1 /*
2 * Copyright (C) STMicroelectronics SA 2017
3 * Author: Fabien Dessenne <fabien.dessenne@st.com>
4 * License terms: GNU General Public License (GPL), version 2
5 */
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <crypto/aes.h>
18 #include <crypto/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22
23 #define DRIVER_NAME "stm32-cryp"
24
25 /* Bit [0] encrypt / decrypt */
26 #define FLG_ENCRYPT BIT(0)
27 /* Bit [8..1] algo & operation mode */
28 #define FLG_AES BIT(1)
29 #define FLG_DES BIT(2)
30 #define FLG_TDES BIT(3)
31 #define FLG_ECB BIT(4)
32 #define FLG_CBC BIT(5)
33 #define FLG_CTR BIT(6)
34 #define FLG_GCM BIT(7)
35 #define FLG_CCM BIT(8)
36 /* Mode mask = bits [15..0] */
37 #define FLG_MODE_MASK GENMASK(15, 0)
38 /* Bit [31..16] status */
39 #define FLG_CCM_PADDED_WA BIT(16)
40
41 /* Registers */
42 #define CRYP_CR 0x00000000
43 #define CRYP_SR 0x00000004
44 #define CRYP_DIN 0x00000008
45 #define CRYP_DOUT 0x0000000C
46 #define CRYP_DMACR 0x00000010
47 #define CRYP_IMSCR 0x00000014
48 #define CRYP_RISR 0x00000018
49 #define CRYP_MISR 0x0000001C
50 #define CRYP_K0LR 0x00000020
51 #define CRYP_K0RR 0x00000024
52 #define CRYP_K1LR 0x00000028
53 #define CRYP_K1RR 0x0000002C
54 #define CRYP_K2LR 0x00000030
55 #define CRYP_K2RR 0x00000034
56 #define CRYP_K3LR 0x00000038
57 #define CRYP_K3RR 0x0000003C
58 #define CRYP_IV0LR 0x00000040
59 #define CRYP_IV0RR 0x00000044
60 #define CRYP_IV1LR 0x00000048
61 #define CRYP_IV1RR 0x0000004C
62 #define CRYP_CSGCMCCM0R 0x00000050
63 #define CRYP_CSGCM0R 0x00000070
64
65 /* Registers values */
66 #define CR_DEC_NOT_ENC 0x00000004
67 #define CR_TDES_ECB 0x00000000
68 #define CR_TDES_CBC 0x00000008
69 #define CR_DES_ECB 0x00000010
70 #define CR_DES_CBC 0x00000018
71 #define CR_AES_ECB 0x00000020
72 #define CR_AES_CBC 0x00000028
73 #define CR_AES_CTR 0x00000030
74 #define CR_AES_KP 0x00000038
75 #define CR_AES_GCM 0x00080000
76 #define CR_AES_CCM 0x00080008
77 #define CR_AES_UNKNOWN 0xFFFFFFFF
78 #define CR_ALGO_MASK 0x00080038
79 #define CR_DATA32 0x00000000
80 #define CR_DATA16 0x00000040
81 #define CR_DATA8 0x00000080
82 #define CR_DATA1 0x000000C0
83 #define CR_KEY128 0x00000000
84 #define CR_KEY192 0x00000100
85 #define CR_KEY256 0x00000200
86 #define CR_FFLUSH 0x00004000
87 #define CR_CRYPEN 0x00008000
88 #define CR_PH_INIT 0x00000000
89 #define CR_PH_HEADER 0x00010000
90 #define CR_PH_PAYLOAD 0x00020000
91 #define CR_PH_FINAL 0x00030000
92 #define CR_PH_MASK 0x00030000
93 #define CR_NBPBL_SHIFT 20
94
95 #define SR_BUSY 0x00000010
96 #define SR_OFNE 0x00000004
97
98 #define IMSCR_IN BIT(0)
99 #define IMSCR_OUT BIT(1)
100
101 #define MISR_IN BIT(0)
102 #define MISR_OUT BIT(1)
103
104 /* Misc */
105 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
106 #define GCM_CTR_INIT 2
107 #define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
108 #define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
109 #define CRYP_AUTOSUSPEND_DELAY 50
110
111 struct stm32_cryp_caps {
112 bool swap_final;
113 bool padding_wa;
114 };
115
116 struct stm32_cryp_ctx {
117 struct crypto_engine_ctx enginectx;
118 struct stm32_cryp *cryp;
119 int keylen;
120 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
121 unsigned long flags;
122 };
123
124 struct stm32_cryp_reqctx {
125 unsigned long mode;
126 };
127
128 struct stm32_cryp {
129 struct list_head list;
130 struct device *dev;
131 void __iomem *regs;
132 struct clk *clk;
133 unsigned long flags;
134 u32 irq_status;
135 const struct stm32_cryp_caps *caps;
136 struct stm32_cryp_ctx *ctx;
137
138 struct crypto_engine *engine;
139
140 struct mutex lock; /* protects req / areq */
141 struct ablkcipher_request *req;
142 struct aead_request *areq;
143
144 size_t authsize;
145 size_t hw_blocksize;
146
147 size_t total_in;
148 size_t total_in_save;
149 size_t total_out;
150 size_t total_out_save;
151
152 struct scatterlist *in_sg;
153 struct scatterlist *out_sg;
154 struct scatterlist *out_sg_save;
155
156 struct scatterlist in_sgl;
157 struct scatterlist out_sgl;
158 bool sgs_copied;
159
160 int in_sg_len;
161 int out_sg_len;
162
163 struct scatter_walk in_walk;
164 struct scatter_walk out_walk;
165
166 u32 last_ctr[4];
167 u32 gcm_ctr;
168 };
169
170 struct stm32_cryp_list {
171 struct list_head dev_list;
172 spinlock_t lock; /* protect dev_list */
173 };
174
175 static struct stm32_cryp_list cryp_list = {
176 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
178 };
179
is_aes(struct stm32_cryp * cryp)180 static inline bool is_aes(struct stm32_cryp *cryp)
181 {
182 return cryp->flags & FLG_AES;
183 }
184
is_des(struct stm32_cryp * cryp)185 static inline bool is_des(struct stm32_cryp *cryp)
186 {
187 return cryp->flags & FLG_DES;
188 }
189
is_tdes(struct stm32_cryp * cryp)190 static inline bool is_tdes(struct stm32_cryp *cryp)
191 {
192 return cryp->flags & FLG_TDES;
193 }
194
is_ecb(struct stm32_cryp * cryp)195 static inline bool is_ecb(struct stm32_cryp *cryp)
196 {
197 return cryp->flags & FLG_ECB;
198 }
199
is_cbc(struct stm32_cryp * cryp)200 static inline bool is_cbc(struct stm32_cryp *cryp)
201 {
202 return cryp->flags & FLG_CBC;
203 }
204
is_ctr(struct stm32_cryp * cryp)205 static inline bool is_ctr(struct stm32_cryp *cryp)
206 {
207 return cryp->flags & FLG_CTR;
208 }
209
is_gcm(struct stm32_cryp * cryp)210 static inline bool is_gcm(struct stm32_cryp *cryp)
211 {
212 return cryp->flags & FLG_GCM;
213 }
214
is_ccm(struct stm32_cryp * cryp)215 static inline bool is_ccm(struct stm32_cryp *cryp)
216 {
217 return cryp->flags & FLG_CCM;
218 }
219
is_encrypt(struct stm32_cryp * cryp)220 static inline bool is_encrypt(struct stm32_cryp *cryp)
221 {
222 return cryp->flags & FLG_ENCRYPT;
223 }
224
is_decrypt(struct stm32_cryp * cryp)225 static inline bool is_decrypt(struct stm32_cryp *cryp)
226 {
227 return !is_encrypt(cryp);
228 }
229
stm32_cryp_read(struct stm32_cryp * cryp,u32 ofst)230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
231 {
232 return readl_relaxed(cryp->regs + ofst);
233 }
234
stm32_cryp_write(struct stm32_cryp * cryp,u32 ofst,u32 val)235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
236 {
237 writel_relaxed(val, cryp->regs + ofst);
238 }
239
stm32_cryp_wait_busy(struct stm32_cryp * cryp)240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
241 {
242 u32 status;
243
244 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245 !(status & SR_BUSY), 10, 100000);
246 }
247
stm32_cryp_wait_enable(struct stm32_cryp * cryp)248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
249 {
250 u32 status;
251
252 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253 !(status & CR_CRYPEN), 10, 100000);
254 }
255
stm32_cryp_wait_output(struct stm32_cryp * cryp)256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
257 {
258 u32 status;
259
260 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261 status & SR_OFNE, 10, 100000);
262 }
263
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
265
stm32_cryp_find_dev(struct stm32_cryp_ctx * ctx)266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
267 {
268 struct stm32_cryp *tmp, *cryp = NULL;
269
270 spin_lock_bh(&cryp_list.lock);
271 if (!ctx->cryp) {
272 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273 cryp = tmp;
274 break;
275 }
276 ctx->cryp = cryp;
277 } else {
278 cryp = ctx->cryp;
279 }
280
281 spin_unlock_bh(&cryp_list.lock);
282
283 return cryp;
284 }
285
stm32_cryp_check_aligned(struct scatterlist * sg,size_t total,size_t align)286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287 size_t align)
288 {
289 int len = 0;
290
291 if (!total)
292 return 0;
293
294 if (!IS_ALIGNED(total, align))
295 return -EINVAL;
296
297 while (sg) {
298 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299 return -EINVAL;
300
301 if (!IS_ALIGNED(sg->length, align))
302 return -EINVAL;
303
304 len += sg->length;
305 sg = sg_next(sg);
306 }
307
308 if (len != total)
309 return -EINVAL;
310
311 return 0;
312 }
313
stm32_cryp_check_io_aligned(struct stm32_cryp * cryp)314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
315 {
316 int ret;
317
318 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319 cryp->hw_blocksize);
320 if (ret)
321 return ret;
322
323 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324 cryp->hw_blocksize);
325
326 return ret;
327 }
328
sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int start,unsigned int nbytes,int out)329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330 unsigned int start, unsigned int nbytes, int out)
331 {
332 struct scatter_walk walk;
333
334 if (!nbytes)
335 return;
336
337 scatterwalk_start(&walk, sg);
338 scatterwalk_advance(&walk, start);
339 scatterwalk_copychunks(buf, &walk, nbytes, out);
340 scatterwalk_done(&walk, out, 0);
341 }
342
stm32_cryp_copy_sgs(struct stm32_cryp * cryp)343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
344 {
345 void *buf_in, *buf_out;
346 int pages, total_in, total_out;
347
348 if (!stm32_cryp_check_io_aligned(cryp)) {
349 cryp->sgs_copied = 0;
350 return 0;
351 }
352
353 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354 pages = total_in ? get_order(total_in) : 1;
355 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
356
357 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358 pages = total_out ? get_order(total_out) : 1;
359 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
360
361 if (!buf_in || !buf_out) {
362 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363 cryp->sgs_copied = 0;
364 return -EFAULT;
365 }
366
367 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
368
369 sg_init_one(&cryp->in_sgl, buf_in, total_in);
370 cryp->in_sg = &cryp->in_sgl;
371 cryp->in_sg_len = 1;
372
373 sg_init_one(&cryp->out_sgl, buf_out, total_out);
374 cryp->out_sg_save = cryp->out_sg;
375 cryp->out_sg = &cryp->out_sgl;
376 cryp->out_sg_len = 1;
377
378 cryp->sgs_copied = 1;
379
380 return 0;
381 }
382
stm32_cryp_hw_write_iv(struct stm32_cryp * cryp,u32 * iv)383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
384 {
385 if (!iv)
386 return;
387
388 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
389 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
390
391 if (is_aes(cryp)) {
392 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
393 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
394 }
395 }
396
stm32_cryp_hw_write_key(struct stm32_cryp * c)397 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
398 {
399 unsigned int i;
400 int r_id;
401
402 if (is_des(c)) {
403 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
404 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
405 } else {
406 r_id = CRYP_K3RR;
407 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
408 stm32_cryp_write(c, r_id,
409 cpu_to_be32(c->ctx->key[i - 1]));
410 }
411 }
412
stm32_cryp_get_hw_mode(struct stm32_cryp * cryp)413 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
414 {
415 if (is_aes(cryp) && is_ecb(cryp))
416 return CR_AES_ECB;
417
418 if (is_aes(cryp) && is_cbc(cryp))
419 return CR_AES_CBC;
420
421 if (is_aes(cryp) && is_ctr(cryp))
422 return CR_AES_CTR;
423
424 if (is_aes(cryp) && is_gcm(cryp))
425 return CR_AES_GCM;
426
427 if (is_aes(cryp) && is_ccm(cryp))
428 return CR_AES_CCM;
429
430 if (is_des(cryp) && is_ecb(cryp))
431 return CR_DES_ECB;
432
433 if (is_des(cryp) && is_cbc(cryp))
434 return CR_DES_CBC;
435
436 if (is_tdes(cryp) && is_ecb(cryp))
437 return CR_TDES_ECB;
438
439 if (is_tdes(cryp) && is_cbc(cryp))
440 return CR_TDES_CBC;
441
442 dev_err(cryp->dev, "Unknown mode\n");
443 return CR_AES_UNKNOWN;
444 }
445
stm32_cryp_get_input_text_len(struct stm32_cryp * cryp)446 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
447 {
448 return is_encrypt(cryp) ? cryp->areq->cryptlen :
449 cryp->areq->cryptlen - cryp->authsize;
450 }
451
stm32_cryp_gcm_init(struct stm32_cryp * cryp,u32 cfg)452 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
453 {
454 int ret;
455 u32 iv[4];
456
457 /* Phase 1 : init */
458 memcpy(iv, cryp->areq->iv, 12);
459 iv[3] = cpu_to_be32(GCM_CTR_INIT);
460 cryp->gcm_ctr = GCM_CTR_INIT;
461 stm32_cryp_hw_write_iv(cryp, iv);
462
463 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
464
465 /* Wait for end of processing */
466 ret = stm32_cryp_wait_enable(cryp);
467 if (ret)
468 dev_err(cryp->dev, "Timeout (gcm init)\n");
469
470 return ret;
471 }
472
stm32_cryp_ccm_init(struct stm32_cryp * cryp,u32 cfg)473 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
474 {
475 int ret;
476 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
477 u32 *d;
478 unsigned int i, textlen;
479
480 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
481 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
482 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
483 iv[AES_BLOCK_SIZE - 1] = 1;
484 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
485
486 /* Build B0 */
487 memcpy(b0, iv, AES_BLOCK_SIZE);
488
489 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
490
491 if (cryp->areq->assoclen)
492 b0[0] |= 0x40;
493
494 textlen = stm32_cryp_get_input_text_len(cryp);
495
496 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
497 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
498
499 /* Enable HW */
500 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
501
502 /* Write B0 */
503 d = (u32 *)b0;
504
505 for (i = 0; i < AES_BLOCK_32; i++) {
506 if (!cryp->caps->padding_wa)
507 *d = cpu_to_be32(*d);
508 stm32_cryp_write(cryp, CRYP_DIN, *d++);
509 }
510
511 /* Wait for end of processing */
512 ret = stm32_cryp_wait_enable(cryp);
513 if (ret)
514 dev_err(cryp->dev, "Timeout (ccm init)\n");
515
516 return ret;
517 }
518
stm32_cryp_hw_init(struct stm32_cryp * cryp)519 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
520 {
521 int ret;
522 u32 cfg, hw_mode;
523
524 pm_runtime_get_sync(cryp->dev);
525
526 /* Disable interrupt */
527 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
528
529 /* Set key */
530 stm32_cryp_hw_write_key(cryp);
531
532 /* Set configuration */
533 cfg = CR_DATA8 | CR_FFLUSH;
534
535 switch (cryp->ctx->keylen) {
536 case AES_KEYSIZE_128:
537 cfg |= CR_KEY128;
538 break;
539
540 case AES_KEYSIZE_192:
541 cfg |= CR_KEY192;
542 break;
543
544 default:
545 case AES_KEYSIZE_256:
546 cfg |= CR_KEY256;
547 break;
548 }
549
550 hw_mode = stm32_cryp_get_hw_mode(cryp);
551 if (hw_mode == CR_AES_UNKNOWN)
552 return -EINVAL;
553
554 /* AES ECB/CBC decrypt: run key preparation first */
555 if (is_decrypt(cryp) &&
556 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
557 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
558
559 /* Wait for end of processing */
560 ret = stm32_cryp_wait_busy(cryp);
561 if (ret) {
562 dev_err(cryp->dev, "Timeout (key preparation)\n");
563 return ret;
564 }
565 }
566
567 cfg |= hw_mode;
568
569 if (is_decrypt(cryp))
570 cfg |= CR_DEC_NOT_ENC;
571
572 /* Apply config and flush (valid when CRYPEN = 0) */
573 stm32_cryp_write(cryp, CRYP_CR, cfg);
574
575 switch (hw_mode) {
576 case CR_AES_GCM:
577 case CR_AES_CCM:
578 /* Phase 1 : init */
579 if (hw_mode == CR_AES_CCM)
580 ret = stm32_cryp_ccm_init(cryp, cfg);
581 else
582 ret = stm32_cryp_gcm_init(cryp, cfg);
583
584 if (ret)
585 return ret;
586
587 /* Phase 2 : header (authenticated data) */
588 if (cryp->areq->assoclen) {
589 cfg |= CR_PH_HEADER;
590 } else if (stm32_cryp_get_input_text_len(cryp)) {
591 cfg |= CR_PH_PAYLOAD;
592 stm32_cryp_write(cryp, CRYP_CR, cfg);
593 } else {
594 cfg |= CR_PH_INIT;
595 }
596
597 break;
598
599 case CR_DES_CBC:
600 case CR_TDES_CBC:
601 case CR_AES_CBC:
602 case CR_AES_CTR:
603 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
604 break;
605
606 default:
607 break;
608 }
609
610 /* Enable now */
611 cfg |= CR_CRYPEN;
612
613 stm32_cryp_write(cryp, CRYP_CR, cfg);
614
615 cryp->flags &= ~FLG_CCM_PADDED_WA;
616
617 return 0;
618 }
619
stm32_cryp_finish_req(struct stm32_cryp * cryp,int err)620 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
621 {
622 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
623 /* Phase 4 : output tag */
624 err = stm32_cryp_read_auth_tag(cryp);
625
626 if (cryp->sgs_copied) {
627 void *buf_in, *buf_out;
628 int pages, len;
629
630 buf_in = sg_virt(&cryp->in_sgl);
631 buf_out = sg_virt(&cryp->out_sgl);
632
633 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
634 cryp->total_out_save, 1);
635
636 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
637 pages = len ? get_order(len) : 1;
638 free_pages((unsigned long)buf_in, pages);
639
640 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
641 pages = len ? get_order(len) : 1;
642 free_pages((unsigned long)buf_out, pages);
643 }
644
645 pm_runtime_mark_last_busy(cryp->dev);
646 pm_runtime_put_autosuspend(cryp->dev);
647
648 if (is_gcm(cryp) || is_ccm(cryp)) {
649 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
650 cryp->areq = NULL;
651 } else {
652 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
653 err);
654 cryp->req = NULL;
655 }
656
657 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
658
659 mutex_unlock(&cryp->lock);
660 }
661
stm32_cryp_cpu_start(struct stm32_cryp * cryp)662 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
663 {
664 /* Enable interrupt and let the IRQ handler do everything */
665 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
666
667 return 0;
668 }
669
670 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
671 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
672 void *areq);
673
stm32_cryp_cra_init(struct crypto_tfm * tfm)674 static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
675 {
676 struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
677
678 tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
679
680 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
681 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
682 ctx->enginectx.op.unprepare_request = NULL;
683 return 0;
684 }
685
686 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
687 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
688 void *areq);
689
stm32_cryp_aes_aead_init(struct crypto_aead * tfm)690 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
691 {
692 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
693
694 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
695
696 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
697 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
698 ctx->enginectx.op.unprepare_request = NULL;
699
700 return 0;
701 }
702
stm32_cryp_crypt(struct ablkcipher_request * req,unsigned long mode)703 static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
704 {
705 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
706 crypto_ablkcipher_reqtfm(req));
707 struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
708 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
709
710 if (!cryp)
711 return -ENODEV;
712
713 rctx->mode = mode;
714
715 return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
716 }
717
stm32_cryp_aead_crypt(struct aead_request * req,unsigned long mode)718 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
719 {
720 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
721 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
722 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
723
724 if (!cryp)
725 return -ENODEV;
726
727 rctx->mode = mode;
728
729 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
730 }
731
stm32_cryp_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)732 static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
733 unsigned int keylen)
734 {
735 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
736
737 memcpy(ctx->key, key, keylen);
738 ctx->keylen = keylen;
739
740 return 0;
741 }
742
stm32_cryp_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)743 static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
744 unsigned int keylen)
745 {
746 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
747 keylen != AES_KEYSIZE_256)
748 return -EINVAL;
749 else
750 return stm32_cryp_setkey(tfm, key, keylen);
751 }
752
stm32_cryp_des_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)753 static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
754 unsigned int keylen)
755 {
756 if (keylen != DES_KEY_SIZE)
757 return -EINVAL;
758 else
759 return stm32_cryp_setkey(tfm, key, keylen);
760 }
761
stm32_cryp_tdes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)762 static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
763 unsigned int keylen)
764 {
765 if (keylen != (3 * DES_KEY_SIZE))
766 return -EINVAL;
767 else
768 return stm32_cryp_setkey(tfm, key, keylen);
769 }
770
stm32_cryp_aes_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)771 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
772 unsigned int keylen)
773 {
774 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
775
776 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
777 keylen != AES_KEYSIZE_256)
778 return -EINVAL;
779
780 memcpy(ctx->key, key, keylen);
781 ctx->keylen = keylen;
782
783 return 0;
784 }
785
stm32_cryp_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)786 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
787 unsigned int authsize)
788 {
789 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
790 }
791
stm32_cryp_aes_ccm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)792 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
793 unsigned int authsize)
794 {
795 switch (authsize) {
796 case 4:
797 case 6:
798 case 8:
799 case 10:
800 case 12:
801 case 14:
802 case 16:
803 break;
804 default:
805 return -EINVAL;
806 }
807
808 return 0;
809 }
810
stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request * req)811 static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
812 {
813 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
814 }
815
stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request * req)816 static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
817 {
818 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
819 }
820
stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request * req)821 static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
822 {
823 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
824 }
825
stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request * req)826 static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
827 {
828 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
829 }
830
stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request * req)831 static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
832 {
833 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
834 }
835
stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request * req)836 static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
837 {
838 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
839 }
840
stm32_cryp_aes_gcm_encrypt(struct aead_request * req)841 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
842 {
843 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
844 }
845
stm32_cryp_aes_gcm_decrypt(struct aead_request * req)846 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
847 {
848 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
849 }
850
stm32_cryp_aes_ccm_encrypt(struct aead_request * req)851 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
852 {
853 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
854 }
855
stm32_cryp_aes_ccm_decrypt(struct aead_request * req)856 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
857 {
858 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
859 }
860
stm32_cryp_des_ecb_encrypt(struct ablkcipher_request * req)861 static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
862 {
863 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
864 }
865
stm32_cryp_des_ecb_decrypt(struct ablkcipher_request * req)866 static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
867 {
868 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
869 }
870
stm32_cryp_des_cbc_encrypt(struct ablkcipher_request * req)871 static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
872 {
873 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
874 }
875
stm32_cryp_des_cbc_decrypt(struct ablkcipher_request * req)876 static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
877 {
878 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
879 }
880
stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request * req)881 static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
882 {
883 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
884 }
885
stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request * req)886 static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
887 {
888 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
889 }
890
stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request * req)891 static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
892 {
893 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
894 }
895
stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request * req)896 static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
897 {
898 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
899 }
900
stm32_cryp_prepare_req(struct ablkcipher_request * req,struct aead_request * areq)901 static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
902 struct aead_request *areq)
903 {
904 struct stm32_cryp_ctx *ctx;
905 struct stm32_cryp *cryp;
906 struct stm32_cryp_reqctx *rctx;
907 int ret;
908
909 if (!req && !areq)
910 return -EINVAL;
911
912 ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
913 crypto_aead_ctx(crypto_aead_reqtfm(areq));
914
915 cryp = ctx->cryp;
916
917 if (!cryp)
918 return -ENODEV;
919
920 mutex_lock(&cryp->lock);
921
922 rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
923 rctx->mode &= FLG_MODE_MASK;
924
925 ctx->cryp = cryp;
926
927 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
928 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
929 cryp->ctx = ctx;
930
931 if (req) {
932 cryp->req = req;
933 cryp->total_in = req->nbytes;
934 cryp->total_out = cryp->total_in;
935 } else {
936 /*
937 * Length of input and output data:
938 * Encryption case:
939 * INPUT = AssocData || PlainText
940 * <- assoclen -> <- cryptlen ->
941 * <------- total_in ----------->
942 *
943 * OUTPUT = AssocData || CipherText || AuthTag
944 * <- assoclen -> <- cryptlen -> <- authsize ->
945 * <---------------- total_out ----------------->
946 *
947 * Decryption case:
948 * INPUT = AssocData || CipherText || AuthTag
949 * <- assoclen -> <--------- cryptlen --------->
950 * <- authsize ->
951 * <---------------- total_in ------------------>
952 *
953 * OUTPUT = AssocData || PlainText
954 * <- assoclen -> <- crypten - authsize ->
955 * <---------- total_out ----------------->
956 */
957 cryp->areq = areq;
958 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
959 cryp->total_in = areq->assoclen + areq->cryptlen;
960 if (is_encrypt(cryp))
961 /* Append auth tag to output */
962 cryp->total_out = cryp->total_in + cryp->authsize;
963 else
964 /* No auth tag in output */
965 cryp->total_out = cryp->total_in - cryp->authsize;
966 }
967
968 cryp->total_in_save = cryp->total_in;
969 cryp->total_out_save = cryp->total_out;
970
971 cryp->in_sg = req ? req->src : areq->src;
972 cryp->out_sg = req ? req->dst : areq->dst;
973 cryp->out_sg_save = cryp->out_sg;
974
975 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
976 if (cryp->in_sg_len < 0) {
977 dev_err(cryp->dev, "Cannot get in_sg_len\n");
978 ret = cryp->in_sg_len;
979 goto out;
980 }
981
982 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
983 if (cryp->out_sg_len < 0) {
984 dev_err(cryp->dev, "Cannot get out_sg_len\n");
985 ret = cryp->out_sg_len;
986 goto out;
987 }
988
989 ret = stm32_cryp_copy_sgs(cryp);
990 if (ret)
991 goto out;
992
993 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
994 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
995
996 if (is_gcm(cryp) || is_ccm(cryp)) {
997 /* In output, jump after assoc data */
998 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
999 cryp->total_out -= cryp->areq->assoclen;
1000 }
1001
1002 ret = stm32_cryp_hw_init(cryp);
1003 out:
1004 if (ret)
1005 mutex_unlock(&cryp->lock);
1006
1007 return ret;
1008 }
1009
stm32_cryp_prepare_cipher_req(struct crypto_engine * engine,void * areq)1010 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1011 void *areq)
1012 {
1013 struct ablkcipher_request *req = container_of(areq,
1014 struct ablkcipher_request,
1015 base);
1016
1017 return stm32_cryp_prepare_req(req, NULL);
1018 }
1019
stm32_cryp_cipher_one_req(struct crypto_engine * engine,void * areq)1020 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1021 {
1022 struct ablkcipher_request *req = container_of(areq,
1023 struct ablkcipher_request,
1024 base);
1025 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1026 crypto_ablkcipher_reqtfm(req));
1027 struct stm32_cryp *cryp = ctx->cryp;
1028
1029 if (!cryp)
1030 return -ENODEV;
1031
1032 return stm32_cryp_cpu_start(cryp);
1033 }
1034
stm32_cryp_prepare_aead_req(struct crypto_engine * engine,void * areq)1035 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1036 {
1037 struct aead_request *req = container_of(areq, struct aead_request,
1038 base);
1039
1040 return stm32_cryp_prepare_req(NULL, req);
1041 }
1042
stm32_cryp_aead_one_req(struct crypto_engine * engine,void * areq)1043 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1044 {
1045 struct aead_request *req = container_of(areq, struct aead_request,
1046 base);
1047 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1048 struct stm32_cryp *cryp = ctx->cryp;
1049
1050 if (!cryp)
1051 return -ENODEV;
1052
1053 if (unlikely(!cryp->areq->assoclen &&
1054 !stm32_cryp_get_input_text_len(cryp))) {
1055 /* No input data to process: get tag and finish */
1056 stm32_cryp_finish_req(cryp, 0);
1057 return 0;
1058 }
1059
1060 return stm32_cryp_cpu_start(cryp);
1061 }
1062
stm32_cryp_next_out(struct stm32_cryp * cryp,u32 * dst,unsigned int n)1063 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1064 unsigned int n)
1065 {
1066 scatterwalk_advance(&cryp->out_walk, n);
1067
1068 if (unlikely(cryp->out_sg->length == _walked_out)) {
1069 cryp->out_sg = sg_next(cryp->out_sg);
1070 if (cryp->out_sg) {
1071 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1072 return (sg_virt(cryp->out_sg) + _walked_out);
1073 }
1074 }
1075
1076 return (u32 *)((u8 *)dst + n);
1077 }
1078
stm32_cryp_next_in(struct stm32_cryp * cryp,u32 * src,unsigned int n)1079 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1080 unsigned int n)
1081 {
1082 scatterwalk_advance(&cryp->in_walk, n);
1083
1084 if (unlikely(cryp->in_sg->length == _walked_in)) {
1085 cryp->in_sg = sg_next(cryp->in_sg);
1086 if (cryp->in_sg) {
1087 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1088 return (sg_virt(cryp->in_sg) + _walked_in);
1089 }
1090 }
1091
1092 return (u32 *)((u8 *)src + n);
1093 }
1094
stm32_cryp_read_auth_tag(struct stm32_cryp * cryp)1095 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1096 {
1097 u32 cfg, size_bit, *dst, d32;
1098 u8 *d8;
1099 unsigned int i, j;
1100 int ret = 0;
1101
1102 /* Update Config */
1103 cfg = stm32_cryp_read(cryp, CRYP_CR);
1104
1105 cfg &= ~CR_PH_MASK;
1106 cfg |= CR_PH_FINAL;
1107 cfg &= ~CR_DEC_NOT_ENC;
1108 cfg |= CR_CRYPEN;
1109
1110 stm32_cryp_write(cryp, CRYP_CR, cfg);
1111
1112 if (is_gcm(cryp)) {
1113 /* GCM: write aad and payload size (in bits) */
1114 size_bit = cryp->areq->assoclen * 8;
1115 if (cryp->caps->swap_final)
1116 size_bit = cpu_to_be32(size_bit);
1117
1118 stm32_cryp_write(cryp, CRYP_DIN, 0);
1119 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1120
1121 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1122 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1123 size_bit *= 8;
1124 if (cryp->caps->swap_final)
1125 size_bit = cpu_to_be32(size_bit);
1126
1127 stm32_cryp_write(cryp, CRYP_DIN, 0);
1128 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1129 } else {
1130 /* CCM: write CTR0 */
1131 u8 iv[AES_BLOCK_SIZE];
1132 u32 *iv32 = (u32 *)iv;
1133
1134 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1135 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1136
1137 for (i = 0; i < AES_BLOCK_32; i++) {
1138 if (!cryp->caps->padding_wa)
1139 *iv32 = cpu_to_be32(*iv32);
1140 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1141 }
1142 }
1143
1144 /* Wait for output data */
1145 ret = stm32_cryp_wait_output(cryp);
1146 if (ret) {
1147 dev_err(cryp->dev, "Timeout (read tag)\n");
1148 return ret;
1149 }
1150
1151 if (is_encrypt(cryp)) {
1152 /* Get and write tag */
1153 dst = sg_virt(cryp->out_sg) + _walked_out;
1154
1155 for (i = 0; i < AES_BLOCK_32; i++) {
1156 if (cryp->total_out >= sizeof(u32)) {
1157 /* Read a full u32 */
1158 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1159
1160 dst = stm32_cryp_next_out(cryp, dst,
1161 sizeof(u32));
1162 cryp->total_out -= sizeof(u32);
1163 } else if (!cryp->total_out) {
1164 /* Empty fifo out (data from input padding) */
1165 stm32_cryp_read(cryp, CRYP_DOUT);
1166 } else {
1167 /* Read less than an u32 */
1168 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1169 d8 = (u8 *)&d32;
1170
1171 for (j = 0; j < cryp->total_out; j++) {
1172 *((u8 *)dst) = *(d8++);
1173 dst = stm32_cryp_next_out(cryp, dst, 1);
1174 }
1175 cryp->total_out = 0;
1176 }
1177 }
1178 } else {
1179 /* Get and check tag */
1180 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1181
1182 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1183 cryp->total_in_save - cryp->authsize,
1184 cryp->authsize, 0);
1185
1186 for (i = 0; i < AES_BLOCK_32; i++)
1187 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1188
1189 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1190 ret = -EBADMSG;
1191 }
1192
1193 /* Disable cryp */
1194 cfg &= ~CR_CRYPEN;
1195 stm32_cryp_write(cryp, CRYP_CR, cfg);
1196
1197 return ret;
1198 }
1199
stm32_cryp_check_ctr_counter(struct stm32_cryp * cryp)1200 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1201 {
1202 u32 cr;
1203
1204 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1205 cryp->last_ctr[3] = 0;
1206 cryp->last_ctr[2]++;
1207 if (!cryp->last_ctr[2]) {
1208 cryp->last_ctr[1]++;
1209 if (!cryp->last_ctr[1])
1210 cryp->last_ctr[0]++;
1211 }
1212
1213 cr = stm32_cryp_read(cryp, CRYP_CR);
1214 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1215
1216 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1217
1218 stm32_cryp_write(cryp, CRYP_CR, cr);
1219 }
1220
1221 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1222 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1223 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1224 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1225 }
1226
stm32_cryp_irq_read_data(struct stm32_cryp * cryp)1227 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1228 {
1229 unsigned int i, j;
1230 u32 d32, *dst;
1231 u8 *d8;
1232 size_t tag_size;
1233
1234 /* Do no read tag now (if any) */
1235 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1236 tag_size = cryp->authsize;
1237 else
1238 tag_size = 0;
1239
1240 dst = sg_virt(cryp->out_sg) + _walked_out;
1241
1242 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1243 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1244 /* Read a full u32 */
1245 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1246
1247 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1248 cryp->total_out -= sizeof(u32);
1249 } else if (cryp->total_out == tag_size) {
1250 /* Empty fifo out (data from input padding) */
1251 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1252 } else {
1253 /* Read less than an u32 */
1254 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1255 d8 = (u8 *)&d32;
1256
1257 for (j = 0; j < cryp->total_out - tag_size; j++) {
1258 *((u8 *)dst) = *(d8++);
1259 dst = stm32_cryp_next_out(cryp, dst, 1);
1260 }
1261 cryp->total_out = tag_size;
1262 }
1263 }
1264
1265 return !(cryp->total_out - tag_size) || !cryp->total_in;
1266 }
1267
stm32_cryp_irq_write_block(struct stm32_cryp * cryp)1268 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1269 {
1270 unsigned int i, j;
1271 u32 *src;
1272 u8 d8[4];
1273 size_t tag_size;
1274
1275 /* Do no write tag (if any) */
1276 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1277 tag_size = cryp->authsize;
1278 else
1279 tag_size = 0;
1280
1281 src = sg_virt(cryp->in_sg) + _walked_in;
1282
1283 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1284 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1285 /* Write a full u32 */
1286 stm32_cryp_write(cryp, CRYP_DIN, *src);
1287
1288 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1289 cryp->total_in -= sizeof(u32);
1290 } else if (cryp->total_in == tag_size) {
1291 /* Write padding data */
1292 stm32_cryp_write(cryp, CRYP_DIN, 0);
1293 } else {
1294 /* Write less than an u32 */
1295 memset(d8, 0, sizeof(u32));
1296 for (j = 0; j < cryp->total_in - tag_size; j++) {
1297 d8[j] = *((u8 *)src);
1298 src = stm32_cryp_next_in(cryp, src, 1);
1299 }
1300
1301 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1302 cryp->total_in = tag_size;
1303 }
1304 }
1305 }
1306
stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp * cryp)1307 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1308 {
1309 int err;
1310 u32 cfg, tmp[AES_BLOCK_32];
1311 size_t total_in_ori = cryp->total_in;
1312 struct scatterlist *out_sg_ori = cryp->out_sg;
1313 unsigned int i;
1314
1315 /* 'Special workaround' procedure described in the datasheet */
1316
1317 /* a) disable ip */
1318 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1319 cfg = stm32_cryp_read(cryp, CRYP_CR);
1320 cfg &= ~CR_CRYPEN;
1321 stm32_cryp_write(cryp, CRYP_CR, cfg);
1322
1323 /* b) Update IV1R */
1324 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1325
1326 /* c) change mode to CTR */
1327 cfg &= ~CR_ALGO_MASK;
1328 cfg |= CR_AES_CTR;
1329 stm32_cryp_write(cryp, CRYP_CR, cfg);
1330
1331 /* a) enable IP */
1332 cfg |= CR_CRYPEN;
1333 stm32_cryp_write(cryp, CRYP_CR, cfg);
1334
1335 /* b) pad and write the last block */
1336 stm32_cryp_irq_write_block(cryp);
1337 cryp->total_in = total_in_ori;
1338 err = stm32_cryp_wait_output(cryp);
1339 if (err) {
1340 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1341 return stm32_cryp_finish_req(cryp, err);
1342 }
1343
1344 /* c) get and store encrypted data */
1345 stm32_cryp_irq_read_data(cryp);
1346 scatterwalk_map_and_copy(tmp, out_sg_ori,
1347 cryp->total_in_save - total_in_ori,
1348 total_in_ori, 0);
1349
1350 /* d) change mode back to AES GCM */
1351 cfg &= ~CR_ALGO_MASK;
1352 cfg |= CR_AES_GCM;
1353 stm32_cryp_write(cryp, CRYP_CR, cfg);
1354
1355 /* e) change phase to Final */
1356 cfg &= ~CR_PH_MASK;
1357 cfg |= CR_PH_FINAL;
1358 stm32_cryp_write(cryp, CRYP_CR, cfg);
1359
1360 /* f) write padded data */
1361 for (i = 0; i < AES_BLOCK_32; i++) {
1362 if (cryp->total_in)
1363 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1364 else
1365 stm32_cryp_write(cryp, CRYP_DIN, 0);
1366
1367 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1368 }
1369
1370 /* g) Empty fifo out */
1371 err = stm32_cryp_wait_output(cryp);
1372 if (err) {
1373 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1374 return stm32_cryp_finish_req(cryp, err);
1375 }
1376
1377 for (i = 0; i < AES_BLOCK_32; i++)
1378 stm32_cryp_read(cryp, CRYP_DOUT);
1379
1380 /* h) run the he normal Final phase */
1381 stm32_cryp_finish_req(cryp, 0);
1382 }
1383
stm32_cryp_irq_set_npblb(struct stm32_cryp * cryp)1384 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1385 {
1386 u32 cfg, payload_bytes;
1387
1388 /* disable ip, set NPBLB and reneable ip */
1389 cfg = stm32_cryp_read(cryp, CRYP_CR);
1390 cfg &= ~CR_CRYPEN;
1391 stm32_cryp_write(cryp, CRYP_CR, cfg);
1392
1393 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1394 cryp->total_in;
1395 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1396 cfg |= CR_CRYPEN;
1397 stm32_cryp_write(cryp, CRYP_CR, cfg);
1398 }
1399
stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp * cryp)1400 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1401 {
1402 int err = 0;
1403 u32 cfg, iv1tmp;
1404 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1405 size_t last_total_out, total_in_ori = cryp->total_in;
1406 struct scatterlist *out_sg_ori = cryp->out_sg;
1407 unsigned int i;
1408
1409 /* 'Special workaround' procedure described in the datasheet */
1410 cryp->flags |= FLG_CCM_PADDED_WA;
1411
1412 /* a) disable ip */
1413 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1414
1415 cfg = stm32_cryp_read(cryp, CRYP_CR);
1416 cfg &= ~CR_CRYPEN;
1417 stm32_cryp_write(cryp, CRYP_CR, cfg);
1418
1419 /* b) get IV1 from CRYP_CSGCMCCM7 */
1420 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1421
1422 /* c) Load CRYP_CSGCMCCMxR */
1423 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1424 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1425
1426 /* d) Write IV1R */
1427 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1428
1429 /* e) change mode to CTR */
1430 cfg &= ~CR_ALGO_MASK;
1431 cfg |= CR_AES_CTR;
1432 stm32_cryp_write(cryp, CRYP_CR, cfg);
1433
1434 /* a) enable IP */
1435 cfg |= CR_CRYPEN;
1436 stm32_cryp_write(cryp, CRYP_CR, cfg);
1437
1438 /* b) pad and write the last block */
1439 stm32_cryp_irq_write_block(cryp);
1440 cryp->total_in = total_in_ori;
1441 err = stm32_cryp_wait_output(cryp);
1442 if (err) {
1443 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1444 return stm32_cryp_finish_req(cryp, err);
1445 }
1446
1447 /* c) get and store decrypted data */
1448 last_total_out = cryp->total_out;
1449 stm32_cryp_irq_read_data(cryp);
1450
1451 memset(tmp, 0, sizeof(tmp));
1452 scatterwalk_map_and_copy(tmp, out_sg_ori,
1453 cryp->total_out_save - last_total_out,
1454 last_total_out, 0);
1455
1456 /* d) Load again CRYP_CSGCMCCMxR */
1457 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1458 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1459
1460 /* e) change mode back to AES CCM */
1461 cfg &= ~CR_ALGO_MASK;
1462 cfg |= CR_AES_CCM;
1463 stm32_cryp_write(cryp, CRYP_CR, cfg);
1464
1465 /* f) change phase to header */
1466 cfg &= ~CR_PH_MASK;
1467 cfg |= CR_PH_HEADER;
1468 stm32_cryp_write(cryp, CRYP_CR, cfg);
1469
1470 /* g) XOR and write padded data */
1471 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1472 tmp[i] ^= cstmp1[i];
1473 tmp[i] ^= cstmp2[i];
1474 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1475 }
1476
1477 /* h) wait for completion */
1478 err = stm32_cryp_wait_busy(cryp);
1479 if (err)
1480 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1481
1482 /* i) run the he normal Final phase */
1483 stm32_cryp_finish_req(cryp, err);
1484 }
1485
stm32_cryp_irq_write_data(struct stm32_cryp * cryp)1486 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1487 {
1488 if (unlikely(!cryp->total_in)) {
1489 dev_warn(cryp->dev, "No more data to process\n");
1490 return;
1491 }
1492
1493 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1494 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1495 is_encrypt(cryp))) {
1496 /* Padding for AES GCM encryption */
1497 if (cryp->caps->padding_wa)
1498 /* Special case 1 */
1499 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1500
1501 /* Setting padding bytes (NBBLB) */
1502 stm32_cryp_irq_set_npblb(cryp);
1503 }
1504
1505 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1506 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1507 is_decrypt(cryp))) {
1508 /* Padding for AES CCM decryption */
1509 if (cryp->caps->padding_wa)
1510 /* Special case 2 */
1511 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1512
1513 /* Setting padding bytes (NBBLB) */
1514 stm32_cryp_irq_set_npblb(cryp);
1515 }
1516
1517 if (is_aes(cryp) && is_ctr(cryp))
1518 stm32_cryp_check_ctr_counter(cryp);
1519
1520 stm32_cryp_irq_write_block(cryp);
1521 }
1522
stm32_cryp_irq_write_gcm_header(struct stm32_cryp * cryp)1523 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1524 {
1525 int err;
1526 unsigned int i, j;
1527 u32 cfg, *src;
1528
1529 src = sg_virt(cryp->in_sg) + _walked_in;
1530
1531 for (i = 0; i < AES_BLOCK_32; i++) {
1532 stm32_cryp_write(cryp, CRYP_DIN, *src);
1533
1534 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1535 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1536
1537 /* Check if whole header written */
1538 if ((cryp->total_in_save - cryp->total_in) ==
1539 cryp->areq->assoclen) {
1540 /* Write padding if needed */
1541 for (j = i + 1; j < AES_BLOCK_32; j++)
1542 stm32_cryp_write(cryp, CRYP_DIN, 0);
1543
1544 /* Wait for completion */
1545 err = stm32_cryp_wait_busy(cryp);
1546 if (err) {
1547 dev_err(cryp->dev, "Timeout (gcm header)\n");
1548 return stm32_cryp_finish_req(cryp, err);
1549 }
1550
1551 if (stm32_cryp_get_input_text_len(cryp)) {
1552 /* Phase 3 : payload */
1553 cfg = stm32_cryp_read(cryp, CRYP_CR);
1554 cfg &= ~CR_CRYPEN;
1555 stm32_cryp_write(cryp, CRYP_CR, cfg);
1556
1557 cfg &= ~CR_PH_MASK;
1558 cfg |= CR_PH_PAYLOAD;
1559 cfg |= CR_CRYPEN;
1560 stm32_cryp_write(cryp, CRYP_CR, cfg);
1561 } else {
1562 /* Phase 4 : tag */
1563 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1564 stm32_cryp_finish_req(cryp, 0);
1565 }
1566
1567 break;
1568 }
1569
1570 if (!cryp->total_in)
1571 break;
1572 }
1573 }
1574
stm32_cryp_irq_write_ccm_header(struct stm32_cryp * cryp)1575 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1576 {
1577 int err;
1578 unsigned int i = 0, j, k;
1579 u32 alen, cfg, *src;
1580 u8 d8[4];
1581
1582 src = sg_virt(cryp->in_sg) + _walked_in;
1583 alen = cryp->areq->assoclen;
1584
1585 if (!_walked_in) {
1586 if (cryp->areq->assoclen <= 65280) {
1587 /* Write first u32 of B1 */
1588 d8[0] = (alen >> 8) & 0xFF;
1589 d8[1] = alen & 0xFF;
1590 d8[2] = *((u8 *)src);
1591 src = stm32_cryp_next_in(cryp, src, 1);
1592 d8[3] = *((u8 *)src);
1593 src = stm32_cryp_next_in(cryp, src, 1);
1594
1595 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1596 i++;
1597
1598 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1599 } else {
1600 /* Build the two first u32 of B1 */
1601 d8[0] = 0xFF;
1602 d8[1] = 0xFE;
1603 d8[2] = alen & 0xFF000000;
1604 d8[3] = alen & 0x00FF0000;
1605
1606 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1607 i++;
1608
1609 d8[0] = alen & 0x0000FF00;
1610 d8[1] = alen & 0x000000FF;
1611 d8[2] = *((u8 *)src);
1612 src = stm32_cryp_next_in(cryp, src, 1);
1613 d8[3] = *((u8 *)src);
1614 src = stm32_cryp_next_in(cryp, src, 1);
1615
1616 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1617 i++;
1618
1619 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1620 }
1621 }
1622
1623 /* Write next u32 */
1624 for (; i < AES_BLOCK_32; i++) {
1625 /* Build an u32 */
1626 memset(d8, 0, sizeof(u32));
1627 for (k = 0; k < sizeof(u32); k++) {
1628 d8[k] = *((u8 *)src);
1629 src = stm32_cryp_next_in(cryp, src, 1);
1630
1631 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1632 if ((cryp->total_in_save - cryp->total_in) == alen)
1633 break;
1634 }
1635
1636 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1637
1638 if ((cryp->total_in_save - cryp->total_in) == alen) {
1639 /* Write padding if needed */
1640 for (j = i + 1; j < AES_BLOCK_32; j++)
1641 stm32_cryp_write(cryp, CRYP_DIN, 0);
1642
1643 /* Wait for completion */
1644 err = stm32_cryp_wait_busy(cryp);
1645 if (err) {
1646 dev_err(cryp->dev, "Timeout (ccm header)\n");
1647 return stm32_cryp_finish_req(cryp, err);
1648 }
1649
1650 if (stm32_cryp_get_input_text_len(cryp)) {
1651 /* Phase 3 : payload */
1652 cfg = stm32_cryp_read(cryp, CRYP_CR);
1653 cfg &= ~CR_CRYPEN;
1654 stm32_cryp_write(cryp, CRYP_CR, cfg);
1655
1656 cfg &= ~CR_PH_MASK;
1657 cfg |= CR_PH_PAYLOAD;
1658 cfg |= CR_CRYPEN;
1659 stm32_cryp_write(cryp, CRYP_CR, cfg);
1660 } else {
1661 /* Phase 4 : tag */
1662 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1663 stm32_cryp_finish_req(cryp, 0);
1664 }
1665
1666 break;
1667 }
1668 }
1669 }
1670
stm32_cryp_irq_thread(int irq,void * arg)1671 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1672 {
1673 struct stm32_cryp *cryp = arg;
1674 u32 ph;
1675
1676 if (cryp->irq_status & MISR_OUT)
1677 /* Output FIFO IRQ: read data */
1678 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1679 /* All bytes processed, finish */
1680 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1681 stm32_cryp_finish_req(cryp, 0);
1682 return IRQ_HANDLED;
1683 }
1684
1685 if (cryp->irq_status & MISR_IN) {
1686 if (is_gcm(cryp)) {
1687 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1688 if (unlikely(ph == CR_PH_HEADER))
1689 /* Write Header */
1690 stm32_cryp_irq_write_gcm_header(cryp);
1691 else
1692 /* Input FIFO IRQ: write data */
1693 stm32_cryp_irq_write_data(cryp);
1694 cryp->gcm_ctr++;
1695 } else if (is_ccm(cryp)) {
1696 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1697 if (unlikely(ph == CR_PH_HEADER))
1698 /* Write Header */
1699 stm32_cryp_irq_write_ccm_header(cryp);
1700 else
1701 /* Input FIFO IRQ: write data */
1702 stm32_cryp_irq_write_data(cryp);
1703 } else {
1704 /* Input FIFO IRQ: write data */
1705 stm32_cryp_irq_write_data(cryp);
1706 }
1707 }
1708
1709 return IRQ_HANDLED;
1710 }
1711
stm32_cryp_irq(int irq,void * arg)1712 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1713 {
1714 struct stm32_cryp *cryp = arg;
1715
1716 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1717
1718 return IRQ_WAKE_THREAD;
1719 }
1720
1721 static struct crypto_alg crypto_algs[] = {
1722 {
1723 .cra_name = "ecb(aes)",
1724 .cra_driver_name = "stm32-ecb-aes",
1725 .cra_priority = 200,
1726 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1727 CRYPTO_ALG_ASYNC,
1728 .cra_blocksize = AES_BLOCK_SIZE,
1729 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1730 .cra_alignmask = 0xf,
1731 .cra_type = &crypto_ablkcipher_type,
1732 .cra_module = THIS_MODULE,
1733 .cra_init = stm32_cryp_cra_init,
1734 .cra_ablkcipher = {
1735 .min_keysize = AES_MIN_KEY_SIZE,
1736 .max_keysize = AES_MAX_KEY_SIZE,
1737 .setkey = stm32_cryp_aes_setkey,
1738 .encrypt = stm32_cryp_aes_ecb_encrypt,
1739 .decrypt = stm32_cryp_aes_ecb_decrypt,
1740 }
1741 },
1742 {
1743 .cra_name = "cbc(aes)",
1744 .cra_driver_name = "stm32-cbc-aes",
1745 .cra_priority = 200,
1746 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1747 CRYPTO_ALG_ASYNC,
1748 .cra_blocksize = AES_BLOCK_SIZE,
1749 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1750 .cra_alignmask = 0xf,
1751 .cra_type = &crypto_ablkcipher_type,
1752 .cra_module = THIS_MODULE,
1753 .cra_init = stm32_cryp_cra_init,
1754 .cra_ablkcipher = {
1755 .min_keysize = AES_MIN_KEY_SIZE,
1756 .max_keysize = AES_MAX_KEY_SIZE,
1757 .ivsize = AES_BLOCK_SIZE,
1758 .setkey = stm32_cryp_aes_setkey,
1759 .encrypt = stm32_cryp_aes_cbc_encrypt,
1760 .decrypt = stm32_cryp_aes_cbc_decrypt,
1761 }
1762 },
1763 {
1764 .cra_name = "ctr(aes)",
1765 .cra_driver_name = "stm32-ctr-aes",
1766 .cra_priority = 200,
1767 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1768 CRYPTO_ALG_ASYNC,
1769 .cra_blocksize = 1,
1770 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1771 .cra_alignmask = 0xf,
1772 .cra_type = &crypto_ablkcipher_type,
1773 .cra_module = THIS_MODULE,
1774 .cra_init = stm32_cryp_cra_init,
1775 .cra_ablkcipher = {
1776 .min_keysize = AES_MIN_KEY_SIZE,
1777 .max_keysize = AES_MAX_KEY_SIZE,
1778 .ivsize = AES_BLOCK_SIZE,
1779 .setkey = stm32_cryp_aes_setkey,
1780 .encrypt = stm32_cryp_aes_ctr_encrypt,
1781 .decrypt = stm32_cryp_aes_ctr_decrypt,
1782 }
1783 },
1784 {
1785 .cra_name = "ecb(des)",
1786 .cra_driver_name = "stm32-ecb-des",
1787 .cra_priority = 200,
1788 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1789 CRYPTO_ALG_ASYNC,
1790 .cra_blocksize = DES_BLOCK_SIZE,
1791 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1792 .cra_alignmask = 0xf,
1793 .cra_type = &crypto_ablkcipher_type,
1794 .cra_module = THIS_MODULE,
1795 .cra_init = stm32_cryp_cra_init,
1796 .cra_ablkcipher = {
1797 .min_keysize = DES_BLOCK_SIZE,
1798 .max_keysize = DES_BLOCK_SIZE,
1799 .setkey = stm32_cryp_des_setkey,
1800 .encrypt = stm32_cryp_des_ecb_encrypt,
1801 .decrypt = stm32_cryp_des_ecb_decrypt,
1802 }
1803 },
1804 {
1805 .cra_name = "cbc(des)",
1806 .cra_driver_name = "stm32-cbc-des",
1807 .cra_priority = 200,
1808 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1809 CRYPTO_ALG_ASYNC,
1810 .cra_blocksize = DES_BLOCK_SIZE,
1811 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1812 .cra_alignmask = 0xf,
1813 .cra_type = &crypto_ablkcipher_type,
1814 .cra_module = THIS_MODULE,
1815 .cra_init = stm32_cryp_cra_init,
1816 .cra_ablkcipher = {
1817 .min_keysize = DES_BLOCK_SIZE,
1818 .max_keysize = DES_BLOCK_SIZE,
1819 .ivsize = DES_BLOCK_SIZE,
1820 .setkey = stm32_cryp_des_setkey,
1821 .encrypt = stm32_cryp_des_cbc_encrypt,
1822 .decrypt = stm32_cryp_des_cbc_decrypt,
1823 }
1824 },
1825 {
1826 .cra_name = "ecb(des3_ede)",
1827 .cra_driver_name = "stm32-ecb-des3",
1828 .cra_priority = 200,
1829 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1830 CRYPTO_ALG_ASYNC,
1831 .cra_blocksize = DES_BLOCK_SIZE,
1832 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1833 .cra_alignmask = 0xf,
1834 .cra_type = &crypto_ablkcipher_type,
1835 .cra_module = THIS_MODULE,
1836 .cra_init = stm32_cryp_cra_init,
1837 .cra_ablkcipher = {
1838 .min_keysize = 3 * DES_BLOCK_SIZE,
1839 .max_keysize = 3 * DES_BLOCK_SIZE,
1840 .setkey = stm32_cryp_tdes_setkey,
1841 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1842 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1843 }
1844 },
1845 {
1846 .cra_name = "cbc(des3_ede)",
1847 .cra_driver_name = "stm32-cbc-des3",
1848 .cra_priority = 200,
1849 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1850 CRYPTO_ALG_ASYNC,
1851 .cra_blocksize = DES_BLOCK_SIZE,
1852 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1853 .cra_alignmask = 0xf,
1854 .cra_type = &crypto_ablkcipher_type,
1855 .cra_module = THIS_MODULE,
1856 .cra_init = stm32_cryp_cra_init,
1857 .cra_ablkcipher = {
1858 .min_keysize = 3 * DES_BLOCK_SIZE,
1859 .max_keysize = 3 * DES_BLOCK_SIZE,
1860 .ivsize = DES_BLOCK_SIZE,
1861 .setkey = stm32_cryp_tdes_setkey,
1862 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1863 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1864 }
1865 },
1866 };
1867
1868 static struct aead_alg aead_algs[] = {
1869 {
1870 .setkey = stm32_cryp_aes_aead_setkey,
1871 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1872 .encrypt = stm32_cryp_aes_gcm_encrypt,
1873 .decrypt = stm32_cryp_aes_gcm_decrypt,
1874 .init = stm32_cryp_aes_aead_init,
1875 .ivsize = 12,
1876 .maxauthsize = AES_BLOCK_SIZE,
1877
1878 .base = {
1879 .cra_name = "gcm(aes)",
1880 .cra_driver_name = "stm32-gcm-aes",
1881 .cra_priority = 200,
1882 .cra_flags = CRYPTO_ALG_ASYNC,
1883 .cra_blocksize = 1,
1884 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1885 .cra_alignmask = 0xf,
1886 .cra_module = THIS_MODULE,
1887 },
1888 },
1889 {
1890 .setkey = stm32_cryp_aes_aead_setkey,
1891 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1892 .encrypt = stm32_cryp_aes_ccm_encrypt,
1893 .decrypt = stm32_cryp_aes_ccm_decrypt,
1894 .init = stm32_cryp_aes_aead_init,
1895 .ivsize = AES_BLOCK_SIZE,
1896 .maxauthsize = AES_BLOCK_SIZE,
1897
1898 .base = {
1899 .cra_name = "ccm(aes)",
1900 .cra_driver_name = "stm32-ccm-aes",
1901 .cra_priority = 200,
1902 .cra_flags = CRYPTO_ALG_ASYNC,
1903 .cra_blocksize = 1,
1904 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1905 .cra_alignmask = 0xf,
1906 .cra_module = THIS_MODULE,
1907 },
1908 },
1909 };
1910
1911 static const struct stm32_cryp_caps f7_data = {
1912 .swap_final = true,
1913 .padding_wa = true,
1914 };
1915
1916 static const struct stm32_cryp_caps mp1_data = {
1917 .swap_final = false,
1918 .padding_wa = false,
1919 };
1920
1921 static const struct of_device_id stm32_dt_ids[] = {
1922 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1923 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1924 {},
1925 };
1926 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1927
stm32_cryp_probe(struct platform_device * pdev)1928 static int stm32_cryp_probe(struct platform_device *pdev)
1929 {
1930 struct device *dev = &pdev->dev;
1931 struct stm32_cryp *cryp;
1932 struct resource *res;
1933 struct reset_control *rst;
1934 int irq, ret;
1935
1936 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1937 if (!cryp)
1938 return -ENOMEM;
1939
1940 cryp->caps = of_device_get_match_data(dev);
1941 if (!cryp->caps)
1942 return -ENODEV;
1943
1944 cryp->dev = dev;
1945
1946 mutex_init(&cryp->lock);
1947
1948 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1949 cryp->regs = devm_ioremap_resource(dev, res);
1950 if (IS_ERR(cryp->regs))
1951 return PTR_ERR(cryp->regs);
1952
1953 irq = platform_get_irq(pdev, 0);
1954 if (irq < 0) {
1955 dev_err(dev, "Cannot get IRQ resource\n");
1956 return irq;
1957 }
1958
1959 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960 stm32_cryp_irq_thread, IRQF_ONESHOT,
1961 dev_name(dev), cryp);
1962 if (ret) {
1963 dev_err(dev, "Cannot grab IRQ\n");
1964 return ret;
1965 }
1966
1967 cryp->clk = devm_clk_get(dev, NULL);
1968 if (IS_ERR(cryp->clk)) {
1969 dev_err(dev, "Could not get clock\n");
1970 return PTR_ERR(cryp->clk);
1971 }
1972
1973 ret = clk_prepare_enable(cryp->clk);
1974 if (ret) {
1975 dev_err(cryp->dev, "Failed to enable clock\n");
1976 return ret;
1977 }
1978
1979 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980 pm_runtime_use_autosuspend(dev);
1981
1982 pm_runtime_get_noresume(dev);
1983 pm_runtime_set_active(dev);
1984 pm_runtime_enable(dev);
1985
1986 rst = devm_reset_control_get(dev, NULL);
1987 if (!IS_ERR(rst)) {
1988 reset_control_assert(rst);
1989 udelay(2);
1990 reset_control_deassert(rst);
1991 }
1992
1993 platform_set_drvdata(pdev, cryp);
1994
1995 spin_lock(&cryp_list.lock);
1996 list_add(&cryp->list, &cryp_list.dev_list);
1997 spin_unlock(&cryp_list.lock);
1998
1999 /* Initialize crypto engine */
2000 cryp->engine = crypto_engine_alloc_init(dev, 1);
2001 if (!cryp->engine) {
2002 dev_err(dev, "Could not init crypto engine\n");
2003 ret = -ENOMEM;
2004 goto err_engine1;
2005 }
2006
2007 ret = crypto_engine_start(cryp->engine);
2008 if (ret) {
2009 dev_err(dev, "Could not start crypto engine\n");
2010 goto err_engine2;
2011 }
2012
2013 ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014 if (ret) {
2015 dev_err(dev, "Could not register algs\n");
2016 goto err_algs;
2017 }
2018
2019 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020 if (ret)
2021 goto err_aead_algs;
2022
2023 dev_info(dev, "Initialized\n");
2024
2025 pm_runtime_put_sync(dev);
2026
2027 return 0;
2028
2029 err_aead_algs:
2030 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031 err_algs:
2032 err_engine2:
2033 crypto_engine_exit(cryp->engine);
2034 err_engine1:
2035 spin_lock(&cryp_list.lock);
2036 list_del(&cryp->list);
2037 spin_unlock(&cryp_list.lock);
2038
2039 pm_runtime_disable(dev);
2040 pm_runtime_put_noidle(dev);
2041 pm_runtime_disable(dev);
2042 pm_runtime_put_noidle(dev);
2043
2044 clk_disable_unprepare(cryp->clk);
2045
2046 return ret;
2047 }
2048
stm32_cryp_remove(struct platform_device * pdev)2049 static int stm32_cryp_remove(struct platform_device *pdev)
2050 {
2051 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052 int ret;
2053
2054 if (!cryp)
2055 return -ENODEV;
2056
2057 ret = pm_runtime_get_sync(cryp->dev);
2058 if (ret < 0)
2059 return ret;
2060
2061 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063
2064 crypto_engine_exit(cryp->engine);
2065
2066 spin_lock(&cryp_list.lock);
2067 list_del(&cryp->list);
2068 spin_unlock(&cryp_list.lock);
2069
2070 pm_runtime_disable(cryp->dev);
2071 pm_runtime_put_noidle(cryp->dev);
2072
2073 clk_disable_unprepare(cryp->clk);
2074
2075 return 0;
2076 }
2077
2078 #ifdef CONFIG_PM
stm32_cryp_runtime_suspend(struct device * dev)2079 static int stm32_cryp_runtime_suspend(struct device *dev)
2080 {
2081 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082
2083 clk_disable_unprepare(cryp->clk);
2084
2085 return 0;
2086 }
2087
stm32_cryp_runtime_resume(struct device * dev)2088 static int stm32_cryp_runtime_resume(struct device *dev)
2089 {
2090 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091 int ret;
2092
2093 ret = clk_prepare_enable(cryp->clk);
2094 if (ret) {
2095 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096 return ret;
2097 }
2098
2099 return 0;
2100 }
2101 #endif
2102
2103 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105 pm_runtime_force_resume)
2106 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107 stm32_cryp_runtime_resume, NULL)
2108 };
2109
2110 static struct platform_driver stm32_cryp_driver = {
2111 .probe = stm32_cryp_probe,
2112 .remove = stm32_cryp_remove,
2113 .driver = {
2114 .name = DRIVER_NAME,
2115 .pm = &stm32_cryp_pm_ops,
2116 .of_match_table = stm32_dt_ids,
2117 },
2118 };
2119
2120 module_platform_driver(stm32_cryp_driver);
2121
2122 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124 MODULE_LICENSE("GPL");
2125