1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EF4_NIC_H
12 #define EF4_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 
19 enum {
20 	EF4_REV_FALCON_A0 = 0,
21 	EF4_REV_FALCON_A1 = 1,
22 	EF4_REV_FALCON_B0 = 2,
23 };
24 
ef4_nic_rev(struct ef4_nic * efx)25 static inline int ef4_nic_rev(struct ef4_nic *efx)
26 {
27 	return efx->type->revision;
28 }
29 
30 u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
31 
32 /* NIC has two interlinked PCI functions for the same port. */
ef4_nic_is_dual_func(struct ef4_nic * efx)33 static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
34 {
35 	return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
36 }
37 
38 /* Read the current event from the event queue */
ef4_event(struct ef4_channel * channel,unsigned int index)39 static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
40 				     unsigned int index)
41 {
42 	return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
43 		(index & channel->eventq_mask);
44 }
45 
46 /* See if an event is present
47  *
48  * We check both the high and low dword of the event for all ones.  We
49  * wrote all ones when we cleared the event, and no valid event can
50  * have all ones in either its high or low dwords.  This approach is
51  * robust against reordering.
52  *
53  * Note that using a single 64-bit comparison is incorrect; even
54  * though the CPU read will be atomic, the DMA write may not be.
55  */
ef4_event_present(ef4_qword_t * event)56 static inline int ef4_event_present(ef4_qword_t *event)
57 {
58 	return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
59 		  EF4_DWORD_IS_ALL_ONES(event->dword[1]));
60 }
61 
62 /* Returns a pointer to the specified transmit descriptor in the TX
63  * descriptor queue belonging to the specified channel.
64  */
65 static inline ef4_qword_t *
ef4_tx_desc(struct ef4_tx_queue * tx_queue,unsigned int index)66 ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
67 {
68 	return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
69 }
70 
71 /* Get partner of a TX queue, seen as part of the same net core queue */
ef4_tx_queue_partner(struct ef4_tx_queue * tx_queue)72 static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
73 {
74 	if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
75 		return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
76 	else
77 		return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
78 }
79 
80 /* Report whether this TX queue would be empty for the given write_count.
81  * May return false negative.
82  */
__ef4_nic_tx_is_empty(struct ef4_tx_queue * tx_queue,unsigned int write_count)83 static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
84 					 unsigned int write_count)
85 {
86 	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
87 
88 	if (empty_read_count == 0)
89 		return false;
90 
91 	return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
92 }
93 
94 /* Decide whether to push a TX descriptor to the NIC vs merely writing
95  * the doorbell.  This can reduce latency when we are adding a single
96  * descriptor to an empty queue, but is otherwise pointless.  Further,
97  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
98  * triggered if we don't check this.
99  * We use the write_count used for the last doorbell push, to get the
100  * NIC's view of the tx queue.
101  */
ef4_nic_may_push_tx_desc(struct ef4_tx_queue * tx_queue,unsigned int write_count)102 static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
103 					    unsigned int write_count)
104 {
105 	bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
106 
107 	tx_queue->empty_read_count = 0;
108 	return was_empty && tx_queue->write_count - write_count == 1;
109 }
110 
111 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
112 static inline ef4_qword_t *
ef4_rx_desc(struct ef4_rx_queue * rx_queue,unsigned int index)113 ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
114 {
115 	return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
116 }
117 
118 enum {
119 	PHY_TYPE_NONE = 0,
120 	PHY_TYPE_TXC43128 = 1,
121 	PHY_TYPE_88E1111 = 2,
122 	PHY_TYPE_SFX7101 = 3,
123 	PHY_TYPE_QT2022C2 = 4,
124 	PHY_TYPE_PM8358 = 6,
125 	PHY_TYPE_SFT9001A = 8,
126 	PHY_TYPE_QT2025C = 9,
127 	PHY_TYPE_SFT9001B = 10,
128 };
129 
130 #define FALCON_XMAC_LOOPBACKS			\
131 	((1 << LOOPBACK_XGMII) |		\
132 	 (1 << LOOPBACK_XGXS) |			\
133 	 (1 << LOOPBACK_XAUI))
134 
135 /* Alignment of PCIe DMA boundaries (4KB) */
136 #define EF4_PAGE_SIZE	4096
137 /* Size and alignment of buffer table entries (same) */
138 #define EF4_BUF_SIZE	EF4_PAGE_SIZE
139 
140 /* NIC-generic software stats */
141 enum {
142 	GENERIC_STAT_rx_noskb_drops,
143 	GENERIC_STAT_rx_nodesc_trunc,
144 	GENERIC_STAT_COUNT
145 };
146 
147 /**
148  * struct falcon_board_type - board operations and type information
149  * @id: Board type id, as found in NVRAM
150  * @init: Allocate resources and initialise peripheral hardware
151  * @init_phy: Do board-specific PHY initialisation
152  * @fini: Shut down hardware and free resources
153  * @set_id_led: Set state of identifying LED or revert to automatic function
154  * @monitor: Board-specific health check function
155  */
156 struct falcon_board_type {
157 	u8 id;
158 	int (*init) (struct ef4_nic *nic);
159 	void (*init_phy) (struct ef4_nic *efx);
160 	void (*fini) (struct ef4_nic *nic);
161 	void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
162 	int (*monitor) (struct ef4_nic *nic);
163 };
164 
165 /**
166  * struct falcon_board - board information
167  * @type: Type of board
168  * @major: Major rev. ('A', 'B' ...)
169  * @minor: Minor rev. (0, 1, ...)
170  * @i2c_adap: I2C adapter for on-board peripherals
171  * @i2c_data: Data for bit-banging algorithm
172  * @hwmon_client: I2C client for hardware monitor
173  * @ioexp_client: I2C client for power/port control
174  */
175 struct falcon_board {
176 	const struct falcon_board_type *type;
177 	int major;
178 	int minor;
179 	struct i2c_adapter i2c_adap;
180 	struct i2c_algo_bit_data i2c_data;
181 	struct i2c_client *hwmon_client, *ioexp_client;
182 };
183 
184 /**
185  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
186  * @device_id:		Controller's id for the device
187  * @size:		Size (in bytes)
188  * @addr_len:		Number of address bytes in read/write commands
189  * @munge_address:	Flag whether addresses should be munged.
190  *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
191  *	use bit 3 of the command byte as address bit A8, rather
192  *	than having a two-byte address.  If this flag is set, then
193  *	commands should be munged in this way.
194  * @erase_command:	Erase command (or 0 if sector erase not needed).
195  * @erase_size:		Erase sector size (in bytes)
196  *	Erase commands affect sectors with this size and alignment.
197  *	This must be a power of two.
198  * @block_size:		Write block size (in bytes).
199  *	Write commands are limited to blocks with this size and alignment.
200  */
201 struct falcon_spi_device {
202 	int device_id;
203 	unsigned int size;
204 	unsigned int addr_len;
205 	unsigned int munge_address:1;
206 	u8 erase_command;
207 	unsigned int erase_size;
208 	unsigned int block_size;
209 };
210 
falcon_spi_present(const struct falcon_spi_device * spi)211 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
212 {
213 	return spi->size != 0;
214 }
215 
216 enum {
217 	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
218 	FALCON_STAT_tx_packets,
219 	FALCON_STAT_tx_pause,
220 	FALCON_STAT_tx_control,
221 	FALCON_STAT_tx_unicast,
222 	FALCON_STAT_tx_multicast,
223 	FALCON_STAT_tx_broadcast,
224 	FALCON_STAT_tx_lt64,
225 	FALCON_STAT_tx_64,
226 	FALCON_STAT_tx_65_to_127,
227 	FALCON_STAT_tx_128_to_255,
228 	FALCON_STAT_tx_256_to_511,
229 	FALCON_STAT_tx_512_to_1023,
230 	FALCON_STAT_tx_1024_to_15xx,
231 	FALCON_STAT_tx_15xx_to_jumbo,
232 	FALCON_STAT_tx_gtjumbo,
233 	FALCON_STAT_tx_non_tcpudp,
234 	FALCON_STAT_tx_mac_src_error,
235 	FALCON_STAT_tx_ip_src_error,
236 	FALCON_STAT_rx_bytes,
237 	FALCON_STAT_rx_good_bytes,
238 	FALCON_STAT_rx_bad_bytes,
239 	FALCON_STAT_rx_packets,
240 	FALCON_STAT_rx_good,
241 	FALCON_STAT_rx_bad,
242 	FALCON_STAT_rx_pause,
243 	FALCON_STAT_rx_control,
244 	FALCON_STAT_rx_unicast,
245 	FALCON_STAT_rx_multicast,
246 	FALCON_STAT_rx_broadcast,
247 	FALCON_STAT_rx_lt64,
248 	FALCON_STAT_rx_64,
249 	FALCON_STAT_rx_65_to_127,
250 	FALCON_STAT_rx_128_to_255,
251 	FALCON_STAT_rx_256_to_511,
252 	FALCON_STAT_rx_512_to_1023,
253 	FALCON_STAT_rx_1024_to_15xx,
254 	FALCON_STAT_rx_15xx_to_jumbo,
255 	FALCON_STAT_rx_gtjumbo,
256 	FALCON_STAT_rx_bad_lt64,
257 	FALCON_STAT_rx_bad_gtjumbo,
258 	FALCON_STAT_rx_overflow,
259 	FALCON_STAT_rx_symbol_error,
260 	FALCON_STAT_rx_align_error,
261 	FALCON_STAT_rx_length_error,
262 	FALCON_STAT_rx_internal_error,
263 	FALCON_STAT_rx_nodesc_drop_cnt,
264 	FALCON_STAT_COUNT
265 };
266 
267 /**
268  * struct falcon_nic_data - Falcon NIC state
269  * @pci_dev2: Secondary function of Falcon A
270  * @efx: ef4_nic pointer
271  * @board: Board state and functions
272  * @stats: Hardware statistics
273  * @stats_disable_count: Nest count for disabling statistics fetches
274  * @stats_pending: Is there a pending DMA of MAC statistics.
275  * @stats_timer: A timer for regularly fetching MAC statistics.
276  * @spi_flash: SPI flash device
277  * @spi_eeprom: SPI EEPROM device
278  * @spi_lock: SPI bus lock
279  * @mdio_lock: MDIO bus lock
280  * @xmac_poll_required: XMAC link state needs polling
281  */
282 struct falcon_nic_data {
283 	struct pci_dev *pci_dev2;
284 	struct ef4_nic *efx;
285 	struct falcon_board board;
286 	u64 stats[FALCON_STAT_COUNT];
287 	unsigned int stats_disable_count;
288 	bool stats_pending;
289 	struct timer_list stats_timer;
290 	struct falcon_spi_device spi_flash;
291 	struct falcon_spi_device spi_eeprom;
292 	struct mutex spi_lock;
293 	struct mutex mdio_lock;
294 	bool xmac_poll_required;
295 };
296 
falcon_board(struct ef4_nic * efx)297 static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
298 {
299 	struct falcon_nic_data *data = efx->nic_data;
300 	return &data->board;
301 }
302 
303 struct ethtool_ts_info;
304 
305 extern const struct ef4_nic_type falcon_a1_nic_type;
306 extern const struct ef4_nic_type falcon_b0_nic_type;
307 
308 /**************************************************************************
309  *
310  * Externs
311  *
312  **************************************************************************
313  */
314 
315 int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
316 
317 /* TX data path */
ef4_nic_probe_tx(struct ef4_tx_queue * tx_queue)318 static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
319 {
320 	return tx_queue->efx->type->tx_probe(tx_queue);
321 }
ef4_nic_init_tx(struct ef4_tx_queue * tx_queue)322 static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
323 {
324 	tx_queue->efx->type->tx_init(tx_queue);
325 }
ef4_nic_remove_tx(struct ef4_tx_queue * tx_queue)326 static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
327 {
328 	tx_queue->efx->type->tx_remove(tx_queue);
329 }
ef4_nic_push_buffers(struct ef4_tx_queue * tx_queue)330 static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
331 {
332 	tx_queue->efx->type->tx_write(tx_queue);
333 }
334 
335 /* RX data path */
ef4_nic_probe_rx(struct ef4_rx_queue * rx_queue)336 static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
337 {
338 	return rx_queue->efx->type->rx_probe(rx_queue);
339 }
ef4_nic_init_rx(struct ef4_rx_queue * rx_queue)340 static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
341 {
342 	rx_queue->efx->type->rx_init(rx_queue);
343 }
ef4_nic_remove_rx(struct ef4_rx_queue * rx_queue)344 static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
345 {
346 	rx_queue->efx->type->rx_remove(rx_queue);
347 }
ef4_nic_notify_rx_desc(struct ef4_rx_queue * rx_queue)348 static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
349 {
350 	rx_queue->efx->type->rx_write(rx_queue);
351 }
ef4_nic_generate_fill_event(struct ef4_rx_queue * rx_queue)352 static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
353 {
354 	rx_queue->efx->type->rx_defer_refill(rx_queue);
355 }
356 
357 /* Event data path */
ef4_nic_probe_eventq(struct ef4_channel * channel)358 static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
359 {
360 	return channel->efx->type->ev_probe(channel);
361 }
ef4_nic_init_eventq(struct ef4_channel * channel)362 static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
363 {
364 	return channel->efx->type->ev_init(channel);
365 }
ef4_nic_fini_eventq(struct ef4_channel * channel)366 static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
367 {
368 	channel->efx->type->ev_fini(channel);
369 }
ef4_nic_remove_eventq(struct ef4_channel * channel)370 static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
371 {
372 	channel->efx->type->ev_remove(channel);
373 }
374 static inline int
ef4_nic_process_eventq(struct ef4_channel * channel,int quota)375 ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
376 {
377 	return channel->efx->type->ev_process(channel, quota);
378 }
ef4_nic_eventq_read_ack(struct ef4_channel * channel)379 static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
380 {
381 	channel->efx->type->ev_read_ack(channel);
382 }
383 void ef4_nic_event_test_start(struct ef4_channel *channel);
384 
385 /* queue operations */
386 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
387 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
388 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
389 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
390 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
391 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
392 				    dma_addr_t dma_addr, unsigned int len);
393 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
394 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
395 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
396 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
397 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
398 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
399 int ef4_farch_ev_probe(struct ef4_channel *channel);
400 int ef4_farch_ev_init(struct ef4_channel *channel);
401 void ef4_farch_ev_fini(struct ef4_channel *channel);
402 void ef4_farch_ev_remove(struct ef4_channel *channel);
403 int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
404 void ef4_farch_ev_read_ack(struct ef4_channel *channel);
405 void ef4_farch_ev_test_generate(struct ef4_channel *channel);
406 
407 /* filter operations */
408 int ef4_farch_filter_table_probe(struct ef4_nic *efx);
409 void ef4_farch_filter_table_restore(struct ef4_nic *efx);
410 void ef4_farch_filter_table_remove(struct ef4_nic *efx);
411 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
412 s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
413 			    bool replace);
414 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
415 				 enum ef4_filter_priority priority,
416 				 u32 filter_id);
417 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
418 			      enum ef4_filter_priority priority, u32 filter_id,
419 			      struct ef4_filter_spec *);
420 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
421 			      enum ef4_filter_priority priority);
422 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
423 				   enum ef4_filter_priority priority);
424 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
425 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
426 				enum ef4_filter_priority priority, u32 *buf,
427 				u32 size);
428 #ifdef CONFIG_RFS_ACCEL
429 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
430 				struct ef4_filter_spec *spec);
431 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
432 				     unsigned int index);
433 #endif
434 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
435 
436 bool ef4_nic_event_present(struct ef4_channel *channel);
437 
438 /* Some statistics are computed as A - B where A and B each increase
439  * linearly with some hardware counter(s) and the counters are read
440  * asynchronously.  If the counters contributing to B are always read
441  * after those contributing to A, the computed value may be lower than
442  * the true value by some variable amount, and may decrease between
443  * subsequent computations.
444  *
445  * We should never allow statistics to decrease or to exceed the true
446  * value.  Since the computed value will never be greater than the
447  * true value, we can achieve this by only storing the computed value
448  * when it increases.
449  */
ef4_update_diff_stat(u64 * stat,u64 diff)450 static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
451 {
452 	if ((s64)(diff - *stat) > 0)
453 		*stat = diff;
454 }
455 
456 /* Interrupts */
457 int ef4_nic_init_interrupt(struct ef4_nic *efx);
458 int ef4_nic_irq_test_start(struct ef4_nic *efx);
459 void ef4_nic_fini_interrupt(struct ef4_nic *efx);
460 void ef4_farch_irq_enable_master(struct ef4_nic *efx);
461 int ef4_farch_irq_test_generate(struct ef4_nic *efx);
462 void ef4_farch_irq_disable_master(struct ef4_nic *efx);
463 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
464 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
465 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
466 
ef4_nic_event_test_irq_cpu(struct ef4_channel * channel)467 static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
468 {
469 	return READ_ONCE(channel->event_test_cpu);
470 }
ef4_nic_irq_test_irq_cpu(struct ef4_nic * efx)471 static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
472 {
473 	return READ_ONCE(efx->last_irq_cpu);
474 }
475 
476 /* Global Resources */
477 int ef4_nic_flush_queues(struct ef4_nic *efx);
478 int ef4_farch_fini_dmaq(struct ef4_nic *efx);
479 void ef4_farch_finish_flr(struct ef4_nic *efx);
480 void falcon_start_nic_stats(struct ef4_nic *efx);
481 void falcon_stop_nic_stats(struct ef4_nic *efx);
482 int falcon_reset_xaui(struct ef4_nic *efx);
483 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
484 void ef4_farch_init_common(struct ef4_nic *efx);
485 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
486 
487 int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
488 			 unsigned int len, gfp_t gfp_flags);
489 void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
490 
491 /* Tests */
492 struct ef4_farch_register_test {
493 	unsigned address;
494 	ef4_oword_t mask;
495 };
496 int ef4_farch_test_registers(struct ef4_nic *efx,
497 			     const struct ef4_farch_register_test *regs,
498 			     size_t n_regs);
499 
500 size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
501 void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
502 
503 size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
504 			      const unsigned long *mask, u8 *names);
505 void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
506 			  const unsigned long *mask, u64 *stats,
507 			  const void *dma_buf, bool accumulate);
508 void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
509 
510 #define EF4_MAX_FLUSH_TIME 5000
511 
512 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
513 			      ef4_qword_t *event);
514 
515 #endif /* EF4_NIC_H */
516