1 |
2 |	bindec.sa 3.4 1/3/91
3 |
4 |	bindec
5 |
6 |	Description:
7 |		Converts an input in extended precision format
8 |		to bcd format.
9 |
10 |	Input:
11 |		a0 points to the input extended precision value
12 |		value in memory; d0 contains the k-factor sign-extended
13 |		to 32-bits.  The input may be either normalized,
14 |		unnormalized, or denormalized.
15 |
16 |	Output:	result in the FP_SCR1 space on the stack.
17 |
18 |	Saves and Modifies: D2-D7,A2,FP2
19 |
20 |	Algorithm:
21 |
22 |	A1.	Set RM and size ext;  Set SIGMA = sign of input.
23 |		The k-factor is saved for use in d7. Clear the
24 |		BINDEC_FLG for separating normalized/denormalized
25 |		input.  If input is unnormalized or denormalized,
26 |		normalize it.
27 |
28 |	A2.	Set X = abs(input).
29 |
30 |	A3.	Compute ILOG.
31 |		ILOG is the log base 10 of the input value.  It is
32 |		approximated by adding e + 0.f when the original
33 |		value is viewed as 2^^e * 1.f in extended precision.
34 |		This value is stored in d6.
35 |
36 |	A4.	Clr INEX bit.
37 |		The operation in A3 above may have set INEX2.
38 |
39 |	A5.	Set ICTR = 0;
40 |		ICTR is a flag used in A13.  It must be set before the
41 |		loop entry A6.
42 |
43 |	A6.	Calculate LEN.
44 |		LEN is the number of digits to be displayed.  The
45 |		k-factor can dictate either the total number of digits,
46 |		if it is a positive number, or the number of digits
47 |		after the decimal point which are to be included as
48 |		significant.  See the 68882 manual for examples.
49 |		If LEN is computed to be greater than 17, set OPERR in
50 |		USER_FPSR.  LEN is stored in d4.
51 |
52 |	A7.	Calculate SCALE.
53 |		SCALE is equal to 10^ISCALE, where ISCALE is the number
54 |		of decimal places needed to insure LEN integer digits
55 |		in the output before conversion to bcd. LAMBDA is the
56 |		sign of ISCALE, used in A9. Fp1 contains
57 |		10^^(abs(ISCALE)) using a rounding mode which is a
58 |		function of the original rounding mode and the signs
59 |		of ISCALE and X.  A table is given in the code.
60 |
61 |	A8.	Clr INEX; Force RZ.
62 |		The operation in A3 above may have set INEX2.
63 |		RZ mode is forced for the scaling operation to insure
64 |		only one rounding error.  The grs bits are collected in
65 |		the INEX flag for use in A10.
66 |
67 |	A9.	Scale X -> Y.
68 |		The mantissa is scaled to the desired number of
69 |		significant digits.  The excess digits are collected
70 |		in INEX2.
71 |
72 |	A10.	Or in INEX.
73 |		If INEX is set, round error occurred.  This is
74 |		compensated for by 'or-ing' in the INEX2 flag to
75 |		the lsb of Y.
76 |
77 |	A11.	Restore original FPCR; set size ext.
78 |		Perform FINT operation in the user's rounding mode.
79 |		Keep the size to extended.
80 |
81 |	A12.	Calculate YINT = FINT(Y) according to user's rounding
82 |		mode.  The FPSP routine sintd0 is used.  The output
83 |		is in fp0.
84 |
85 |	A13.	Check for LEN digits.
86 |		If the int operation results in more than LEN digits,
87 |		or less than LEN -1 digits, adjust ILOG and repeat from
88 |		A6.  This test occurs only on the first pass.  If the
89 |		result is exactly 10^LEN, decrement ILOG and divide
90 |		the mantissa by 10.
91 |
92 |	A14.	Convert the mantissa to bcd.
93 |		The binstr routine is used to convert the LEN digit
94 |		mantissa to bcd in memory.  The input to binstr is
95 |		to be a fraction; i.e. (mantissa)/10^LEN and adjusted
96 |		such that the decimal point is to the left of bit 63.
97 |		The bcd digits are stored in the correct position in
98 |		the final string area in memory.
99 |
100 |	A15.	Convert the exponent to bcd.
101 |		As in A14 above, the exp is converted to bcd and the
102 |		digits are stored in the final string.
103 |		Test the length of the final exponent string.  If the
104 |		length is 4, set operr.
105 |
106 |	A16.	Write sign bits to final string.
107 |
108 |	Implementation Notes:
109 |
110 |	The registers are used as follows:
111 |
112 |		d0: scratch; LEN input to binstr
113 |		d1: scratch
114 |		d2: upper 32-bits of mantissa for binstr
115 |		d3: scratch;lower 32-bits of mantissa for binstr
116 |		d4: LEN
117 |		d5: LAMBDA/ICTR
118 |		d6: ILOG
119 |		d7: k-factor
120 |		a0: ptr for original operand/final result
121 |		a1: scratch pointer
122 |		a2: pointer to FP_X; abs(original value) in ext
123 |		fp0: scratch
124 |		fp1: scratch
125 |		fp2: scratch
126 |		F_SCR1:
127 |		F_SCR2:
128 |		L_SCR1:
129 |		L_SCR2:
130 
131 |		Copyright (C) Motorola, Inc. 1990
132 |			All Rights Reserved
133 |
134 |       For details on the license for this file, please see the
135 |       file, README, in this same directory.
136 
137 |BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
138 
139 #include "fpsp.h"
140 
141 	|section	8
142 
143 | Constants in extended precision
144 LOG2:	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
145 LOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
146 
147 | Constants in single precision
148 FONE:	.long	0x3F800000,0x00000000,0x00000000,0x00000000
149 FTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000
150 FTEN:	.long	0x41200000,0x00000000,0x00000000,0x00000000
151 F4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000
152 
153 RBDTBL:	.byte	0,0,0,0
154 	.byte	3,3,2,2
155 	.byte	3,2,2,3
156 	.byte	2,3,3,2
157 
158 	|xref	binstr
159 	|xref	sintdo
160 	|xref	ptenrn,ptenrm,ptenrp
161 
162 	.global	bindec
163 	.global	sc_mul
164 bindec:
165 	moveml	%d2-%d7/%a2,-(%a7)
166 	fmovemx %fp0-%fp2,-(%a7)
167 
168 | A1. Set RM and size ext. Set SIGMA = sign input;
169 |     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
170 |     separating  normalized/denormalized input.  If the input
171 |     is a denormalized number, set the BINDEC_FLG memory word
172 |     to signal denorm.  If the input is unnormalized, normalize
173 |     the input and test for denormalized result.
174 |
175 	fmovel	#rm_mode,%FPCR	|set RM and ext
176 	movel	(%a0),L_SCR2(%a6)	|save exponent for sign check
177 	movel	%d0,%d7		|move k-factor to d7
178 	clrb	BINDEC_FLG(%a6)	|clr norm/denorm flag
179 	movew	STAG(%a6),%d0	|get stag
180 	andiw	#0xe000,%d0	|isolate stag bits
181 	beq	A2_str		|if zero, input is norm
182 |
183 | Normalize the denorm
184 |
185 un_de_norm:
186 	movew	(%a0),%d0
187 	andiw	#0x7fff,%d0	|strip sign of normalized exp
188 	movel	4(%a0),%d1
189 	movel	8(%a0),%d2
190 norm_loop:
191 	subw	#1,%d0
192 	lsll	#1,%d2
193 	roxll	#1,%d1
194 	tstl	%d1
195 	bges	norm_loop
196 |
197 | Test if the normalized input is denormalized
198 |
199 	tstw	%d0
200 	bgts	pos_exp		|if greater than zero, it is a norm
201 	st	BINDEC_FLG(%a6)	|set flag for denorm
202 pos_exp:
203 	andiw	#0x7fff,%d0	|strip sign of normalized exp
204 	movew	%d0,(%a0)
205 	movel	%d1,4(%a0)
206 	movel	%d2,8(%a0)
207 
208 | A2. Set X = abs(input).
209 |
210 A2_str:
211 	movel	(%a0),FP_SCR2(%a6) | move input to work space
212 	movel	4(%a0),FP_SCR2+4(%a6) | move input to work space
213 	movel	8(%a0),FP_SCR2+8(%a6) | move input to work space
214 	andil	#0x7fffffff,FP_SCR2(%a6) |create abs(X)
215 
216 | A3. Compute ILOG.
217 |     ILOG is the log base 10 of the input value.  It is approx-
218 |     imated by adding e + 0.f when the original value is viewed
219 |     as 2^^e * 1.f in extended precision.  This value is stored
220 |     in d6.
221 |
222 | Register usage:
223 |	Input/Output
224 |	d0: k-factor/exponent
225 |	d2: x/x
226 |	d3: x/x
227 |	d4: x/x
228 |	d5: x/x
229 |	d6: x/ILOG
230 |	d7: k-factor/Unchanged
231 |	a0: ptr for original operand/final result
232 |	a1: x/x
233 |	a2: x/x
234 |	fp0: x/float(ILOG)
235 |	fp1: x/x
236 |	fp2: x/x
237 |	F_SCR1:x/x
238 |	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
239 |	L_SCR1:x/x
240 |	L_SCR2:first word of X packed/Unchanged
241 
242 	tstb	BINDEC_FLG(%a6)	|check for denorm
243 	beqs	A3_cont		|if clr, continue with norm
244 	movel	#-4933,%d6	|force ILOG = -4933
245 	bras	A4_str
246 A3_cont:
247 	movew	FP_SCR2(%a6),%d0	|move exp to d0
248 	movew	#0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
249 	fmovex	FP_SCR2(%a6),%fp0	|now fp0 has 1.f
250 	subw	#0x3fff,%d0	|strip off bias
251 	faddw	%d0,%fp0		|add in exp
252 	fsubs	FONE,%fp0	|subtract off 1.0
253 	fbge	pos_res		|if pos, branch
254 	fmulx	LOG2UP1,%fp0	|if neg, mul by LOG2UP1
255 	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
256 	bras	A4_str		|go move out ILOG
257 pos_res:
258 	fmulx	LOG2,%fp0	|if pos, mul by LOG2
259 	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
260 
261 
262 | A4. Clr INEX bit.
263 |     The operation in A3 above may have set INEX2.
264 
265 A4_str:
266 	fmovel	#0,%FPSR		|zero all of fpsr - nothing needed
267 
268 
269 | A5. Set ICTR = 0;
270 |     ICTR is a flag used in A13.  It must be set before the
271 |     loop entry A6. The lower word of d5 is used for ICTR.
272 
273 	clrw	%d5		|clear ICTR
274 
275 
276 | A6. Calculate LEN.
277 |     LEN is the number of digits to be displayed.  The k-factor
278 |     can dictate either the total number of digits, if it is
279 |     a positive number, or the number of digits after the
280 |     original decimal point which are to be included as
281 |     significant.  See the 68882 manual for examples.
282 |     If LEN is computed to be greater than 17, set OPERR in
283 |     USER_FPSR.  LEN is stored in d4.
284 |
285 | Register usage:
286 |	Input/Output
287 |	d0: exponent/Unchanged
288 |	d2: x/x/scratch
289 |	d3: x/x
290 |	d4: exc picture/LEN
291 |	d5: ICTR/Unchanged
292 |	d6: ILOG/Unchanged
293 |	d7: k-factor/Unchanged
294 |	a0: ptr for original operand/final result
295 |	a1: x/x
296 |	a2: x/x
297 |	fp0: float(ILOG)/Unchanged
298 |	fp1: x/x
299 |	fp2: x/x
300 |	F_SCR1:x/x
301 |	F_SCR2:Abs(X) with $3fff exponent/Unchanged
302 |	L_SCR1:x/x
303 |	L_SCR2:first word of X packed/Unchanged
304 
305 A6_str:
306 	tstl	%d7		|branch on sign of k
307 	bles	k_neg		|if k <= 0, LEN = ILOG + 1 - k
308 	movel	%d7,%d4		|if k > 0, LEN = k
309 	bras	len_ck		|skip to LEN check
310 k_neg:
311 	movel	%d6,%d4		|first load ILOG to d4
312 	subl	%d7,%d4		|subtract off k
313 	addql	#1,%d4		|add in the 1
314 len_ck:
315 	tstl	%d4		|LEN check: branch on sign of LEN
316 	bles	LEN_ng		|if neg, set LEN = 1
317 	cmpl	#17,%d4		|test if LEN > 17
318 	bles	A7_str		|if not, forget it
319 	movel	#17,%d4		|set max LEN = 17
320 	tstl	%d7		|if negative, never set OPERR
321 	bles	A7_str		|if positive, continue
322 	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
323 	bras	A7_str		|finished here
324 LEN_ng:
325 	moveql	#1,%d4		|min LEN is 1
326 
327 
328 | A7. Calculate SCALE.
329 |     SCALE is equal to 10^ISCALE, where ISCALE is the number
330 |     of decimal places needed to insure LEN integer digits
331 |     in the output before conversion to bcd. LAMBDA is the sign
332 |     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
333 |     the rounding mode as given in the following table (see
334 |     Coonen, p. 7.23 as ref.; however, the SCALE variable is
335 |     of opposite sign in bindec.sa from Coonen).
336 |
337 |	Initial					USE
338 |	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
339 |	----------------------------------------------
340 |	 RN	00	   0	   0		00/0	RN
341 |	 RN	00	   0	   1		00/0	RN
342 |	 RN	00	   1	   0		00/0	RN
343 |	 RN	00	   1	   1		00/0	RN
344 |	 RZ	01	   0	   0		11/3	RP
345 |	 RZ	01	   0	   1		11/3	RP
346 |	 RZ	01	   1	   0		10/2	RM
347 |	 RZ	01	   1	   1		10/2	RM
348 |	 RM	10	   0	   0		11/3	RP
349 |	 RM	10	   0	   1		10/2	RM
350 |	 RM	10	   1	   0		10/2	RM
351 |	 RM	10	   1	   1		11/3	RP
352 |	 RP	11	   0	   0		10/2	RM
353 |	 RP	11	   0	   1		11/3	RP
354 |	 RP	11	   1	   0		11/3	RP
355 |	 RP	11	   1	   1		10/2	RM
356 |
357 | Register usage:
358 |	Input/Output
359 |	d0: exponent/scratch - final is 0
360 |	d2: x/0 or 24 for A9
361 |	d3: x/scratch - offset ptr into PTENRM array
362 |	d4: LEN/Unchanged
363 |	d5: 0/ICTR:LAMBDA
364 |	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
365 |	d7: k-factor/Unchanged
366 |	a0: ptr for original operand/final result
367 |	a1: x/ptr to PTENRM array
368 |	a2: x/x
369 |	fp0: float(ILOG)/Unchanged
370 |	fp1: x/10^ISCALE
371 |	fp2: x/x
372 |	F_SCR1:x/x
373 |	F_SCR2:Abs(X) with $3fff exponent/Unchanged
374 |	L_SCR1:x/x
375 |	L_SCR2:first word of X packed/Unchanged
376 
377 A7_str:
378 	tstl	%d7		|test sign of k
379 	bgts	k_pos		|if pos and > 0, skip this
380 	cmpl	%d6,%d7		|test k - ILOG
381 	blts	k_pos		|if ILOG >= k, skip this
382 	movel	%d7,%d6		|if ((k<0) & (ILOG < k)) ILOG = k
383 k_pos:
384 	movel	%d6,%d0		|calc ILOG + 1 - LEN in d0
385 	addql	#1,%d0		|add the 1
386 	subl	%d4,%d0		|sub off LEN
387 	swap	%d5		|use upper word of d5 for LAMBDA
388 	clrw	%d5		|set it zero initially
389 	clrw	%d2		|set up d2 for very small case
390 	tstl	%d0		|test sign of ISCALE
391 	bges	iscale		|if pos, skip next inst
392 	addqw	#1,%d5		|if neg, set LAMBDA true
393 	cmpl	#0xffffecd4,%d0	|test iscale <= -4908
394 	bgts	no_inf		|if false, skip rest
395 	addil	#24,%d0		|add in 24 to iscale
396 	movel	#24,%d2		|put 24 in d2 for A9
397 no_inf:
398 	negl	%d0		|and take abs of ISCALE
399 iscale:
400 	fmoves	FONE,%fp1	|init fp1 to 1
401 	bfextu	USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
402 	lslw	#1,%d1		|put them in bits 2:1
403 	addw	%d5,%d1		|add in LAMBDA
404 	lslw	#1,%d1		|put them in bits 3:1
405 	tstl	L_SCR2(%a6)	|test sign of original x
406 	bges	x_pos		|if pos, don't set bit 0
407 	addql	#1,%d1		|if neg, set bit 0
408 x_pos:
409 	leal	RBDTBL,%a2	|load rbdtbl base
410 	moveb	(%a2,%d1),%d3	|load d3 with new rmode
411 	lsll	#4,%d3		|put bits in proper position
412 	fmovel	%d3,%fpcr		|load bits into fpu
413 	lsrl	#4,%d3		|put bits in proper position
414 	tstb	%d3		|decode new rmode for pten table
415 	bnes	not_rn		|if zero, it is RN
416 	leal	PTENRN,%a1	|load a1 with RN table base
417 	bras	rmode		|exit decode
418 not_rn:
419 	lsrb	#1,%d3		|get lsb in carry
420 	bccs	not_rp		|if carry clear, it is RM
421 	leal	PTENRP,%a1	|load a1 with RP table base
422 	bras	rmode		|exit decode
423 not_rp:
424 	leal	PTENRM,%a1	|load a1 with RM table base
425 rmode:
426 	clrl	%d3		|clr table index
427 e_loop:
428 	lsrl	#1,%d0		|shift next bit into carry
429 	bccs	e_next		|if zero, skip the mul
430 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
431 e_next:
432 	addl	#12,%d3		|inc d3 to next pwrten table entry
433 	tstl	%d0		|test if ISCALE is zero
434 	bnes	e_loop		|if not, loop
435 
436 
437 | A8. Clr INEX; Force RZ.
438 |     The operation in A3 above may have set INEX2.
439 |     RZ mode is forced for the scaling operation to insure
440 |     only one rounding error.  The grs bits are collected in
441 |     the INEX flag for use in A10.
442 |
443 | Register usage:
444 |	Input/Output
445 
446 	fmovel	#0,%FPSR		|clr INEX
447 	fmovel	#rz_mode,%FPCR	|set RZ rounding mode
448 
449 
450 | A9. Scale X -> Y.
451 |     The mantissa is scaled to the desired number of significant
452 |     digits.  The excess digits are collected in INEX2. If mul,
453 |     Check d2 for excess 10 exponential value.  If not zero,
454 |     the iscale value would have caused the pwrten calculation
455 |     to overflow.  Only a negative iscale can cause this, so
456 |     multiply by 10^(d2), which is now only allowed to be 24,
457 |     with a multiply by 10^8 and 10^16, which is exact since
458 |     10^24 is exact.  If the input was denormalized, we must
459 |     create a busy stack frame with the mul command and the
460 |     two operands, and allow the fpu to complete the multiply.
461 |
462 | Register usage:
463 |	Input/Output
464 |	d0: FPCR with RZ mode/Unchanged
465 |	d2: 0 or 24/unchanged
466 |	d3: x/x
467 |	d4: LEN/Unchanged
468 |	d5: ICTR:LAMBDA
469 |	d6: ILOG/Unchanged
470 |	d7: k-factor/Unchanged
471 |	a0: ptr for original operand/final result
472 |	a1: ptr to PTENRM array/Unchanged
473 |	a2: x/x
474 |	fp0: float(ILOG)/X adjusted for SCALE (Y)
475 |	fp1: 10^ISCALE/Unchanged
476 |	fp2: x/x
477 |	F_SCR1:x/x
478 |	F_SCR2:Abs(X) with $3fff exponent/Unchanged
479 |	L_SCR1:x/x
480 |	L_SCR2:first word of X packed/Unchanged
481 
482 A9_str:
483 	fmovex	(%a0),%fp0	|load X from memory
484 	fabsx	%fp0		|use abs(X)
485 	tstw	%d5		|LAMBDA is in lower word of d5
486 	bne	sc_mul		|if neg (LAMBDA = 1), scale by mul
487 	fdivx	%fp1,%fp0		|calculate X / SCALE -> Y to fp0
488 	bras	A10_st		|branch to A10
489 
490 sc_mul:
491 	tstb	BINDEC_FLG(%a6)	|check for denorm
492 	beqs	A9_norm		|if norm, continue with mul
493 	fmovemx %fp1-%fp1,-(%a7)	|load ETEMP with 10^ISCALE
494 	movel	8(%a0),-(%a7)	|load FPTEMP with input arg
495 	movel	4(%a0),-(%a7)
496 	movel	(%a0),-(%a7)
497 	movel	#18,%d3		|load count for busy stack
498 A9_loop:
499 	clrl	-(%a7)		|clear lword on stack
500 	dbf	%d3,A9_loop
501 	moveb	VER_TMP(%a6),(%a7) |write current version number
502 	moveb	#BUSY_SIZE-4,1(%a7) |write current busy size
503 	moveb	#0x10,0x44(%a7)	|set fcefpte[15] bit
504 	movew	#0x0023,0x40(%a7)	|load cmdreg1b with mul command
505 	moveb	#0xfe,0x8(%a7)	|load all 1s to cu savepc
506 	frestore (%a7)+		|restore frame to fpu for completion
507 	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
508 	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
509 	bras	A10_st
510 A9_norm:
511 	tstw	%d2		|test for small exp case
512 	beqs	A9_con		|if zero, continue as normal
513 	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
514 	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
515 A9_con:
516 	fmulx	%fp1,%fp0		|calculate X * SCALE -> Y to fp0
517 
518 
519 | A10. Or in INEX.
520 |      If INEX is set, round error occurred.  This is compensated
521 |      for by 'or-ing' in the INEX2 flag to the lsb of Y.
522 |
523 | Register usage:
524 |	Input/Output
525 |	d0: FPCR with RZ mode/FPSR with INEX2 isolated
526 |	d2: x/x
527 |	d3: x/x
528 |	d4: LEN/Unchanged
529 |	d5: ICTR:LAMBDA
530 |	d6: ILOG/Unchanged
531 |	d7: k-factor/Unchanged
532 |	a0: ptr for original operand/final result
533 |	a1: ptr to PTENxx array/Unchanged
534 |	a2: x/ptr to FP_SCR2(a6)
535 |	fp0: Y/Y with lsb adjusted
536 |	fp1: 10^ISCALE/Unchanged
537 |	fp2: x/x
538 
539 A10_st:
540 	fmovel	%FPSR,%d0		|get FPSR
541 	fmovex	%fp0,FP_SCR2(%a6)	|move Y to memory
542 	leal	FP_SCR2(%a6),%a2	|load a2 with ptr to FP_SCR2
543 	btstl	#9,%d0		|check if INEX2 set
544 	beqs	A11_st		|if clear, skip rest
545 	oril	#1,8(%a2)	|or in 1 to lsb of mantissa
546 	fmovex	FP_SCR2(%a6),%fp0	|write adjusted Y back to fpu
547 
548 
549 | A11. Restore original FPCR; set size ext.
550 |      Perform FINT operation in the user's rounding mode.  Keep
551 |      the size to extended.  The sintdo entry point in the sint
552 |      routine expects the FPCR value to be in USER_FPCR for
553 |      mode and precision.  The original FPCR is saved in L_SCR1.
554 
555 A11_st:
556 	movel	USER_FPCR(%a6),L_SCR1(%a6) |save it for later
557 	andil	#0x00000030,USER_FPCR(%a6) |set size to ext,
558 |					;block exceptions
559 
560 
561 | A12. Calculate YINT = FINT(Y) according to user's rounding mode.
562 |      The FPSP routine sintd0 is used.  The output is in fp0.
563 |
564 | Register usage:
565 |	Input/Output
566 |	d0: FPSR with AINEX cleared/FPCR with size set to ext
567 |	d2: x/x/scratch
568 |	d3: x/x
569 |	d4: LEN/Unchanged
570 |	d5: ICTR:LAMBDA/Unchanged
571 |	d6: ILOG/Unchanged
572 |	d7: k-factor/Unchanged
573 |	a0: ptr for original operand/src ptr for sintdo
574 |	a1: ptr to PTENxx array/Unchanged
575 |	a2: ptr to FP_SCR2(a6)/Unchanged
576 |	a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
577 |	fp0: Y/YINT
578 |	fp1: 10^ISCALE/Unchanged
579 |	fp2: x/x
580 |	F_SCR1:x/x
581 |	F_SCR2:Y adjusted for inex/Y with original exponent
582 |	L_SCR1:x/original USER_FPCR
583 |	L_SCR2:first word of X packed/Unchanged
584 
585 A12_st:
586 	moveml	%d0-%d1/%a0-%a1,-(%a7)	|save regs used by sintd0
587 	movel	L_SCR1(%a6),-(%a7)
588 	movel	L_SCR2(%a6),-(%a7)
589 	leal	FP_SCR2(%a6),%a0		|a0 is ptr to F_SCR2(a6)
590 	fmovex	%fp0,(%a0)		|move Y to memory at FP_SCR2(a6)
591 	tstl	L_SCR2(%a6)		|test sign of original operand
592 	bges	do_fint			|if pos, use Y
593 	orl	#0x80000000,(%a0)		|if neg, use -Y
594 do_fint:
595 	movel	USER_FPSR(%a6),-(%a7)
596 	bsr	sintdo			|sint routine returns int in fp0
597 	moveb	(%a7),USER_FPSR(%a6)
598 	addl	#4,%a7
599 	movel	(%a7)+,L_SCR2(%a6)
600 	movel	(%a7)+,L_SCR1(%a6)
601 	moveml	(%a7)+,%d0-%d1/%a0-%a1	|restore regs used by sint
602 	movel	L_SCR2(%a6),FP_SCR2(%a6)	|restore original exponent
603 	movel	L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
604 
605 
606 | A13. Check for LEN digits.
607 |      If the int operation results in more than LEN digits,
608 |      or less than LEN -1 digits, adjust ILOG and repeat from
609 |      A6.  This test occurs only on the first pass.  If the
610 |      result is exactly 10^LEN, decrement ILOG and divide
611 |      the mantissa by 10.  The calculation of 10^LEN cannot
612 |      be inexact, since all powers of ten up to 10^27 are exact
613 |      in extended precision, so the use of a previous power-of-ten
614 |      table will introduce no error.
615 |
616 |
617 | Register usage:
618 |	Input/Output
619 |	d0: FPCR with size set to ext/scratch final = 0
620 |	d2: x/x
621 |	d3: x/scratch final = x
622 |	d4: LEN/LEN adjusted
623 |	d5: ICTR:LAMBDA/LAMBDA:ICTR
624 |	d6: ILOG/ILOG adjusted
625 |	d7: k-factor/Unchanged
626 |	a0: pointer into memory for packed bcd string formation
627 |	a1: ptr to PTENxx array/Unchanged
628 |	a2: ptr to FP_SCR2(a6)/Unchanged
629 |	fp0: int portion of Y/abs(YINT) adjusted
630 |	fp1: 10^ISCALE/Unchanged
631 |	fp2: x/10^LEN
632 |	F_SCR1:x/x
633 |	F_SCR2:Y with original exponent/Unchanged
634 |	L_SCR1:original USER_FPCR/Unchanged
635 |	L_SCR2:first word of X packed/Unchanged
636 
637 A13_st:
638 	swap	%d5		|put ICTR in lower word of d5
639 	tstw	%d5		|check if ICTR = 0
640 	bne	not_zr		|if non-zero, go to second test
641 |
642 | Compute 10^(LEN-1)
643 |
644 	fmoves	FONE,%fp2	|init fp2 to 1.0
645 	movel	%d4,%d0		|put LEN in d0
646 	subql	#1,%d0		|d0 = LEN -1
647 	clrl	%d3		|clr table index
648 l_loop:
649 	lsrl	#1,%d0		|shift next bit into carry
650 	bccs	l_next		|if zero, skip the mul
651 	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
652 l_next:
653 	addl	#12,%d3		|inc d3 to next pwrten table entry
654 	tstl	%d0		|test if LEN is zero
655 	bnes	l_loop		|if not, loop
656 |
657 | 10^LEN-1 is computed for this test and A14.  If the input was
658 | denormalized, check only the case in which YINT > 10^LEN.
659 |
660 	tstb	BINDEC_FLG(%a6)	|check if input was norm
661 	beqs	A13_con		|if norm, continue with checking
662 	fabsx	%fp0		|take abs of YINT
663 	bra	test_2
664 |
665 | Compare abs(YINT) to 10^(LEN-1) and 10^LEN
666 |
667 A13_con:
668 	fabsx	%fp0		|take abs of YINT
669 	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^(LEN-1)
670 	fbge	test_2		|if greater, do next test
671 	subql	#1,%d6		|subtract 1 from ILOG
672 	movew	#1,%d5		|set ICTR
673 	fmovel	#rm_mode,%FPCR	|set rmode to RM
674 	fmuls	FTEN,%fp2	|compute 10^LEN
675 	bra	A6_str		|return to A6 and recompute YINT
676 test_2:
677 	fmuls	FTEN,%fp2	|compute 10^LEN
678 	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^LEN
679 	fblt	A14_st		|if less, all is ok, go to A14
680 	fbgt	fix_ex		|if greater, fix and redo
681 	fdivs	FTEN,%fp0	|if equal, divide by 10
682 	addql	#1,%d6		| and inc ILOG
683 	bras	A14_st		| and continue elsewhere
684 fix_ex:
685 	addql	#1,%d6		|increment ILOG by 1
686 	movew	#1,%d5		|set ICTR
687 	fmovel	#rm_mode,%FPCR	|set rmode to RM
688 	bra	A6_str		|return to A6 and recompute YINT
689 |
690 | Since ICTR <> 0, we have already been through one adjustment,
691 | and shouldn't have another; this is to check if abs(YINT) = 10^LEN
692 | 10^LEN is again computed using whatever table is in a1 since the
693 | value calculated cannot be inexact.
694 |
695 not_zr:
696 	fmoves	FONE,%fp2	|init fp2 to 1.0
697 	movel	%d4,%d0		|put LEN in d0
698 	clrl	%d3		|clr table index
699 z_loop:
700 	lsrl	#1,%d0		|shift next bit into carry
701 	bccs	z_next		|if zero, skip the mul
702 	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
703 z_next:
704 	addl	#12,%d3		|inc d3 to next pwrten table entry
705 	tstl	%d0		|test if LEN is zero
706 	bnes	z_loop		|if not, loop
707 	fabsx	%fp0		|get abs(YINT)
708 	fcmpx	%fp2,%fp0		|check if abs(YINT) = 10^LEN
709 	fbne	A14_st		|if not, skip this
710 	fdivs	FTEN,%fp0	|divide abs(YINT) by 10
711 	addql	#1,%d6		|and inc ILOG by 1
712 	addql	#1,%d4		| and inc LEN
713 	fmuls	FTEN,%fp2	| if LEN++, the get 10^^LEN
714 
715 
716 | A14. Convert the mantissa to bcd.
717 |      The binstr routine is used to convert the LEN digit
718 |      mantissa to bcd in memory.  The input to binstr is
719 |      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
720 |      such that the decimal point is to the left of bit 63.
721 |      The bcd digits are stored in the correct position in
722 |      the final string area in memory.
723 |
724 |
725 | Register usage:
726 |	Input/Output
727 |	d0: x/LEN call to binstr - final is 0
728 |	d1: x/0
729 |	d2: x/ms 32-bits of mant of abs(YINT)
730 |	d3: x/ls 32-bits of mant of abs(YINT)
731 |	d4: LEN/Unchanged
732 |	d5: ICTR:LAMBDA/LAMBDA:ICTR
733 |	d6: ILOG
734 |	d7: k-factor/Unchanged
735 |	a0: pointer into memory for packed bcd string formation
736 |	    /ptr to first mantissa byte in result string
737 |	a1: ptr to PTENxx array/Unchanged
738 |	a2: ptr to FP_SCR2(a6)/Unchanged
739 |	fp0: int portion of Y/abs(YINT) adjusted
740 |	fp1: 10^ISCALE/Unchanged
741 |	fp2: 10^LEN/Unchanged
742 |	F_SCR1:x/Work area for final result
743 |	F_SCR2:Y with original exponent/Unchanged
744 |	L_SCR1:original USER_FPCR/Unchanged
745 |	L_SCR2:first word of X packed/Unchanged
746 
747 A14_st:
748 	fmovel	#rz_mode,%FPCR	|force rz for conversion
749 	fdivx	%fp2,%fp0		|divide abs(YINT) by 10^LEN
750 	leal	FP_SCR1(%a6),%a0
751 	fmovex	%fp0,(%a0)	|move abs(YINT)/10^LEN to memory
752 	movel	4(%a0),%d2	|move 2nd word of FP_RES to d2
753 	movel	8(%a0),%d3	|move 3rd word of FP_RES to d3
754 	clrl	4(%a0)		|zero word 2 of FP_RES
755 	clrl	8(%a0)		|zero word 3 of FP_RES
756 	movel	(%a0),%d0		|move exponent to d0
757 	swap	%d0		|put exponent in lower word
758 	beqs	no_sft		|if zero, don't shift
759 	subil	#0x3ffd,%d0	|sub bias less 2 to make fract
760 	tstl	%d0		|check if > 1
761 	bgts	no_sft		|if so, don't shift
762 	negl	%d0		|make exp positive
763 m_loop:
764 	lsrl	#1,%d2		|shift d2:d3 right, add 0s
765 	roxrl	#1,%d3		|the number of places
766 	dbf	%d0,m_loop	|given in d0
767 no_sft:
768 	tstl	%d2		|check for mantissa of zero
769 	bnes	no_zr		|if not, go on
770 	tstl	%d3		|continue zero check
771 	beqs	zer_m		|if zero, go directly to binstr
772 no_zr:
773 	clrl	%d1		|put zero in d1 for addx
774 	addil	#0x00000080,%d3	|inc at bit 7
775 	addxl	%d1,%d2		|continue inc
776 	andil	#0xffffff80,%d3	|strip off lsb not used by 882
777 zer_m:
778 	movel	%d4,%d0		|put LEN in d0 for binstr call
779 	addql	#3,%a0		|a0 points to M16 byte in result
780 	bsr	binstr		|call binstr to convert mant
781 
782 
783 | A15. Convert the exponent to bcd.
784 |      As in A14 above, the exp is converted to bcd and the
785 |      digits are stored in the final string.
786 |
787 |      Digits are stored in L_SCR1(a6) on return from BINDEC as:
788 |
789 |	 32               16 15                0
790 |	-----------------------------------------
791 |	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
792 |	-----------------------------------------
793 |
794 | And are moved into their proper places in FP_SCR1.  If digit e4
795 | is non-zero, OPERR is signaled.  In all cases, all 4 digits are
796 | written as specified in the 881/882 manual for packed decimal.
797 |
798 | Register usage:
799 |	Input/Output
800 |	d0: x/LEN call to binstr - final is 0
801 |	d1: x/scratch (0);shift count for final exponent packing
802 |	d2: x/ms 32-bits of exp fraction/scratch
803 |	d3: x/ls 32-bits of exp fraction
804 |	d4: LEN/Unchanged
805 |	d5: ICTR:LAMBDA/LAMBDA:ICTR
806 |	d6: ILOG
807 |	d7: k-factor/Unchanged
808 |	a0: ptr to result string/ptr to L_SCR1(a6)
809 |	a1: ptr to PTENxx array/Unchanged
810 |	a2: ptr to FP_SCR2(a6)/Unchanged
811 |	fp0: abs(YINT) adjusted/float(ILOG)
812 |	fp1: 10^ISCALE/Unchanged
813 |	fp2: 10^LEN/Unchanged
814 |	F_SCR1:Work area for final result/BCD result
815 |	F_SCR2:Y with original exponent/ILOG/10^4
816 |	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
817 |	L_SCR2:first word of X packed/Unchanged
818 
819 A15_st:
820 	tstb	BINDEC_FLG(%a6)	|check for denorm
821 	beqs	not_denorm
822 	ftstx	%fp0		|test for zero
823 	fbeq	den_zero	|if zero, use k-factor or 4933
824 	fmovel	%d6,%fp0		|float ILOG
825 	fabsx	%fp0		|get abs of ILOG
826 	bras	convrt
827 den_zero:
828 	tstl	%d7		|check sign of the k-factor
829 	blts	use_ilog	|if negative, use ILOG
830 	fmoves	F4933,%fp0	|force exponent to 4933
831 	bras	convrt		|do it
832 use_ilog:
833 	fmovel	%d6,%fp0		|float ILOG
834 	fabsx	%fp0		|get abs of ILOG
835 	bras	convrt
836 not_denorm:
837 	ftstx	%fp0		|test for zero
838 	fbne	not_zero	|if zero, force exponent
839 	fmoves	FONE,%fp0	|force exponent to 1
840 	bras	convrt		|do it
841 not_zero:
842 	fmovel	%d6,%fp0		|float ILOG
843 	fabsx	%fp0		|get abs of ILOG
844 convrt:
845 	fdivx	24(%a1),%fp0	|compute ILOG/10^4
846 	fmovex	%fp0,FP_SCR2(%a6)	|store fp0 in memory
847 	movel	4(%a2),%d2	|move word 2 to d2
848 	movel	8(%a2),%d3	|move word 3 to d3
849 	movew	(%a2),%d0		|move exp to d0
850 	beqs	x_loop_fin	|if zero, skip the shift
851 	subiw	#0x3ffd,%d0	|subtract off bias
852 	negw	%d0		|make exp positive
853 x_loop:
854 	lsrl	#1,%d2		|shift d2:d3 right
855 	roxrl	#1,%d3		|the number of places
856 	dbf	%d0,x_loop	|given in d0
857 x_loop_fin:
858 	clrl	%d1		|put zero in d1 for addx
859 	addil	#0x00000080,%d3	|inc at bit 6
860 	addxl	%d1,%d2		|continue inc
861 	andil	#0xffffff80,%d3	|strip off lsb not used by 882
862 	movel	#4,%d0		|put 4 in d0 for binstr call
863 	leal	L_SCR1(%a6),%a0	|a0 is ptr to L_SCR1 for exp digits
864 	bsr	binstr		|call binstr to convert exp
865 	movel	L_SCR1(%a6),%d0	|load L_SCR1 lword to d0
866 	movel	#12,%d1		|use d1 for shift count
867 	lsrl	%d1,%d0		|shift d0 right by 12
868 	bfins	%d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
869 	lsrl	%d1,%d0		|shift d0 right by 12
870 	bfins	%d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
871 	tstb	%d0		|check if e4 is zero
872 	beqs	A16_st		|if zero, skip rest
873 	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
874 
875 
876 | A16. Write sign bits to final string.
877 |	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
878 |
879 | Register usage:
880 |	Input/Output
881 |	d0: x/scratch - final is x
882 |	d2: x/x
883 |	d3: x/x
884 |	d4: LEN/Unchanged
885 |	d5: ICTR:LAMBDA/LAMBDA:ICTR
886 |	d6: ILOG/ILOG adjusted
887 |	d7: k-factor/Unchanged
888 |	a0: ptr to L_SCR1(a6)/Unchanged
889 |	a1: ptr to PTENxx array/Unchanged
890 |	a2: ptr to FP_SCR2(a6)/Unchanged
891 |	fp0: float(ILOG)/Unchanged
892 |	fp1: 10^ISCALE/Unchanged
893 |	fp2: 10^LEN/Unchanged
894 |	F_SCR1:BCD result with correct signs
895 |	F_SCR2:ILOG/10^4
896 |	L_SCR1:Exponent digits on return from binstr
897 |	L_SCR2:first word of X packed/Unchanged
898 
899 A16_st:
900 	clrl	%d0		|clr d0 for collection of signs
901 	andib	#0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
902 	tstl	L_SCR2(%a6)	|check sign of original mantissa
903 	bges	mant_p		|if pos, don't set SM
904 	moveql	#2,%d0		|move 2 in to d0 for SM
905 mant_p:
906 	tstl	%d6		|check sign of ILOG
907 	bges	wr_sgn		|if pos, don't set SE
908 	addql	#1,%d0		|set bit 0 in d0 for SE
909 wr_sgn:
910 	bfins	%d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
911 
912 | Clean up and restore all registers used.
913 
914 	fmovel	#0,%FPSR		|clear possible inex2/ainex bits
915 	fmovemx (%a7)+,%fp0-%fp2
916 	moveml	(%a7)+,%d2-%d7/%a2
917 	rts
918 
919 	|end
920