1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 */
12
13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14 */
15
16 #include <linux/tcp.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/crc32.h>
20 #include <linux/if_vlan.h>
21 #include <linux/jiffies.h>
22 #include <linux/phy.h>
23 #include <linux/of.h>
24 #include <net/ip6_checksum.h>
25 #include "emac.h"
26 #include "emac-sgmii.h"
27
28 /* EMAC_MAC_CTRL */
29 #define SINGLE_PAUSE_MODE 0x10000000
30 #define DEBUG_MODE 0x08000000
31 #define BROAD_EN 0x04000000
32 #define MULTI_ALL 0x02000000
33 #define RX_CHKSUM_EN 0x01000000
34 #define HUGE 0x00800000
35 #define SPEED(x) (((x) & 0x3) << 20)
36 #define SPEED_MASK SPEED(0x3)
37 #define SIMR 0x00080000
38 #define TPAUSE 0x00010000
39 #define PROM_MODE 0x00008000
40 #define VLAN_STRIP 0x00004000
41 #define PRLEN_BMSK 0x00003c00
42 #define PRLEN_SHFT 10
43 #define HUGEN 0x00000200
44 #define FLCHK 0x00000100
45 #define PCRCE 0x00000080
46 #define CRCE 0x00000040
47 #define FULLD 0x00000020
48 #define MAC_LP_EN 0x00000010
49 #define RXFC 0x00000008
50 #define TXFC 0x00000004
51 #define RXEN 0x00000002
52 #define TXEN 0x00000001
53
54 /* EMAC_DESC_CTRL_3 */
55 #define RFD_RING_SIZE_BMSK 0xfff
56
57 /* EMAC_DESC_CTRL_4 */
58 #define RX_BUFFER_SIZE_BMSK 0xffff
59
60 /* EMAC_DESC_CTRL_6 */
61 #define RRD_RING_SIZE_BMSK 0xfff
62
63 /* EMAC_DESC_CTRL_9 */
64 #define TPD_RING_SIZE_BMSK 0xffff
65
66 /* EMAC_TXQ_CTRL_0 */
67 #define NUM_TXF_BURST_PREF_BMSK 0xffff0000
68 #define NUM_TXF_BURST_PREF_SHFT 16
69 #define LS_8023_SP 0x80
70 #define TXQ_MODE 0x40
71 #define TXQ_EN 0x20
72 #define IP_OP_SP 0x10
73 #define NUM_TPD_BURST_PREF_BMSK 0xf
74 #define NUM_TPD_BURST_PREF_SHFT 0
75
76 /* EMAC_TXQ_CTRL_1 */
77 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
78
79 /* EMAC_TXQ_CTRL_2 */
80 #define TXF_HWM_BMSK 0xfff0000
81 #define TXF_LWM_BMSK 0xfff
82
83 /* EMAC_RXQ_CTRL_0 */
84 #define RXQ_EN BIT(31)
85 #define CUT_THRU_EN BIT(30)
86 #define RSS_HASH_EN BIT(29)
87 #define NUM_RFD_BURST_PREF_BMSK 0x3f00000
88 #define NUM_RFD_BURST_PREF_SHFT 20
89 #define IDT_TABLE_SIZE_BMSK 0x1ff00
90 #define IDT_TABLE_SIZE_SHFT 8
91 #define SP_IPV6 0x80
92
93 /* EMAC_RXQ_CTRL_1 */
94 #define JUMBO_1KAH_BMSK 0xf000
95 #define JUMBO_1KAH_SHFT 12
96 #define RFD_PREF_LOW_TH 0x10
97 #define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
98 #define RFD_PREF_LOW_THRESHOLD_SHFT 6
99 #define RFD_PREF_UP_TH 0x10
100 #define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
101 #define RFD_PREF_UP_THRESHOLD_SHFT 0
102
103 /* EMAC_RXQ_CTRL_2 */
104 #define RXF_DOF_THRESFHOLD 0x1a0
105 #define RXF_DOF_THRESHOLD_BMSK 0xfff0000
106 #define RXF_DOF_THRESHOLD_SHFT 16
107 #define RXF_UOF_THRESFHOLD 0xbe
108 #define RXF_UOF_THRESHOLD_BMSK 0xfff
109 #define RXF_UOF_THRESHOLD_SHFT 0
110
111 /* EMAC_RXQ_CTRL_3 */
112 #define RXD_TIMER_BMSK 0xffff0000
113 #define RXD_THRESHOLD_BMSK 0xfff
114 #define RXD_THRESHOLD_SHFT 0
115
116 /* EMAC_DMA_CTRL */
117 #define DMAW_DLY_CNT_BMSK 0xf0000
118 #define DMAW_DLY_CNT_SHFT 16
119 #define DMAR_DLY_CNT_BMSK 0xf800
120 #define DMAR_DLY_CNT_SHFT 11
121 #define DMAR_REQ_PRI 0x400
122 #define REGWRBLEN_BMSK 0x380
123 #define REGWRBLEN_SHFT 7
124 #define REGRDBLEN_BMSK 0x70
125 #define REGRDBLEN_SHFT 4
126 #define OUT_ORDER_MODE 0x4
127 #define ENH_ORDER_MODE 0x2
128 #define IN_ORDER_MODE 0x1
129
130 /* EMAC_MAILBOX_13 */
131 #define RFD3_PROC_IDX_BMSK 0xfff0000
132 #define RFD3_PROC_IDX_SHFT 16
133 #define RFD3_PROD_IDX_BMSK 0xfff
134 #define RFD3_PROD_IDX_SHFT 0
135
136 /* EMAC_MAILBOX_2 */
137 #define NTPD_CONS_IDX_BMSK 0xffff0000
138 #define NTPD_CONS_IDX_SHFT 16
139
140 /* EMAC_MAILBOX_3 */
141 #define RFD0_CONS_IDX_BMSK 0xfff
142 #define RFD0_CONS_IDX_SHFT 0
143
144 /* EMAC_MAILBOX_11 */
145 #define H3TPD_PROD_IDX_BMSK 0xffff0000
146 #define H3TPD_PROD_IDX_SHFT 16
147
148 /* EMAC_AXI_MAST_CTRL */
149 #define DATA_BYTE_SWAP 0x8
150 #define MAX_BOUND 0x2
151 #define MAX_BTYPE 0x1
152
153 /* EMAC_MAILBOX_12 */
154 #define H3TPD_CONS_IDX_BMSK 0xffff0000
155 #define H3TPD_CONS_IDX_SHFT 16
156
157 /* EMAC_MAILBOX_9 */
158 #define H2TPD_PROD_IDX_BMSK 0xffff
159 #define H2TPD_PROD_IDX_SHFT 0
160
161 /* EMAC_MAILBOX_10 */
162 #define H1TPD_CONS_IDX_BMSK 0xffff0000
163 #define H1TPD_CONS_IDX_SHFT 16
164 #define H2TPD_CONS_IDX_BMSK 0xffff
165 #define H2TPD_CONS_IDX_SHFT 0
166
167 /* EMAC_ATHR_HEADER_CTRL */
168 #define HEADER_CNT_EN 0x2
169 #define HEADER_ENABLE 0x1
170
171 /* EMAC_MAILBOX_0 */
172 #define RFD0_PROC_IDX_BMSK 0xfff0000
173 #define RFD0_PROC_IDX_SHFT 16
174 #define RFD0_PROD_IDX_BMSK 0xfff
175 #define RFD0_PROD_IDX_SHFT 0
176
177 /* EMAC_MAILBOX_5 */
178 #define RFD1_PROC_IDX_BMSK 0xfff0000
179 #define RFD1_PROC_IDX_SHFT 16
180 #define RFD1_PROD_IDX_BMSK 0xfff
181 #define RFD1_PROD_IDX_SHFT 0
182
183 /* EMAC_MISC_CTRL */
184 #define RX_UNCPL_INT_EN 0x1
185
186 /* EMAC_MAILBOX_7 */
187 #define RFD2_CONS_IDX_BMSK 0xfff0000
188 #define RFD2_CONS_IDX_SHFT 16
189 #define RFD1_CONS_IDX_BMSK 0xfff
190 #define RFD1_CONS_IDX_SHFT 0
191
192 /* EMAC_MAILBOX_8 */
193 #define RFD3_CONS_IDX_BMSK 0xfff
194 #define RFD3_CONS_IDX_SHFT 0
195
196 /* EMAC_MAILBOX_15 */
197 #define NTPD_PROD_IDX_BMSK 0xffff
198 #define NTPD_PROD_IDX_SHFT 0
199
200 /* EMAC_MAILBOX_16 */
201 #define H1TPD_PROD_IDX_BMSK 0xffff
202 #define H1TPD_PROD_IDX_SHFT 0
203
204 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
205 #define RXQ0_RSS_HSTYP_IPV6_EN 0x10
206 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
207 #define RXQ0_RSS_HSTYP_IPV4_EN 0x4
208
209 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
210 #define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
211 #define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
212
213 struct emac_skb_cb {
214 u32 tpd_idx;
215 unsigned long jiffies;
216 };
217
218 #define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
219 #define EMAC_RSS_IDT_SIZE 256
220 #define JUMBO_1KAH 0x4
221 #define RXD_TH 0x100
222 #define EMAC_TPD_LAST_FRAGMENT 0x80000000
223 #define EMAC_TPD_TSTAMP_SAVE 0x80000000
224
225 /* EMAC Errors in emac_rrd.word[3] */
226 #define EMAC_RRD_L4F BIT(14)
227 #define EMAC_RRD_IPF BIT(15)
228 #define EMAC_RRD_CRC BIT(21)
229 #define EMAC_RRD_FAE BIT(22)
230 #define EMAC_RRD_TRN BIT(23)
231 #define EMAC_RRD_RNT BIT(24)
232 #define EMAC_RRD_INC BIT(25)
233 #define EMAC_RRD_FOV BIT(29)
234 #define EMAC_RRD_LEN BIT(30)
235
236 /* Error bits that will result in a received frame being discarded */
237 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
238 EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
239 EMAC_RRD_FOV | EMAC_RRD_LEN)
240 #define EMAC_RRD_STATS_DW_IDX 3
241
242 #define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
243 #define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
244 #define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
245
246 #define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
247 #define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
248
249 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
250
251 #define ISR_RX_PKT (\
252 RX_PKT_INT0 |\
253 RX_PKT_INT1 |\
254 RX_PKT_INT2 |\
255 RX_PKT_INT3)
256
emac_mac_multicast_addr_set(struct emac_adapter * adpt,u8 * addr)257 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
258 {
259 u32 crc32, bit, reg, mta;
260
261 /* Calculate the CRC of the MAC address */
262 crc32 = ether_crc(ETH_ALEN, addr);
263
264 /* The HASH Table is an array of 2 32-bit registers. It is
265 * treated like an array of 64 bits (BitArray[hash_value]).
266 * Use the upper 6 bits of the above CRC as the hash value.
267 */
268 reg = (crc32 >> 31) & 0x1;
269 bit = (crc32 >> 26) & 0x1F;
270
271 mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
272 mta |= BIT(bit);
273 writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
274 }
275
emac_mac_multicast_addr_clear(struct emac_adapter * adpt)276 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
277 {
278 writel(0, adpt->base + EMAC_HASH_TAB_REG0);
279 writel(0, adpt->base + EMAC_HASH_TAB_REG1);
280 }
281
282 /* definitions for RSS */
283 #define EMAC_RSS_KEY(_i, _type) \
284 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
285 #define EMAC_RSS_TBL(_i, _type) \
286 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
287
288 /* Config MAC modes */
emac_mac_mode_config(struct emac_adapter * adpt)289 void emac_mac_mode_config(struct emac_adapter *adpt)
290 {
291 struct net_device *netdev = adpt->netdev;
292 u32 mac;
293
294 mac = readl(adpt->base + EMAC_MAC_CTRL);
295 mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
296
297 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
298 mac |= VLAN_STRIP;
299
300 if (netdev->flags & IFF_PROMISC)
301 mac |= PROM_MODE;
302
303 if (netdev->flags & IFF_ALLMULTI)
304 mac |= MULTI_ALL;
305
306 writel(mac, adpt->base + EMAC_MAC_CTRL);
307 }
308
309 /* Config descriptor rings */
emac_mac_dma_rings_config(struct emac_adapter * adpt)310 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
311 {
312 /* TPD (Transmit Packet Descriptor) */
313 writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
314 adpt->base + EMAC_DESC_CTRL_1);
315
316 writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
317 adpt->base + EMAC_DESC_CTRL_8);
318
319 writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
320 adpt->base + EMAC_DESC_CTRL_9);
321
322 /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
323 writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
324 adpt->base + EMAC_DESC_CTRL_0);
325
326 writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
327 adpt->base + EMAC_DESC_CTRL_2);
328 writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
329 adpt->base + EMAC_DESC_CTRL_5);
330
331 writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
332 adpt->base + EMAC_DESC_CTRL_3);
333 writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
334 adpt->base + EMAC_DESC_CTRL_6);
335
336 writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
337 adpt->base + EMAC_DESC_CTRL_4);
338
339 writel(0, adpt->base + EMAC_DESC_CTRL_11);
340
341 /* Load all of the base addresses above and ensure that triggering HW to
342 * read ring pointers is flushed
343 */
344 writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
345 }
346
347 /* Config transmit parameters */
emac_mac_tx_config(struct emac_adapter * adpt)348 static void emac_mac_tx_config(struct emac_adapter *adpt)
349 {
350 u32 val;
351
352 writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
353 JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
354
355 val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
356 NUM_TPD_BURST_PREF_BMSK;
357
358 val |= TXQ_MODE | LS_8023_SP;
359 val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
360 NUM_TXF_BURST_PREF_BMSK;
361
362 writel(val, adpt->base + EMAC_TXQ_CTRL_0);
363 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
364 (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
365 }
366
367 /* Config receive parameters */
emac_mac_rx_config(struct emac_adapter * adpt)368 static void emac_mac_rx_config(struct emac_adapter *adpt)
369 {
370 u32 val;
371
372 val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
373 NUM_RFD_BURST_PREF_BMSK;
374 val |= (SP_IPV6 | CUT_THRU_EN);
375
376 writel(val, adpt->base + EMAC_RXQ_CTRL_0);
377
378 val = readl(adpt->base + EMAC_RXQ_CTRL_1);
379 val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
380 RFD_PREF_UP_THRESHOLD_BMSK);
381 val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
382 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
383 (RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT);
384 writel(val, adpt->base + EMAC_RXQ_CTRL_1);
385
386 val = readl(adpt->base + EMAC_RXQ_CTRL_2);
387 val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
388 val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) |
389 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
390 writel(val, adpt->base + EMAC_RXQ_CTRL_2);
391
392 val = readl(adpt->base + EMAC_RXQ_CTRL_3);
393 val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
394 val |= RXD_TH << RXD_THRESHOLD_SHFT;
395 writel(val, adpt->base + EMAC_RXQ_CTRL_3);
396 }
397
398 /* Config dma */
emac_mac_dma_config(struct emac_adapter * adpt)399 static void emac_mac_dma_config(struct emac_adapter *adpt)
400 {
401 u32 dma_ctrl = DMAR_REQ_PRI;
402
403 switch (adpt->dma_order) {
404 case emac_dma_ord_in:
405 dma_ctrl |= IN_ORDER_MODE;
406 break;
407 case emac_dma_ord_enh:
408 dma_ctrl |= ENH_ORDER_MODE;
409 break;
410 case emac_dma_ord_out:
411 dma_ctrl |= OUT_ORDER_MODE;
412 break;
413 default:
414 break;
415 }
416
417 dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
418 REGRDBLEN_BMSK;
419 dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
420 REGWRBLEN_BMSK;
421 dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
422 DMAR_DLY_CNT_BMSK;
423 dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
424 DMAW_DLY_CNT_BMSK;
425
426 /* config DMA and ensure that configuration is flushed to HW */
427 writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
428 }
429
430 /* set MAC address */
emac_set_mac_address(struct emac_adapter * adpt,u8 * addr)431 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
432 {
433 u32 sta;
434
435 /* for example: 00-A0-C6-11-22-33
436 * 0<-->C6112233, 1<-->00A0.
437 */
438
439 /* low 32bit word */
440 sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
441 (((u32)addr[4]) << 8) | (((u32)addr[5]));
442 writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
443
444 /* hight 32bit word */
445 sta = (((u32)addr[0]) << 8) | (u32)addr[1];
446 writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
447 }
448
emac_mac_config(struct emac_adapter * adpt)449 static void emac_mac_config(struct emac_adapter *adpt)
450 {
451 struct net_device *netdev = adpt->netdev;
452 unsigned int max_frame;
453 u32 val;
454
455 emac_set_mac_address(adpt, netdev->dev_addr);
456
457 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
458 adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
459 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
460
461 emac_mac_dma_rings_config(adpt);
462
463 writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
464 adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
465
466 emac_mac_tx_config(adpt);
467 emac_mac_rx_config(adpt);
468 emac_mac_dma_config(adpt);
469
470 val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
471 val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
472 val |= MAX_BTYPE;
473 writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
474 writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
475 writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
476 }
477
emac_mac_reset(struct emac_adapter * adpt)478 void emac_mac_reset(struct emac_adapter *adpt)
479 {
480 emac_mac_stop(adpt);
481
482 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
483 usleep_range(100, 150); /* reset may take up to 100usec */
484
485 /* interrupt clear-on-read */
486 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
487 }
488
emac_mac_start(struct emac_adapter * adpt)489 static void emac_mac_start(struct emac_adapter *adpt)
490 {
491 struct phy_device *phydev = adpt->phydev;
492 u32 mac, csr1;
493
494 /* enable tx queue */
495 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
496
497 /* enable rx queue */
498 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
499
500 /* enable mac control */
501 mac = readl(adpt->base + EMAC_MAC_CTRL);
502 csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
503
504 mac |= TXEN | RXEN; /* enable RX/TX */
505
506 /* Configure MAC flow control. If set to automatic, then match
507 * whatever the PHY does. Otherwise, enable or disable it, depending
508 * on what the user configured via ethtool.
509 */
510 mac &= ~(RXFC | TXFC);
511
512 if (adpt->automatic) {
513 /* If it's set to automatic, then update our local values */
514 adpt->rx_flow_control = phydev->pause;
515 adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
516 }
517 mac |= adpt->rx_flow_control ? RXFC : 0;
518 mac |= adpt->tx_flow_control ? TXFC : 0;
519
520 /* setup link speed */
521 mac &= ~SPEED_MASK;
522 if (phydev->speed == SPEED_1000) {
523 mac |= SPEED(2);
524 csr1 |= FREQ_MODE;
525 } else {
526 mac |= SPEED(1);
527 csr1 &= ~FREQ_MODE;
528 }
529
530 if (phydev->duplex == DUPLEX_FULL)
531 mac |= FULLD;
532 else
533 mac &= ~FULLD;
534
535 /* other parameters */
536 mac |= (CRCE | PCRCE);
537 mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
538 mac |= BROAD_EN;
539 mac |= FLCHK;
540 mac &= ~RX_CHKSUM_EN;
541 mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
542 DEBUG_MODE | SINGLE_PAUSE_MODE);
543
544 /* Enable single-pause-frame mode if requested.
545 *
546 * If enabled, the EMAC will send a single pause frame when the RX
547 * queue is full. This normally leads to packet loss because
548 * the pause frame disables the remote MAC only for 33ms (the quanta),
549 * and then the remote MAC continues sending packets even though
550 * the RX queue is still full.
551 *
552 * If disabled, the EMAC sends a pause frame every 31ms until the RX
553 * queue is no longer full. Normally, this is the preferred
554 * method of operation. However, when the system is hung (e.g.
555 * cores are halted), the EMAC interrupt handler is never called
556 * and so the RX queue fills up quickly and stays full. The resuling
557 * non-stop "flood" of pause frames sometimes has the effect of
558 * disabling nearby switches. In some cases, other nearby switches
559 * are also affected, shutting down the entire network.
560 *
561 * The user can enable or disable single-pause-frame mode
562 * via ethtool.
563 */
564 mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
565
566 writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
567
568 writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
569
570 /* enable interrupt read clear, low power sleep mode and
571 * the irq moderators
572 */
573
574 writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
575 writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
576 IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
577
578 emac_mac_mode_config(adpt);
579
580 emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
581 (HEADER_ENABLE | HEADER_CNT_EN), 0);
582 }
583
emac_mac_stop(struct emac_adapter * adpt)584 void emac_mac_stop(struct emac_adapter *adpt)
585 {
586 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
587 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
588 emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
589 usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
590 }
591
592 /* Free all descriptors of given transmit queue */
emac_tx_q_descs_free(struct emac_adapter * adpt)593 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
594 {
595 struct emac_tx_queue *tx_q = &adpt->tx_q;
596 unsigned int i;
597 size_t size;
598
599 /* ring already cleared, nothing to do */
600 if (!tx_q->tpd.tpbuff)
601 return;
602
603 for (i = 0; i < tx_q->tpd.count; i++) {
604 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
605
606 if (tpbuf->dma_addr) {
607 dma_unmap_single(adpt->netdev->dev.parent,
608 tpbuf->dma_addr, tpbuf->length,
609 DMA_TO_DEVICE);
610 tpbuf->dma_addr = 0;
611 }
612 if (tpbuf->skb) {
613 dev_kfree_skb_any(tpbuf->skb);
614 tpbuf->skb = NULL;
615 }
616 }
617
618 size = sizeof(struct emac_buffer) * tx_q->tpd.count;
619 memset(tx_q->tpd.tpbuff, 0, size);
620
621 /* clear the descriptor ring */
622 memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
623
624 tx_q->tpd.consume_idx = 0;
625 tx_q->tpd.produce_idx = 0;
626 }
627
628 /* Free all descriptors of given receive queue */
emac_rx_q_free_descs(struct emac_adapter * adpt)629 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
630 {
631 struct device *dev = adpt->netdev->dev.parent;
632 struct emac_rx_queue *rx_q = &adpt->rx_q;
633 unsigned int i;
634 size_t size;
635
636 /* ring already cleared, nothing to do */
637 if (!rx_q->rfd.rfbuff)
638 return;
639
640 for (i = 0; i < rx_q->rfd.count; i++) {
641 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
642
643 if (rfbuf->dma_addr) {
644 dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
645 DMA_FROM_DEVICE);
646 rfbuf->dma_addr = 0;
647 }
648 if (rfbuf->skb) {
649 dev_kfree_skb(rfbuf->skb);
650 rfbuf->skb = NULL;
651 }
652 }
653
654 size = sizeof(struct emac_buffer) * rx_q->rfd.count;
655 memset(rx_q->rfd.rfbuff, 0, size);
656
657 /* clear the descriptor rings */
658 memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
659 rx_q->rrd.produce_idx = 0;
660 rx_q->rrd.consume_idx = 0;
661
662 memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
663 rx_q->rfd.produce_idx = 0;
664 rx_q->rfd.consume_idx = 0;
665 }
666
667 /* Free all buffers associated with given transmit queue */
emac_tx_q_bufs_free(struct emac_adapter * adpt)668 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
669 {
670 struct emac_tx_queue *tx_q = &adpt->tx_q;
671
672 emac_tx_q_descs_free(adpt);
673
674 kfree(tx_q->tpd.tpbuff);
675 tx_q->tpd.tpbuff = NULL;
676 tx_q->tpd.v_addr = NULL;
677 tx_q->tpd.dma_addr = 0;
678 tx_q->tpd.size = 0;
679 }
680
681 /* Allocate TX descriptor ring for the given transmit queue */
emac_tx_q_desc_alloc(struct emac_adapter * adpt,struct emac_tx_queue * tx_q)682 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
683 struct emac_tx_queue *tx_q)
684 {
685 struct emac_ring_header *ring_header = &adpt->ring_header;
686 int node = dev_to_node(adpt->netdev->dev.parent);
687 size_t size;
688
689 size = sizeof(struct emac_buffer) * tx_q->tpd.count;
690 tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
691 if (!tx_q->tpd.tpbuff)
692 return -ENOMEM;
693
694 tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
695 tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
696 tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
697 ring_header->used += ALIGN(tx_q->tpd.size, 8);
698 tx_q->tpd.produce_idx = 0;
699 tx_q->tpd.consume_idx = 0;
700
701 return 0;
702 }
703
704 /* Free all buffers associated with given transmit queue */
emac_rx_q_bufs_free(struct emac_adapter * adpt)705 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
706 {
707 struct emac_rx_queue *rx_q = &adpt->rx_q;
708
709 emac_rx_q_free_descs(adpt);
710
711 kfree(rx_q->rfd.rfbuff);
712 rx_q->rfd.rfbuff = NULL;
713
714 rx_q->rfd.v_addr = NULL;
715 rx_q->rfd.dma_addr = 0;
716 rx_q->rfd.size = 0;
717
718 rx_q->rrd.v_addr = NULL;
719 rx_q->rrd.dma_addr = 0;
720 rx_q->rrd.size = 0;
721 }
722
723 /* Allocate RX descriptor rings for the given receive queue */
emac_rx_descs_alloc(struct emac_adapter * adpt)724 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
725 {
726 struct emac_ring_header *ring_header = &adpt->ring_header;
727 int node = dev_to_node(adpt->netdev->dev.parent);
728 struct emac_rx_queue *rx_q = &adpt->rx_q;
729 size_t size;
730
731 size = sizeof(struct emac_buffer) * rx_q->rfd.count;
732 rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
733 if (!rx_q->rfd.rfbuff)
734 return -ENOMEM;
735
736 rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
737 rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
738
739 rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
740 rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used;
741 ring_header->used += ALIGN(rx_q->rrd.size, 8);
742
743 rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
744 rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used;
745 ring_header->used += ALIGN(rx_q->rfd.size, 8);
746
747 rx_q->rrd.produce_idx = 0;
748 rx_q->rrd.consume_idx = 0;
749
750 rx_q->rfd.produce_idx = 0;
751 rx_q->rfd.consume_idx = 0;
752
753 return 0;
754 }
755
756 /* Allocate all TX and RX descriptor rings */
emac_mac_rx_tx_rings_alloc_all(struct emac_adapter * adpt)757 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
758 {
759 struct emac_ring_header *ring_header = &adpt->ring_header;
760 struct device *dev = adpt->netdev->dev.parent;
761 unsigned int num_tx_descs = adpt->tx_desc_cnt;
762 unsigned int num_rx_descs = adpt->rx_desc_cnt;
763 int ret;
764
765 adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
766
767 adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
768 adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
769
770 /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
771 * hence the additional padding bytes are allocated.
772 */
773 ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
774 num_rx_descs * (adpt->rfd_size * 4) +
775 num_rx_descs * (adpt->rrd_size * 4) +
776 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
777
778 ring_header->used = 0;
779 ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
780 &ring_header->dma_addr,
781 GFP_KERNEL);
782 if (!ring_header->v_addr)
783 return -ENOMEM;
784
785 ring_header->used = ALIGN(ring_header->dma_addr, 8) -
786 ring_header->dma_addr;
787
788 ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
789 if (ret) {
790 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
791 goto err_alloc_tx;
792 }
793
794 ret = emac_rx_descs_alloc(adpt);
795 if (ret) {
796 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
797 goto err_alloc_rx;
798 }
799
800 return 0;
801
802 err_alloc_rx:
803 emac_tx_q_bufs_free(adpt);
804 err_alloc_tx:
805 dma_free_coherent(dev, ring_header->size,
806 ring_header->v_addr, ring_header->dma_addr);
807
808 ring_header->v_addr = NULL;
809 ring_header->dma_addr = 0;
810 ring_header->size = 0;
811 ring_header->used = 0;
812
813 return ret;
814 }
815
816 /* Free all TX and RX descriptor rings */
emac_mac_rx_tx_rings_free_all(struct emac_adapter * adpt)817 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
818 {
819 struct emac_ring_header *ring_header = &adpt->ring_header;
820 struct device *dev = adpt->netdev->dev.parent;
821
822 emac_tx_q_bufs_free(adpt);
823 emac_rx_q_bufs_free(adpt);
824
825 dma_free_coherent(dev, ring_header->size,
826 ring_header->v_addr, ring_header->dma_addr);
827
828 ring_header->v_addr = NULL;
829 ring_header->dma_addr = 0;
830 ring_header->size = 0;
831 ring_header->used = 0;
832 }
833
834 /* Initialize descriptor rings */
emac_mac_rx_tx_ring_reset_all(struct emac_adapter * adpt)835 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
836 {
837 unsigned int i;
838
839 adpt->tx_q.tpd.produce_idx = 0;
840 adpt->tx_q.tpd.consume_idx = 0;
841 for (i = 0; i < adpt->tx_q.tpd.count; i++)
842 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
843
844 adpt->rx_q.rrd.produce_idx = 0;
845 adpt->rx_q.rrd.consume_idx = 0;
846 adpt->rx_q.rfd.produce_idx = 0;
847 adpt->rx_q.rfd.consume_idx = 0;
848 for (i = 0; i < adpt->rx_q.rfd.count; i++)
849 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
850 }
851
852 /* Produce new receive free descriptor */
emac_mac_rx_rfd_create(struct emac_adapter * adpt,struct emac_rx_queue * rx_q,dma_addr_t addr)853 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
854 struct emac_rx_queue *rx_q,
855 dma_addr_t addr)
856 {
857 u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
858
859 *(hw_rfd++) = lower_32_bits(addr);
860 *hw_rfd = upper_32_bits(addr);
861
862 if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
863 rx_q->rfd.produce_idx = 0;
864 }
865
866 /* Fill up receive queue's RFD with preallocated receive buffers */
emac_mac_rx_descs_refill(struct emac_adapter * adpt,struct emac_rx_queue * rx_q)867 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
868 struct emac_rx_queue *rx_q)
869 {
870 struct emac_buffer *curr_rxbuf;
871 struct emac_buffer *next_rxbuf;
872 unsigned int count = 0;
873 u32 next_produce_idx;
874
875 next_produce_idx = rx_q->rfd.produce_idx + 1;
876 if (next_produce_idx == rx_q->rfd.count)
877 next_produce_idx = 0;
878
879 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
880 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
881
882 /* this always has a blank rx_buffer*/
883 while (!next_rxbuf->dma_addr) {
884 struct sk_buff *skb;
885 int ret;
886
887 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
888 if (!skb)
889 break;
890
891 curr_rxbuf->dma_addr =
892 dma_map_single(adpt->netdev->dev.parent, skb->data,
893 adpt->rxbuf_size, DMA_FROM_DEVICE);
894
895 ret = dma_mapping_error(adpt->netdev->dev.parent,
896 curr_rxbuf->dma_addr);
897 if (ret) {
898 dev_kfree_skb(skb);
899 break;
900 }
901 curr_rxbuf->skb = skb;
902 curr_rxbuf->length = adpt->rxbuf_size;
903
904 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
905 next_produce_idx = rx_q->rfd.produce_idx + 1;
906 if (next_produce_idx == rx_q->rfd.count)
907 next_produce_idx = 0;
908
909 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
910 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
911 count++;
912 }
913
914 if (count) {
915 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
916 rx_q->produce_mask;
917 emac_reg_update32(adpt->base + rx_q->produce_reg,
918 rx_q->produce_mask, prod_idx);
919 }
920 }
921
emac_adjust_link(struct net_device * netdev)922 static void emac_adjust_link(struct net_device *netdev)
923 {
924 struct emac_adapter *adpt = netdev_priv(netdev);
925 struct phy_device *phydev = netdev->phydev;
926
927 if (phydev->link) {
928 emac_mac_start(adpt);
929 emac_sgmii_link_change(adpt, true);
930 } else {
931 emac_sgmii_link_change(adpt, false);
932 emac_mac_stop(adpt);
933 }
934
935 phy_print_status(phydev);
936 }
937
938 /* Bringup the interface/HW */
emac_mac_up(struct emac_adapter * adpt)939 int emac_mac_up(struct emac_adapter *adpt)
940 {
941 struct net_device *netdev = adpt->netdev;
942 int ret;
943
944 emac_mac_rx_tx_ring_reset_all(adpt);
945 emac_mac_config(adpt);
946 emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
947
948 adpt->phydev->irq = PHY_POLL;
949 ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
950 PHY_INTERFACE_MODE_SGMII);
951 if (ret) {
952 netdev_err(adpt->netdev, "could not connect phy\n");
953 return ret;
954 }
955
956 phy_attached_print(adpt->phydev, NULL);
957
958 /* enable mac irq */
959 writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
960 writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
961
962 phy_start(adpt->phydev);
963
964 napi_enable(&adpt->rx_q.napi);
965 netif_start_queue(netdev);
966
967 return 0;
968 }
969
970 /* Bring down the interface/HW */
emac_mac_down(struct emac_adapter * adpt)971 void emac_mac_down(struct emac_adapter *adpt)
972 {
973 struct net_device *netdev = adpt->netdev;
974
975 netif_stop_queue(netdev);
976 napi_disable(&adpt->rx_q.napi);
977
978 phy_stop(adpt->phydev);
979
980 /* Interrupts must be disabled before the PHY is disconnected, to
981 * avoid a race condition where adjust_link is null when we get
982 * an interrupt.
983 */
984 writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
985 writel(0, adpt->base + EMAC_INT_MASK);
986 synchronize_irq(adpt->irq.irq);
987
988 phy_disconnect(adpt->phydev);
989
990 emac_mac_reset(adpt);
991
992 emac_tx_q_descs_free(adpt);
993 netdev_reset_queue(adpt->netdev);
994 emac_rx_q_free_descs(adpt);
995 }
996
997 /* Consume next received packet descriptor */
emac_rx_process_rrd(struct emac_adapter * adpt,struct emac_rx_queue * rx_q,struct emac_rrd * rrd)998 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
999 struct emac_rx_queue *rx_q,
1000 struct emac_rrd *rrd)
1001 {
1002 u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
1003
1004 rrd->word[3] = *(hw_rrd + 3);
1005
1006 if (!RRD_UPDT(rrd))
1007 return false;
1008
1009 rrd->word[4] = 0;
1010 rrd->word[5] = 0;
1011
1012 rrd->word[0] = *(hw_rrd++);
1013 rrd->word[1] = *(hw_rrd++);
1014 rrd->word[2] = *(hw_rrd++);
1015
1016 if (unlikely(RRD_NOR(rrd) != 1)) {
1017 netdev_err(adpt->netdev,
1018 "error: multi-RFD not support yet! nor:%lu\n",
1019 RRD_NOR(rrd));
1020 }
1021
1022 /* mark rrd as processed */
1023 RRD_UPDT_SET(rrd, 0);
1024 *hw_rrd = rrd->word[3];
1025
1026 if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1027 rx_q->rrd.consume_idx = 0;
1028
1029 return true;
1030 }
1031
1032 /* Produce new transmit descriptor */
emac_tx_tpd_create(struct emac_adapter * adpt,struct emac_tx_queue * tx_q,struct emac_tpd * tpd)1033 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1034 struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1035 {
1036 u32 *hw_tpd;
1037
1038 tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1039 hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1040
1041 if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1042 tx_q->tpd.produce_idx = 0;
1043
1044 *(hw_tpd++) = tpd->word[0];
1045 *(hw_tpd++) = tpd->word[1];
1046 *(hw_tpd++) = tpd->word[2];
1047 *hw_tpd = tpd->word[3];
1048 }
1049
1050 /* Mark the last transmit descriptor as such (for the transmit packet) */
emac_tx_tpd_mark_last(struct emac_adapter * adpt,struct emac_tx_queue * tx_q)1051 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1052 struct emac_tx_queue *tx_q)
1053 {
1054 u32 *hw_tpd =
1055 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1056 u32 tmp_tpd;
1057
1058 tmp_tpd = *(hw_tpd + 1);
1059 tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1060 *(hw_tpd + 1) = tmp_tpd;
1061 }
1062
emac_rx_rfd_clean(struct emac_rx_queue * rx_q,struct emac_rrd * rrd)1063 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1064 {
1065 struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1066 u32 consume_idx = RRD_SI(rrd);
1067 unsigned int i;
1068
1069 for (i = 0; i < RRD_NOR(rrd); i++) {
1070 rfbuf[consume_idx].skb = NULL;
1071 if (++consume_idx == rx_q->rfd.count)
1072 consume_idx = 0;
1073 }
1074
1075 rx_q->rfd.consume_idx = consume_idx;
1076 rx_q->rfd.process_idx = consume_idx;
1077 }
1078
1079 /* Push the received skb to upper layers */
emac_receive_skb(struct emac_rx_queue * rx_q,struct sk_buff * skb,u16 vlan_tag,bool vlan_flag)1080 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1081 struct sk_buff *skb,
1082 u16 vlan_tag, bool vlan_flag)
1083 {
1084 if (vlan_flag) {
1085 u16 vlan;
1086
1087 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1089 }
1090
1091 napi_gro_receive(&rx_q->napi, skb);
1092 }
1093
1094 /* Process receive event */
emac_mac_rx_process(struct emac_adapter * adpt,struct emac_rx_queue * rx_q,int * num_pkts,int max_pkts)1095 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1096 int *num_pkts, int max_pkts)
1097 {
1098 u32 proc_idx, hw_consume_idx, num_consume_pkts;
1099 struct net_device *netdev = adpt->netdev;
1100 struct emac_buffer *rfbuf;
1101 unsigned int count = 0;
1102 struct emac_rrd rrd;
1103 struct sk_buff *skb;
1104 u32 reg;
1105
1106 reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1107
1108 hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1109 num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1110 (hw_consume_idx - rx_q->rrd.consume_idx) :
1111 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1112
1113 do {
1114 if (!num_consume_pkts)
1115 break;
1116
1117 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1118 break;
1119
1120 if (likely(RRD_NOR(&rrd) == 1)) {
1121 /* good receive */
1122 rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1123 dma_unmap_single(adpt->netdev->dev.parent,
1124 rfbuf->dma_addr, rfbuf->length,
1125 DMA_FROM_DEVICE);
1126 rfbuf->dma_addr = 0;
1127 skb = rfbuf->skb;
1128 } else {
1129 netdev_err(adpt->netdev,
1130 "error: multi-RFD not support yet!\n");
1131 break;
1132 }
1133 emac_rx_rfd_clean(rx_q, &rrd);
1134 num_consume_pkts--;
1135 count++;
1136
1137 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1138 * with DF set are marked as error), drop packets based on the
1139 * error mask rather than the summary bit (ignoring L4F errors)
1140 */
1141 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1142 netif_dbg(adpt, rx_status, adpt->netdev,
1143 "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1144 rrd.word[0], rrd.word[1],
1145 rrd.word[2], rrd.word[3]);
1146
1147 dev_kfree_skb(skb);
1148 continue;
1149 }
1150
1151 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1152 skb->dev = netdev;
1153 skb->protocol = eth_type_trans(skb, skb->dev);
1154 if (netdev->features & NETIF_F_RXCSUM)
1155 skb->ip_summed = RRD_L4F(&rrd) ?
1156 CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1157 else
1158 skb_checksum_none_assert(skb);
1159
1160 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1161 (bool)RRD_CVTAG(&rrd));
1162
1163 (*num_pkts)++;
1164 } while (*num_pkts < max_pkts);
1165
1166 if (count) {
1167 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1168 rx_q->process_mask;
1169 emac_reg_update32(adpt->base + rx_q->process_reg,
1170 rx_q->process_mask, proc_idx);
1171 emac_mac_rx_descs_refill(adpt, rx_q);
1172 }
1173 }
1174
1175 /* get the number of free transmit descriptors */
emac_tpd_num_free_descs(struct emac_tx_queue * tx_q)1176 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1177 {
1178 u32 produce_idx = tx_q->tpd.produce_idx;
1179 u32 consume_idx = tx_q->tpd.consume_idx;
1180
1181 return (consume_idx > produce_idx) ?
1182 (consume_idx - produce_idx - 1) :
1183 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1184 }
1185
1186 /* Process transmit event */
emac_mac_tx_process(struct emac_adapter * adpt,struct emac_tx_queue * tx_q)1187 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1188 {
1189 u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1190 u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1191 struct emac_buffer *tpbuf;
1192
1193 hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1194
1195 while (tx_q->tpd.consume_idx != hw_consume_idx) {
1196 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1197 if (tpbuf->dma_addr) {
1198 dma_unmap_page(adpt->netdev->dev.parent,
1199 tpbuf->dma_addr, tpbuf->length,
1200 DMA_TO_DEVICE);
1201 tpbuf->dma_addr = 0;
1202 }
1203
1204 if (tpbuf->skb) {
1205 pkts_compl++;
1206 bytes_compl += tpbuf->skb->len;
1207 dev_kfree_skb_irq(tpbuf->skb);
1208 tpbuf->skb = NULL;
1209 }
1210
1211 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1212 tx_q->tpd.consume_idx = 0;
1213 }
1214
1215 netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1216
1217 if (netif_queue_stopped(adpt->netdev))
1218 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1219 netif_wake_queue(adpt->netdev);
1220 }
1221
1222 /* Initialize all queue data structures */
emac_mac_rx_tx_ring_init_all(struct platform_device * pdev,struct emac_adapter * adpt)1223 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1224 struct emac_adapter *adpt)
1225 {
1226 adpt->rx_q.netdev = adpt->netdev;
1227
1228 adpt->rx_q.produce_reg = EMAC_MAILBOX_0;
1229 adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1230 adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1231
1232 adpt->rx_q.process_reg = EMAC_MAILBOX_0;
1233 adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1234 adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1235
1236 adpt->rx_q.consume_reg = EMAC_MAILBOX_3;
1237 adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1238 adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1239
1240 adpt->rx_q.irq = &adpt->irq;
1241 adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT;
1242
1243 adpt->tx_q.produce_reg = EMAC_MAILBOX_15;
1244 adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1245 adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1246
1247 adpt->tx_q.consume_reg = EMAC_MAILBOX_2;
1248 adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1249 adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1250 }
1251
1252 /* Fill up transmit descriptors with TSO and Checksum offload information */
emac_tso_csum(struct emac_adapter * adpt,struct emac_tx_queue * tx_q,struct sk_buff * skb,struct emac_tpd * tpd)1253 static int emac_tso_csum(struct emac_adapter *adpt,
1254 struct emac_tx_queue *tx_q,
1255 struct sk_buff *skb,
1256 struct emac_tpd *tpd)
1257 {
1258 unsigned int hdr_len;
1259 int ret;
1260
1261 if (skb_is_gso(skb)) {
1262 if (skb_header_cloned(skb)) {
1263 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1264 if (unlikely(ret))
1265 return ret;
1266 }
1267
1268 if (skb->protocol == htons(ETH_P_IP)) {
1269 u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1270 + ntohs(ip_hdr(skb)->tot_len);
1271 if (skb->len > pkt_len)
1272 pskb_trim(skb, pkt_len);
1273 }
1274
1275 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1276 if (unlikely(skb->len == hdr_len)) {
1277 /* we only need to do csum */
1278 netif_warn(adpt, tx_err, adpt->netdev,
1279 "tso not needed for packet with 0 data\n");
1280 goto do_csum;
1281 }
1282
1283 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1284 ip_hdr(skb)->check = 0;
1285 tcp_hdr(skb)->check =
1286 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1287 ip_hdr(skb)->daddr,
1288 0, IPPROTO_TCP, 0);
1289 TPD_IPV4_SET(tpd, 1);
1290 }
1291
1292 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1293 /* ipv6 tso need an extra tpd */
1294 struct emac_tpd extra_tpd;
1295
1296 memset(tpd, 0, sizeof(*tpd));
1297 memset(&extra_tpd, 0, sizeof(extra_tpd));
1298
1299 ipv6_hdr(skb)->payload_len = 0;
1300 tcp_hdr(skb)->check =
1301 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1302 &ipv6_hdr(skb)->daddr,
1303 0, IPPROTO_TCP, 0);
1304 TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1305 TPD_LSO_SET(&extra_tpd, 1);
1306 TPD_LSOV_SET(&extra_tpd, 1);
1307 emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1308 TPD_LSOV_SET(tpd, 1);
1309 }
1310
1311 TPD_LSO_SET(tpd, 1);
1312 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1313 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1314 return 0;
1315 }
1316
1317 do_csum:
1318 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1319 unsigned int css, cso;
1320
1321 cso = skb_transport_offset(skb);
1322 if (unlikely(cso & 0x1)) {
1323 netdev_err(adpt->netdev,
1324 "error: payload offset should be even\n");
1325 return -EINVAL;
1326 }
1327 css = cso + skb->csum_offset;
1328
1329 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1330 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1331 TPD_CSX_SET(tpd, 1);
1332 }
1333
1334 return 0;
1335 }
1336
1337 /* Fill up transmit descriptors */
emac_tx_fill_tpd(struct emac_adapter * adpt,struct emac_tx_queue * tx_q,struct sk_buff * skb,struct emac_tpd * tpd)1338 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1339 struct emac_tx_queue *tx_q, struct sk_buff *skb,
1340 struct emac_tpd *tpd)
1341 {
1342 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1343 unsigned int first = tx_q->tpd.produce_idx;
1344 unsigned int len = skb_headlen(skb);
1345 struct emac_buffer *tpbuf = NULL;
1346 unsigned int mapped_len = 0;
1347 unsigned int i;
1348 int count = 0;
1349 int ret;
1350
1351 /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1352 if (TPD_LSO(tpd)) {
1353 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1354
1355 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1356 tpbuf->length = mapped_len;
1357 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1358 virt_to_page(skb->data),
1359 offset_in_page(skb->data),
1360 tpbuf->length,
1361 DMA_TO_DEVICE);
1362 ret = dma_mapping_error(adpt->netdev->dev.parent,
1363 tpbuf->dma_addr);
1364 if (ret)
1365 goto error;
1366
1367 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1368 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1369 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1370 emac_tx_tpd_create(adpt, tx_q, tpd);
1371 count++;
1372 }
1373
1374 if (mapped_len < len) {
1375 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1376 tpbuf->length = len - mapped_len;
1377 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1378 virt_to_page(skb->data +
1379 mapped_len),
1380 offset_in_page(skb->data +
1381 mapped_len),
1382 tpbuf->length, DMA_TO_DEVICE);
1383 ret = dma_mapping_error(adpt->netdev->dev.parent,
1384 tpbuf->dma_addr);
1385 if (ret)
1386 goto error;
1387
1388 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1389 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1390 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1391 emac_tx_tpd_create(adpt, tx_q, tpd);
1392 count++;
1393 }
1394
1395 for (i = 0; i < nr_frags; i++) {
1396 struct skb_frag_struct *frag;
1397
1398 frag = &skb_shinfo(skb)->frags[i];
1399
1400 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1401 tpbuf->length = frag->size;
1402 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1403 frag->page.p, frag->page_offset,
1404 tpbuf->length, DMA_TO_DEVICE);
1405 ret = dma_mapping_error(adpt->netdev->dev.parent,
1406 tpbuf->dma_addr);
1407 if (ret)
1408 goto error;
1409
1410 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1411 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1412 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1413 emac_tx_tpd_create(adpt, tx_q, tpd);
1414 count++;
1415 }
1416
1417 /* The last tpd */
1418 wmb();
1419 emac_tx_tpd_mark_last(adpt, tx_q);
1420
1421 /* The last buffer info contain the skb address,
1422 * so it will be freed after unmap
1423 */
1424 tpbuf->skb = skb;
1425
1426 return;
1427
1428 error:
1429 /* One of the memory mappings failed, so undo everything */
1430 tx_q->tpd.produce_idx = first;
1431
1432 while (count--) {
1433 tpbuf = GET_TPD_BUFFER(tx_q, first);
1434 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1435 tpbuf->length, DMA_TO_DEVICE);
1436 tpbuf->dma_addr = 0;
1437 tpbuf->length = 0;
1438
1439 if (++first == tx_q->tpd.count)
1440 first = 0;
1441 }
1442
1443 dev_kfree_skb(skb);
1444 }
1445
1446 /* Transmit the packet using specified transmit queue */
emac_mac_tx_buf_send(struct emac_adapter * adpt,struct emac_tx_queue * tx_q,struct sk_buff * skb)1447 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1448 struct sk_buff *skb)
1449 {
1450 struct emac_tpd tpd;
1451 u32 prod_idx;
1452
1453 memset(&tpd, 0, sizeof(tpd));
1454
1455 if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1456 dev_kfree_skb_any(skb);
1457 return NETDEV_TX_OK;
1458 }
1459
1460 if (skb_vlan_tag_present(skb)) {
1461 u16 tag;
1462
1463 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1464 TPD_CVLAN_TAG_SET(&tpd, tag);
1465 TPD_INSTC_SET(&tpd, 1);
1466 }
1467
1468 if (skb_network_offset(skb) != ETH_HLEN)
1469 TPD_TYP_SET(&tpd, 1);
1470
1471 emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1472
1473 netdev_sent_queue(adpt->netdev, skb->len);
1474
1475 /* Make sure the are enough free descriptors to hold one
1476 * maximum-sized SKB. We need one desc for each fragment,
1477 * one for the checksum (emac_tso_csum), one for TSO, and
1478 * and one for the SKB header.
1479 */
1480 if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1481 netif_stop_queue(adpt->netdev);
1482
1483 /* update produce idx */
1484 prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1485 tx_q->produce_mask;
1486 emac_reg_update32(adpt->base + tx_q->produce_reg,
1487 tx_q->produce_mask, prod_idx);
1488
1489 return NETDEV_TX_OK;
1490 }
1491