np->mac_in_use)
1563 rx_ctrl &= ~NVREG_RCVCTL_START;
1564 else
1565 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1566 writel(rx_ctrl, base + NvRegReceiverControl);
1567 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1568 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
1569 netdev_info(dev, "%s: ReceiverStatus remained busy\n",
1570 __func__);
1571
1572 udelay(NV_RXSTOP_DELAY2);
1573 if (!np->mac_in_use)
1574 writel(0, base + NvRegLinkSpeed);
1575 }
1576
nv_start_tx(struct net_device * dev)1577 static void nv_start_tx(struct net_device *dev)
1578 {
1579 struct fe_priv *np = netdev_priv(dev);
1580 u8 __iomem *base = get_hwbase(dev);
1581 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1582
1583 tx_ctrl |= NVREG_XMITCTL_START;
1584 if (np->mac_in_use)
1585 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1586 writel(tx_ctrl, base + NvRegTransmitterControl);
1587 pci_push(base);
1588 }
1589
nv_stop_tx(struct net_device * dev)1590 static void nv_stop_tx(struct net_device *dev)
1591 {
1592 struct fe_priv *np = netdev_priv(dev);
1593 u8 __iomem *base = get_hwbase(dev);
1594 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1595
1596 if (!np->mac_in_use)
1597 tx_ctrl &= ~NVREG_XMITCTL_START;
1598 else
1599 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1600 writel(tx_ctrl, base + NvRegTransmitterControl);
1601 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1602 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
1603 netdev_info(dev, "%s: TransmitterStatus remained busy\n",
1604 __func__);
1605
1606 udelay(NV_TXSTOP_DELAY2);
1607 if (!np->mac_in_use)
1608 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1609 base + NvRegTransmitPoll);
1610 }
1611
nv_start_rxtx(struct net_device * dev)1612 static void nv_start_rxtx(struct net_device *dev)
1613 {
1614 nv_start_rx(dev);
1615 nv_start_tx(dev);
1616 }
1617
nv_stop_rxtx(struct net_device * dev)1618 static void nv_stop_rxtx(struct net_device *dev)
1619 {
1620 nv_stop_rx(dev);
1621 nv_stop_tx(dev);
1622 }
1623
nv_txrx_reset(struct net_device * dev)1624 static void nv_txrx_reset(struct net_device *dev)
1625 {
1626 struct fe_priv *np = netdev_priv(dev);
1627 u8 __iomem *base = get_hwbase(dev);
1628
1629 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1630 pci_push(base);
1631 udelay(NV_TXRX_RESET_DELAY);
1632 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1633 pci_push(base);
1634 }
1635
nv_mac_reset(struct net_device * dev)1636 static void nv_mac_reset(struct net_device *dev)
1637 {
1638 struct fe_priv *np = netdev_priv(dev);
1639 u8 __iomem *base = get_hwbase(dev);
1640 u32 temp1, temp2, temp3;
1641
1642 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1643 pci_push(base);
1644
1645 /* save registers since they will be cleared on reset */
1646 temp1 = readl(base + NvRegMacAddrA);
1647 temp2 = readl(base + NvRegMacAddrB);
1648 temp3 = readl(base + NvRegTransmitPoll);
1649
1650 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1651 pci_push(base);
1652 udelay(NV_MAC_RESET_DELAY);
1653 writel(0, base + NvRegMacReset);
1654 pci_push(base);
1655 udelay(NV_MAC_RESET_DELAY);
1656
1657 /* restore saved registers */
1658 writel(temp1, base + NvRegMacAddrA);
1659 writel(temp2, base + NvRegMacAddrB);
1660 writel(temp3, base + NvRegTransmitPoll);
1661
1662 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1663 pci_push(base);
1664 }
1665
1666 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
nv_update_stats(struct net_device * dev)1667 static void nv_update_stats(struct net_device *dev)
1668 {
1669 struct fe_priv *np = netdev_priv(dev);
1670 u8 __iomem *base = get_hwbase(dev);
1671
1672 /* If it happens that this is run in top-half context, then
1673 * replace the spin_lock of hwstats_lock with
1674 * spin_lock_irqsave() in calling functions. */
1675 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
1676 assert_spin_locked(&np->hwstats_lock);
1677
1678 /* query hardware */
1679 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1680 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1681 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1682 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1683 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1684 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1685 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1686 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1687 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1688 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1689 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1690 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1691 np->estats.rx_runt += readl(base + NvRegRxRunt);
1692 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1693 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1694 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1695 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1696 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1697 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1698 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1699 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1700 np->estats.rx_packets =
1701 np->estats.rx_unicast +
1702 np->estats.rx_multicast +
1703 np->estats.rx_broadcast;
1704 np->estats.rx_errors_total =
1705 np->estats.rx_crc_errors +
1706 np->estats.rx_over_errors +
1707 np->estats.rx_frame_error +
1708 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1709 np->estats.rx_late_collision +
1710 np->estats.rx_runt +
1711 np->estats.rx_frame_too_long;
1712 np->estats.tx_errors_total =
1713 np->estats.tx_late_collision +
1714 np->estats.tx_fifo_errors +
1715 np->estats.tx_carrier_errors +
1716 np->estats.tx_excess_deferral +
1717 np->estats.tx_retry_error;
1718
1719 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1720 np->estats.tx_deferral += readl(base + NvRegTxDef);
1721 np->estats.tx_packets += readl(base + NvRegTxFrame);
1722 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1723 np->estats.tx_pause += readl(base + NvRegTxPause);
1724 np->estats.rx_pause += readl(base + NvRegRxPause);
1725 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1726 np->estats.rx_errors_total += np->estats.rx_drop_frame;
1727 }
1728
1729 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1730 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1731 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1732 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1733 }
1734 }
1735
1736 /*
1737 * nv_get_stats64: dev->ndo_get_stats64 function
1738 * Get latest stats value from the nic.
1739 * Called with read_lock(&dev_base_lock) held for read -
1740 * only synchronized against unregister_netdevice.
1741 */
1742 static void
nv_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * storage)1743 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
1744 __acquires(&netdev_priv(dev)->hwstats_lock)
1745 __releases(&netdev_priv(dev)->hwstats_lock)
1746 {
1747 struct fe_priv *np = netdev_priv(dev);
1748 unsigned int syncp_start;
1749
1750 /*
1751 * Note: because HW stats are not always available and for
1752 * consistency reasons, the following ifconfig stats are
1753 * managed by software: rx_bytes, tx_bytes, rx_packets and
1754 * tx_packets. The related hardware stats reported by ethtool
1755 * should be equivalent to these ifconfig stats, with 4
1756 * additional bytes per packet (Ethernet FCS CRC), except for
1757 * tx_packets when TSO kicks in.
1758 */
1759
1760 /* software stats */
1761 do {
1762 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp);
1763 storage->rx_packets = np->stat_rx_packets;
1764 storage->rx_bytes = np->stat_rx_bytes;
1765 storage->rx_dropped = np->stat_rx_dropped;
1766 storage->rx_missed_errors = np->stat_rx_missed_errors;
1767 } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start));
1768
1769 do {
1770 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp);
1771 storage->tx_packets = np->stat_tx_packets;
1772 storage->tx_bytes = np->stat_tx_bytes;
1773 storage->tx_dropped = np->stat_tx_dropped;
1774 } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start));
1775
1776 /* If the nic supports hw counters then retrieve latest values */
1777 if (np->driver_data & DEV_HAS_STATISTICS_V123) {
1778 spin_lock_bh(&np->hwstats_lock);
1779
1780 nv_update_stats(dev);
1781
1782 /* generic stats */
1783 storage->rx_errors = np->estats.rx_errors_total;
1784 storage->tx_errors = np->estats.tx_errors_total;
1785
1786 /* meaningful only when NIC supports stats v3 */
1787 storage->multicast = np->estats.rx_multicast;
1788
1789 /* detailed rx_errors */
1790 storage->rx_length_errors = np->estats.rx_length_error;
1791 storage->rx_over_errors = np->estats.rx_over_errors;
1792 storage->rx_crc_errors = np->estats.rx_crc_errors;
1793 storage->rx_frame_errors = np->estats.rx_frame_align_error;
1794 storage->rx_fifo_errors = np->estats.rx_drop_frame;
1795
1796 /* detailed tx_errors */
1797 storage->tx_carrier_errors = np->estats.tx_carrier_errors;
1798 storage->tx_fifo_errors = np->estats.tx_fifo_errors;
1799
1800 spin_unlock_bh(&np->hwstats_lock);
1801 }
1802 }
1803
1804 /*
1805 * nv_alloc_rx: fill rx ring entries.
1806 * Return 1 if the allocations for the skbs failed and the
1807 * rx engine is without Available descriptors
1808 */
nv_alloc_rx(struct net_device * dev)1809 static int nv_alloc_rx(struct net_device *dev)
1810 {
1811 struct fe_priv *np = netdev_priv(dev);
1812 struct ring_desc *less_rx;
1813
1814 less_rx = np->get_rx.orig;
1815 if (less_rx-- == np->rx_ring.orig)
1816 less_rx = np->last_rx.orig;
1817
1818 while (np->put_rx.orig != less_rx) {
1819 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1820 if (likely(skb)) {
1821 np->put_rx_ctx->skb = skb;
1822 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
1823 skb->data,
1824 skb_tailroom(skb),
1825 DMA_FROM_DEVICE);
1826 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
1827 np->put_rx_ctx->dma))) {
1828 kfree_skb(skb);
1829 goto packet_dropped;
1830 }
1831 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1832 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1833 wmb();
1834 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1835 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1836 np->put_rx.orig = np->rx_ring.orig;
1837 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1838 np->put_rx_ctx = np->rx_skb;
1839 } else {
1840 packet_dropped:
1841 u64_stats_update_begin(&np->swstats_rx_syncp);
1842 np->stat_rx_dropped++;
1843 u64_stats_update_end(&np->swstats_rx_syncp);
1844 return 1;
1845 }
1846 }
1847 return 0;
1848 }
1849
nv_alloc_rx_optimized(struct net_device * dev)1850 static int nv_alloc_rx_optimized(struct net_device *dev)
1851 {
1852 struct fe_priv *np = netdev_priv(dev);
1853 struct ring_desc_ex *less_rx;
1854
1855 less_rx = np->get_rx.ex;
1856 if (less_rx-- == np->rx_ring.ex)
1857 less_rx = np->last_rx.ex;
1858
1859 while (np->put_rx.ex != less_rx) {
1860 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1861 if (likely(skb)) {
1862 np->put_rx_ctx->skb = skb;
1863 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
1864 skb->data,
1865 skb_tailroom(skb),
1866 DMA_FROM_DEVICE);
1867 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
1868 np->put_rx_ctx->dma))) {
1869 kfree_skb(skb);
1870 goto packet_dropped;
1871 }
1872 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1873 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1874 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1875 wmb();
1876 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1877 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1878 np->put_rx.ex = np->rx_ring.ex;
1879 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1880 np->put_rx_ctx = np->rx_skb;
1881 } else {
1882 packet_dropped:
1883 u64_stats_update_begin(&np->swstats_rx_syncp);
1884 np->stat_rx_dropped++;
1885 u64_stats_update_end(&np->swstats_rx_syncp);
1886 return 1;
1887 }
1888 }
1889 return 0;
1890 }
1891
1892 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
nv_do_rx_refill(struct timer_list * t)1893 static void nv_do_rx_refill(struct timer_list *t)
1894 {
1895 struct fe_priv *np = from_timer(np, t, oom_kick);
1896
1897 /* Just reschedule NAPI rx processing */
1898 napi_schedule(&np->napi);
1899 }
1900
nv_init_rx(struct net_device * dev)1901 static void nv_init_rx(struct net_device *dev)
1902 {
1903 struct fe_priv *np = netdev_priv(dev);
1904 int i;
1905
1906 np->get_rx = np->rx_ring;
1907 np->put_rx = np->rx_ring;
1908
1909 if (!nv_optimized(np))
1910 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1911 else
1912 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1913 np->get_rx_ctx = np->rx_skb;
1914 np->put_rx_ctx = np->rx_skb;
1915 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1916
1917 for (i = 0; i < np->rx_ring_size; i++) {
1918 if (!nv_optimized(np)) {
1919 np->rx_ring.orig[i].flaglen = 0;
1920 np->rx_ring.orig[i].buf = 0;
1921 } else {
1922 np->rx_ring.ex[i].flaglen = 0;
1923 np->rx_ring.ex[i].txvlan = 0;
1924 np->rx_ring.ex[i].bufhigh = 0;
1925 np->rx_ring.ex[i].buflow = 0;
1926 }
1927 np->rx_skb[i].skb = NULL;
1928 np->rx_skb[i].dma = 0;
1929 }
1930 }
1931
nv_init_tx(struct net_device * dev)1932 static void nv_init_tx(struct net_device *dev)
1933 {
1934 struct fe_priv *np = netdev_priv(dev);
1935 int i;
1936
1937 np->get_tx = np->tx_ring;
1938 np->put_tx = np->tx_ring;
1939
1940 if (!nv_optimized(np))
1941 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1942 else
1943 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1944 np->get_tx_ctx = np->tx_skb;
1945 np->put_tx_ctx = np->tx_skb;
1946 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1947 netdev_reset_queue(np->dev);
1948 np->tx_pkts_in_progress = 0;
1949 np->tx_change_owner = NULL;
1950 np->tx_end_flip = NULL;
1951 np->tx_stop = 0;
1952
1953 for (i = 0; i < np->tx_ring_size; i++) {
1954 if (!nv_optimized(np)) {
1955 np->tx_ring.orig[i].flaglen = 0;
1956 np->tx_ring.orig[i].buf = 0;
1957 } else {
1958 np->tx_ring.ex[i].flaglen = 0;
1959 np->tx_ring.ex[i].txvlan = 0;
1960 np->tx_ring.ex[i].bufhigh = 0;
1961 np->tx_ring.ex[i].buflow = 0;
1962 }
1963 np->tx_skb[i].skb = NULL;
1964 np->tx_skb[i].dma = 0;
1965 np->tx_skb[i].dma_len = 0;
1966 np->tx_skb[i].dma_single = 0;
1967 np->tx_skb[i].first_tx_desc = NULL;
1968 np->tx_skb[i].next_tx_ctx = NULL;
1969 }
1970 }
1971
nv_init_ring(struct net_device * dev)1972 static int nv_init_ring(struct net_device *dev)
1973 {
1974 struct fe_priv *np = netdev_priv(dev);
1975
1976 nv_init_tx(dev);
1977 nv_init_rx(dev);
1978
1979 if (!nv_optimized(np))
1980 return nv_alloc_rx(dev);
1981 else
1982 return nv_alloc_rx_optimized(dev);
1983 }
1984
nv_unmap_txskb(struct fe_priv * np,struct nv_skb_map * tx_skb)1985 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1986 {
1987 if (tx_skb->dma) {
1988 if (tx_skb->dma_single)
1989 dma_unmap_single(&np->pci_dev->dev, tx_skb->dma,
1990 tx_skb->dma_len,
1991 DMA_TO_DEVICE);
1992 else
1993 dma_unmap_page(&np->pci_dev->dev, tx_skb->dma,
1994 tx_skb->dma_len,
1995 DMA_TO_DEVICE);
1996 tx_skb->dma = 0;
1997 }
1998 }
1999
nv_release_txskb(struct fe_priv * np,struct nv_skb_map * tx_skb)2000 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
2001 {
2002 nv_unmap_txskb(np, tx_skb);
2003 if (tx_skb->skb) {
2004 dev_kfree_skb_any(tx_skb->skb);
2005 tx_skb->skb = NULL;
2006 return 1;
2007 }
2008 return 0;
2009 }
2010
nv_drain_tx(struct net_device * dev)2011 static void nv_drain_tx(struct net_device *dev)
2012 {
2013 struct fe_priv *np = netdev_priv(dev);
2014 unsigned int i;
2015
2016 for (i = 0; i < np->tx_ring_size; i++) {
2017 if (!nv_optimized(np)) {
2018 np->tx_ring.orig[i].flaglen = 0;
2019 np->tx_ring.orig[i].buf = 0;
2020 } else {
2021 np->tx_ring.ex[i].flaglen = 0;
2022 np->tx_ring.ex[i].txvlan = 0;
2023 np->tx_ring.ex[i].bufhigh = 0;
2024 np->tx_ring.ex[i].buflow = 0;
2025 }
2026 if (nv_release_txskb(np, &np->tx_skb[i])) {
2027 u64_stats_update_begin(&np->swstats_tx_syncp);
2028 np->stat_tx_dropped++;
2029 u64_stats_update_end(&np->swstats_tx_syncp);
2030 }
2031 np->tx_skb[i].dma = 0;
2032 np->tx_skb[i].dma_len = 0;
2033 np->tx_skb[i].dma_single = 0;
2034 np->tx_skb[i].first_tx_desc = NULL;
2035 np->tx_skb[i].next_tx_ctx = NULL;
2036 }
2037 np->tx_pkts_in_progress = 0;
2038 np->tx_change_owner = NULL;
2039 np->tx_end_flip = NULL;
2040 }
2041
nv_drain_rx(struct net_device * dev)2042 static void nv_drain_rx(struct net_device *dev)
2043 {
2044 struct fe_priv *np = netdev_priv(dev);
2045 int i;
2046
2047 for (i = 0; i < np->rx_ring_size; i++) {
2048 if (!nv_optimized(np)) {
2049 np->rx_ring.orig[i].flaglen = 0;
2050 np->rx_ring.orig[i].buf = 0;
2051 } else {
2052 np->rx_ring.ex[i].flaglen = 0;
2053 np->rx_ring.ex[i].txvlan = 0;
2054 np->rx_ring.ex[i].bufhigh = 0;
2055 np->rx_ring.ex[i].buflow = 0;
2056 }
2057 wmb();
2058 if (np->rx_skb[i].skb) {
2059 dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma,
2060 (skb_end_pointer(np->rx_skb[i].skb) -
2061 np->rx_skb[i].skb->data),
2062 DMA_FROM_DEVICE);
2063 dev_kfree_skb(np->rx_skb[i].skb);
2064 np->rx_skb[i].skb = NULL;
2065 }
2066 }
2067 }
2068
nv_drain_rxtx(struct net_device * dev)2069 static void nv_drain_rxtx(struct net_device *dev)
2070 {
2071 nv_drain_tx(dev);
2072 nv_drain_rx(dev);
2073 }
2074
nv_get_empty_tx_slots(struct fe_priv * np)2075 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2076 {
2077 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2078 }
2079
nv_legacybackoff_reseed(struct net_device * dev)2080 static void nv_legacybackoff_reseed(struct net_device *dev)
2081 {
2082 u8 __iomem *base = get_hwbase(dev);
2083 u32 reg;
2084 u32 low;
2085 int tx_status = 0;
2086
2087 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2088 get_random_bytes(&low, sizeof(low));
2089 reg |= low & NVREG_SLOTTIME_MASK;
2090
2091 /* Need to stop tx before change takes effect.
2092 * Caller has already gained np->lock.
2093 */
2094 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2095 if (tx_status)
2096 nv_stop_tx(dev);
2097 nv_stop_rx(dev);
2098 writel(reg, base + NvRegSlotTime);
2099 if (tx_status)
2100 nv_start_tx(dev);
2101 nv_start_rx(dev);
2102 }
2103
2104 /* Gear Backoff Seeds */
2105 #define BACKOFF_SEEDSET_ROWS 8
2106 #define BACKOFF_SEEDSET_LFSRS 15
2107
2108 /* Known Good seed sets */
2109 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2110 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2111 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2112 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2113 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2114 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2115 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2116 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2117 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
2118
2119 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2120 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2121 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2122 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2123 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2124 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2125 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2126 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2127 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
2128
nv_gear_backoff_reseed(struct net_device * dev)2129 static void nv_gear_backoff_reseed(struct net_device *dev)
2130 {
2131 u8 __iomem *base = get_hwbase(dev);
2132 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2133 u32 temp, seedset, combinedSeed;
2134 int i;
2135
2136 /* Setup seed for free running LFSR */
2137 /* We are going to read the time stamp counter 3 times
2138 and swizzle bits around to increase randomness */
2139 get_random_bytes(&miniseed1, sizeof(miniseed1));
2140 miniseed1 &= 0x0fff;
2141 if (miniseed1 == 0)
2142 miniseed1 = 0xabc;
2143
2144 get_random_bytes(&miniseed2, sizeof(miniseed2));
2145 miniseed2 &= 0x0fff;
2146 if (miniseed2 == 0)
2147 miniseed2 = 0xabc;
2148 miniseed2_reversed =
2149 ((miniseed2 & 0xF00) >> 8) |
2150 (miniseed2 & 0x0F0) |
2151 ((miniseed2 & 0x00F) << 8);
2152
2153 get_random_bytes(&miniseed3, sizeof(miniseed3));
2154 miniseed3 &= 0x0fff;
2155 if (miniseed3 == 0)
2156 miniseed3 = 0xabc;
2157 miniseed3_reversed =
2158 ((miniseed3 & 0xF00) >> 8) |
2159 (miniseed3 & 0x0F0) |
2160 ((miniseed3 & 0x00F) << 8);
2161
2162 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2163 (miniseed2 ^ miniseed3_reversed);
2164
2165 /* Seeds can not be zero */
2166 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2167 combinedSeed |= 0x08;
2168 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2169 combinedSeed |= 0x8000;
2170
2171 /* No need to disable tx here */
2172 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2173 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2174 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2175 writel(temp, base + NvRegBackOffControl);
2176
2177 /* Setup seeds for all gear LFSRs. */
2178 get_random_bytes(&seedset, sizeof(seedset));
2179 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2180 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
2181 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2182 temp |= main_seedset[seedset][i-1] & 0x3ff;
2183 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2184 writel(temp, base + NvRegBackOffControl);
2185 }
2186 }
2187
2188 /*
2189 * nv_start_xmit: dev->hard_start_xmit function
2190 * Called with netif_tx_lock held.
2191 */
nv_start_xmit(struct sk_buff * skb,struct net_device * dev)2192 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2193 {
2194 struct fe_priv *np = netdev_priv(dev);
2195 u32 tx_flags = 0;
2196 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2197 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2198 unsigned int i;
2199 u32 offset = 0;
2200 u32 bcnt;
2201 u32 size = skb_headlen(skb);
2202 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2203 u32 empty_slots;
2204 struct ring_desc *put_tx;
2205 struct ring_desc *start_tx;
2206 struct ring_desc *prev_tx;
2207 struct nv_skb_map *prev_tx_ctx;
2208 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL;
2209 unsigned long flags;
2210
2211 /* add fragments to entries count */
2212 for (i = 0; i < fragments; i++) {
2213 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214
2215 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2216 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2217 }
2218
2219 spin_lock_irqsave(&np->lock, flags);
2220 empty_slots = nv_get_empty_tx_slots(np);
2221 if (unlikely(empty_slots <= entries)) {
2222 netif_stop_queue(dev);
2223 np->tx_stop = 1;
2224 spin_unlock_irqrestore(&np->lock, flags);
2225 return NETDEV_TX_BUSY;
2226 }
2227 spin_unlock_irqrestore(&np->lock, flags);
2228
2229 start_tx = put_tx = np->put_tx.orig;
2230
2231 /* setup the header buffer */
2232 do {
2233 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2234 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
2235 skb->data + offset, bcnt,
2236 DMA_TO_DEVICE);
2237 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2238 np->put_tx_ctx->dma))) {
2239 /* on DMA mapping error - drop the packet */
2240 dev_kfree_skb_any(skb);
2241 u64_stats_update_begin(&np->swstats_tx_syncp);
2242 np->stat_tx_dropped++;
2243 u64_stats_update_end(&np->swstats_tx_syncp);
2244 return NETDEV_TX_OK;
2245 }
2246 np->put_tx_ctx->dma_len = bcnt;
2247 np->put_tx_ctx->dma_single = 1;
2248 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2249 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2250
2251 tx_flags = np->tx_flags;
2252 offset += bcnt;
2253 size -= bcnt;
2254 if (unlikely(put_tx++ == np->last_tx.orig))
2255 put_tx = np->tx_ring.orig;
2256 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2257 np->put_tx_ctx = np->tx_skb;
2258 } while (size);
2259
2260 /* setup the fragments */
2261 for (i = 0; i < fragments; i++) {
2262 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2263 u32 frag_size = skb_frag_size(frag);
2264 offset = 0;
2265
2266 do {
2267 if (!start_tx_ctx)
2268 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
2269
2270 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2271 np->put_tx_ctx->dma = skb_frag_dma_map(
2272 &np->pci_dev->dev,
2273 frag, offset,
2274 bcnt,
2275 DMA_TO_DEVICE);
2276 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2277 np->put_tx_ctx->dma))) {
2278
2279 /* Unwind the mapped fragments */
2280 do {
2281 nv_unmap_txskb(np, start_tx_ctx);
2282 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
2283 tmp_tx_ctx = np->tx_skb;
2284 } while (tmp_tx_ctx != np->put_tx_ctx);
2285 dev_kfree_skb_any(skb);
2286 np->put_tx_ctx = start_tx_ctx;
2287 u64_stats_update_begin(&np->swstats_tx_syncp);
2288 np->stat_tx_dropped++;
2289 u64_stats_update_end(&np->swstats_tx_syncp);
2290 return NETDEV_TX_OK;
2291 }
2292
2293 np->put_tx_ctx->dma_len = bcnt;
2294 np->put_tx_ctx->dma_single = 0;
2295 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2296 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2297
2298 offset += bcnt;
2299 frag_size -= bcnt;
2300 if (unlikely(put_tx++ == np->last_tx.orig))
2301 put_tx = np->tx_ring.orig;
2302 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2303 np->put_tx_ctx = np->tx_skb;
2304 } while (frag_size);
2305 }
2306
2307 if (unlikely(put_tx == np->tx_ring.orig))
2308 prev_tx = np->last_tx.orig;
2309 else
2310 prev_tx = put_tx - 1;
2311
2312 if (unlikely(np->put_tx_ctx == np->tx_skb))
2313 prev_tx_ctx = np->last_tx_ctx;
2314 else
2315 prev_tx_ctx = np->put_tx_ctx - 1;
2316
2317 /* set last fragment flag */
2318 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2319
2320 /* save skb in this slot's context area */
2321 prev_tx_ctx->skb = skb;
2322
2323 if (skb_is_gso(skb))
2324 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2325 else
2326 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2327 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2328
2329 spin_lock_irqsave(&np->lock, flags);
2330
2331 /* set tx flags */
2332 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2333
2334 netdev_sent_queue(np->dev, skb->len);
2335
2336 skb_tx_timestamp(skb);
2337
2338 np->put_tx.orig = put_tx;
2339
2340 spin_unlock_irqrestore(&np->lock, flags);
2341
2342 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2343 return NETDEV_TX_OK;
2344 }
2345
nv_start_xmit_optimized(struct sk_buff * skb,struct net_device * dev)2346 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2347 struct net_device *dev)
2348 {
2349 struct fe_priv *np = netdev_priv(dev);
2350 u32 tx_flags = 0;
2351 u32 tx_flags_extra;
2352 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2353 unsigned int i;
2354 u32 offset = 0;
2355 u32 bcnt;
2356 u32 size = skb_headlen(skb);
2357 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2358 u32 empty_slots;
2359 struct ring_desc_ex *put_tx;
2360 struct ring_desc_ex *start_tx;
2361 struct ring_desc_ex *prev_tx;
2362 struct nv_skb_map *prev_tx_ctx;
2363 struct nv_skb_map *start_tx_ctx = NULL;
2364 struct nv_skb_map *tmp_tx_ctx = NULL;
2365 unsigned long flags;
2366
2367 /* add fragments to entries count */
2368 for (i = 0; i < fragments; i++) {
2369 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2370
2371 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2372 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2373 }
2374
2375 spin_lock_irqsave(&np->lock, flags);
2376 empty_slots = nv_get_empty_tx_slots(np);
2377 if (unlikely(empty_slots <= entries)) {
2378 netif_stop_queue(dev);
2379 np->tx_stop = 1;
2380 spin_unlock_irqrestore(&np->lock, flags);
2381 return NETDEV_TX_BUSY;
2382 }
2383 spin_unlock_irqrestore(&np->lock, flags);
2384
2385 start_tx = put_tx = np->put_tx.ex;
2386 start_tx_ctx = np->put_tx_ctx;
2387
2388 /* setup the header buffer */
2389 do {
2390 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2391 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
2392 skb->data + offset, bcnt,
2393 DMA_TO_DEVICE);
2394 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2395 np->put_tx_ctx->dma))) {
2396 /* on DMA mapping error - drop the packet */
2397 dev_kfree_skb_any(skb);
2398 u64_stats_update_begin(&np->swstats_tx_syncp);
2399 np->stat_tx_dropped++;
2400 u64_stats_update_end(&np->swstats_tx_syncp);
2401 return NETDEV_TX_OK;
2402 }
2403 np->put_tx_ctx->dma_len = bcnt;
2404 np->put_tx_ctx->dma_single = 1;
2405 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2406 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2407 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2408
2409 tx_flags = NV_TX2_VALID;
2410 offset += bcnt;
2411 size -= bcnt;
2412 if (unlikely(put_tx++ == np->last_tx.ex))
2413 put_tx = np->tx_ring.ex;
2414 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2415 np->put_tx_ctx = np->tx_skb;
2416 } while (size);
2417
2418 /* setup the fragments */
2419 for (i = 0; i < fragments; i++) {
2420 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2421 u32 frag_size = skb_frag_size(frag);
2422 offset = 0;
2423
2424 do {
2425 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2426 if (!start_tx_ctx)
2427 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
2428 np->put_tx_ctx->dma = skb_frag_dma_map(
2429 &np->pci_dev->dev,
2430 frag, offset,
2431 bcnt,
2432 DMA_TO_DEVICE);
2433
2434 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2435 np->put_tx_ctx->dma))) {
2436
2437 /* Unwind the mapped fragments */
2438 do {
2439 nv_unmap_txskb(np, start_tx_ctx);
2440 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
2441 tmp_tx_ctx = np->tx_skb;
2442 } while (tmp_tx_ctx != np->put_tx_ctx);
2443 dev_kfree_skb_any(skb);
2444 np->put_tx_ctx = start_tx_ctx;
2445 u64_stats_update_begin(&np->swstats_tx_syncp);
2446 np->stat_tx_dropped++;
2447 u64_stats_update_end(&np->swstats_tx_syncp);
2448 return NETDEV_TX_OK;
2449 }
2450 np->put_tx_ctx->dma_len = bcnt;
2451 np->put_tx_ctx->dma_single = 0;
2452 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2453 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2454 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2455
2456 offset += bcnt;
2457 frag_size -= bcnt;
2458 if (unlikely(put_tx++ == np->last_tx.ex))
2459 put_tx = np->tx_ring.ex;
2460 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2461 np->put_tx_ctx = np->tx_skb;
2462 } while (frag_size);
2463 }
2464
2465 if (unlikely(put_tx == np->tx_ring.ex))
2466 prev_tx = np->last_tx.ex;
2467 else
2468 prev_tx = put_tx - 1;
2469
2470 if (unlikely(np->put_tx_ctx == np->tx_skb))
2471 prev_tx_ctx = np->last_tx_ctx;
2472 else
2473 prev_tx_ctx = np->put_tx_ctx - 1;
2474
2475 /* set last fragment flag */
2476 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2477
2478 /* save skb in this slot's context area */
2479 prev_tx_ctx->skb = skb;
2480
2481 if (skb_is_gso(skb))
2482 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2483 else
2484 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2485 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2486
2487 /* vlan tag */
2488 if (skb_vlan_tag_present(skb))
2489 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
2490 skb_vlan_tag_get(skb));
2491 else
2492 start_tx->txvlan = 0;
2493
2494 spin_lock_irqsave(&np->lock, flags);
2495
2496 if (np->tx_limit) {
2497 /* Limit the number of outstanding tx. Setup all fragments, but
2498 * do not set the VALID bit on the first descriptor. Save a pointer
2499 * to that descriptor and also for next skb_map element.
2500 */
2501
2502 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2503 if (!np->tx_change_owner)
2504 np->tx_change_owner = start_tx_ctx;
2505
2506 /* remove VALID bit */
2507 tx_flags &= ~NV_TX2_VALID;
2508 start_tx_ctx->first_tx_desc = start_tx;
2509 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2510 np->tx_end_flip = np->put_tx_ctx;
2511 } else {
2512 np->tx_pkts_in_progress++;
2513 }
2514 }
2515
2516 /* set tx flags */
2517 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2518
2519 netdev_sent_queue(np->dev, skb->len);
2520
2521 skb_tx_timestamp(skb);
2522
2523 np->put_tx.ex = put_tx;
2524
2525 spin_unlock_irqrestore(&np->lock, flags);
2526
2527 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2528 return NETDEV_TX_OK;
2529 }
2530
nv_tx_flip_ownership(struct net_device * dev)2531 static inline void nv_tx_flip_ownership(struct net_device *dev)
2532 {
2533 struct fe_priv *np = netdev_priv(dev);
2534
2535 np->tx_pkts_in_progress--;
2536 if (np->tx_change_owner) {
2537 np->tx_change_owner->first_tx_desc->flaglen |=
2538 cpu_to_le32(NV_TX2_VALID);
2539 np->tx_pkts_in_progress++;
2540
2541 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2542 if (np->tx_change_owner == np->tx_end_flip)
2543 np->tx_change_owner = NULL;
2544
2545 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2546 }
2547 }
2548
2549 /*
2550 * nv_tx_done: check for completed packets, release the skbs.
2551 *
2552 * Caller must own np->lock.
2553 */
nv_tx_done(struct net_device * dev,int limit)2554 static int nv_tx_done(struct net_device *dev, int limit)
2555 {
2556 struct fe_priv *np = netdev_priv(dev);
2557 u32 flags;
2558 int tx_work = 0;
2559 struct ring_desc *orig_get_tx = np->get_tx.orig;
2560 unsigned int bytes_compl = 0;
2561
2562 while ((np->get_tx.orig != np->put_tx.orig) &&
2563 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2564 (tx_work < limit)) {
2565
2566 nv_unmap_txskb(np, np->get_tx_ctx);
2567
2568 if (np->desc_ver == DESC_VER_1) {
2569 if (flags & NV_TX_LASTPACKET) {
2570 if (unlikely(flags & NV_TX_ERROR)) {
2571 if ((flags & NV_TX_RETRYERROR)
2572 && !(flags & NV_TX_RETRYCOUNT_MASK))
2573 nv_legacybackoff_reseed(dev);
2574 } else {
2575 u64_stats_update_begin(&np->swstats_tx_syncp);
2576 np->stat_tx_packets++;
2577 np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2578 u64_stats_update_end(&np->swstats_tx_syncp);
2579 }
2580 bytes_compl += np->get_tx_ctx->skb->len;
2581 dev_kfree_skb_any(np->get_tx_ctx->skb);
2582 np->get_tx_ctx->skb = NULL;
2583 tx_work++;
2584 }
2585 } else {
2586 if (flags & NV_TX2_LASTPACKET) {
2587 if (unlikely(flags & NV_TX2_ERROR)) {
2588 if ((flags & NV_TX2_RETRYERROR)
2589 && !(flags & NV_TX2_RETRYCOUNT_MASK))
2590 nv_legacybackoff_reseed(dev);
2591 } else {
2592 u64_stats_update_begin(&np->swstats_tx_syncp);
2593 np->stat_tx_packets++;
2594 np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2595 u64_stats_update_end(&np->swstats_tx_syncp);
2596 }
2597 bytes_compl += np->get_tx_ctx->skb->len;
2598 dev_kfree_skb_any(np->get_tx_ctx->skb);
2599 np->get_tx_ctx->skb = NULL;
2600 tx_work++;
2601 }
2602 }
2603 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2604 np->get_tx.orig = np->tx_ring.orig;
2605 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2606 np->get_tx_ctx = np->tx_skb;
2607 }
2608
2609 netdev_completed_queue(np->dev, tx_work, bytes_compl);
2610
2611 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2612 np->tx_stop = 0;
2613 netif_wake_queue(dev);
2614 }
2615 return tx_work;
2616 }
2617
nv_tx_done_optimized(struct net_device * dev,int limit)2618 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2619 {
2620 struct fe_priv *np = netdev_priv(dev);
2621 u32 flags;
2622 int tx_work = 0;
2623 struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
2624 unsigned long bytes_cleaned = 0;
2625
2626 while ((np->get_tx.ex != np->put_tx.ex) &&
2627 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
2628 (tx_work < limit)) {
2629
2630 nv_unmap_txskb(np, np->get_tx_ctx);
2631
2632 if (flags & NV_TX2_LASTPACKET) {
2633 if (unlikely(flags & NV_TX2_ERROR)) {
2634 if ((flags & NV_TX2_RETRYERROR)
2635 && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2636 if (np->driver_data & DEV_HAS_GEAR_MODE)
2637 nv_gear_backoff_reseed(dev);
2638 else
2639 nv_legacybackoff_reseed(dev);
2640 }
2641 } else {
2642 u64_stats_update_begin(&np->swstats_tx_syncp);
2643 np->stat_tx_packets++;
2644 np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2645 u64_stats_update_end(&np->swstats_tx_syncp);
2646 }
2647
2648 bytes_cleaned += np->get_tx_ctx->skb->len;
2649 dev_kfree_skb_any(np->get_tx_ctx->skb);
2650 np->get_tx_ctx->skb = NULL;
2651 tx_work++;
2652
2653 if (np->tx_limit)
2654 nv_tx_flip_ownership(dev);
2655 }
2656
2657 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2658 np->get_tx.ex = np->tx_ring.ex;
2659 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2660 np->get_tx_ctx = np->tx_skb;
2661 }
2662
2663 netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
2664
2665 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2666 np->tx_stop = 0;
2667 netif_wake_queue(dev);
2668 }
2669 return tx_work;
2670 }
2671
2672 /*
2673 * nv_tx_timeout: dev->tx_timeout function
2674 * Called with netif_tx_lock held.
2675 */
nv_tx_timeout(struct net_device * dev)2676 static void nv_tx_timeout(struct net_device *dev)
2677 {
2678 struct fe_priv *np = netdev_priv(dev);
2679 u8 __iomem *base = get_hwbase(dev);
2680 u32 status;
2681 union ring_type put_tx;
2682 int saved_tx_limit;
2683
2684 if (np->msi_flags & NV_MSI_X_ENABLED)
2685 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2686 else
2687 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2688
2689 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
2690
2691 if (unlikely(debug_tx_timeout)) {
2692 int i;
2693
2694 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
2695 netdev_info(dev, "Dumping tx registers\n");
2696 for (i = 0; i <= np->register_size; i += 32) {
2697 netdev_info(dev,
2698 "%3x: %08x %08x %08x %08x "
2699 "%08x %08x %08x %08x\n",
2700 i,
2701 readl(base + i + 0), readl(base + i + 4),
2702 readl(base + i + 8), readl(base + i + 12),
2703 readl(base + i + 16), readl(base + i + 20),
2704 readl(base + i + 24), readl(base + i + 28));
2705 }
2706 netdev_info(dev, "Dumping tx ring\n");
2707 for (i = 0; i < np->tx_ring_size; i += 4) {
2708 if (!nv_optimized(np)) {
2709 netdev_info(dev,
2710 "%03x: %08x %08x // %08x %08x "
2711 "// %08x %08x // %08x %08x\n",
2712 i,
2713 le32_to_cpu(np->tx_ring.orig[i].buf),
2714 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2715 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2716 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2717 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2718 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2719 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2720 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2721 } else {
2722 netdev_info(dev,
2723 "%03x: %08x %08x %08x "
2724 "// %08x %08x %08x "
2725 "// %08x %08x %08x "
2726 "// %08x %08x %08x\n",
2727 i,
2728 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2729 le32_to_cpu(np->tx_ring.ex[i].buflow),
2730 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2731 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2732 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2733 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2734 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2735 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2736 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2737 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2738 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2739 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2740 }
2741 }
2742 }
2743
2744 spin_lock_irq(&np->lock);
2745
2746 /* 1) stop tx engine */
2747 nv_stop_tx(dev);
2748
2749 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2750 saved_tx_limit = np->tx_limit;
2751 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2752 np->tx_stop = 0; /* prevent waking tx queue */
2753 if (!nv_optimized(np))
2754 nv_tx_done(dev, np->tx_ring_size);
2755 else
2756 nv_tx_done_optimized(dev, np->tx_ring_size);
2757
2758 /* save current HW position */
2759 if (np->tx_change_owner)
2760 put_tx.ex = np->tx_change_owner->first_tx_desc;
2761 else
2762 put_tx = np->put_tx;
2763
2764 /* 3) clear all tx state */
2765 nv_drain_tx(dev);
2766 nv_init_tx(dev);
2767
2768 /* 4) restore state to current HW position */
2769 np->get_tx = np->put_tx = put_tx;
2770 np->tx_limit = saved_tx_limit;
2771
2772 /* 5) restart tx engine */
2773 nv_start_tx(dev);
2774 netif_wake_queue(dev);
2775 spin_unlock_irq(&np->lock);
2776 }
2777
2778 /*
2779 * Called when the nic notices a mismatch between the actual data len on the
2780 * wire and the len indicated in the 802 header
2781 */
nv_getlen(struct net_device * dev,void * packet,int datalen)2782 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2783 {
2784 int hdrlen; /* length of the 802 header */
2785 int protolen; /* length as stored in the proto field */
2786
2787 /* 1) calculate len according to header */
2788 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2789 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
2790 hdrlen = VLAN_HLEN;
2791 } else {
2792 protolen = ntohs(((struct ethhdr *)packet)->h_proto);
2793 hdrlen = ETH_HLEN;
2794 }
2795 if (protolen > ETH_DATA_LEN)
2796 return datalen; /* Value in proto field not a len, no checks possible */
2797
2798 protolen += hdrlen;
2799 /* consistency checks: */
2800 if (datalen > ETH_ZLEN) {
2801 if (datalen >= protolen) {
2802 /* more data on wire than in 802 header, trim of
2803 * additional data.
2804 */
2805 return protolen;
2806 } else {
2807 /* less data on wire than mentioned in header.
2808 * Discard the packet.
2809 */
2810 return -1;
2811 }
2812 } else {
2813 /* short packet. Accept only if 802 values are also short */
2814 if (protolen > ETH_ZLEN) {
2815 return -1;
2816 }
2817 return datalen;
2818 }
2819 }
2820
nv_rx_process(struct net_device * dev,int limit)2821 static int nv_rx_process(struct net_device *dev, int limit)
2822 {
2823 struct fe_priv *np = netdev_priv(dev);
2824 u32 flags;
2825 int rx_work = 0;
2826 struct sk_buff *skb;
2827 int len;
2828
2829 while ((np->get_rx.orig != np->put_rx.orig) &&
2830 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2831 (rx_work < limit)) {
2832
2833 /*
2834 * the packet is for us - immediately tear down the pci mapping.
2835 * TODO: check if a prefetch of the first cacheline improves
2836 * the performance.
2837 */
2838 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
2839 np->get_rx_ctx->dma_len,
2840 DMA_FROM_DEVICE);
2841 skb = np->get_rx_ctx->skb;
2842 np->get_rx_ctx->skb = NULL;
2843
2844 /* look at what we actually got: */
2845 if (np->desc_ver == DESC_VER_1) {
2846 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2847 len = flags & LEN_MASK_V1;
2848 if (unlikely(flags & NV_RX_ERROR)) {
2849 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2850 len = nv_getlen(dev, skb->data, len);
2851 if (len < 0) {
2852 dev_kfree_skb(skb);
2853 goto next_pkt;
2854 }
2855 }
2856 /* framing errors are soft errors */
2857 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2858 if (flags & NV_RX_SUBTRACT1)
2859 len--;
2860 }
2861 /* the rest are hard errors */
2862 else {
2863 if (flags & NV_RX_MISSEDFRAME) {
2864 u64_stats_update_begin(&np->swstats_rx_syncp);
2865 np->stat_rx_missed_errors++;
2866 u64_stats_update_end(&np->swstats_rx_syncp);
2867 }
2868 dev_kfree_skb(skb);
2869 goto next_pkt;
2870 }
2871 }
2872 } else {
2873 dev_kfree_skb(skb);
2874 goto next_pkt;
2875 }
2876 } else {
2877 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2878 len = flags & LEN_MASK_V2;
2879 if (unlikely(flags & NV_RX2_ERROR)) {
2880 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2881 len = nv_getlen(dev, skb->data, len);
2882 if (len < 0) {
2883 dev_kfree_skb(skb);
2884 goto next_pkt;
2885 }
2886 }
2887 /* framing errors are soft errors */
2888 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2889 if (flags & NV_RX2_SUBTRACT1)
2890 len--;
2891 }
2892 /* the rest are hard errors */
2893 else {
2894 dev_kfree_skb(skb);
2895 goto next_pkt;
2896 }
2897 }
2898 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2899 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2900 skb->ip_summed = CHECKSUM_UNNECESSARY;
2901 } else {
2902 dev_kfree_skb(skb);
2903 goto next_pkt;
2904 }
2905 }
2906 /* got a valid packet - forward it to the network core */
2907 skb_put(skb, len);
2908 skb->protocol = eth_type_trans(skb, dev);
2909 napi_gro_receive(&np->napi, skb);
2910 u64_stats_update_begin(&np->swstats_rx_syncp);
2911 np->stat_rx_packets++;
2912 np->stat_rx_bytes += len;
2913 u64_stats_update_end(&np->swstats_rx_syncp);
2914 next_pkt:
2915 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2916 np->get_rx.orig = np->rx_ring.orig;
2917 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2918 np->get_rx_ctx = np->rx_skb;
2919
2920 rx_work++;
2921 }
2922
2923 return rx_work;
2924 }
2925
nv_rx_process_optimized(struct net_device * dev,int limit)2926 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2927 {
2928 struct fe_priv *np = netdev_priv(dev);
2929 u32 flags;
2930 u32 vlanflags = 0;
2931 int rx_work = 0;
2932 struct sk_buff *skb;
2933 int len;
2934
2935 while ((np->get_rx.ex != np->put_rx.ex) &&
2936 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2937 (rx_work < limit)) {
2938
2939 /*
2940 * the packet is for us - immediately tear down the pci mapping.
2941 * TODO: check if a prefetch of the first cacheline improves
2942 * the performance.
2943 */
2944 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
2945 np->get_rx_ctx->dma_len,
2946 DMA_FROM_DEVICE);
2947 skb = np->get_rx_ctx->skb;
2948 np->get_rx_ctx->skb = NULL;
2949
2950 /* look at what we actually got: */
2951 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2952 len = flags & LEN_MASK_V2;
2953 if (unlikely(flags & NV_RX2_ERROR)) {
2954 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2955 len = nv_getlen(dev, skb->data, len);
2956 if (len < 0) {
2957 dev_kfree_skb(skb);
2958 goto next_pkt;
2959 }
2960 }
2961 /* framing errors are soft errors */
2962 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2963 if (flags & NV_RX2_SUBTRACT1)
2964 len--;
2965 }
2966 /* the rest are hard errors */
2967 else {
2968 dev_kfree_skb(skb);
2969 goto next_pkt;
2970 }
2971 }
2972
2973 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2974 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2975 skb->ip_summed = CHECKSUM_UNNECESSARY;
2976
2977 /* got a valid packet - forward it to the network core */
2978 skb_put(skb, len);
2979 skb->protocol = eth_type_trans(skb, dev);
2980 prefetch(skb->data);
2981
2982 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2983
2984 /*
2985 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX
2986 * here. Even if vlan rx accel is disabled,
2987 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
2988 */
2989 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2990 vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2991 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
2992
2993 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2994 }
2995 napi_gro_receive(&np->napi, skb);
2996 u64_stats_update_begin(&np->swstats_rx_syncp);
2997 np->stat_rx_packets++;
2998 np->stat_rx_bytes += len;
2999 u64_stats_update_end(&np->swstats_rx_syncp);
3000 } else {
3001 dev_kfree_skb(skb);
3002 }
3003 next_pkt:
3004 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
3005 np->get_rx.ex = np->rx_ring.ex;
3006 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
3007 np->get_rx_ctx = np->rx_skb;
3008
3009 rx_work++;
3010 }
3011
3012 return rx_work;
3013 }
3014
set_bufsize(struct net_device * dev)3015 static void set_bufsize(struct net_device *dev)
3016 {
3017 struct fe_priv *np = netdev_priv(dev);
3018
3019 if (dev->mtu <= ETH_DATA_LEN)
3020 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
3021 else
3022 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
3023 }
3024
3025 /*
3026 * nv_change_mtu: dev->change_mtu function
3027 * Called with dev_base_lock held for read.
3028 */
nv_change_mtu(struct net_device * dev,int new_mtu)3029 static int nv_change_mtu(struct net_device *dev, int new_mtu)
3030 {
3031 struct fe_priv *np = netdev_priv(dev);
3032 int old_mtu;
3033
3034 old_mtu = dev->mtu;
3035 dev->mtu = new_mtu;
3036
3037 /* return early if the buffer sizes will not change */
3038 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
3039 return 0;
3040
3041 /* synchronized against open : rtnl_lock() held by caller */
3042 if (netif_running(dev)) {
3043 u8 __iomem *base = get_hwbase(dev);
3044 /*
3045 * It seems that the nic preloads valid ring entries into an
3046 * internal buffer. The procedure for flushing everything is
3047 * guessed, there is probably a simpler approach.
3048 * Changing the MTU is a rare event, it shouldn't matter.
3049 */
3050 nv_disable_irq(dev);
3051 nv_napi_disable(dev);
3052 netif_tx_lock_bh(dev);
3053 netif_addr_lock(dev);
3054 spin_lock(&np->lock);
3055 /* stop engines */
3056 nv_stop_rxtx(dev);
3057 nv_txrx_reset(dev);
3058 /* drain rx queue */
3059 nv_drain_rxtx(dev);
3060 /* reinit driver view of the rx queue */
3061 set_bufsize(dev);
3062 if (nv_init_ring(dev)) {
3063 if (!np->in_shutdown)
3064 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3065 }
3066 /* reinit nic view of the rx queue */
3067 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3068 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3069 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3070 base + NvRegRingSizes);
3071 pci_push(base);
3072 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3073 pci_push(base);
3074
3075 /* restart rx engine */
3076 nv_start_rxtx(dev);
3077 spin_unlock(&np->lock);
3078 netif_addr_unlock(dev);
3079 netif_tx_unlock_bh(dev);
3080 nv_napi_enable(dev);
3081 nv_enable_irq(dev);
3082 }
3083 return 0;
3084 }
3085
nv_copy_mac_to_hw(struct net_device * dev)3086 static void nv_copy_mac_to_hw(struct net_device *dev)
3087 {
3088 u8 __iomem *base = get_hwbase(dev);
3089 u32 mac[2];
3090
3091 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3092 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3093 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3094
3095 writel(mac[0], base + NvRegMacAddrA);
3096 writel(mac[1], base + NvRegMacAddrB);
3097 }
3098
3099 /*
3100 * nv_set_mac_address: dev->set_mac_address function
3101 * Called with rtnl_lock() held.
3102 */
nv_set_mac_address(struct net_device * dev,void * addr)3103 static int nv_set_mac_address(struct net_device *dev, void *addr)
3104 {
3105 struct fe_priv *np = netdev_priv(dev);
3106 struct sockaddr *macaddr = (struct sockaddr *)addr;
3107
3108 if (!is_valid_ether_addr(macaddr->sa_data))
3109 return -EADDRNOTAVAIL;
3110
3111 /* synchronized against open : rtnl_lock() held by caller */
3112 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3113
3114 if (netif_running(dev)) {
3115 netif_tx_lock_bh(dev);
3116 netif_addr_lock(dev);
3117 spin_lock_irq(&np->lock);
3118
3119 /* stop rx engine */
3120 nv_stop_rx(dev);
3121
3122 /* set mac address */
3123 nv_copy_mac_to_hw(dev);
3124
3125 /* restart rx engine */
3126 nv_start_rx(dev);
3127 spin_unlock_irq(&np->lock);
3128 netif_addr_unlock(dev);
3129 netif_tx_unlock_bh(dev);
3130 } else {
3131 nv_copy_mac_to_hw(dev);
3132 }
3133 return 0;
3134 }
3135
3136 /*
3137 * nv_set_multicast: dev->set_multicast function
3138 * Called with netif_tx_lock held.
3139 */
nv_set_multicast(struct net_device * dev)3140 static void nv_set_multicast(struct net_device *dev)
3141 {
3142 struct fe_priv *np = netdev_priv(dev);
3143 u8 __iomem *base = get_hwbase(dev);
3144 u32 addr[2];
3145 u32 mask[2];
3146 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3147
3148 memset(addr, 0, sizeof(addr));
3149 memset(mask, 0, sizeof(mask));
3150
3151 if (dev->flags & IFF_PROMISC) {
3152 pff |= NVREG_PFF_PROMISC;
3153 } else {
3154 pff |= NVREG_PFF_MYADDR;
3155
3156 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3157 u32 alwaysOff[2];
3158 u32 alwaysOn[2];
3159
3160 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3161 if (dev->flags & IFF_ALLMULTI) {
3162 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3163 } else {
3164 struct netdev_hw_addr *ha;
3165
3166 netdev_for_each_mc_addr(ha, dev) {
3167 unsigned char *hw_addr = ha->addr;
3168 u32 a, b;
3169
3170 a = le32_to_cpu(*(__le32 *) hw_addr);
3171 b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
3172 alwaysOn[0] &= a;
3173 alwaysOff[0] &= ~a;
3174 alwaysOn[1] &= b;
3175 alwaysOff[1] &= ~b;
3176 }
3177 }
3178 addr[0] = alwaysOn[0];
3179 addr[1] = alwaysOn[1];
3180 mask[0] = alwaysOn[0] | alwaysOff[0];
3181 mask[1] = alwaysOn[1] | alwaysOff[1];
3182 } else {
3183 mask[0] = NVREG_MCASTMASKA_NONE;
3184 mask[1] = NVREG_MCASTMASKB_NONE;
3185 }
3186 }
3187 addr[0] |= NVREG_MCASTADDRA_FORCE;
3188 pff |= NVREG_PFF_ALWAYS;
3189 spin_lock_irq(&np->lock);
3190 nv_stop_rx(dev);
3191 writel(addr[0], base + NvRegMulticastAddrA);
3192 writel(addr[1], base + NvRegMulticastAddrB);
3193 writel(mask[0], base + NvRegMulticastMaskA);
3194 writel(mask[1], base + NvRegMulticastMaskB);
3195 writel(pff, base + NvRegPacketFilterFlags);
3196 nv_start_rx(dev);
3197 spin_unlock_irq(&np->lock);
3198 }
3199
nv_update_pause(struct net_device * dev,u32 pause_flags)3200 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3201 {
3202 struct fe_priv *np = netdev_priv(dev);
3203 u8 __iomem *base = get_hwbase(dev);
3204
3205 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3206
3207 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3208 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3209 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3210 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3211 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3212 } else {
3213 writel(pff, base + NvRegPacketFilterFlags);
3214 }
3215 }
3216 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3217 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3218 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3219 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3220 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3221 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3222 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3223 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3224 /* limit the number of tx pause frames to a default of 8 */
3225 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3226 }
3227 writel(pause_enable, base + NvRegTxPauseFrame);
3228 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3229 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3230 } else {
3231 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3232 writel(regmisc, base + NvRegMisc1);
3233 }
3234 }
3235 }
3236
nv_force_linkspeed(struct net_device * dev,int speed,int duplex)3237 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
3238 {
3239 struct fe_priv *np = netdev_priv(dev);
3240 u8 __iomem *base = get_hwbase(dev);
3241 u32 phyreg, txreg;
3242 int mii_status;
3243
3244 np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
3245 np->duplex = duplex;
3246
3247 /* see if gigabit phy */
3248 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3249 if (mii_status & PHY_GIGABIT) {
3250 np->gigabit = PHY_GIGABIT;
3251 phyreg = readl(base + NvRegSlotTime);
3252 phyreg &= ~(0x3FF00);
3253 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
3254 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3255 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
3256 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3257 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3258 phyreg |= NVREG_SLOTTIME_1000_FULL;
3259 writel(phyreg, base + NvRegSlotTime);
3260 }
3261
3262 phyreg = readl(base + NvRegPhyInterface);
3263 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3264 if (np->duplex == 0)
3265 phyreg |= PHY_HALF;
3266 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3267 phyreg |= PHY_100;
3268 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3269 NVREG_LINKSPEED_1000)
3270 phyreg |= PHY_1000;
3271 writel(phyreg, base + NvRegPhyInterface);
3272
3273 if (phyreg & PHY_RGMII) {
3274 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3275 NVREG_LINKSPEED_1000)
3276 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3277 else
3278 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3279 } else {
3280 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3281 }
3282 writel(txreg, base + NvRegTxDeferral);
3283
3284 if (np->desc_ver == DESC_VER_1) {
3285 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3286 } else {
3287 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3288 NVREG_LINKSPEED_1000)
3289 txreg = NVREG_TX_WM_DESC2_3_1000;
3290 else
3291 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3292 }
3293 writel(txreg, base + NvRegTxWatermark);
3294
3295 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3296 base + NvRegMisc1);
3297 pci_push(base);
3298 writel(np->linkspeed, base + NvRegLinkSpeed);
3299 pci_push(base);
3300 }
3301
3302 /**
3303 * nv_update_linkspeed - Setup the MAC according to the link partner
3304 * @dev: Network device to be configured
3305 *
3306 * The function queries the PHY and checks if there is a link partner.
3307 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3308 * set to 10 MBit HD.
3309 *
3310 * The function returns 0 if there is no link partner and 1 if there is
3311 * a good link partner.
3312 */
nv_update_linkspeed(struct net_device * dev)3313 static int nv_update_linkspeed(struct net_device *dev)
3314 {
3315 struct fe_priv *np = netdev_priv(dev);
3316 u8 __iomem *base = get_hwbase(dev);
3317 int adv = 0;
3318 int lpa = 0;
3319 int adv_lpa, adv_pause, lpa_pause;
3320 int newls = np->linkspeed;
3321 int newdup = np->duplex;
3322 int mii_status;
3323 u32 bmcr;
3324 int retval = 0;
3325 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3326 u32 txrxFlags = 0;
3327 u32 phy_exp;
3328
3329 /* If device loopback is enabled, set carrier on and enable max link
3330 * speed.
3331 */
3332 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3333 if (bmcr & BMCR_LOOPBACK) {
3334 if (netif_running(dev)) {
3335 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
3336 if (!netif_carrier_ok(dev))
3337 netif_carrier_on(dev);
3338 }
3339 return 1;
3340 }
3341
3342 /* BMSR_LSTATUS is latched, read it twice:
3343 * we want the current value.
3344 */
3345 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3346 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3347
3348 if (!(mii_status & BMSR_LSTATUS)) {
3349 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3350 newdup = 0;
3351 retval = 0;
3352 goto set_speed;
3353 }
3354
3355 if (np->autoneg == 0) {
3356 if (np->fixed_mode & LPA_100FULL) {
3357 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3358 newdup = 1;
3359 } else if (np->fixed_mode & LPA_100HALF) {
3360 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3361 newdup = 0;
3362 } else if (np->fixed_mode & LPA_10FULL) {
3363 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3364 newdup = 1;
3365 } else {
3366 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3367 newdup = 0;
3368 }
3369 retval = 1;
3370 goto set_speed;
3371 }
3372 /* check auto negotiation is complete */
3373 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3374 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3375 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3376 newdup = 0;
3377 retval = 0;
3378 goto set_speed;
3379 }
3380
3381 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3382 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3383
3384 retval = 1;
3385 if (np->gigabit == PHY_GIGABIT) {
3386 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3387 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3388
3389 if ((control_1000 & ADVERTISE_1000FULL) &&
3390 (status_1000 & LPA_1000FULL)) {
3391 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3392 newdup = 1;
3393 goto set_speed;
3394 }
3395 }
3396
3397 /* FIXME: handle parallel detection properly */
3398 adv_lpa = lpa & adv;
3399 if (adv_lpa & LPA_100FULL) {
3400 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3401 newdup = 1;
3402 } else if (adv_lpa & LPA_100HALF) {
3403 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3404 newdup = 0;
3405 } else if (adv_lpa & LPA_10FULL) {
3406 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3407 newdup = 1;
3408 } else if (adv_lpa & LPA_10HALF) {
3409 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3410 newdup = 0;
3411 } else {
3412 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3413 newdup = 0;
3414 }
3415
3416 set_speed:
3417 if (np->duplex == newdup && np->linkspeed == newls)
3418 return retval;
3419
3420 np->duplex = newdup;
3421 np->linkspeed = newls;
3422
3423 /* The transmitter and receiver must be restarted for safe update */
3424 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3425 txrxFlags |= NV_RESTART_TX;
3426 nv_stop_tx(dev);
3427 }
3428 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3429 txrxFlags |= NV_RESTART_RX;
3430 nv_stop_rx(dev);
3431 }
3432
3433 if (np->gigabit == PHY_GIGABIT) {
3434 phyreg = readl(base + NvRegSlotTime);
3435 phyreg &= ~(0x3FF00);
3436 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3437 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3438 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3439 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3440 phyreg |= NVREG_SLOTTIME_1000_FULL;
3441 writel(phyreg, base + NvRegSlotTime);
3442 }
3443
3444 phyreg = readl(base + NvRegPhyInterface);
3445 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3446 if (np->duplex == 0)
3447 phyreg |= PHY_HALF;
3448 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3449 phyreg |= PHY_100;
3450 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3451 phyreg |= PHY_1000;
3452 writel(phyreg, base + NvRegPhyInterface);
3453
3454 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3455 if (phyreg & PHY_RGMII) {
3456 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3457 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3458 } else {
3459 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3460 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3461 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3462 else
3463 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3464 } else {
3465 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3466 }
3467 }
3468 } else {
3469 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3470 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3471 else
3472 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3473 }
3474 writel(txreg, base + NvRegTxDeferral);
3475
3476 if (np->desc_ver == DESC_VER_1) {
3477 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3478 } else {
3479 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3480 txreg = NVREG_TX_WM_DESC2_3_1000;
3481 else
3482 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3483 }
3484 writel(txreg, base + NvRegTxWatermark);
3485
3486 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3487 base + NvRegMisc1);
3488 pci_push(base);
3489 writel(np->linkspeed, base + NvRegLinkSpeed);
3490 pci_push(base);
3491
3492 pause_flags = 0;
3493 /* setup pause frame */
3494 if (netif_running(dev) && (np->duplex != 0)) {
3495 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3496 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3497 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
3498
3499 switch (adv_pause) {
3500 case ADVERTISE_PAUSE_CAP:
3501 if (lpa_pause & LPA_PAUSE_CAP) {
3502 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3503 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3504 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3505 }
3506 break;
3507 case ADVERTISE_PAUSE_ASYM:
3508 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
3509 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3510 break;
3511 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
3512 if (lpa_pause & LPA_PAUSE_CAP) {
3513 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3514 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3515 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3516 }
3517 if (lpa_pause == LPA_PAUSE_ASYM)
3518 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3519 break;
3520 }
3521 } else {
3522 pause_flags = np->pause_flags;
3523 }
3524 }
3525 nv_update_pause(dev, pause_flags);
3526
3527 if (txrxFlags & NV_RESTART_TX)
3528 nv_start_tx(dev);
3529 if (txrxFlags & NV_RESTART_RX)
3530 nv_start_rx(dev);
3531
3532 return retval;
3533 }
3534
nv_linkchange(struct net_device * dev)3535 static void nv_linkchange(struct net_device *dev)
3536 {
3537 if (nv_update_linkspeed(dev)) {
3538 if (!netif_carrier_ok(dev)) {
3539 netif_carrier_on(dev);
3540 netdev_info(dev, "link up\n");
3541 nv_txrx_gate(dev, false);
3542 nv_start_rx(dev);
3543 }
3544 } else {
3545 if (netif_carrier_ok(dev)) {
3546 netif_carrier_off(dev);
3547 netdev_info(dev, "link down\n");
3548 nv_txrx_gate(dev, true);
3549 nv_stop_rx(dev);
3550 }
3551 }
3552 }
3553
nv_link_irq(struct net_device * dev)3554 static void nv_link_irq(struct net_device *dev)
3555 {
3556 u8 __iomem *base = get_hwbase(dev);
3557 u32 miistat;
3558
3559 miistat = readl(base + NvRegMIIStatus);
3560 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3561
3562 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3563 nv_linkchange(dev);
3564 }
3565
nv_msi_workaround(struct fe_priv * np)3566 static void nv_msi_workaround(struct fe_priv *np)
3567 {
3568
3569 /* Need to toggle the msi irq mask within the ethernet device,
3570 * otherwise, future interrupts will not be detected.
3571 */
3572 if (np->msi_flags & NV_MSI_ENABLED) {
3573 u8 __iomem *base = np->base;
3574
3575 writel(0, base + NvRegMSIIrqMask);
3576 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3577 }
3578 }
3579
nv_change_interrupt_mode(struct net_device * dev,int total_work)3580 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3581 {
3582 struct fe_priv *np = netdev_priv(dev);
3583
3584 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3585 if (total_work > NV_DYNAMIC_THRESHOLD) {
3586 /* transition to poll based interrupts */
3587 np->quiet_count = 0;
3588 if (np->irqmask != NVREG_IRQMASK_CPU) {
3589 np->irqmask = NVREG_IRQMASK_CPU;
3590 return 1;
3591 }
3592 } else {
3593 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3594 np->quiet_count++;
3595 } else {
3596 /* reached a period of low activity, switch
3597 to per tx/rx packet interrupts */
3598 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3599 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3600 return 1;
3601 }
3602 }
3603 }
3604 }
3605 return 0;
3606 }
3607
nv_nic_irq(int foo,void * data)3608 static irqreturn_t nv_nic_irq(int foo, void *data)
3609 {
3610 struct net_device *dev = (struct net_device *) data;
3611 struct fe_priv *np = netdev_priv(dev);
3612 u8 __iomem *base = get_hwbase(dev);
3613
3614 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3615 np->events = readl(base + NvRegIrqStatus);
3616 writel(np->events, base + NvRegIrqStatus);
3617 } else {
3618 np->events = readl(base + NvRegMSIXIrqStatus);
3619 writel(np->events, base + NvRegMSIXIrqStatus);
3620 }
3621 if (!(np->events & np->irqmask))
3622 return IRQ_NONE;
3623
3624 nv_msi_workaround(np);
3625
3626 if (napi_schedule_prep(&np->napi)) {
3627 /*
3628 * Disable further irq's (msix not enabled with napi)
3629 */
3630 writel(0, base + NvRegIrqMask);
3631 __napi_schedule(&np->napi);
3632 }
3633
3634 return IRQ_HANDLED;
3635 }
3636
3637 /* All _optimized functions are used to help increase performance
3638 * (reduce CPU and increase throughput). They use descripter version 3,
3639 * compiler directives, and reduce memory accesses.
3640 */
nv_nic_irq_optimized(int foo,void * data)3641 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3642 {
3643 struct net_device *dev = (struct net_device *) data;
3644 struct fe_priv *np = netdev_priv(dev);
3645 u8 __iomem *base = get_hwbase(dev);
3646
3647 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3648 np->events = readl(base + NvRegIrqStatus);
3649 writel(np->events, base + NvRegIrqStatus);
3650 } else {
3651 np->events = readl(base + NvRegMSIXIrqStatus);
3652 writel(np->events, base + NvRegMSIXIrqStatus);
3653 }
3654 if (!(np->events & np->irqmask))
3655 return IRQ_NONE;
3656
3657 nv_msi_workaround(np);
3658
3659 if (napi_schedule_prep(&np->napi)) {
3660 /*
3661 * Disable further irq's (msix not enabled with napi)
3662 */
3663 writel(0, base + NvRegIrqMask);
3664 __napi_schedule(&np->napi);
3665 }
3666
3667 return IRQ_HANDLED;
3668 }
3669
nv_nic_irq_tx(int foo,void * data)3670 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3671 {
3672 struct net_device *dev = (struct net_device *) data;
3673 struct fe_priv *np = netdev_priv(dev);
3674 u8 __iomem *base = get_hwbase(dev);
3675 u32 events;
3676 int i;
3677 unsigned long flags;
3678
3679 for (i = 0;; i++) {
3680 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3681 writel(events, base + NvRegMSIXIrqStatus);
3682 netdev_dbg(dev, "tx irq events: %08x\n", events);
3683 if (!(events & np->irqmask))
3684 break;
3685
3686 spin_lock_irqsave(&np->lock, flags);
3687 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3688 spin_unlock_irqrestore(&np->lock, flags);
3689
3690 if (unlikely(i > max_interrupt_work)) {
3691 spin_lock_irqsave(&np->lock, flags);
3692 /* disable interrupts on the nic */
3693 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3694 pci_push(base);
3695
3696 if (!np->in_shutdown) {
3697 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3698 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3699 }
3700 spin_unlock_irqrestore(&np->lock, flags);
3701 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3702 __func__, i);
3703 break;
3704 }
3705
3706 }
3707
3708 return IRQ_RETVAL(i);
3709 }
3710
nv_napi_poll(struct napi_struct * napi,int budget)3711 static int nv_napi_poll(struct napi_struct *napi, int budget)
3712 {
3713 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3714 struct net_device *dev = np->dev;
3715 u8 __iomem *base = get_hwbase(dev);
3716 unsigned long flags;
3717 int retcode;
3718 int rx_count, tx_work = 0, rx_work = 0;
3719
3720 do {
3721 if (!nv_optimized(np)) {
3722 spin_lock_irqsave(&np->lock, flags);
3723 tx_work += nv_tx_done(dev, np->tx_ring_size);
3724 spin_unlock_irqrestore(&np->lock, flags);
3725
3726 rx_count = nv_rx_process(dev, budget - rx_work);
3727 retcode = nv_alloc_rx(dev);
3728 } else {
3729 spin_lock_irqsave(&np->lock, flags);
3730 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
3731 spin_unlock_irqrestore(&np->lock, flags);
3732
3733 rx_count = nv_rx_process_optimized(dev,
3734 budget - rx_work);
3735 retcode = nv_alloc_rx_optimized(dev);
3736 }
3737 } while (retcode == 0 &&
3738 rx_count > 0 && (rx_work += rx_count) < budget);
3739
3740 if (retcode) {
3741 spin_lock_irqsave(&np->lock, flags);
3742 if (!np->in_shutdown)
3743 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3744 spin_unlock_irqrestore(&np->lock, flags);
3745 }
3746
3747 nv_change_interrupt_mode(dev, tx_work + rx_work);
3748
3749 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3750 spin_lock_irqsave(&np->lock, flags);
3751 nv_link_irq(dev);
3752 spin_unlock_irqrestore(&np->lock, flags);
3753 }
3754 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3755 spin_lock_irqsave(&np->lock, flags);
3756 nv_linkchange(dev);
3757 spin_unlock_irqrestore(&np->lock, flags);
3758 np->link_timeout = jiffies + LINK_TIMEOUT;
3759 }
3760 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3761 spin_lock_irqsave(&np->lock, flags);
3762 if (!np->in_shutdown) {
3763 np->nic_poll_irq = np->irqmask;
3764 np->recover_error = 1;
3765 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3766 }
3767 spin_unlock_irqrestore(&np->lock, flags);
3768 napi_complete(napi);
3769 return rx_work;
3770 }
3771
3772 if (rx_work < budget) {
3773 /* re-enable interrupts
3774 (msix not enabled in napi) */
3775 napi_complete_done(napi, rx_work);
3776
3777 writel(np->irqmask, base + NvRegIrqMask);
3778 }
3779 return rx_work;
3780 }
3781
nv_nic_irq_rx(int foo,void * data)3782 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3783 {
3784 struct net_device *dev = (struct net_device *) data;
3785 struct fe_priv *np = netdev_priv(dev);
3786 u8 __iomem *base = get_hwbase(dev);
3787 u32 events;
3788 int i;
3789 unsigned long flags;
3790
3791 for (i = 0;; i++) {
3792 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3793 writel(events, base + NvRegMSIXIrqStatus);
3794 netdev_dbg(dev, "rx irq events: %08x\n", events);
3795 if (!(events & np->irqmask))
3796 break;
3797
3798 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3799 if (unlikely(nv_alloc_rx_optimized(dev))) {
3800 spin_lock_irqsave(&np->lock, flags);
3801 if (!np->in_shutdown)
3802 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3803 spin_unlock_irqrestore(&np->lock, flags);
3804 }
3805 }
3806
3807 if (unlikely(i > max_interrupt_work)) {
3808 spin_lock_irqsave(&np->lock, flags);
3809 /* disable interrupts on the nic */
3810 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3811 pci_push(base);
3812
3813 if (!np->in_shutdown) {
3814 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3815 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3816 }
3817 spin_unlock_irqrestore(&np->lock, flags);
3818 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3819 __func__, i);
3820 break;
3821 }
3822 }
3823
3824 return IRQ_RETVAL(i);
3825 }
3826
nv_nic_irq_other(int foo,void * data)3827 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3828 {
3829 struct net_device *dev = (struct net_device *) data;
3830 struct fe_priv *np = netdev_priv(dev);
3831 u8 __iomem *base = get_hwbase(dev);
3832 u32 events;
3833 int i;
3834 unsigned long flags;
3835
3836 for (i = 0;; i++) {
3837 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3838 writel(events, base + NvRegMSIXIrqStatus);
3839 netdev_dbg(dev, "irq events: %08x\n", events);
3840 if (!(events & np->irqmask))
3841 break;
3842
3843 /* check tx in case we reached max loop limit in tx isr */
3844 spin_lock_irqsave(&np->lock, flags);
3845 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3846 spin_unlock_irqrestore(&np->lock, flags);
3847
3848 if (events & NVREG_IRQ_LINK) {
3849 spin_lock_irqsave(&np->lock, flags);
3850 nv_link_irq(dev);
3851 spin_unlock_irqrestore(&np->lock, flags);
3852 }
3853 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3854 spin_lock_irqsave(&np->lock, flags);
3855 nv_linkchange(dev);
3856 spin_unlock_irqrestore(&np->lock, flags);
3857 np->link_timeout = jiffies + LINK_TIMEOUT;
3858 }
3859 if (events & NVREG_IRQ_RECOVER_ERROR) {
3860 spin_lock_irqsave(&np->lock, flags);
3861 /* disable interrupts on the nic */
3862 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3863 pci_push(base);
3864
3865 if (!np->in_shutdown) {
3866 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3867 np->recover_error = 1;
3868 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3869 }
3870 spin_unlock_irqrestore(&np->lock, flags);
3871 break;
3872 }
3873 if (unlikely(i > max_interrupt_work)) {
3874 spin_lock_irqsave(&np->lock, flags);
3875 /* disable interrupts on the nic */
3876 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3877 pci_push(base);
3878
3879 if (!np->in_shutdown) {
3880 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3881 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3882 }
3883 spin_unlock_irqrestore(&np->lock, flags);
3884 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3885 __func__, i);
3886 break;
3887 }
3888
3889 }
3890
3891 return IRQ_RETVAL(i);
3892 }
3893
nv_nic_irq_test(int foo,void * data)3894 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3895 {
3896 struct net_device *dev = (struct net_device *) data;
3897 struct fe_priv *np = netdev_priv(dev);
3898 u8 __iomem *base = get_hwbase(dev);
3899 u32 events;
3900
3901 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3902 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3903 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3904 } else {
3905 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3906 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3907 }
3908 pci_push(base);
3909 if (!(events & NVREG_IRQ_TIMER))
3910 return IRQ_RETVAL(0);
3911
3912 nv_msi_workaround(np);
3913
3914 spin_lock(&np->lock);
3915 np->intr_test = 1;
3916 spin_unlock(&np->lock);
3917
3918 return IRQ_RETVAL(1);
3919 }
3920
set_msix_vector_map(struct net_device * dev,u32 vector,u32 irqmask)3921 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3922 {
3923 u8 __iomem *base = get_hwbase(dev);
3924 int i;
3925 u32 msixmap = 0;
3926
3927 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3928 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3929 * the remaining 8 interrupts.
3930 */
3931 for (i = 0; i < 8; i++) {
3932 if ((irqmask >> i) & 0x1)
3933 msixmap |= vector << (i << 2);
3934 }
3935 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3936
3937 msixmap = 0;
3938 for (i = 0; i < 8; i++) {
3939 if ((irqmask >> (i + 8)) & 0x1)
3940 msixmap |= vector << (i << 2);
3941 }
3942 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3943 }
3944
nv_request_irq(struct net_device * dev,int intr_test)3945 static int nv_request_irq(struct net_device *dev, int intr_test)
3946 {
3947 struct fe_priv *np = get_nvpriv(dev);
3948 u8 __iomem *base = get_hwbase(dev);
3949 int ret;
3950 int i;
3951 irqreturn_t (*handler)(int foo, void *data);
3952
3953 if (intr_test) {
3954 handler = nv_nic_irq_test;
3955 } else {
3956 if (nv_optimized(np))
3957 handler = nv_nic_irq_optimized;
3958 else
3959 handler = nv_nic_irq;
3960 }
3961
3962 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3963 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
3964 np->msi_x_entry[i].entry = i;
3965 ret = pci_enable_msix_range(np->pci_dev,
3966 np->msi_x_entry,
3967 np->msi_flags & NV_MSI_X_VECTORS_MASK,
3968 np->msi_flags & NV_MSI_X_VECTORS_MASK);
3969 if (ret > 0) {
3970 np->msi_flags |= NV_MSI_X_ENABLED;
3971 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3972 /* Request irq for rx handling */
3973 sprintf(np->name_rx, "%s-rx", dev->name);
3974 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
3975 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev);
3976 if (ret) {
3977 netdev_info(dev,
3978 "request_irq failed for rx %d\n",
3979 ret);
3980 pci_disable_msix(np->pci_dev);
3981 np->msi_flags &= ~NV_MSI_X_ENABLED;
3982 goto out_err;
3983 }
3984 /* Request irq for tx handling */
3985 sprintf(np->name_tx, "%s-tx", dev->name);
3986 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
3987 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev);
3988 if (ret) {
3989 netdev_info(dev,
3990 "request_irq failed for tx %d\n",
3991 ret);
3992 pci_disable_msix(np->pci_dev);
3993 np->msi_flags &= ~NV_MSI_X_ENABLED;
3994 goto out_free_rx;
3995 }
3996 /* Request irq for link and timer handling */
3997 sprintf(np->name_other, "%s-other", dev->name);
3998 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
3999 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev);
4000 if (ret) {
4001 netdev_info(dev,
4002 "request_irq failed for link %d\n",
4003 ret);
4004 pci_disable_msix(np->pci_dev);
4005 np->msi_flags &= ~NV_MSI_X_ENABLED;
4006 goto out_free_tx;
4007 }
4008 /* map interrupts to their respective vector */
4009 writel(0, base + NvRegMSIXMap0);
4010 writel(0, base + NvRegMSIXMap1);
4011 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4012 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4013 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4014 } else {
4015 /* Request irq for all interrupts */
4016 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector,
4017 handler, IRQF_SHARED, dev->name, dev);
4018 if (ret) {
4019 netdev_info(dev,
4020 "request_irq failed %d\n",
4021 ret);
4022 pci_disable_msix(np->pci_dev);
4023 np->msi_flags &= ~NV_MSI_X_ENABLED;
4024 goto out_err;
4025 }
4026
4027 /* map interrupts to vector 0 */
4028 writel(0, base + NvRegMSIXMap0);
4029 writel(0, base + NvRegMSIXMap1);
4030 }
4031 netdev_info(dev, "MSI-X enabled\n");
4032 return 0;
4033 }
4034 }
4035 if (np->msi_flags & NV_MSI_CAPABLE) {
4036 ret = pci_enable_msi(np->pci_dev);
4037 if (ret == 0) {
4038 np->msi_flags |= NV_MSI_ENABLED;
4039 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev);
4040 if (ret) {
4041 netdev_info(dev, "request_irq failed %d\n",
4042 ret);
4043 pci_disable_msi(np->pci_dev);
4044 np->msi_flags &= ~NV_MSI_ENABLED;
4045 goto out_err;
4046 }
4047
4048 /* map interrupts to vector 0 */
4049 writel(0, base + NvRegMSIMap0);
4050 writel(0, base + NvRegMSIMap1);
4051 /* enable msi vector 0 */
4052 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4053 netdev_info(dev, "MSI enabled\n");
4054 return 0;
4055 }
4056 }
4057
4058 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4059 goto out_err;
4060
4061 return 0;
4062 out_free_tx:
4063 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4064 out_free_rx:
4065 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4066 out_err:
4067 return 1;
4068 }
4069
nv_free_irq(struct net_device * dev)4070 static void nv_free_irq(struct net_device *dev)
4071 {
4072 struct fe_priv *np = get_nvpriv(dev);
4073 int i;
4074
4075 if (np->msi_flags & NV_MSI_X_ENABLED) {
4076 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
4077 free_irq(np->msi_x_entry[i].vector, dev);
4078 pci_disable_msix(np->pci_dev);
4079 np->msi_flags &= ~NV_MSI_X_ENABLED;
4080 } else {
4081 free_irq(np->pci_dev->irq, dev);
4082 if (np->msi_flags & NV_MSI_ENABLED) {
4083 pci_disable_msi(np->pci_dev);
4084 np->msi_flags &= ~NV_MSI_ENABLED;
4085 }
4086 }
4087 }
4088
nv_do_nic_poll(struct timer_list * t)4089 static void nv_do_nic_poll(struct timer_list *t)
4090 {
4091 struct fe_priv *np = from_timer(np, t, nic_poll);
4092 struct net_device *dev = np->dev;
4093 u8 __iomem *base = get_hwbase(dev);
4094 u32 mask = 0;
4095 unsigned long flags;
4096 unsigned int irq = 0;
4097
4098 /*
4099 * First disable irq(s) and then
4100 * reenable interrupts on the nic, we have to do this before calling
4101 * nv_nic_irq because that may decide to do otherwise
4102 */
4103
4104 if (!using_multi_irqs(dev)) {
4105 if (np->msi_flags & NV_MSI_X_ENABLED)
4106 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector;
4107 else
4108 irq = np->pci_dev->irq;
4109 mask = np->irqmask;
4110 } else {
4111 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4112 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector;
4113 mask |= NVREG_IRQ_RX_ALL;
4114 }
4115 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4116 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector;
4117 mask |= NVREG_IRQ_TX_ALL;
4118 }
4119 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4120 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector;
4121 mask |= NVREG_IRQ_OTHER;
4122 }
4123 }
4124
4125 disable_irq_nosync_lockdep_irqsave(irq, &flags);
4126 synchronize_irq(irq);
4127
4128 if (np->recover_error) {
4129 np->recover_error = 0;
4130 netdev_info(dev, "MAC in recoverable error state\n");
4131 if (netif_running(dev)) {
4132 netif_tx_lock_bh(dev);
4133 netif_addr_lock(dev);
4134 spin_lock(&np->lock);
4135 /* stop engines */
4136 nv_stop_rxtx(dev);
4137 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4138 nv_mac_reset(dev);
4139 nv_txrx_reset(dev);
4140 /* drain rx queue */
4141 nv_drain_rxtx(dev);
4142 /* reinit driver view of the rx queue */
4143 set_bufsize(dev);
4144 if (nv_init_ring(dev)) {
4145 if (!np->in_shutdown)
4146 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4147 }
4148 /* reinit nic view of the rx queue */
4149 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4150 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4151 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4152 base + NvRegRingSizes);
4153 pci_push(base);
4154 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4155 pci_push(base);
4156 /* clear interrupts */
4157 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4158 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4159 else
4160 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4161
4162 /* restart rx engine */
4163 nv_start_rxtx(dev);
4164 spin_unlock(&np->lock);
4165 netif_addr_unlock(dev);
4166 netif_tx_unlock_bh(dev);
4167 }
4168 }
4169
4170 writel(mask, base + NvRegIrqMask);
4171 pci_push(base);
4172
4173 if (!using_multi_irqs(dev)) {
4174 np->nic_poll_irq = 0;
4175 if (nv_optimized(np))
4176 nv_nic_irq_optimized(0, dev);
4177 else
4178 nv_nic_irq(0, dev);
4179 } else {
4180 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4181 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4182 nv_nic_irq_rx(0, dev);
4183 }
4184 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4185 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4186 nv_nic_irq_tx(0, dev);
4187 }
4188 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4189 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4190 nv_nic_irq_other(0, dev);
4191 }
4192 }
4193
4194 enable_irq_lockdep_irqrestore(irq, &flags);
4195 }
4196
4197 #ifdef CONFIG_NET_POLL_CONTROLLER
nv_poll_controller(struct net_device * dev)4198 static void nv_poll_controller(struct net_device *dev)
4199 {
4200 struct fe_priv *np = netdev_priv(dev);
4201
4202 nv_do_nic_poll(&np->nic_poll);
4203 }
4204 #endif
4205
nv_do_stats_poll(struct timer_list * t)4206 static void nv_do_stats_poll(struct timer_list *t)
4207 __acquires(&netdev_priv(dev)->hwstats_lock)
4208 __releases(&netdev_priv(dev)->hwstats_lock)
4209 {
4210 struct fe_priv *np = from_timer(np, t, stats_poll);
4211 struct net_device *dev = np->dev;
4212
4213 /* If lock is currently taken, the stats are being refreshed
4214 * and hence fresh enough */
4215 if (spin_trylock(&np->hwstats_lock)) {
4216 nv_update_stats(dev);
4217 spin_unlock(&np->hwstats_lock);
4218 }
4219
4220 if (!np->in_shutdown)
4221 mod_timer(&np->stats_poll,
4222 round_jiffies(jiffies + STATS_INTERVAL));
4223 }
4224
nv_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)4225 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4226 {
4227 struct fe_priv *np = netdev_priv(dev);
4228 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
4229 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
4230 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
4231 }
4232
nv_get_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)4233 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4234 {
4235 struct fe_priv *np = netdev_priv(dev);
4236 wolinfo->supported = WAKE_MAGIC;
4237
4238 spin_lock_irq(&np->lock);
4239 if (np->wolenabled)
4240 wolinfo->wolopts = WAKE_MAGIC;
4241 spin_unlock_irq(&np->lock);
4242 }
4243
nv_set_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)4244 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4245 {
4246 struct fe_priv *np = netdev_priv(dev);
4247 u8 __iomem *base = get_hwbase(dev);
4248 u32 flags = 0;
4249
4250 if (wolinfo->wolopts == 0) {
4251 np->wolenabled = 0;
4252 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4253 np->wolenabled = 1;
4254 flags = NVREG_WAKEUPFLAGS_ENABLE;
4255 }
4256 if (netif_running(dev)) {
4257 spin_lock_irq(&np->lock);
4258 writel(flags, base + NvRegWakeUpFlags);
4259 spin_unlock_irq(&np->lock);
4260 }
4261 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
4262 return 0;
4263 }
4264
nv_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)4265 static int nv_get_link_ksettings(struct net_device *dev,
4266 struct ethtool_link_ksettings *cmd)
4267 {
4268 struct fe_priv *np = netdev_priv(dev);
4269 u32 speed, supported, advertising;
4270 int adv;
4271
4272 spin_lock_irq(&np->lock);
4273 cmd->base.port = PORT_MII;
4274 if (!netif_running(dev)) {
4275 /* We do not track link speed / duplex setting if the
4276 * interface is disabled. Force a link check */
4277 if (nv_update_linkspeed(dev)) {
4278 netif_carrier_on(dev);
4279 } else {
4280 netif_carrier_off(dev);
4281 }
4282 }
4283
4284 if (netif_carrier_ok(dev)) {
4285 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4286 case NVREG_LINKSPEED_10:
4287 speed = SPEED_10;
4288 break;
4289 case NVREG_LINKSPEED_100:
4290 speed = SPEED_100;
4291 break;
4292 case NVREG_LINKSPEED_1000:
4293 speed = SPEED_1000;
4294 break;
4295 default:
4296 speed = -1;
4297 break;
4298 }
4299 cmd->base.duplex = DUPLEX_HALF;
4300 if (np->duplex)
4301 cmd->base.duplex = DUPLEX_FULL;
4302 } else {
4303 speed = SPEED_UNKNOWN;
4304 cmd->base.duplex = DUPLEX_UNKNOWN;
4305 }
4306 cmd->base.speed = speed;
4307 cmd->base.autoneg = np->autoneg;
4308
4309 advertising = ADVERTISED_MII;
4310 if (np->autoneg) {
4311 advertising |= ADVERTISED_Autoneg;
4312 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4313 if (adv & ADVERTISE_10HALF)
4314 advertising |= ADVERTISED_10baseT_Half;
4315 if (adv & ADVERTISE_10FULL)
4316 advertising |= ADVERTISED_10baseT_Full;
4317 if (adv & ADVERTISE_100HALF)
4318 advertising |= ADVERTISED_100baseT_Half;
4319 if (adv & ADVERTISE_100FULL)
4320 advertising |= ADVERTISED_100baseT_Full;
4321 if (np->gigabit == PHY_GIGABIT) {
4322 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4323 if (adv & ADVERTISE_1000FULL)
4324 advertising |= ADVERTISED_1000baseT_Full;
4325 }
4326 }
4327 supported = (SUPPORTED_Autoneg |
4328 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4329 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4330 SUPPORTED_MII);
4331 if (np->gigabit == PHY_GIGABIT)
4332 supported |= SUPPORTED_1000baseT_Full;
4333
4334 cmd->base.phy_address = np->phyaddr;
4335
4336 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4337 supported);
4338 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4339 advertising);
4340
4341 /* ignore maxtxpkt, maxrxpkt for now */
4342 spin_unlock_irq(&np->lock);
4343 return 0;
4344 }
4345
nv_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)4346 static int nv_set_link_ksettings(struct net_device *dev,
4347 const struct ethtool_link_ksettings *cmd)
4348 {
4349 struct fe_priv *np = netdev_priv(dev);
4350 u32 speed = cmd->base.speed;
4351 u32 advertising;
4352
4353 ethtool_convert_link_mode_to_legacy_u32(&advertising,
4354 cmd->link_modes.advertising);
4355
4356 if (cmd->base.port != PORT_MII)
4357 return -EINVAL;
4358 if (cmd->base.phy_address != np->phyaddr) {
4359 /* TODO: support switching between multiple phys. Should be
4360 * trivial, but not enabled due to lack of test hardware. */
4361 return -EINVAL;
4362 }
4363 if (cmd->base.autoneg == AUTONEG_ENABLE) {
4364 u32 mask;
4365
4366 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4367 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4368 if (np->gigabit == PHY_GIGABIT)
4369 mask |= ADVERTISED_1000baseT_Full;
4370
4371 if ((advertising & mask) == 0)
4372 return -EINVAL;
4373
4374 } else if (cmd->base.autoneg == AUTONEG_DISABLE) {
4375 /* Note: autonegotiation disable, speed 1000 intentionally
4376 * forbidden - no one should need that. */
4377
4378 if (speed != SPEED_10 && speed != SPEED_100)
4379 return -EINVAL;
4380 if (cmd->base.duplex != DUPLEX_HALF &&
4381 cmd->base.duplex != DUPLEX_FULL)
4382 return -EINVAL;
4383 } else {
4384 return -EINVAL;
4385 }
4386
4387 netif_carrier_off(dev);
4388 if (netif_running(dev)) {
4389 unsigned long flags;
4390
4391 nv_disable_irq(dev);
4392 netif_tx_lock_bh(dev);
4393 netif_addr_lock(dev);
4394 /* with plain spinlock lockdep complains */
4395 spin_lock_irqsave(&np->lock, flags);
4396 /* stop engines */
4397 /* FIXME:
4398 * this can take some time, and interrupts are disabled
4399 * due to spin_lock_irqsave, but let's hope no daemon
4400 * is going to change the settings very often...
4401 * Worst case:
4402 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4403 * + some minor delays, which is up to a second approximately
4404 */
4405 nv_stop_rxtx(dev);
4406 spin_unlock_irqrestore(&np->lock, flags);
4407 netif_addr_unlock(dev);
4408 netif_tx_unlock_bh(dev);
4409 }
4410
4411 if (cmd->base.autoneg == AUTONEG_ENABLE) {
4412 int adv, bmcr;
4413
4414 np->autoneg = 1;
4415
4416 /* advertise only what has been requested */
4417 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4418 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4419 if (advertising & ADVERTISED_10baseT_Half)
4420 adv |= ADVERTISE_10HALF;
4421 if (advertising & ADVERTISED_10baseT_Full)
4422 adv |= ADVERTISE_10FULL;
4423 if (advertising & ADVERTISED_100baseT_Half)
4424 adv |= ADVERTISE_100HALF;
4425 if (advertising & ADVERTISED_100baseT_Full)
4426 adv |= ADVERTISE_100FULL;
4427 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4428 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4429 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4430 adv |= ADVERTISE_PAUSE_ASYM;
4431 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4432
4433 if (np->gigabit == PHY_GIGABIT) {
4434 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4435 adv &= ~ADVERTISE_1000FULL;
4436 if (advertising & ADVERTISED_1000baseT_Full)
4437 adv |= ADVERTISE_1000FULL;
4438 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4439 }
4440
4441 if (netif_running(dev))
4442 netdev_info(dev, "link down\n");
4443 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4444 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4445 bmcr |= BMCR_ANENABLE;
4446 /* reset the phy in order for settings to stick,
4447 * and cause autoneg to start */
4448 if (phy_reset(dev, bmcr)) {
4449 netdev_info(dev, "phy reset failed\n");
4450 return -EINVAL;
4451 }
4452 } else {
4453 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4454 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4455 }
4456 } else {
4457 int adv, bmcr;
4458
4459 np->autoneg = 0;
4460
4461 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4462 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4463 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF)
4464 adv |= ADVERTISE_10HALF;
4465 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL)
4466 adv |= ADVERTISE_10FULL;
4467 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF)
4468 adv |= ADVERTISE_100HALF;
4469 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL)
4470 adv |= ADVERTISE_100FULL;
4471 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4472 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
4473 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4474 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4475 }
4476 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4477 adv |= ADVERTISE_PAUSE_ASYM;
4478 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4479 }
4480 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4481 np->fixed_mode = adv;
4482
4483 if (np->gigabit == PHY_GIGABIT) {
4484 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4485 adv &= ~ADVERTISE_1000FULL;
4486 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4487 }
4488
4489 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4490 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4491 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4492 bmcr |= BMCR_FULLDPLX;
4493 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4494 bmcr |= BMCR_SPEED100;
4495 if (np->phy_oui == PHY_OUI_MARVELL) {
4496 /* reset the phy in order for forced mode settings to stick */
4497 if (phy_reset(dev, bmcr)) {
4498 netdev_info(dev, "phy reset failed\n");
4499 return -EINVAL;
4500 }
4501 } else {
4502 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4503 if (netif_running(dev)) {
4504 /* Wait a bit and then reconfigure the nic. */
4505 udelay(10);
4506 nv_linkchange(dev);
4507 }
4508 }
4509 }
4510
4511 if (netif_running(dev)) {
4512 nv_start_rxtx(dev);
4513 nv_enable_irq(dev);
4514 }
4515
4516 return 0;
4517 }
4518
4519 #define FORCEDETH_REGS_VER 1
4520
nv_get_regs_len(struct net_device * dev)4521 static int nv_get_regs_len(struct net_device *dev)
4522 {
4523 struct fe_priv *np = netdev_priv(dev);
4524 return np->register_size;
4525 }
4526
nv_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)4527 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4528 {
4529 struct fe_priv *np = netdev_priv(dev);
4530 u8 __iomem *base = get_hwbase(dev);
4531 u32 *rbuf = buf;
4532 int i;
4533
4534 regs->version = FORCEDETH_REGS_VER;
4535 spin_lock_irq(&np->lock);
4536 for (i = 0; i < np->register_size/sizeof(u32); i++)
4537 rbuf[i] = readl(base + i*sizeof(u32));
4538 spin_unlock_irq(&np->lock);
4539 }
4540
nv_nway_reset(struct net_device * dev)4541 static int nv_nway_reset(struct net_device *dev)
4542 {
4543 struct fe_priv *np = netdev_priv(dev);
4544 int ret;
4545
4546 if (np->autoneg) {
4547 int bmcr;
4548
4549 netif_carrier_off(dev);
4550 if (netif_running(dev)) {
4551 nv_disable_irq(dev);
4552 netif_tx_lock_bh(dev);
4553 netif_addr_lock(dev);
4554 spin_lock(&np->lock);
4555 /* stop engines */
4556 nv_stop_rxtx(dev);
4557 spin_unlock(&np->lock);
4558 netif_addr_unlock(dev);
4559 netif_tx_unlock_bh(dev);
4560 netdev_info(dev, "link down\n");
4561 }
4562
4563 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4564 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4565 bmcr |= BMCR_ANENABLE;
4566 /* reset the phy in order for settings to stick*/
4567 if (phy_reset(dev, bmcr)) {
4568 netdev_info(dev, "phy reset failed\n");
4569 return -EINVAL;
4570 }
4571 } else {
4572 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4573 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4574 }
4575
4576 if (netif_running(dev)) {
4577 nv_start_rxtx(dev);
4578 nv_enable_irq(dev);
4579 }
4580 ret = 0;
4581 } else {
4582 ret = -EINVAL;
4583 }
4584
4585 return ret;
4586 }
4587
nv_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)4588 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4589 {
4590 struct fe_priv *np = netdev_priv(dev);
4591
4592 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4593 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4594
4595 ring->rx_pending = np->rx_ring_size;
4596 ring->tx_pending = np->tx_ring_size;
4597 }
4598
nv_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)4599 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4600 {
4601 struct fe_priv *np = netdev_priv(dev);
4602 u8 __iomem *base = get_hwbase(dev);
4603 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4604 dma_addr_t ring_addr;
4605
4606 if (ring->rx_pending < RX_RING_MIN ||
4607 ring->tx_pending < TX_RING_MIN ||
4608 ring->rx_mini_pending != 0 ||
4609 ring->rx_jumbo_pending != 0 ||
4610 (np->desc_ver == DESC_VER_1 &&
4611 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4612 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4613 (np->desc_ver != DESC_VER_1 &&
4614 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4615 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4616 return -EINVAL;
4617 }
4618
4619 /* allocate new rings */
4620 if (!nv_optimized(np)) {
4621 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
4622 sizeof(struct ring_desc) *
4623 (ring->rx_pending +
4624 ring->tx_pending),
4625 &ring_addr, GFP_ATOMIC);
4626 } else {
4627 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
4628 sizeof(struct ring_desc_ex) *
4629 (ring->rx_pending +
4630 ring->tx_pending),
4631 &ring_addr, GFP_ATOMIC);
4632 }
4633 rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map),
4634 GFP_KERNEL);
4635 tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map),
4636 GFP_KERNEL);
4637 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4638 /* fall back to old rings */
4639 if (!nv_optimized(np)) {
4640 if (rxtx_ring)
4641 dma_free_coherent(&np->pci_dev->dev,
4642 sizeof(struct ring_desc) *
4643 (ring->rx_pending +
4644 ring->tx_pending),
4645 rxtx_ring, ring_addr);
4646 } else {
4647 if (rxtx_ring)
4648 dma_free_coherent(&np->pci_dev->dev,
4649 sizeof(struct ring_desc_ex) *
4650 (ring->rx_pending +
4651 ring->tx_pending),
4652 rxtx_ring, ring_addr);
4653 }
4654
4655 kfree(rx_skbuff);
4656 kfree(tx_skbuff);
4657 goto exit;
4658 }
4659
4660 if (netif_running(dev)) {
4661 nv_disable_irq(dev);
4662 nv_napi_disable(dev);
4663 netif_tx_lock_bh(dev);
4664 netif_addr_lock(dev);
4665 spin_lock(&np->lock);
4666 /* stop engines */
4667 nv_stop_rxtx(dev);
4668 nv_txrx_reset(dev);
4669 /* drain queues */
4670 nv_drain_rxtx(dev);
4671 /* delete queues */
4672 free_rings(dev);
4673 }
4674
4675 /* set new values */
4676 np->rx_ring_size = ring->rx_pending;
4677 np->tx_ring_size = ring->tx_pending;
4678
4679 if (!nv_optimized(np)) {
4680 np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
4681 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4682 } else {
4683 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
4684 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4685 }
4686 np->rx_skb = (struct nv_skb_map *)rx_skbuff;
4687 np->tx_skb = (struct nv_skb_map *)tx_skbuff;
4688 np->ring_addr = ring_addr;
4689
4690 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4691 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4692
4693 if (netif_running(dev)) {
4694 /* reinit driver view of the queues */
4695 set_bufsize(dev);
4696 if (nv_init_ring(dev)) {
4697 if (!np->in_shutdown)
4698 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4699 }
4700
4701 /* reinit nic view of the queues */
4702 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4703 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4704 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4705 base + NvRegRingSizes);
4706 pci_push(base);
4707 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4708 pci_push(base);
4709
4710 /* restart engines */
4711 nv_start_rxtx(dev);
4712 spin_unlock(&np->lock);
4713 netif_addr_unlock(dev);
4714 netif_tx_unlock_bh(dev);
4715 nv_napi_enable(dev);
4716 nv_enable_irq(dev);
4717 }
4718 return 0;
4719 exit:
4720 return -ENOMEM;
4721 }
4722
nv_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4723 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4724 {
4725 struct fe_priv *np = netdev_priv(dev);
4726
4727 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4728 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4729 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4730 }
4731
nv_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4732 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4733 {
4734 struct fe_priv *np = netdev_priv(dev);
4735 int adv, bmcr;
4736
4737 if ((!np->autoneg && np->duplex == 0) ||
4738 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4739 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
4740 return -EINVAL;
4741 }
4742 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4743 netdev_info(dev, "hardware does not support tx pause frames\n");
4744 return -EINVAL;
4745 }
4746
4747 netif_carrier_off(dev);
4748 if (netif_running(dev)) {
4749 nv_disable_irq(dev);
4750 netif_tx_lock_bh(dev);
4751 netif_addr_lock(dev);
4752 spin_lock(&np->lock);
4753 /* stop engines */
4754 nv_stop_rxtx(dev);
4755 spin_unlock(&np->lock);
4756 netif_addr_unlock(dev);
4757 netif_tx_unlock_bh(dev);
4758 }
4759
4760 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4761 if (pause->rx_pause)
4762 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4763 if (pause->tx_pause)
4764 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4765
4766 if (np->autoneg && pause->autoneg) {
4767 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4768
4769 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4770 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4771 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4772 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4773 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4774 adv |= ADVERTISE_PAUSE_ASYM;
4775 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4776
4777 if (netif_running(dev))
4778 netdev_info(dev, "link down\n");
4779 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4780 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4781 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4782 } else {
4783 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4784 if (pause->rx_pause)
4785 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4786 if (pause->tx_pause)
4787 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4788
4789 if (!netif_running(dev))
4790 nv_update_linkspeed(dev);
4791 else
4792 nv_update_pause(dev, np->pause_flags);
4793 }
4794
4795 if (netif_running(dev)) {
4796 nv_start_rxtx(dev);
4797 nv_enable_irq(dev);
4798 }
4799 return 0;
4800 }
4801
nv_set_loopback(struct net_device * dev,netdev_features_t features)4802 static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
4803 {
4804 struct fe_priv *np = netdev_priv(dev);
4805 unsigned long flags;
4806 u32 miicontrol;
4807 int err, retval = 0;
4808
4809 spin_lock_irqsave(&np->lock, flags);
4810 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4811 if (features & NETIF_F_LOOPBACK) {
4812 if (miicontrol & BMCR_LOOPBACK) {
4813 spin_unlock_irqrestore(&np->lock, flags);
4814 netdev_info(dev, "Loopback already enabled\n");
4815 return 0;
4816 }
4817 nv_disable_irq(dev);
4818 /* Turn on loopback mode */
4819 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
4820 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
4821 if (err) {
4822 retval = PHY_ERROR;
4823 spin_unlock_irqrestore(&np->lock, flags);
4824 phy_init(dev);
4825 } else {
4826 if (netif_running(dev)) {
4827 /* Force 1000 Mbps full-duplex */
4828 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
4829 1);
4830 /* Force link up */
4831 netif_carrier_on(dev);
4832 }
4833 spin_unlock_irqrestore(&np->lock, flags);
4834 netdev_info(dev,
4835 "Internal PHY loopback mode enabled.\n");
4836 }
4837 } else {
4838 if (!(miicontrol & BMCR_LOOPBACK)) {
4839 spin_unlock_irqrestore(&np->lock, flags);
4840 netdev_info(dev, "Loopback already disabled\n");
4841 return 0;
4842 }
4843 nv_disable_irq(dev);
4844 /* Turn off loopback */
4845 spin_unlock_irqrestore(&np->lock, flags);
4846 netdev_info(dev, "Internal PHY loopback mode disabled.\n");
4847 phy_init(dev);
4848 }
4849 msleep(500);
4850 spin_lock_irqsave(&np->lock, flags);
4851 nv_enable_irq(dev);
4852 spin_unlock_irqrestore(&np->lock, flags);
4853
4854 return retval;
4855 }
4856
nv_fix_features(struct net_device * dev,netdev_features_t features)4857 static netdev_features_t nv_fix_features(struct net_device *dev,
4858 netdev_features_t features)
4859 {
4860 /* vlan is dependent on rx checksum offload */
4861 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
4862 features |= NETIF_F_RXCSUM;
4863
4864 return features;
4865 }
4866
nv_vlan_mode(struct net_device * dev,netdev_features_t features)4867 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
4868 {
4869 struct fe_priv *np = get_nvpriv(dev);
4870
4871 spin_lock_irq(&np->lock);
4872
4873 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4874 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
4875 else
4876 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4877
4878 if (features & NETIF_F_HW_VLAN_CTAG_TX)
4879 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
4880 else
4881 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4882
4883 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4884
4885 spin_unlock_irq(&np->lock);
4886 }
4887
nv_set_features(struct net_device * dev,netdev_features_t features)4888 static int nv_set_features(struct net_device *dev, netdev_features_t features)
4889 {
4890 struct fe_priv *np = netdev_priv(dev);
4891 u8 __iomem *base = get_hwbase(dev);
4892 netdev_features_t changed = dev->features ^ features;
4893 int retval;
4894
4895 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
4896 retval = nv_set_loopback(dev, features);
4897 if (retval != 0)
4898 return retval;
4899 }
4900
4901 if (changed & NETIF_F_RXCSUM) {
4902 spin_lock_irq(&np->lock);
4903
4904 if (features & NETIF_F_RXCSUM)
4905 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4906 else
4907 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4908
4909 if (netif_running(dev))
4910 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4911
4912 spin_unlock_irq(&np->lock);
4913 }
4914
4915 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX))
4916 nv_vlan_mode(dev, features);
4917
4918 return 0;
4919 }
4920
nv_get_sset_count(struct net_device * dev,int sset)4921 static int nv_get_sset_count(struct net_device *dev, int sset)
4922 {
4923 struct fe_priv *np = netdev_priv(dev);
4924
4925 switch (sset) {
4926 case ETH_SS_TEST:
4927 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4928 return NV_TEST_COUNT_EXTENDED;
4929 else
4930 return NV_TEST_COUNT_BASE;
4931 case ETH_SS_STATS:
4932 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4933 return NV_DEV_STATISTICS_V3_COUNT;
4934 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4935 return NV_DEV_STATISTICS_V2_COUNT;
4936 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4937 return NV_DEV_STATISTICS_V1_COUNT;
4938 else
4939 return 0;
4940 default:
4941 return -EOPNOTSUPP;
4942 }
4943 }
4944
nv_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * buffer)4945 static void nv_get_ethtool_stats(struct net_device *dev,
4946 struct ethtool_stats *estats, u64 *buffer)
4947 __acquires(&netdev_priv(dev)->hwstats_lock)
4948 __releases(&netdev_priv(dev)->hwstats_lock)
4949 {
4950 struct fe_priv *np = netdev_priv(dev);
4951
4952 spin_lock_bh(&np->hwstats_lock);
4953 nv_update_stats(dev);
4954 memcpy(buffer, &np->estats,
4955 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4956 spin_unlock_bh(&np->hwstats_lock);
4957 }
4958
nv_link_test(struct net_device * dev)4959 static int nv_link_test(struct net_device *dev)
4960 {
4961 struct fe_priv *np = netdev_priv(dev);
4962 int mii_status;
4963
4964 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4965 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4966
4967 /* check phy link status */
4968 if (!(mii_status & BMSR_LSTATUS))
4969 return 0;
4970 else
4971 return 1;
4972 }
4973
nv_register_test(struct net_device * dev)4974 static int nv_register_test(struct net_device *dev)
4975 {
4976 u8 __iomem *base = get_hwbase(dev);
4977 int i = 0;
4978 u32 orig_read, new_read;
4979
4980 do {
4981 orig_read = readl(base + nv_registers_test[i].reg);
4982
4983 /* xor with mask to toggle bits */
4984 orig_read ^= nv_registers_test[i].mask;
4985
4986 writel(orig_read, base + nv_registers_test[i].reg);
4987
4988 new_read = readl(base + nv_registers_test[i].reg);
4989
4990 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4991 return 0;
4992
4993 /* restore original value */
4994 orig_read ^= nv_registers_test[i].mask;
4995 writel(orig_read, base + nv_registers_test[i].reg);
4996
4997 } while (nv_registers_test[++i].reg != 0);
4998
4999 return 1;
5000 }
5001
nv_interrupt_test(struct net_device * dev)5002 static int nv_interrupt_test(struct net_device *dev)
5003 {
5004 struct fe_priv *np = netdev_priv(dev);
5005 u8 __iomem *base = get_hwbase(dev);
5006 int ret = 1;
5007 int testcnt;
5008 u32 save_msi_flags, save_poll_interval = 0;
5009
5010 if (netif_running(dev)) {
5011 /* free current irq */
5012 nv_free_irq(dev);
5013 save_poll_interval = readl(base+NvRegPollingInterval);
5014 }
5015
5016 /* flag to test interrupt handler */
5017 np->intr_test = 0;
5018
5019 /* setup test irq */
5020 save_msi_flags = np->msi_flags;
5021 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
5022 np->msi_flags |= 0x001; /* setup 1 vector */
5023 if (nv_request_irq(dev, 1))
5024 return 0;
5025
5026 /* setup timer interrupt */
5027 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5028 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5029
5030 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
5031
5032 /* wait for at least one interrupt */
5033 msleep(100);
5034
5035 spin_lock_irq(&np->lock);
5036
5037 /* flag should be set within ISR */
5038 testcnt = np->intr_test;
5039 if (!testcnt)
5040 ret = 2;
5041
5042 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
5043 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5044 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5045 else
5046 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5047
5048 spin_unlock_irq(&np->lock);
5049
5050 nv_free_irq(dev);
5051
5052 np->msi_flags = save_msi_flags;
5053
5054 if (netif_running(dev)) {
5055 writel(save_poll_interval, base + NvRegPollingInterval);
5056 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5057 /* restore original irq */
5058 if (nv_request_irq(dev, 0))
5059 return 0;
5060 }
5061
5062 return ret;
5063 }
5064
nv_loopback_test(struct net_device * dev)5065 static int nv_loopback_test(struct net_device *dev)
5066 {
5067 struct fe_priv *np = netdev_priv(dev);
5068 u8 __iomem *base = get_hwbase(dev);
5069 struct sk_buff *tx_skb, *rx_skb;
5070 dma_addr_t test_dma_addr;
5071 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5072 u32 flags;
5073 int len, i, pkt_len;
5074 u8 *pkt_data;
5075 u32 filter_flags = 0;
5076 u32 misc1_flags = 0;
5077 int ret = 1;
5078
5079 if (netif_running(dev)) {
5080 nv_disable_irq(dev);
5081 filter_flags = readl(base + NvRegPacketFilterFlags);
5082 misc1_flags = readl(base + NvRegMisc1);
5083 } else {
5084 nv_txrx_reset(dev);
5085 }
5086
5087 /* reinit driver view of the rx queue */
5088 set_bufsize(dev);
5089 nv_init_ring(dev);
5090
5091 /* setup hardware for loopback */
5092 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5093 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5094
5095 /* reinit nic view of the rx queue */
5096 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5097 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5098 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5099 base + NvRegRingSizes);
5100 pci_push(base);
5101
5102 /* restart rx engine */
5103 nv_start_rxtx(dev);
5104
5105 /* setup packet for tx */
5106 pkt_len = ETH_DATA_LEN;
5107 tx_skb = netdev_alloc_skb(dev, pkt_len);
5108 if (!tx_skb) {
5109 ret = 0;
5110 goto out;
5111 }
5112 test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data,
5113 skb_tailroom(tx_skb),
5114 DMA_FROM_DEVICE);
5115 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
5116 test_dma_addr))) {
5117 dev_kfree_skb_any(tx_skb);
5118 goto out;
5119 }
5120 pkt_data = skb_put(tx_skb, pkt_len);
5121 for (i = 0; i < pkt_len; i++)
5122 pkt_data[i] = (u8)(i & 0xff);
5123
5124 if (!nv_optimized(np)) {
5125 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5126 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5127 } else {
5128 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5129 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5130 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5131 }
5132 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5133 pci_push(get_hwbase(dev));
5134
5135 msleep(500);
5136
5137 /* check for rx of the packet */
5138 if (!nv_optimized(np)) {
5139 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5140 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5141
5142 } else {
5143 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5144 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5145 }
5146
5147 if (flags & NV_RX_AVAIL) {
5148 ret = 0;
5149 } else if (np->desc_ver == DESC_VER_1) {
5150 if (flags & NV_RX_ERROR)
5151 ret = 0;
5152 } else {
5153 if (flags & NV_RX2_ERROR)
5154 ret = 0;
5155 }
5156
5157 if (ret) {
5158 if (len != pkt_len) {
5159 ret = 0;
5160 } else {
5161 rx_skb = np->rx_skb[0].skb;
5162 for (i = 0; i < pkt_len; i++) {
5163 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5164 ret = 0;
5165 break;
5166 }
5167 }
5168 }
5169 }
5170
5171 dma_unmap_single(&np->pci_dev->dev, test_dma_addr,
5172 (skb_end_pointer(tx_skb) - tx_skb->data),
5173 DMA_TO_DEVICE);
5174 dev_kfree_skb_any(tx_skb);
5175 out:
5176 /* stop engines */
5177 nv_stop_rxtx(dev);
5178 nv_txrx_reset(dev);
5179 /* drain rx queue */
5180 nv_drain_rxtx(dev);
5181
5182 if (netif_running(dev)) {
5183 writel(misc1_flags, base + NvRegMisc1);
5184 writel(filter_flags, base + NvRegPacketFilterFlags);
5185 nv_enable_irq(dev);
5186 }
5187
5188 return ret;
5189 }
5190
nv_self_test(struct net_device * dev,struct ethtool_test * test,u64 * buffer)5191 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5192 {
5193 struct fe_priv *np = netdev_priv(dev);
5194 u8 __iomem *base = get_hwbase(dev);
5195 int result, count;
5196
5197 count = nv_get_sset_count(dev, ETH_SS_TEST);
5198 memset(buffer, 0, count * sizeof(u64));
5199
5200 if (!nv_link_test(dev)) {
5201 test->flags |= ETH_TEST_FL_FAILED;
5202 buffer[0] = 1;
5203 }
5204
5205 if (test->flags & ETH_TEST_FL_OFFLINE) {
5206 if (netif_running(dev)) {
5207 netif_stop_queue(dev);
5208 nv_napi_disable(dev);
5209 netif_tx_lock_bh(dev);
5210 netif_addr_lock(dev);
5211 spin_lock_irq(&np->lock);
5212 nv_disable_hw_interrupts(dev, np->irqmask);
5213 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5214 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5215 else
5216 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5217 /* stop engines */
5218 nv_stop_rxtx(dev);
5219 nv_txrx_reset(dev);
5220 /* drain rx queue */
5221 nv_drain_rxtx(dev);
5222 spin_unlock_irq(&np->lock);
5223 netif_addr_unlock(dev);
5224 netif_tx_unlock_bh(dev);
5225 }
5226
5227 if (!nv_register_test(dev)) {
5228 test->flags |= ETH_TEST_FL_FAILED;
5229 buffer[1] = 1;
5230 }
5231
5232 result = nv_interrupt_test(dev);
5233 if (result != 1) {
5234 test->flags |= ETH_TEST_FL_FAILED;
5235 buffer[2] = 1;
5236 }
5237 if (result == 0) {
5238 /* bail out */
5239 return;
5240 }
5241
5242 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) {
5243 test->flags |= ETH_TEST_FL_FAILED;
5244 buffer[3] = 1;
5245 }
5246
5247 if (netif_running(dev)) {
5248 /* reinit driver view of the rx queue */
5249 set_bufsize(dev);
5250 if (nv_init_ring(dev)) {
5251 if (!np->in_shutdown)
5252 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5253 }
5254 /* reinit nic view of the rx queue */
5255 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5256 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5257 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5258 base + NvRegRingSizes);
5259 pci_push(base);
5260 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5261 pci_push(base);
5262 /* restart rx engine */
5263 nv_start_rxtx(dev);
5264 netif_start_queue(dev);
5265 nv_napi_enable(dev);
5266 nv_enable_hw_interrupts(dev, np->irqmask);
5267 }
5268 }
5269 }
5270
nv_get_strings(struct net_device * dev,u32 stringset,u8 * buffer)5271 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5272 {
5273 switch (stringset) {
5274 case ETH_SS_STATS:
5275 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5276 break;
5277 case ETH_SS_TEST:
5278 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5279 break;
5280 }
5281 }
5282
5283 static const struct ethtool_ops ops = {
5284 .get_drvinfo = nv_get_drvinfo,
5285 .get_link = ethtool_op_get_link,
5286 .get_wol = nv_get_wol,
5287 .set_wol = nv_set_wol,
5288 .get_regs_len = nv_get_regs_len,
5289 .get_regs = nv_get_regs,
5290 .nway_reset = nv_nway_reset,
5291 .get_ringparam = nv_get_ringparam,
5292 .set_ringparam = nv_set_ringparam,
5293 .get_pauseparam = nv_get_pauseparam,
5294 .set_pauseparam = nv_set_pauseparam,
5295 .get_strings = nv_get_strings,
5296 .get_ethtool_stats = nv_get_ethtool_stats,
5297 .get_sset_count = nv_get_sset_count,
5298 .self_test = nv_self_test,
5299 .get_ts_info = ethtool_op_get_ts_info,
5300 .get_link_ksettings = nv_get_link_ksettings,
5301 .set_link_ksettings = nv_set_link_ksettings,
5302 };
5303
5304 /* The mgmt unit and driver use a semaphore to access the phy during init */
nv_mgmt_acquire_sema(struct net_device * dev)5305 static int nv_mgmt_acquire_sema(struct net_device *dev)
5306 {
5307 struct fe_priv *np = netdev_priv(dev);
5308 u8 __iomem *base = get_hwbase(dev);
5309 int i;
5310 u32 tx_ctrl, mgmt_sema;
5311
5312 for (i = 0; i < 10; i++) {
5313 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5314 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5315 break;
5316 msleep(500);
5317 }
5318
5319 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5320 return 0;
5321
5322 for (i = 0; i < 2; i++) {
5323 tx_ctrl = readl(base + NvRegTransmitterControl);
5324 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5325 writel(tx_ctrl, base + NvRegTransmitterControl);
5326
5327 /* verify that semaphore was acquired */
5328 tx_ctrl = readl(base + NvRegTransmitterControl);
5329 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5330 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5331 np->mgmt_sema = 1;
5332 return 1;
5333 } else
5334 udelay(50);
5335 }
5336
5337 return 0;
5338 }
5339
nv_mgmt_release_sema(struct net_device * dev)5340 static void nv_mgmt_release_sema(struct net_device *dev)
5341 {
5342 struct fe_priv *np = netdev_priv(dev);
5343 u8 __iomem *base = get_hwbase(dev);
5344 u32 tx_ctrl;
5345
5346 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5347 if (np->mgmt_sema) {
5348 tx_ctrl = readl(base + NvRegTransmitterControl);
5349 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5350 writel(tx_ctrl, base + NvRegTransmitterControl);
5351 }
5352 }
5353 }
5354
5355
nv_mgmt_get_version(struct net_device * dev)5356 static int nv_mgmt_get_version(struct net_device *dev)
5357 {
5358 struct fe_priv *np = netdev_priv(dev);
5359 u8 __iomem *base = get_hwbase(dev);
5360 u32 data_ready = readl(base + NvRegTransmitterControl);
5361 u32 data_ready2 = 0;
5362 unsigned long start;
5363 int ready = 0;
5364
5365 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5366 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5367 start = jiffies;
5368 while (time_before(jiffies, start + 5*HZ)) {
5369 data_ready2 = readl(base + NvRegTransmitterControl);
5370 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5371 ready = 1;
5372 break;
5373 }
5374 schedule_timeout_uninterruptible(1);
5375 }
5376
5377 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5378 return 0;
5379
5380 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5381
5382 return 1;
5383 }
5384
nv_open(struct net_device * dev)5385 static int nv_open(struct net_device *dev)
5386 {
5387 struct fe_priv *np = netdev_priv(dev);
5388 u8 __iomem *base = get_hwbase(dev);
5389 int ret = 1;
5390 int oom, i;
5391 u32 low;
5392
5393 /* power up phy */
5394 mii_rw(dev, np->phyaddr, MII_BMCR,
5395 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5396
5397 nv_txrx_gate(dev, false);
5398 /* erase previous misconfiguration */
5399 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5400 nv_mac_reset(dev);
5401 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5402 writel(0, base + NvRegMulticastAddrB);
5403 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5404 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5405 writel(0, base + NvRegPacketFilterFlags);
5406
5407 writel(0, base + NvRegTransmitterControl);
5408 writel(0, base + NvRegReceiverControl);
5409
5410 writel(0, base + NvRegAdapterControl);
5411
5412 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5413 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5414
5415 /* initialize descriptor rings */
5416 set_bufsize(dev);
5417 oom = nv_init_ring(dev);
5418
5419 writel(0, base + NvRegLinkSpeed);
5420 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5421 nv_txrx_reset(dev);
5422 writel(0, base + NvRegUnknownSetupReg6);
5423
5424 np->in_shutdown = 0;
5425
5426 /* give hw rings */
5427 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5428 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5429 base + NvRegRingSizes);
5430
5431 writel(np->linkspeed, base + NvRegLinkSpeed);
5432 if (np->desc_ver == DESC_VER_1)
5433 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5434 else
5435 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5436 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5437 writel(np->vlanctl_bits, base + NvRegVlanControl);
5438 pci_push(base);
5439 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5440 if (reg_delay(dev, NvRegUnknownSetupReg5,
5441 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5442 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
5443 netdev_info(dev,
5444 "%s: SetupReg5, Bit 31 remained off\n", __func__);
5445
5446 writel(0, base + NvRegMIIMask);
5447 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5448 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5449
5450 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5451 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5452 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5453 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5454
5455 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5456
5457 get_random_bytes(&low, sizeof(low));
5458 low &= NVREG_SLOTTIME_MASK;
5459 if (np->desc_ver == DESC_VER_1) {
5460 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5461 } else {
5462 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5463 /* setup legacy backoff */
5464 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5465 } else {
5466 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5467 nv_gear_backoff_reseed(dev);
5468 }
5469 }
5470 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5471 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5472 if (poll_interval == -1) {
5473 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5474 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5475 else
5476 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5477 } else
5478 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5479 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5480 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5481 base + NvRegAdapterControl);
5482 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5483 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5484 if (np->wolenabled)
5485 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5486
5487 i = readl(base + NvRegPowerState);
5488 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
5489 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5490
5491 pci_push(base);
5492 udelay(10);
5493 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5494
5495 nv_disable_hw_interrupts(dev, np->irqmask);
5496 pci_push(base);
5497 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5498 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5499 pci_push(base);
5500
5501 if (nv_request_irq(dev, 0))
5502 goto out_drain;
5503
5504 /* ask for interrupts */
5505 nv_enable_hw_interrupts(dev, np->irqmask);
5506
5507 spin_lock_irq(&np->lock);
5508 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5509 writel(0, base + NvRegMulticastAddrB);
5510 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5511 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5512 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5513 /* One manual link speed update: Interrupts are enabled, future link
5514 * speed changes cause interrupts and are handled by nv_link_irq().
5515 */
5516 readl(base + NvRegMIIStatus);
5517 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5518
5519 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5520 * to init hw */
5521 np->linkspeed = 0;
5522 ret = nv_update_linkspeed(dev);
5523 nv_start_rxtx(dev);
5524 netif_start_queue(dev);
5525 nv_napi_enable(dev);
5526
5527 if (ret) {
5528 netif_carrier_on(dev);
5529 } else {
5530 netdev_info(dev, "no link during initialization\n");
5531 netif_carrier_off(dev);
5532 }
5533 if (oom)
5534 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5535
5536 /* start statistics timer */
5537 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5538 mod_timer(&np->stats_poll,
5539 round_jiffies(jiffies + STATS_INTERVAL));
5540
5541 spin_unlock_irq(&np->lock);
5542
5543 /* If the loopback feature was set while the device was down, make sure
5544 * that it's set correctly now.
5545 */
5546 if (dev->features & NETIF_F_LOOPBACK)
5547 nv_set_loopback(dev, dev->features);
5548
5549 return 0;
5550 out_drain:
5551 nv_drain_rxtx(dev);
5552 return ret;
5553 }
5554
nv_close(struct net_device * dev)5555 static int nv_close(struct net_device *dev)
5556 {
5557 struct fe_priv *np = netdev_priv(dev);
5558 u8 __iomem *base;
5559
5560 spin_lock_irq(&np->lock);
5561 np->in_shutdown = 1;
5562 spin_unlock_irq(&np->lock);
5563 nv_napi_disable(dev);
5564 synchronize_irq(np->pci_dev->irq);
5565
5566 del_timer_sync(&np->oom_kick);
5567 del_timer_sync(&np->nic_poll);
5568 del_timer_sync(&np->stats_poll);
5569
5570 netif_stop_queue(dev);
5571 spin_lock_irq(&np->lock);
5572 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
5573 nv_stop_rxtx(dev);
5574 nv_txrx_reset(dev);
5575
5576 /* disable interrupts on the nic or we will lock up */
5577 base = get_hwbase(dev);
5578 nv_disable_hw_interrupts(dev, np->irqmask);
5579 pci_push(base);
5580
5581 spin_unlock_irq(&np->lock);
5582
5583 nv_free_irq(dev);
5584
5585 nv_drain_rxtx(dev);
5586
5587 if (np->wolenabled || !phy_power_down) {
5588 nv_txrx_gate(dev, false);
5589 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5590 nv_start_rx(dev);
5591 } else {
5592 /* power down phy */
5593 mii_rw(dev, np->phyaddr, MII_BMCR,
5594 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5595 nv_txrx_gate(dev, true);
5596 }
5597
5598 /* FIXME: power down nic */
5599
5600 return 0;
5601 }
5602
5603 static const struct net_device_ops nv_netdev_ops = {
5604 .ndo_open = nv_open,
5605 .ndo_stop = nv_close,
5606 .ndo_get_stats64 = nv_get_stats64,
5607 .ndo_start_xmit = nv_start_xmit,
5608 .ndo_tx_timeout = nv_tx_timeout,
5609 .ndo_change_mtu = nv_change_mtu,
5610 .ndo_fix_features = nv_fix_features,
5611 .ndo_set_features = nv_set_features,
5612 .ndo_validate_addr = eth_validate_addr,
5613 .ndo_set_mac_address = nv_set_mac_address,
5614 .ndo_set_rx_mode = nv_set_multicast,
5615 #ifdef CONFIG_NET_POLL_CONTROLLER
5616 .ndo_poll_controller = nv_poll_controller,
5617 #endif
5618 };
5619
5620 static const struct net_device_ops nv_netdev_ops_optimized = {
5621 .ndo_open = nv_open,
5622 .ndo_stop = nv_close,
5623 .ndo_get_stats64 = nv_get_stats64,
5624 .ndo_start_xmit = nv_start_xmit_optimized,
5625 .ndo_tx_timeout = nv_tx_timeout,
5626 .ndo_change_mtu = nv_change_mtu,
5627 .ndo_fix_features = nv_fix_features,
5628 .ndo_set_features = nv_set_features,
5629 .ndo_validate_addr = eth_validate_addr,
5630 .ndo_set_mac_address = nv_set_mac_address,
5631 .ndo_set_rx_mode = nv_set_multicast,
5632 #ifdef CONFIG_NET_POLL_CONTROLLER
5633 .ndo_poll_controller = nv_poll_controller,
5634 #endif
5635 };
5636
nv_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)5637 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5638 {
5639 struct net_device *dev;
5640 struct fe_priv *np;
5641 unsigned long addr;
5642 u8 __iomem *base;
5643 int err, i;
5644 u32 powerstate, txreg;
5645 u32 phystate_orig = 0, phystate;
5646 int phyinitialized = 0;
5647 static int printed_version;
5648
5649 if (!printed_version++)
5650 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
5651 FORCEDETH_VERSION);
5652
5653 dev = alloc_etherdev(sizeof(struct fe_priv));
5654 err = -ENOMEM;
5655 if (!dev)
5656 goto out;
5657
5658 np = netdev_priv(dev);
5659 np->dev = dev;
5660 np->pci_dev = pci_dev;
5661 spin_lock_init(&np->lock);
5662 spin_lock_init(&np->hwstats_lock);
5663 SET_NETDEV_DEV(dev, &pci_dev->dev);
5664 u64_stats_init(&np->swstats_rx_syncp);
5665 u64_stats_init(&np->swstats_tx_syncp);
5666
5667 timer_setup(&np->oom_kick, nv_do_rx_refill, 0);
5668 timer_setup(&np->nic_poll, nv_do_nic_poll, 0);
5669 timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE);
5670
5671 err = pci_enable_device(pci_dev);
5672 if (err)
5673 goto out_free;
5674
5675 pci_set_master(pci_dev);
5676
5677 err = pci_request_regions(pci_dev, DRV_NAME);
5678 if (err < 0)
5679 goto out_disable;
5680
5681 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5682 np->register_size = NV_PCI_REGSZ_VER3;
5683 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5684 np->register_size = NV_PCI_REGSZ_VER2;
5685 else
5686 np->register_size = NV_PCI_REGSZ_VER1;
5687
5688 err = -EINVAL;
5689 addr = 0;
5690 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5691 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5692 pci_resource_len(pci_dev, i) >= np->register_size) {
5693 addr = pci_resource_start(pci_dev, i);
5694 break;
5695 }
5696 }
5697 if (i == DEVICE_COUNT_RESOURCE) {
5698 dev_info(&pci_dev->dev, "Couldn't find register window\n");
5699 goto out_relreg;
5700 }
5701
5702 /* copy of driver data */
5703 np->driver_data = id->driver_data;
5704 /* copy of device id */
5705 np->device_id = id->device;
5706
5707 /* handle different descriptor versions */
5708 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5709 /* packet format 3: supports 40-bit addressing */
5710 np->desc_ver = DESC_VER_3;
5711 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5712 if (dma_64bit) {
5713 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5714 dev_info(&pci_dev->dev,
5715 "64-bit DMA failed, using 32-bit addressing\n");
5716 else
5717 dev->features |= NETIF_F_HIGHDMA;
5718 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5719 dev_info(&pci_dev->dev,
5720 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5721 }
5722 }
5723 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5724 /* packet format 2: supports jumbo frames */
5725 np->desc_ver = DESC_VER_2;
5726 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5727 } else {
5728 /* original packet format */
5729 np->desc_ver = DESC_VER_1;
5730 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5731 }
5732
5733 np->pkt_limit = NV_PKTLIMIT_1;
5734 if (id->driver_data & DEV_HAS_LARGEDESC)
5735 np->pkt_limit = NV_PKTLIMIT_2;
5736
5737 if (id->driver_data & DEV_HAS_CHECKSUM) {
5738 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5739 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
5740 NETIF_F_TSO | NETIF_F_RXCSUM;
5741 }
5742
5743 np->vlanctl_bits = 0;
5744 if (id->driver_data & DEV_HAS_VLAN) {
5745 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5746 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX |
5747 NETIF_F_HW_VLAN_CTAG_TX;
5748 }
5749
5750 dev->features |= dev->hw_features;
5751
5752 /* Add loopback capability to the device. */
5753 dev->hw_features |= NETIF_F_LOOPBACK;
5754
5755 /* MTU range: 64 - 1500 or 9100 */
5756 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
5757 dev->max_mtu = np->pkt_limit;
5758
5759 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5760 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5761 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5762 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5763 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5764 }
5765
5766 err = -ENOMEM;
5767 np->base = ioremap(addr, np->register_size);
5768 if (!np->base)
5769 goto out_relreg;
5770
5771 np->rx_ring_size = RX_RING_DEFAULT;
5772 np->tx_ring_size = TX_RING_DEFAULT;
5773
5774 if (!nv_optimized(np)) {
5775 np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev,
5776 sizeof(struct ring_desc) *
5777 (np->rx_ring_size +
5778 np->tx_ring_size),
5779 &np->ring_addr,
5780 GFP_KERNEL);
5781 if (!np->rx_ring.orig)
5782 goto out_unmap;
5783 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5784 } else {
5785 np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev,
5786 sizeof(struct ring_desc_ex) *
5787 (np->rx_ring_size +
5788 np->tx_ring_size),
5789 &np->ring_addr, GFP_KERNEL);
5790 if (!np->rx_ring.ex)
5791 goto out_unmap;
5792 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5793 }
5794 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5795 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5796 if (!np->rx_skb || !np->tx_skb)
5797 goto out_freering;
5798
5799 if (!nv_optimized(np))
5800 dev->netdev_ops = &nv_netdev_ops;
5801 else
5802 dev->netdev_ops = &nv_netdev_ops_optimized;
5803
5804 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5805 dev->ethtool_ops = &ops;
5806 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5807
5808 pci_set_drvdata(pci_dev, dev);
5809
5810 /* read the mac address */
5811 base = get_hwbase(dev);
5812 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5813 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5814
5815 /* check the workaround bit for correct mac address order */
5816 txreg = readl(base + NvRegTransmitPoll);
5817 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5818 /* mac address is already in correct order */
5819 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5820 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5821 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5822 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5823 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5824 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5825 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5826 /* mac address is already in correct order */
5827 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5828 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5829 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5830 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5831 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5832 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5833 /*
5834 * Set orig mac address back to the reversed version.
5835 * This flag will be cleared during low power transition.
5836 * Therefore, we should always put back the reversed address.
5837 */
5838 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5839 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5840 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5841 } else {
5842 /* need to reverse mac address to correct order */
5843 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5844 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5845 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5846 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5847 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5848 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5849 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5850 dev_dbg(&pci_dev->dev,
5851 "%s: set workaround bit for reversed mac addr\n",
5852 __func__);
5853 }
5854
5855 if (!is_valid_ether_addr(dev->dev_addr)) {
5856 /*
5857 * Bad mac address. At least one bios sets the mac address
5858 * to 01:23:45:67:89:ab
5859 */
5860 dev_err(&pci_dev->dev,
5861 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
5862 dev->dev_addr);
5863 eth_hw_addr_random(dev);
5864 dev_err(&pci_dev->dev,
5865 "Using random MAC address: %pM\n", dev->dev_addr);
5866 }
5867
5868 /* set mac address */
5869 nv_copy_mac_to_hw(dev);
5870
5871 /* disable WOL */
5872 writel(0, base + NvRegWakeUpFlags);
5873 np->wolenabled = 0;
5874 device_set_wakeup_enable(&pci_dev->dev, false);
5875
5876 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5877
5878 /* take phy and nic out of low power mode */
5879 powerstate = readl(base + NvRegPowerState2);
5880 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5881 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5882 pci_dev->revision >= 0xA3)
5883 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5884 writel(powerstate, base + NvRegPowerState2);
5885 }
5886
5887 if (np->desc_ver == DESC_VER_1)
5888 np->tx_flags = NV_TX_VALID;
5889 else
5890 np->tx_flags = NV_TX2_VALID;
5891
5892 np->msi_flags = 0;
5893 if ((id->driver_data & DEV_HAS_MSI) && msi)
5894 np->msi_flags |= NV_MSI_CAPABLE;
5895
5896 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5897 /* msix has had reported issues when modifying irqmask
5898 as in the case of napi, therefore, disable for now
5899 */
5900 #if 0
5901 np->msi_flags |= NV_MSI_X_CAPABLE;
5902 #endif
5903 }
5904
5905 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5906 np->irqmask = NVREG_IRQMASK_CPU;
5907 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5908 np->msi_flags |= 0x0001;
5909 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5910 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5911 /* start off in throughput mode */
5912 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5913 /* remove support for msix mode */
5914 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5915 } else {
5916 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5917 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5918 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5919 np->msi_flags |= 0x0003;
5920 }
5921
5922 if (id->driver_data & DEV_NEED_TIMERIRQ)
5923 np->irqmask |= NVREG_IRQ_TIMER;
5924 if (id->driver_data & DEV_NEED_LINKTIMER) {
5925 np->need_linktimer = 1;
5926 np->link_timeout = jiffies + LINK_TIMEOUT;
5927 } else {
5928 np->need_linktimer = 0;
5929 }
5930
5931 /* Limit the number of tx's outstanding for hw bug */
5932 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5933 np->tx_limit = 1;
5934 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
5935 pci_dev->revision >= 0xA2)
5936 np->tx_limit = 0;
5937 }
5938
5939 /* clear phy state and temporarily halt phy interrupts */
5940 writel(0, base + NvRegMIIMask);
5941 phystate = readl(base + NvRegAdapterControl);
5942 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5943 phystate_orig = 1;
5944 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5945 writel(phystate, base + NvRegAdapterControl);
5946 }
5947 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5948
5949 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5950 /* management unit running on the mac? */
5951 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5952 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5953 nv_mgmt_acquire_sema(dev) &&
5954 nv_mgmt_get_version(dev)) {
5955 np->mac_in_use = 1;
5956 if (np->mgmt_version > 0)
5957 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5958 /* management unit setup the phy already? */
5959 if (np->mac_in_use &&
5960 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5961 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5962 /* phy is inited by mgmt unit */
5963 phyinitialized = 1;
5964 } else {
5965 /* we need to init the phy */
5966 }
5967 }
5968 }
5969
5970 /* find a suitable phy */
5971 for (i = 1; i <= 32; i++) {
5972 int id1, id2;
5973 int phyaddr = i & 0x1F;
5974
5975 spin_lock_irq(&np->lock);
5976 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5977 spin_unlock_irq(&np->lock);
5978 if (id1 < 0 || id1 == 0xffff)
5979 continue;
5980 spin_lock_irq(&np->lock);
5981 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5982 spin_unlock_irq(&np->lock);
5983 if (id2 < 0 || id2 == 0xffff)
5984 continue;
5985
5986 np->phy_model = id2 & PHYID2_MODEL_MASK;
5987 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5988 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5989 np->phyaddr = phyaddr;
5990 np->phy_oui = id1 | id2;
5991
5992 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5993 if (np->phy_oui == PHY_OUI_REALTEK2)
5994 np->phy_oui = PHY_OUI_REALTEK;
5995 /* Setup phy revision for Realtek */
5996 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5997 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5998
5999 break;
6000 }
6001 if (i == 33) {
6002 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
6003 goto out_error;
6004 }
6005
6006 if (!phyinitialized) {
6007 /* reset it */
6008 phy_init(dev);
6009 } else {
6010 /* see if it is a gigabit phy */
6011 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
6012 if (mii_status & PHY_GIGABIT)
6013 np->gigabit = PHY_GIGABIT;
6014 }
6015
6016 /* set default link speed settings */
6017 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
6018 np->duplex = 0;
6019 np->autoneg = 1;
6020
6021 err = register_netdev(dev);
6022 if (err) {
6023 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
6024 goto out_error;
6025 }
6026
6027 netif_carrier_off(dev);
6028
6029 /* Some NICs freeze when TX pause is enabled while NIC is
6030 * down, and this stays across warm reboots. The sequence
6031 * below should be enough to recover from that state.
6032 */
6033 nv_update_pause(dev, 0);
6034 nv_start_tx(dev);
6035 nv_stop_tx(dev);
6036
6037 if (id->driver_data & DEV_HAS_VLAN)
6038 nv_vlan_mode(dev, dev->features);
6039
6040 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
6041 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
6042
6043 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6044 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6045 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6046 "csum " : "",
6047 dev->features & (NETIF_F_HW_VLAN_CTAG_RX |
6048 NETIF_F_HW_VLAN_CTAG_TX) ?
6049 "vlan " : "",
6050 dev->features & (NETIF_F_LOOPBACK) ?
6051 "loopback " : "",
6052 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6053 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6054 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6055 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6056 np->need_linktimer ? "lnktim " : "",
6057 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6058 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6059 np->desc_ver);
6060
6061 return 0;
6062
6063 out_error:
6064 if (phystate_orig)
6065 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6066 out_freering:
6067 free_rings(dev);
6068 out_unmap:
6069 iounmap(get_hwbase(dev));
6070 out_relreg:
6071 pci_release_regions(pci_dev);
6072 out_disable:
6073 pci_disable_device(pci_dev);
6074 out_free:
6075 free_netdev(dev);
6076 out:
6077 return err;
6078 }
6079
nv_restore_phy(struct net_device * dev)6080 static void nv_restore_phy(struct net_device *dev)
6081 {
6082 struct fe_priv *np = netdev_priv(dev);
6083 u16 phy_reserved, mii_control;
6084
6085 if (np->phy_oui == PHY_OUI_REALTEK &&
6086 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6087 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6088 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6089 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6090 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6091 phy_reserved |= PHY_REALTEK_INIT8;
6092 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6093 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6094
6095 /* restart auto negotiation */
6096 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6097 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6098 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6099 }
6100 }
6101
nv_restore_mac_addr(struct pci_dev * pci_dev)6102 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6103 {
6104 struct net_device *dev = pci_get_drvdata(pci_dev);
6105 struct fe_priv *np = netdev_priv(dev);
6106 u8 __iomem *base = get_hwbase(dev);
6107
6108 /* special op: write back the misordered MAC address - otherwise
6109 * the next nv_probe would see a wrong address.
6110 */
6111 writel(np->orig_mac[0], base + NvRegMacAddrA);
6112 writel(np->orig_mac[1], base + NvRegMacAddrB);
6113 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6114 base + NvRegTransmitPoll);
6115 }
6116
nv_remove(struct pci_dev * pci_dev)6117 static void nv_remove(struct pci_dev *pci_dev)
6118 {
6119 struct net_device *dev = pci_get_drvdata(pci_dev);
6120
6121 unregister_netdev(dev);
6122
6123 nv_restore_mac_addr(pci_dev);
6124
6125 /* restore any phy related changes */
6126 nv_restore_phy(dev);
6127
6128 nv_mgmt_release_sema(dev);
6129
6130 /* free all structures */
6131 free_rings(dev);
6132 iounmap(get_hwbase(dev));
6133 pci_release_regions(pci_dev);
6134 pci_disable_device(pci_dev);
6135 free_netdev(dev);
6136 }
6137
6138 #ifdef CONFIG_PM_SLEEP
nv_suspend(struct device * device)6139 static int nv_suspend(struct device *device)
6140 {
6141 struct pci_dev *pdev = to_pci_dev(device);
6142 struct net_device *dev = pci_get_drvdata(pdev);
6143 struct fe_priv *np = netdev_priv(dev);
6144 u8 __iomem *base = get_hwbase(dev);
6145 int i;
6146
6147 if (netif_running(dev)) {
6148 /* Gross. */
6149 nv_close(dev);
6150 }
6151 netif_device_detach(dev);
6152
6153 /* save non-pci configuration space */
6154 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6155 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6156
6157 return 0;
6158 }
6159
nv_resume(struct device * device)6160 static int nv_resume(struct device *device)
6161 {
6162 struct pci_dev *pdev = to_pci_dev(device);
6163 struct net_device *dev = pci_get_drvdata(pdev);
6164 struct fe_priv *np = netdev_priv(dev);
6165 u8 __iomem *base = get_hwbase(dev);
6166 int i, rc = 0;
6167
6168 /* restore non-pci configuration space */
6169 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6170 writel(np->saved_config_space[i], base+i*sizeof(u32));
6171
6172 if (np->driver_data & DEV_NEED_MSI_FIX)
6173 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6174
6175 /* restore phy state, including autoneg */
6176 phy_init(dev);
6177
6178 netif_device_attach(dev);
6179 if (netif_running(dev)) {
6180 rc = nv_open(dev);
6181 nv_set_multicast(dev);
6182 }
6183 return rc;
6184 }
6185
6186 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
6187 #define NV_PM_OPS (&nv_pm_ops)
6188
6189 #else
6190 #define NV_PM_OPS NULL
6191 #endif /* CONFIG_PM_SLEEP */
6192
6193 #ifdef CONFIG_PM
nv_shutdown(struct pci_dev * pdev)6194 static void nv_shutdown(struct pci_dev *pdev)
6195 {
6196 struct net_device *dev = pci_get_drvdata(pdev);
6197 struct fe_priv *np = netdev_priv(dev);
6198
6199 if (netif_running(dev))
6200 nv_close(dev);
6201
6202 /*
6203 * Restore the MAC so a kernel started by kexec won't get confused.
6204 * If we really go for poweroff, we must not restore the MAC,
6205 * otherwise the MAC for WOL will be reversed at least on some boards.
6206 */
6207 if (system_state != SYSTEM_POWER_OFF)
6208 nv_restore_mac_addr(pdev);
6209
6210 pci_disable_device(pdev);
6211 /*
6212 * Apparently it is not possible to reinitialise from D3 hot,
6213 * only put the device into D3 if we really go for poweroff.
6214 */
6215 if (system_state == SYSTEM_POWER_OFF) {
6216 pci_wake_from_d3(pdev, np->wolenabled);
6217 pci_set_power_state(pdev, PCI_D3hot);
6218 }
6219 }
6220 #else
6221 #define nv_shutdown NULL
6222 #endif /* CONFIG_PM */
6223
6224 static const struct pci_device_id pci_tbl[] = {
6225 { /* nForce Ethernet Controller */
6226 PCI_DEVICE(0x10DE, 0x01C3),
6227 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6228 },
6229 { /* nForce2 Ethernet Controller */
6230 PCI_DEVICE(0x10DE, 0x0066),
6231 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6232 },
6233 { /* nForce3 Ethernet Controller */
6234 PCI_DEVICE(0x10DE, 0x00D6),
6235 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6236 },
6237 { /* nForce3 Ethernet Controller */
6238 PCI_DEVICE(0x10DE, 0x0086),
6239 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6240 },
6241 { /* nForce3 Ethernet Controller */
6242 PCI_DEVICE(0x10DE, 0x008C),
6243 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6244 },
6245 { /* nForce3 Ethernet Controller */
6246 PCI_DEVICE(0x10DE, 0x00E6),
6247 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6248 },
6249 { /* nForce3 Ethernet Controller */
6250 PCI_DEVICE(0x10DE, 0x00DF),
6251 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6252 },
6253 { /* CK804 Ethernet Controller */
6254 PCI_DEVICE(0x10DE, 0x0056),
6255 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6256 },
6257 { /* CK804 Ethernet Controller */
6258 PCI_DEVICE(0x10DE, 0x0057),
6259 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6260 },
6261 { /* MCP04 Ethernet Controller */
6262 PCI_DEVICE(0x10DE, 0x0037),
6263 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6264 },
6265 { /* MCP04 Ethernet Controller */
6266 PCI_DEVICE(0x10DE, 0x0038),
6267 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6268 },
6269 { /* MCP51 Ethernet Controller */
6270 PCI_DEVICE(0x10DE, 0x0268),
6271 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6272 },
6273 { /* MCP51 Ethernet Controller */
6274 PCI_DEVICE(0x10DE, 0x0269),
6275 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6276 },
6277 { /* MCP55 Ethernet Controller */
6278 PCI_DEVICE(0x10DE, 0x0372),
6279 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6280 },
6281 { /* MCP55 Ethernet Controller */
6282 PCI_DEVICE(0x10DE, 0x0373),
6283 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6284 },
6285 { /* MCP61 Ethernet Controller */
6286 PCI_DEVICE(0x10DE, 0x03E5),
6287 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6288 },
6289 { /* MCP61 Ethernet Controller */
6290 PCI_DEVICE(0x10DE, 0x03E6),
6291 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6292 },
6293 { /* MCP61 Ethernet Controller */
6294 PCI_DEVICE(0x10DE, 0x03EE),
6295 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6296 },
6297 { /* MCP61 Ethernet Controller */
6298 PCI_DEVICE(0x10DE, 0x03EF),
6299 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6300 },
6301 { /* MCP65 Ethernet Controller */
6302 PCI_DEVICE(0x10DE, 0x0450),
6303 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6304 },
6305 { /* MCP65 Ethernet Controller */
6306 PCI_DEVICE(0x10DE, 0x0451),
6307 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6308 },
6309 { /* MCP65 Ethernet Controller */
6310 PCI_DEVICE(0x10DE, 0x0452),
6311 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6312 },
6313 { /* MCP65 Ethernet Controller */
6314 PCI_DEVICE(0x10DE, 0x0453),
6315 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6316 },
6317 { /* MCP67 Ethernet Controller */
6318 PCI_DEVICE(0x10DE, 0x054C),
6319 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6320 },
6321 { /* MCP67 Ethernet Controller */
6322 PCI_DEVICE(0x10DE, 0x054D),
6323 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6324 },
6325 { /* MCP67 Ethernet Controller */
6326 PCI_DEVICE(0x10DE, 0x054E),
6327 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6328 },
6329 { /* MCP67 Ethernet Controller */
6330 PCI_DEVICE(0x10DE, 0x054F),
6331 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6332 },
6333 { /* MCP73 Ethernet Controller */
6334 PCI_DEVICE(0x10DE, 0x07DC),
6335 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6336 },
6337 { /* MCP73 Ethernet Controller */
6338 PCI_DEVICE(0x10DE, 0x07DD),
6339 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6340 },
6341 { /* MCP73 Ethernet Controller */
6342 PCI_DEVICE(0x10DE, 0x07DE),
6343 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6344 },
6345 { /* MCP73 Ethernet Controller */
6346 PCI_DEVICE(0x10DE, 0x07DF),
6347 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6348 },
6349 { /* MCP77 Ethernet Controller */
6350 PCI_DEVICE(0x10DE, 0x0760),
6351 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6352 },
6353 { /* MCP77 Ethernet Controller */
6354 PCI_DEVICE(0x10DE, 0x0761),
6355 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6356 },
6357 { /* MCP77 Ethernet Controller */
6358 PCI_DEVICE(0x10DE, 0x0762),
6359 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6360 },
6361 { /* MCP77 Ethernet Controller */
6362 PCI_DEVICE(0x10DE, 0x0763),
6363 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6364 },
6365 { /* MCP79 Ethernet Controller */
6366 PCI_DEVICE(0x10DE, 0x0AB0),
6367 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6368 },
6369 { /* MCP79 Ethernet Controller */
6370 PCI_DEVICE(0x10DE, 0x0AB1),
6371 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6372 },
6373 { /* MCP79 Ethernet Controller */
6374 PCI_DEVICE(0x10DE, 0x0AB2),
6375 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6376 },
6377 { /* MCP79 Ethernet Controller */
6378 PCI_DEVICE(0x10DE, 0x0AB3),
6379 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6380 },
6381 { /* MCP89 Ethernet Controller */
6382 PCI_DEVICE(0x10DE, 0x0D7D),
6383 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6384 },
6385 {0,},
6386 };
6387
6388 static struct pci_driver forcedeth_pci_driver = {
6389 .name = DRV_NAME,
6390 .id_table = pci_tbl,
6391 .probe = nv_probe,
6392 .remove = nv_remove,
6393 .shutdown = nv_shutdown,
6394 .driver.pm = NV_PM_OPS,
6395 };
6396
6397 module_param(max_interrupt_work, int, 0);
6398 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6399 module_param(optimization_mode, int, 0);
6400 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6401 module_param(poll_interval, int, 0);
6402 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6403 module_param(msi, int, 0);
6404 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6405 module_param(msix, int, 0);
6406 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6407 module_param(dma_64bit, int, 0);
6408 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6409 module_param(phy_cross, int, 0);
6410 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6411 module_param(phy_power_down, int, 0);
6412 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6413 module_param(debug_tx_timeout, bool, 0);
6414 MODULE_PARM_DESC(debug_tx_timeout,
6415 "Dump tx related registers and ring when tx_timeout happens");
6416
6417 module_pci_driver(forcedeth_pci_driver);
6418 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6419 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6420 MODULE_LICENSE("GPL");
6421 MODULE_DEVICE_TABLE(pci, pci_tbl);
6422