1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4 
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9 
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14 
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22 
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27 
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/sched/signal.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/errno.h>
34 #include <linux/atm.h>
35 #include <linux/atmdev.h>
36 #include <linux/sonet.h>
37 #include <linux/skbuff.h>
38 #include <linux/time.h>
39 #include <linux/delay.h>
40 #include <linux/uio.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/wait.h>
45 #include <linux/slab.h>
46 
47 #include <asm/io.h>
48 #include <linux/atomic.h>
49 #include <linux/uaccess.h>
50 #include <asm/string.h>
51 #include <asm/byteorder.h>
52 
53 #include "horizon.h"
54 
55 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
56 #define description_string "Madge ATM Horizon [Ultra] driver"
57 #define version_string "1.2.1"
58 
show_version(void)59 static inline void __init show_version (void) {
60   printk ("%s version %s\n", description_string, version_string);
61 }
62 
63 /*
64 
65   CREDITS
66 
67   Driver and documentation by:
68 
69   Chris Aston        Madge Networks
70   Giuliano Procida   Madge Networks
71   Simon Benham       Madge Networks
72   Simon Johnson      Madge Networks
73   Various Others     Madge Networks
74 
75   Some inspiration taken from other drivers by:
76 
77   Alexandru Cucos    UTBv
78   Kari Mettinen      University of Helsinki
79   Werner Almesberger EPFL LRC
80 
81   Theory of Operation
82 
83   I Hardware, detection, initialisation and shutdown.
84 
85   1. Supported Hardware
86 
87   This driver should handle all variants of the PCI Madge ATM adapters
88   with the Horizon chipset. These are all PCI cards supporting PIO, BM
89   DMA and a form of MMIO (registers only, not internal RAM).
90 
91   The driver is only known to work with SONET and UTP Horizon Ultra
92   cards at 155Mb/s. However, code is in place to deal with both the
93   original Horizon and 25Mb/s operation.
94 
95   There are two revisions of the Horizon ASIC: the original and the
96   Ultra. Details of hardware bugs are in section III.
97 
98   The ASIC version can be distinguished by chip markings but is NOT
99   indicated by the PCI revision (all adapters seem to have PCI rev 1).
100 
101   I believe that:
102 
103   Horizon       => Collage  25 PCI Adapter (UTP and STP)
104   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
105   Ambassador x  => Collage 155 PCI Server (completely different)
106 
107   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
108   have a Madge B154 plus glue logic serializer. I have also found a
109   really ancient version of this with slightly different glue. It
110   comes with the revision 0 (140-025-01) ASIC.
111 
112   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
113   output (UTP) or an HP HFBR 5205 output (SONET). It has either
114   Madge's SAMBA framer or a SUNI-lite device (early versions). It
115   comes with the revision 1 (140-027-01) ASIC.
116 
117   2. Detection
118 
119   All Horizon-based cards present with the same PCI Vendor and Device
120   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
121   to enable bus-mastering (with appropriate latency).
122 
123   ATM_LAYER_STATUS in the control register distinguishes between the
124   two possible physical layers (25 and 155). It is not clear whether
125   the 155 cards can also operate at 25Mbps. We rely on the fact that a
126   card operates at 155 if and only if it has the newer Horizon Ultra
127   ASIC.
128 
129   For 155 cards the two possible framers are probed for and then set
130   up for loop-timing.
131 
132   3. Initialisation
133 
134   The card is reset and then put into a known state. The physical
135   layer is configured for normal operation at the appropriate speed;
136   in the case of the 155 cards, the framer is initialised with
137   line-based timing; the internal RAM is zeroed and the allocation of
138   buffers for RX and TX is made; the Burnt In Address is read and
139   copied to the ATM ESI; various policy settings for RX (VPI bits,
140   unknown VCs, oam cells) are made. Ideally all policy items should be
141   configurable at module load (if not actually on-demand), however,
142   only the vpi vs vci bit allocation can be specified at insmod.
143 
144   4. Shutdown
145 
146   This is in response to module_cleaup. No VCs are in use and the card
147   should be idle; it is reset.
148 
149   II Driver software (as it should be)
150 
151   0. Traffic Parameters
152 
153   The traffic classes (not an enumeration) are currently: ATM_NONE (no
154   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
155   (compatible with everything). Together with (perhaps only some of)
156   the following items they make up the traffic specification.
157 
158   struct atm_trafprm {
159     unsigned char traffic_class; traffic class (ATM_UBR, ...)
160     int           max_pcr;       maximum PCR in cells per second
161     int           pcr;           desired PCR in cells per second
162     int           min_pcr;       minimum PCR in cells per second
163     int           max_cdv;       maximum CDV in microseconds
164     int           max_sdu;       maximum SDU in bytes
165   };
166 
167   Note that these denote bandwidth available not bandwidth used; the
168   possibilities according to ATMF are:
169 
170   Real Time (cdv and max CDT given)
171 
172   CBR(pcr)             pcr bandwidth always available
173   rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
174 
175   Non Real Time
176 
177   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
178   UBR()
179   ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
180 
181   mbs is max burst size (bucket)
182   pcr and scr have associated cdvt values
183   mcr is like scr but has no cdtv
184   cdtv may differ at each hop
185 
186   Some of the above items are qos items (as opposed to traffic
187   parameters). We have nothing to do with qos. All except ABR can have
188   their traffic parameters converted to GCRA parameters. The GCRA may
189   be implemented as a (real-number) leaky bucket. The GCRA can be used
190   in complicated ways by switches and in simpler ways by end-stations.
191   It can be used both to filter incoming cells and shape out-going
192   cells.
193 
194   ATM Linux actually supports:
195 
196   ATM_NONE() (no traffic in this direction)
197   ATM_UBR(max_frame_size)
198   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
199 
200   0 or ATM_MAX_PCR are used to indicate maximum available PCR
201 
202   A traffic specification consists of the AAL type and separate
203   traffic specifications for either direction. In ATM Linux it is:
204 
205   struct atm_qos {
206   struct atm_trafprm txtp;
207   struct atm_trafprm rxtp;
208   unsigned char aal;
209   };
210 
211   AAL types are:
212 
213   ATM_NO_AAL    AAL not specified
214   ATM_AAL0      "raw" ATM cells
215   ATM_AAL1      AAL1 (CBR)
216   ATM_AAL2      AAL2 (VBR)
217   ATM_AAL34     AAL3/4 (data)
218   ATM_AAL5      AAL5 (data)
219   ATM_SAAL      signaling AAL
220 
221   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
222   it does not implement AAL 3/4 SAR and it has a different notion of
223   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
224   supported by this driver.
225 
226   The Horizon has limited support for ABR (including UBR), VBR and
227   CBR. Each TX channel has a bucket (containing up to 31 cell units)
228   and two timers (PCR and SCR) associated with it that can be used to
229   govern cell emissions and host notification (in the case of ABR this
230   is presumably so that RM cells may be emitted at appropriate times).
231   The timers may either be disabled or may be set to any of 240 values
232   (determined by the clock crystal, a fixed (?) per-device divider, a
233   configurable divider and a configurable timer preload value).
234 
235   At the moment only UBR and CBR are supported by the driver. VBR will
236   be supported as soon as ATM for Linux supports it. ABR support is
237   very unlikely as RM cell handling is completely up to the driver.
238 
239   1. TX (TX channel setup and TX transfer)
240 
241   The TX half of the driver owns the TX Horizon registers. The TX
242   component in the IRQ handler is the BM completion handler. This can
243   only be entered when tx_busy is true (enforced by hardware). The
244   other TX component can only be entered when tx_busy is false
245   (enforced by driver). So TX is single-threaded.
246 
247   Apart from a minor optimisation to not re-select the last channel,
248   the TX send component works as follows:
249 
250   Atomic test and set tx_busy until we succeed; we should implement
251   some sort of timeout so that tx_busy will never be stuck at true.
252 
253   If no TX channel is set up for this VC we wait for an idle one (if
254   necessary) and set it up.
255 
256   At this point we have a TX channel ready for use. We wait for enough
257   buffers to become available then start a TX transmit (set the TX
258   descriptor, schedule transfer, exit).
259 
260   The IRQ component handles TX completion (stats, free buffer, tx_busy
261   unset, exit). We also re-schedule further transfers for the same
262   frame if needed.
263 
264   TX setup in more detail:
265 
266   TX open is a nop, the relevant information is held in the hrz_vcc
267   (vcc->dev_data) structure and is "cached" on the card.
268 
269   TX close gets the TX lock and clears the channel from the "cache".
270 
271   2. RX (Data Available and RX transfer)
272 
273   The RX half of the driver owns the RX registers. There are two RX
274   components in the IRQ handler: the data available handler deals with
275   fresh data that has arrived on the card, the BM completion handler
276   is very similar to the TX completion handler. The data available
277   handler grabs the rx_lock and it is only released once the data has
278   been discarded or completely transferred to the host. The BM
279   completion handler only runs when the lock is held; the data
280   available handler is locked out over the same period.
281 
282   Data available on the card triggers an interrupt. If the data is not
283   suitable for our existing RX channels or we cannot allocate a buffer
284   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
285   transfers may be scheduled for the same frame.
286 
287   RX setup in more detail:
288 
289   RX open...
290   RX close...
291 
292   III Hardware Bugs
293 
294   0. Byte vs Word addressing of adapter RAM.
295 
296   A design feature; see the .h file (especially the memory map).
297 
298   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
299 
300   The host must not start a transmit direction transfer at a
301   non-four-byte boundary in host memory. Instead the host should
302   perform a byte, or a two byte, or one byte followed by two byte
303   transfer in order to start the rest of the transfer on a four byte
304   boundary. RX is OK.
305 
306   Simultaneous transmit and receive direction bus master transfers are
307   not allowed.
308 
309   The simplest solution to these two is to always do PIO (never DMA)
310   in the TX direction on the original Horizon. More complicated
311   solutions are likely to hurt my brain.
312 
313   2. Loss of buffer on close VC
314 
315   When a VC is being closed, the buffer associated with it is not
316   returned to the pool. The host must store the reference to this
317   buffer and when opening a new VC then give it to that new VC.
318 
319   The host intervention currently consists of stacking such a buffer
320   pointer at VC close and checking the stack at VC open.
321 
322   3. Failure to close a VC
323 
324   If a VC is currently receiving a frame then closing the VC may fail
325   and the frame continues to be received.
326 
327   The solution is to make sure any received frames are flushed when
328   ready. This is currently done just before the solution to 2.
329 
330   4. PCI bus (original Horizon only, fixed in Ultra)
331 
332   Reading from the data port prior to initialisation will hang the PCI
333   bus. Just don't do that then! We don't.
334 
335   IV To Do List
336 
337   . Timer code may be broken.
338 
339   . Allow users to specify buffer allocation split for TX and RX.
340 
341   . Deal once and for all with buggy VC close.
342 
343   . Handle interrupted and/or non-blocking operations.
344 
345   . Change some macros to functions and move from .h to .c.
346 
347   . Try to limit the number of TX frames each VC may have queued, in
348     order to reduce the chances of TX buffer exhaustion.
349 
350   . Implement VBR (bucket and timers not understood) and ABR (need to
351     do RM cells manually); also no Linux support for either.
352 
353   . Implement QoS changes on open VCs (involves extracting parts of VC open
354     and close into separate functions and using them to make changes).
355 
356 */
357 
358 /********** globals **********/
359 
360 static void do_housekeeping (struct timer_list *t);
361 
362 static unsigned short debug = 0;
363 static unsigned short vpi_bits = 0;
364 static int max_tx_size = 9000;
365 static int max_rx_size = 9000;
366 static unsigned char pci_lat = 0;
367 
368 /********** access functions **********/
369 
370 /* Read / Write Horizon registers */
wr_regl(const hrz_dev * dev,unsigned char reg,u32 data)371 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
372   outl (cpu_to_le32 (data), dev->iobase + reg);
373 }
374 
rd_regl(const hrz_dev * dev,unsigned char reg)375 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
376   return le32_to_cpu (inl (dev->iobase + reg));
377 }
378 
wr_regw(const hrz_dev * dev,unsigned char reg,u16 data)379 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
380   outw (cpu_to_le16 (data), dev->iobase + reg);
381 }
382 
rd_regw(const hrz_dev * dev,unsigned char reg)383 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
384   return le16_to_cpu (inw (dev->iobase + reg));
385 }
386 
wrs_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)387 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
388   outsb (dev->iobase + reg, addr, len);
389 }
390 
rds_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)391 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
392   insb (dev->iobase + reg, addr, len);
393 }
394 
395 /* Read / Write to a given address in Horizon buffer memory.
396    Interrupts must be disabled between the address register and data
397    port accesses as these must form an atomic operation. */
wr_mem(const hrz_dev * dev,HDW * addr,u32 data)398 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
399   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
400   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
401   wr_regl (dev, MEMORY_PORT_OFF, data);
402 }
403 
rd_mem(const hrz_dev * dev,HDW * addr)404 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
405   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
406   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
407   return rd_regl (dev, MEMORY_PORT_OFF);
408 }
409 
wr_framer(const hrz_dev * dev,u32 addr,u32 data)410 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
411   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
412   wr_regl (dev, MEMORY_PORT_OFF, data);
413 }
414 
rd_framer(const hrz_dev * dev,u32 addr)415 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
416   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
417   return rd_regl (dev, MEMORY_PORT_OFF);
418 }
419 
420 /********** specialised access functions **********/
421 
422 /* RX */
423 
FLUSH_RX_CHANNEL(hrz_dev * dev,u16 channel)424 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
425   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
426   return;
427 }
428 
WAIT_FLUSH_RX_COMPLETE(hrz_dev * dev)429 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
430   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
431     ;
432   return;
433 }
434 
SELECT_RX_CHANNEL(hrz_dev * dev,u16 channel)435 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
436   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
437   return;
438 }
439 
WAIT_UPDATE_COMPLETE(hrz_dev * dev)440 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
441   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
442     ;
443   return;
444 }
445 
446 /* TX */
447 
SELECT_TX_CHANNEL(hrz_dev * dev,u16 tx_channel)448 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
449   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
450   return;
451 }
452 
453 /* Update or query one configuration parameter of a particular channel. */
454 
update_tx_channel_config(hrz_dev * dev,short chan,u8 mode,u16 value)455 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
456   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
457 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
458     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
459     return;
460 }
461 
462 /********** dump functions **********/
463 
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)464 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
465 #ifdef DEBUG_HORIZON
466   unsigned int i;
467   unsigned char * data = skb->data;
468   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
469   for (i=0; i<skb->len && i < 256;i++)
470     PRINTDM (DBG_DATA, "%02x ", data[i]);
471   PRINTDE (DBG_DATA,"");
472 #else
473   (void) prefix;
474   (void) vc;
475   (void) skb;
476 #endif
477   return;
478 }
479 
dump_regs(hrz_dev * dev)480 static inline void dump_regs (hrz_dev * dev) {
481 #ifdef DEBUG_HORIZON
482   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
483   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
484   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
485   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
486   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
487   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
488 #else
489   (void) dev;
490 #endif
491   return;
492 }
493 
dump_framer(hrz_dev * dev)494 static inline void dump_framer (hrz_dev * dev) {
495 #ifdef DEBUG_HORIZON
496   unsigned int i;
497   PRINTDB (DBG_REGS, "framer registers:");
498   for (i = 0; i < 0x10; ++i)
499     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
500   PRINTDE (DBG_REGS,"");
501 #else
502   (void) dev;
503 #endif
504   return;
505 }
506 
507 /********** VPI/VCI <-> (RX) channel conversions **********/
508 
509 /* RX channels are 10 bit integers, these fns are quite paranoid */
510 
vpivci_to_channel(u16 * channel,const short vpi,const int vci)511 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
512   unsigned short vci_bits = 10 - vpi_bits;
513   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
514     *channel = vpi<<vci_bits | vci;
515     return *channel ? 0 : -EINVAL;
516   }
517   return -EINVAL;
518 }
519 
520 /********** decode RX queue entries **********/
521 
rx_q_entry_to_length(u32 x)522 static inline u16 rx_q_entry_to_length (u32 x) {
523   return x & RX_Q_ENTRY_LENGTH_MASK;
524 }
525 
rx_q_entry_to_rx_channel(u32 x)526 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
527   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
528 }
529 
530 /* Cell Transmit Rate Values
531  *
532  * the cell transmit rate (cells per sec) can be set to a variety of
533  * different values by specifying two parameters: a timer preload from
534  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
535  * an exponent from 0 to 14; the special value 15 disables the timer).
536  *
537  * cellrate = baserate / (preload * 2^divider)
538  *
539  * The maximum cell rate that can be specified is therefore just the
540  * base rate. Halving the preload is equivalent to adding 1 to the
541  * divider and so values 1 to 8 of the preload are redundant except
542  * in the case of a maximal divider (14).
543  *
544  * Given a desired cell rate, an algorithm to determine the preload
545  * and divider is:
546  *
547  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
548  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
549  *    if x <= 16 then set p = x, d = 0 (high rates), done
550  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
551  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
552  *    we find the range (n will be between 1 and 14), set d = n
553  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
554  *
555  * The algorithm used below is a minor variant of the above.
556  *
557  * The base rate is derived from the oscillator frequency (Hz) using a
558  * fixed divider:
559  *
560  * baserate = freq / 32 in the case of some Unknown Card
561  * baserate = freq / 8  in the case of the Horizon        25
562  * baserate = freq / 8  in the case of the Horizon Ultra 155
563  *
564  * The Horizon cards have oscillators and base rates as follows:
565  *
566  * Card               Oscillator  Base Rate
567  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
568  * Horizon        25  32 MHz      4       MHz
569  * Horizon Ultra 155  40 MHz      5       MHz
570  *
571  * The following defines give the base rates in Hz. These were
572  * previously a factor of 100 larger, no doubt someone was using
573  * cps*100.
574  */
575 
576 #define BR_UKN 1031250l
577 #define BR_HRZ 4000000l
578 #define BR_ULT 5000000l
579 
580 // d is an exponent
581 #define CR_MIND 0
582 #define CR_MAXD 14
583 
584 // p ranges from 1 to a power of 2
585 #define CR_MAXPEXP 4
586 
make_rate(const hrz_dev * dev,u32 c,rounding r,u16 * bits,unsigned int * actual)587 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
588 		      u16 * bits, unsigned int * actual)
589 {
590 	// note: rounding the rate down means rounding 'p' up
591 	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
592 
593 	u32 div = CR_MIND;
594 	u32 pre;
595 
596 	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
597 	// the tests below. We could think harder about exact possibilities
598 	// of failure...
599 
600 	unsigned long br_man = br;
601 	unsigned int br_exp = 0;
602 
603 	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
604 		r == round_up ? "up" : r == round_down ? "down" : "nearest");
605 
606 	// avoid div by zero
607 	if (!c) {
608 		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
609 		return -EINVAL;
610 	}
611 
612 	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
613 		br_man = br_man >> 1;
614 		++br_exp;
615 	}
616 	// (br >>br_exp) <<br_exp == br and
617 	// br_exp <= CR_MAXPEXP+CR_MIND
618 
619 	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
620 		// Equivalent to: B <= (c << (MAXPEXP+MIND))
621 		// take care of rounding
622 		switch (r) {
623 			case round_down:
624 				pre = DIV_ROUND_UP(br, c<<div);
625 				// but p must be non-zero
626 				if (!pre)
627 					pre = 1;
628 				break;
629 			case round_nearest:
630 				pre = DIV_ROUND_CLOSEST(br, c<<div);
631 				// but p must be non-zero
632 				if (!pre)
633 					pre = 1;
634 				break;
635 			default:	/* round_up */
636 				pre = br/(c<<div);
637 				// but p must be non-zero
638 				if (!pre)
639 					return -EINVAL;
640 		}
641 		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
642 		goto got_it;
643 	}
644 
645 	// at this point we have
646 	// d == MIND and (c << (MAXPEXP+MIND)) < B
647 	while (div < CR_MAXD) {
648 		div++;
649 		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
650 			// Equivalent to: B <= (c << (MAXPEXP+d))
651 			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
652 			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
653 			// MAXP/2 < B/c2^d <= MAXP
654 			// take care of rounding
655 			switch (r) {
656 				case round_down:
657 					pre = DIV_ROUND_UP(br, c<<div);
658 					break;
659 				case round_nearest:
660 					pre = DIV_ROUND_CLOSEST(br, c<<div);
661 					break;
662 				default: /* round_up */
663 					pre = br/(c<<div);
664 			}
665 			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
666 			goto got_it;
667 		}
668 	}
669 	// at this point we have
670 	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
671 	// but we cannot go any higher
672 	// take care of rounding
673 	if (r == round_down)
674 		return -EINVAL;
675 	pre = 1 << CR_MAXPEXP;
676 	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
677 got_it:
678 	// paranoia
679 	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
680 		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
681 			div, pre);
682 		return -EINVAL;
683 	} else {
684 		if (bits)
685 			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
686 		if (actual) {
687 			*actual = DIV_ROUND_UP(br, pre<<div);
688 			PRINTD (DBG_QOS, "actual rate: %u", *actual);
689 		}
690 		return 0;
691 	}
692 }
693 
make_rate_with_tolerance(const hrz_dev * dev,u32 c,rounding r,unsigned int tol,u16 * bit_pattern,unsigned int * actual)694 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
695 				     u16 * bit_pattern, unsigned int * actual) {
696   unsigned int my_actual;
697 
698   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
699 	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
700 
701   if (!actual)
702     // actual rate is not returned
703     actual = &my_actual;
704 
705   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
706     // should never happen as round_nearest always succeeds
707     return -1;
708 
709   if (c - tol <= *actual && *actual <= c + tol)
710     // within tolerance
711     return 0;
712   else
713     // intolerant, try rounding instead
714     return make_rate (dev, c, r, bit_pattern, actual);
715 }
716 
717 /********** Listen on a VC **********/
718 
hrz_open_rx(hrz_dev * dev,u16 channel)719 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
720   // is there any guarantee that we don't get two simulataneous
721   // identical calls of this function from different processes? yes
722   // rate_lock
723   unsigned long flags;
724   u32 channel_type; // u16?
725 
726   u16 buf_ptr = RX_CHANNEL_IDLE;
727 
728   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
729 
730   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
731 
732   spin_lock_irqsave (&dev->mem_lock, flags);
733   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
734   spin_unlock_irqrestore (&dev->mem_lock, flags);
735 
736   // very serious error, should never occur
737   if (channel_type != RX_CHANNEL_DISABLED) {
738     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
739     return -EBUSY; // clean up?
740   }
741 
742   // Give back spare buffer
743   if (dev->noof_spare_buffers) {
744     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
745     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
746     // should never occur
747     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
748       // but easy to recover from
749       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
750       buf_ptr = RX_CHANNEL_IDLE;
751     }
752   } else {
753     PRINTD (DBG_VCC, "using IDLE buffer pointer");
754   }
755 
756   // Channel is currently disabled so change its status to idle
757 
758   // do we really need to save the flags again?
759   spin_lock_irqsave (&dev->mem_lock, flags);
760 
761   wr_mem (dev, &rx_desc->wr_buf_type,
762 	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
763   if (buf_ptr != RX_CHANNEL_IDLE)
764     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
765 
766   spin_unlock_irqrestore (&dev->mem_lock, flags);
767 
768   // rxer->rate = make_rate (qos->peak_cells);
769 
770   PRINTD (DBG_FLOW, "hrz_open_rx ok");
771 
772   return 0;
773 }
774 
775 #if 0
776 /********** change vc rate for a given vc **********/
777 
778 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
779   rxer->rate = make_rate (qos->peak_cells);
780 }
781 #endif
782 
783 /********** free an skb (as per ATM device driver documentation) **********/
784 
hrz_kfree_skb(struct sk_buff * skb)785 static void hrz_kfree_skb (struct sk_buff * skb) {
786   if (ATM_SKB(skb)->vcc->pop) {
787     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
788   } else {
789     dev_kfree_skb_any (skb);
790   }
791 }
792 
793 /********** cancel listen on a VC **********/
794 
hrz_close_rx(hrz_dev * dev,u16 vc)795 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
796   unsigned long flags;
797 
798   u32 value;
799 
800   u32 r1, r2;
801 
802   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
803 
804   int was_idle = 0;
805 
806   spin_lock_irqsave (&dev->mem_lock, flags);
807   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
808   spin_unlock_irqrestore (&dev->mem_lock, flags);
809 
810   if (value == RX_CHANNEL_DISABLED) {
811     // I suppose this could happen once we deal with _NONE traffic properly
812     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
813     return;
814   }
815   if (value == RX_CHANNEL_IDLE)
816     was_idle = 1;
817 
818   spin_lock_irqsave (&dev->mem_lock, flags);
819 
820   for (;;) {
821     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
822 
823     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
824       break;
825 
826     was_idle = 0;
827   }
828 
829   if (was_idle) {
830     spin_unlock_irqrestore (&dev->mem_lock, flags);
831     return;
832   }
833 
834   WAIT_FLUSH_RX_COMPLETE(dev);
835 
836   // XXX Is this all really necessary? We can rely on the rx_data_av
837   // handler to discard frames that remain queued for delivery. If the
838   // worry is that immediately reopening the channel (perhaps by a
839   // different process) may cause some data to be mis-delivered then
840   // there may still be a simpler solution (such as busy-waiting on
841   // rx_busy once the channel is disabled or before a new one is
842   // opened - does this leave any holes?). Arguably setting up and
843   // tearing down the TX and RX halves of each virtual circuit could
844   // most safely be done within ?x_busy protected regions.
845 
846   // OK, current changes are that Simon's marker is disabled and we DO
847   // look for NULL rxer elsewhere. The code here seems flush frames
848   // and then remember the last dead cell belonging to the channel
849   // just disabled - the cell gets relinked at the next vc_open.
850   // However, when all VCs are closed or only a few opened there are a
851   // handful of buffers that are unusable.
852 
853   // Does anyone feel like documenting spare_buffers properly?
854   // Does anyone feel like fixing this in a nicer way?
855 
856   // Flush any data which is left in the channel
857   for (;;) {
858     // Change the rx channel port to something different to the RX
859     // channel we are trying to close to force Horizon to flush the rx
860     // channel read and write pointers.
861 
862     u16 other = vc^(RX_CHANS/2);
863 
864     SELECT_RX_CHANNEL (dev, other);
865     WAIT_UPDATE_COMPLETE (dev);
866 
867     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
868 
869     // Select this RX channel. Flush doesn't seem to work unless we
870     // select an RX channel before hand
871 
872     SELECT_RX_CHANNEL (dev, vc);
873     WAIT_UPDATE_COMPLETE (dev);
874 
875     // Attempt to flush a frame on this RX channel
876 
877     FLUSH_RX_CHANNEL (dev, vc);
878     WAIT_FLUSH_RX_COMPLETE (dev);
879 
880     // Force Horizon to flush rx channel read and write pointers as before
881 
882     SELECT_RX_CHANNEL (dev, other);
883     WAIT_UPDATE_COMPLETE (dev);
884 
885     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
886 
887     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
888 
889     if (r1 == r2) {
890       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
891       break;
892     }
893   }
894 
895 #if 0
896   {
897     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
898     rx_q_entry * rd_ptr = dev->rx_q_entry;
899 
900     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
901 
902     while (rd_ptr != wr_ptr) {
903       u32 x = rd_mem (dev, (HDW *) rd_ptr);
904 
905       if (vc == rx_q_entry_to_rx_channel (x)) {
906 	x |= SIMONS_DODGEY_MARKER;
907 
908 	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
909 
910 	wr_mem (dev, (HDW *) rd_ptr, x);
911       }
912 
913       if (rd_ptr == dev->rx_q_wrap)
914 	rd_ptr = dev->rx_q_reset;
915       else
916 	rd_ptr++;
917     }
918   }
919 #endif
920 
921   spin_unlock_irqrestore (&dev->mem_lock, flags);
922 
923   return;
924 }
925 
926 /********** schedule RX transfers **********/
927 
928 // Note on tail recursion: a GCC developer said that it is not likely
929 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
930 // are sure it does as you may otherwise overflow the kernel stack.
931 
932 // giving this fn a return value would help GCC, allegedly
933 
rx_schedule(hrz_dev * dev,int irq)934 static void rx_schedule (hrz_dev * dev, int irq) {
935   unsigned int rx_bytes;
936 
937   int pio_instead = 0;
938 #ifndef TAILRECURSIONWORKS
939   pio_instead = 1;
940   while (pio_instead) {
941 #endif
942     // bytes waiting for RX transfer
943     rx_bytes = dev->rx_bytes;
944 
945 #if 0
946     spin_count = 0;
947     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
948       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
949       if (++spin_count > 10) {
950 	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
951 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
952 	clear_bit (rx_busy, &dev->flags);
953 	hrz_kfree_skb (dev->rx_skb);
954 	return;
955       }
956     }
957 #endif
958 
959     // this code follows the TX code but (at the moment) there is only
960     // one region - the skb itself. I don't know if this will change,
961     // but it doesn't hurt to have the code here, disabled.
962 
963     if (rx_bytes) {
964       // start next transfer within same region
965       if (rx_bytes <= MAX_PIO_COUNT) {
966 	PRINTD (DBG_RX|DBG_BUS, "(pio)");
967 	pio_instead = 1;
968       }
969       if (rx_bytes <= MAX_TRANSFER_COUNT) {
970 	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
971 	dev->rx_bytes = 0;
972       } else {
973 	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
974 	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
975 	rx_bytes = MAX_TRANSFER_COUNT;
976       }
977     } else {
978       // rx_bytes == 0 -- we're between regions
979       // regions remaining to transfer
980 #if 0
981       unsigned int rx_regions = dev->rx_regions;
982 #else
983       unsigned int rx_regions = 0;
984 #endif
985 
986       if (rx_regions) {
987 #if 0
988 	// start a new region
989 	dev->rx_addr = dev->rx_iovec->iov_base;
990 	rx_bytes = dev->rx_iovec->iov_len;
991 	++dev->rx_iovec;
992 	dev->rx_regions = rx_regions - 1;
993 
994 	if (rx_bytes <= MAX_PIO_COUNT) {
995 	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
996 	  pio_instead = 1;
997 	}
998 	if (rx_bytes <= MAX_TRANSFER_COUNT) {
999 	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1000 	  dev->rx_bytes = 0;
1001 	} else {
1002 	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1003 	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1004 	  rx_bytes = MAX_TRANSFER_COUNT;
1005 	}
1006 #endif
1007       } else {
1008 	// rx_regions == 0
1009 	// that's all folks - end of frame
1010 	struct sk_buff * skb = dev->rx_skb;
1011 	// dev->rx_iovec = 0;
1012 
1013 	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1014 
1015 	dump_skb ("<<<", dev->rx_channel, skb);
1016 
1017 	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1018 
1019 	{
1020 	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1021 	  // VC layer stats
1022 	  atomic_inc(&vcc->stats->rx);
1023 	  __net_timestamp(skb);
1024 	  // end of our responsibility
1025 	  vcc->push (vcc, skb);
1026 	}
1027       }
1028     }
1029 
1030     // note: writing RX_COUNT clears any interrupt condition
1031     if (rx_bytes) {
1032       if (pio_instead) {
1033 	if (irq)
1034 	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1035 	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1036       } else {
1037 	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1038 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1039       }
1040       dev->rx_addr += rx_bytes;
1041     } else {
1042       if (irq)
1043 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1044       // allow another RX thread to start
1045       YELLOW_LED_ON(dev);
1046       clear_bit (rx_busy, &dev->flags);
1047       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1048     }
1049 
1050 #ifdef TAILRECURSIONWORKS
1051     // and we all bless optimised tail calls
1052     if (pio_instead)
1053       return rx_schedule (dev, 0);
1054     return;
1055 #else
1056     // grrrrrrr!
1057     irq = 0;
1058   }
1059   return;
1060 #endif
1061 }
1062 
1063 /********** handle RX bus master complete events **********/
1064 
rx_bus_master_complete_handler(hrz_dev * dev)1065 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1066   if (test_bit (rx_busy, &dev->flags)) {
1067     rx_schedule (dev, 1);
1068   } else {
1069     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1070     // clear interrupt condition on adapter
1071     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1072   }
1073   return;
1074 }
1075 
1076 /********** (queue to) become the next TX thread **********/
1077 
tx_hold(hrz_dev * dev)1078 static int tx_hold (hrz_dev * dev) {
1079   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1080   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1081   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1082   if (signal_pending (current))
1083     return -1;
1084   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1085   return 0;
1086 }
1087 
1088 /********** allow another TX thread to start **********/
1089 
tx_release(hrz_dev * dev)1090 static inline void tx_release (hrz_dev * dev) {
1091   clear_bit (tx_busy, &dev->flags);
1092   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1093   wake_up_interruptible (&dev->tx_queue);
1094 }
1095 
1096 /********** schedule TX transfers **********/
1097 
tx_schedule(hrz_dev * const dev,int irq)1098 static void tx_schedule (hrz_dev * const dev, int irq) {
1099   unsigned int tx_bytes;
1100 
1101   int append_desc = 0;
1102 
1103   int pio_instead = 0;
1104 #ifndef TAILRECURSIONWORKS
1105   pio_instead = 1;
1106   while (pio_instead) {
1107 #endif
1108     // bytes in current region waiting for TX transfer
1109     tx_bytes = dev->tx_bytes;
1110 
1111 #if 0
1112     spin_count = 0;
1113     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1114       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1115       if (++spin_count > 10) {
1116 	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1117 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1118 	tx_release (dev);
1119 	hrz_kfree_skb (dev->tx_skb);
1120 	return;
1121       }
1122     }
1123 #endif
1124 
1125     if (tx_bytes) {
1126       // start next transfer within same region
1127       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1128 	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1129 	pio_instead = 1;
1130       }
1131       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1132 	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1133 	if (!dev->tx_iovec) {
1134 	  // end of last region
1135 	  append_desc = 1;
1136 	}
1137 	dev->tx_bytes = 0;
1138       } else {
1139 	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1140 	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1141 	tx_bytes = MAX_TRANSFER_COUNT;
1142       }
1143     } else {
1144       // tx_bytes == 0 -- we're between regions
1145       // regions remaining to transfer
1146       unsigned int tx_regions = dev->tx_regions;
1147 
1148       if (tx_regions) {
1149 	// start a new region
1150 	dev->tx_addr = dev->tx_iovec->iov_base;
1151 	tx_bytes = dev->tx_iovec->iov_len;
1152 	++dev->tx_iovec;
1153 	dev->tx_regions = tx_regions - 1;
1154 
1155 	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1156 	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1157 	  pio_instead = 1;
1158 	}
1159 	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1160 	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1161 	  dev->tx_bytes = 0;
1162 	} else {
1163 	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1164 	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1165 	  tx_bytes = MAX_TRANSFER_COUNT;
1166 	}
1167       } else {
1168 	// tx_regions == 0
1169 	// that's all folks - end of frame
1170 	struct sk_buff * skb = dev->tx_skb;
1171 	dev->tx_iovec = NULL;
1172 
1173 	// VC layer stats
1174 	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1175 
1176 	// free the skb
1177 	hrz_kfree_skb (skb);
1178       }
1179     }
1180 
1181     // note: writing TX_COUNT clears any interrupt condition
1182     if (tx_bytes) {
1183       if (pio_instead) {
1184 	if (irq)
1185 	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1186 	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1187 	if (append_desc)
1188 	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1189       } else {
1190 	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1191 	if (append_desc)
1192 	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1193 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1194 		 append_desc
1195 		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1196 		 : tx_bytes);
1197       }
1198       dev->tx_addr += tx_bytes;
1199     } else {
1200       if (irq)
1201 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202       YELLOW_LED_ON(dev);
1203       tx_release (dev);
1204     }
1205 
1206 #ifdef TAILRECURSIONWORKS
1207     // and we all bless optimised tail calls
1208     if (pio_instead)
1209       return tx_schedule (dev, 0);
1210     return;
1211 #else
1212     // grrrrrrr!
1213     irq = 0;
1214   }
1215   return;
1216 #endif
1217 }
1218 
1219 /********** handle TX bus master complete events **********/
1220 
tx_bus_master_complete_handler(hrz_dev * dev)1221 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1222   if (test_bit (tx_busy, &dev->flags)) {
1223     tx_schedule (dev, 1);
1224   } else {
1225     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1226     // clear interrupt condition on adapter
1227     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1228   }
1229   return;
1230 }
1231 
1232 /********** move RX Q pointer to next item in circular buffer **********/
1233 
1234 // called only from IRQ sub-handler
rx_queue_entry_next(hrz_dev * dev)1235 static u32 rx_queue_entry_next (hrz_dev * dev) {
1236   u32 rx_queue_entry;
1237   spin_lock (&dev->mem_lock);
1238   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1239   if (dev->rx_q_entry == dev->rx_q_wrap)
1240     dev->rx_q_entry = dev->rx_q_reset;
1241   else
1242     dev->rx_q_entry++;
1243   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1244   spin_unlock (&dev->mem_lock);
1245   return rx_queue_entry;
1246 }
1247 
1248 /********** handle RX data received by device **********/
1249 
1250 // called from IRQ handler
rx_data_av_handler(hrz_dev * dev)1251 static void rx_data_av_handler (hrz_dev * dev) {
1252   u32 rx_queue_entry;
1253   u32 rx_queue_entry_flags;
1254   u16 rx_len;
1255   u16 rx_channel;
1256 
1257   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1258 
1259   // try to grab rx lock (not possible during RX bus mastering)
1260   if (test_and_set_bit (rx_busy, &dev->flags)) {
1261     PRINTD (DBG_RX, "locked out of rx lock");
1262     return;
1263   }
1264   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1265   // lock is cleared if we fail now, o/w after bus master completion
1266 
1267   YELLOW_LED_OFF(dev);
1268 
1269   rx_queue_entry = rx_queue_entry_next (dev);
1270 
1271   rx_len = rx_q_entry_to_length (rx_queue_entry);
1272   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1273 
1274   WAIT_FLUSH_RX_COMPLETE (dev);
1275 
1276   SELECT_RX_CHANNEL (dev, rx_channel);
1277 
1278   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1279   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1280 
1281   if (!rx_len) {
1282     // (at least) bus-mastering breaks if we try to handle a
1283     // zero-length frame, besides AAL5 does not support them
1284     PRINTK (KERN_ERR, "zero-length frame!");
1285     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1286   }
1287 
1288   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1289     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1290   }
1291   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1292     struct atm_vcc * atm_vcc;
1293 
1294     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1295 
1296     atm_vcc = dev->rxer[rx_channel];
1297     // if no vcc is assigned to this channel, we should drop the frame
1298     // (is this what SIMONS etc. was trying to achieve?)
1299 
1300     if (atm_vcc) {
1301 
1302       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1303 
1304 	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1305 
1306 	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1307 	  if (skb) {
1308 	    // remember this so we can push it later
1309 	    dev->rx_skb = skb;
1310 	    // remember this so we can flush it later
1311 	    dev->rx_channel = rx_channel;
1312 
1313 	    // prepare socket buffer
1314 	    skb_put (skb, rx_len);
1315 	    ATM_SKB(skb)->vcc = atm_vcc;
1316 
1317 	    // simple transfer
1318 	    // dev->rx_regions = 0;
1319 	    // dev->rx_iovec = 0;
1320 	    dev->rx_bytes = rx_len;
1321 	    dev->rx_addr = skb->data;
1322 	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1323 		    skb->data, rx_len);
1324 
1325 	    // do the business
1326 	    rx_schedule (dev, 0);
1327 	    return;
1328 
1329 	  } else {
1330 	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1331 	  }
1332 
1333 	} else {
1334 	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1335 	  // do we count this?
1336 	}
1337 
1338       } else {
1339 	PRINTK (KERN_WARNING, "dropped over-size frame");
1340 	// do we count this?
1341       }
1342 
1343     } else {
1344       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1345       // do we count this?
1346     }
1347 
1348   } else {
1349     // Wait update complete ? SPONG
1350   }
1351 
1352   // RX was aborted
1353   YELLOW_LED_ON(dev);
1354 
1355   FLUSH_RX_CHANNEL (dev,rx_channel);
1356   clear_bit (rx_busy, &dev->flags);
1357 
1358   return;
1359 }
1360 
1361 /********** interrupt handler **********/
1362 
interrupt_handler(int irq,void * dev_id)1363 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1364 {
1365   hrz_dev *dev = dev_id;
1366   u32 int_source;
1367   unsigned int irq_ok;
1368 
1369   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1370 
1371   // definitely for us
1372   irq_ok = 0;
1373   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1374 	  & INTERESTING_INTERRUPTS)) {
1375     // In the interests of fairness, the handlers below are
1376     // called in sequence and without immediate return to the head of
1377     // the while loop. This is only of issue for slow hosts (or when
1378     // debugging messages are on). Really slow hosts may find a fast
1379     // sender keeps them permanently in the IRQ handler. :(
1380 
1381     // (only an issue for slow hosts) RX completion goes before
1382     // rx_data_av as the former implies rx_busy and so the latter
1383     // would just abort. If it reschedules another transfer
1384     // (continuing the same frame) then it will not clear rx_busy.
1385 
1386     // (only an issue for slow hosts) TX completion goes before RX
1387     // data available as it is a much shorter routine - there is the
1388     // chance that any further transfers it schedules will be complete
1389     // by the time of the return to the head of the while loop
1390 
1391     if (int_source & RX_BUS_MASTER_COMPLETE) {
1392       ++irq_ok;
1393       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1394       rx_bus_master_complete_handler (dev);
1395     }
1396     if (int_source & TX_BUS_MASTER_COMPLETE) {
1397       ++irq_ok;
1398       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1399       tx_bus_master_complete_handler (dev);
1400     }
1401     if (int_source & RX_DATA_AV) {
1402       ++irq_ok;
1403       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1404       rx_data_av_handler (dev);
1405     }
1406   }
1407   if (irq_ok) {
1408     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1409   } else {
1410     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1411   }
1412 
1413   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1414   if (irq_ok)
1415 	return IRQ_HANDLED;
1416   return IRQ_NONE;
1417 }
1418 
1419 /********** housekeeping **********/
1420 
do_housekeeping(struct timer_list * t)1421 static void do_housekeeping (struct timer_list *t) {
1422   // just stats at the moment
1423   hrz_dev * dev = from_timer(dev, t, housekeeping);
1424 
1425   // collect device-specific (not driver/atm-linux) stats here
1426   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1427   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1428   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1429   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1430 
1431   mod_timer (&dev->housekeeping, jiffies + HZ/10);
1432 
1433   return;
1434 }
1435 
1436 /********** find an idle channel for TX and set it up **********/
1437 
1438 // called with tx_busy set
setup_idle_tx_channel(hrz_dev * dev,hrz_vcc * vcc)1439 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1440   unsigned short idle_channels;
1441   short tx_channel = -1;
1442   unsigned int spin_count;
1443   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1444 
1445   // better would be to fail immediately, the caller can then decide whether
1446   // to wait or drop (depending on whether this is UBR etc.)
1447   spin_count = 0;
1448   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1449     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1450     // delay a bit here
1451     if (++spin_count > 100) {
1452       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1453       return -EBUSY;
1454     }
1455   }
1456 
1457   // got an idle channel
1458   {
1459     // tx_idle ensures we look for idle channels in RR order
1460     int chan = dev->tx_idle;
1461 
1462     int keep_going = 1;
1463     while (keep_going) {
1464       if (idle_channels & (1<<chan)) {
1465 	tx_channel = chan;
1466 	keep_going = 0;
1467       }
1468       ++chan;
1469       if (chan == TX_CHANS)
1470 	chan = 0;
1471     }
1472 
1473     dev->tx_idle = chan;
1474   }
1475 
1476   // set up the channel we found
1477   {
1478     // Initialise the cell header in the transmit channel descriptor
1479     // a.k.a. prepare the channel and remember that we have done so.
1480 
1481     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1482     u32 rd_ptr;
1483     u32 wr_ptr;
1484     u16 channel = vcc->channel;
1485 
1486     unsigned long flags;
1487     spin_lock_irqsave (&dev->mem_lock, flags);
1488 
1489     // Update the transmit channel record.
1490     dev->tx_channel_record[tx_channel] = channel;
1491 
1492     // xBR channel
1493     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1494 			      vcc->tx_xbr_bits);
1495 
1496     // Update the PCR counter preload value etc.
1497     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1498 			      vcc->tx_pcr_bits);
1499 
1500 #if 0
1501     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1502       // SCR timer
1503       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1504 				vcc->tx_scr_bits);
1505 
1506       // Bucket size...
1507       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1508 				vcc->tx_bucket_bits);
1509 
1510       // ... and fullness
1511       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1512 				vcc->tx_bucket_bits);
1513     }
1514 #endif
1515 
1516     // Initialise the read and write buffer pointers
1517     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1518     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1519 
1520     // idle TX channels should have identical pointers
1521     if (rd_ptr != wr_ptr) {
1522       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1523       // spin_unlock... return -E...
1524       // I wonder if gcc would get rid of one of the pointer aliases
1525     }
1526     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1527 	    rd_ptr, wr_ptr);
1528 
1529     switch (vcc->aal) {
1530       case aal0:
1531 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1532 	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533 	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1534 	break;
1535       case aal34:
1536 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1537 	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1538 	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1539 	break;
1540       case aal5:
1541 	rd_ptr |= CHANNEL_TYPE_AAL5;
1542 	wr_ptr |= CHANNEL_TYPE_AAL5;
1543 	// Initialise the CRC
1544 	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1545 	break;
1546     }
1547 
1548     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1549     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1550 
1551     // Write the Cell Header
1552     // Payload Type, CLP and GFC would go here if non-zero
1553     wr_mem (dev, &tx_desc->cell_header, channel);
1554 
1555     spin_unlock_irqrestore (&dev->mem_lock, flags);
1556   }
1557 
1558   return tx_channel;
1559 }
1560 
1561 /********** send a frame **********/
1562 
hrz_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1563 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1564   unsigned int spin_count;
1565   int free_buffers;
1566   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1567   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1568   u16 channel = vcc->channel;
1569 
1570   u32 buffers_required;
1571 
1572   /* signed for error return */
1573   short tx_channel;
1574 
1575   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1576 	  channel, skb->data, skb->len);
1577 
1578   dump_skb (">>>", channel, skb);
1579 
1580   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1581     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1582     hrz_kfree_skb (skb);
1583     return -EIO;
1584   }
1585 
1586   // don't understand this
1587   ATM_SKB(skb)->vcc = atm_vcc;
1588 
1589   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1590     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1591     hrz_kfree_skb (skb);
1592     return -EIO;
1593   }
1594 
1595   if (!channel) {
1596     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1597     hrz_kfree_skb (skb);
1598     return -EIO;
1599   }
1600 
1601 #if 0
1602   {
1603     // where would be a better place for this? housekeeping?
1604     u16 status;
1605     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1606     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1607       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1608       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1609       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1610       if (test_bit (tx_busy, &dev->flags)) {
1611 	hrz_kfree_skb (dev->tx_skb);
1612 	tx_release (dev);
1613       }
1614     }
1615   }
1616 #endif
1617 
1618 #ifdef DEBUG_HORIZON
1619   /* wey-hey! */
1620   if (channel == 1023) {
1621     unsigned int i;
1622     unsigned short d = 0;
1623     char * s = skb->data;
1624     if (*s++ == 'D') {
1625 	for (i = 0; i < 4; ++i)
1626 		d = (d << 4) | hex_to_bin(*s++);
1627       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1628     }
1629   }
1630 #endif
1631 
1632   // wait until TX is free and grab lock
1633   if (tx_hold (dev)) {
1634     hrz_kfree_skb (skb);
1635     return -ERESTARTSYS;
1636   }
1637 
1638   // Wait for enough space to be available in transmit buffer memory.
1639 
1640   // should be number of cells needed + 2 (according to hardware docs)
1641   // = ((framelen+8)+47) / 48 + 2
1642   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1643   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1644 
1645   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1646   spin_count = 0;
1647   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1648     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1649 	    free_buffers, buffers_required);
1650     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1651     // mdelay (1);
1652     // what happens if we kill (current_pid, SIGKILL) ?
1653     schedule();
1654     if (++spin_count > 1000) {
1655       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1656 	      free_buffers, buffers_required);
1657       tx_release (dev);
1658       hrz_kfree_skb (skb);
1659       return -ERESTARTSYS;
1660     }
1661   }
1662 
1663   // Select a channel to transmit the frame on.
1664   if (channel == dev->last_vc) {
1665     PRINTD (DBG_TX, "last vc hack: hit");
1666     tx_channel = dev->tx_last;
1667   } else {
1668     PRINTD (DBG_TX, "last vc hack: miss");
1669     // Are we currently transmitting this VC on one of the channels?
1670     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1671       if (dev->tx_channel_record[tx_channel] == channel) {
1672 	PRINTD (DBG_TX, "vc already on channel: hit");
1673 	break;
1674       }
1675     if (tx_channel == TX_CHANS) {
1676       PRINTD (DBG_TX, "vc already on channel: miss");
1677       // Find and set up an idle channel.
1678       tx_channel = setup_idle_tx_channel (dev, vcc);
1679       if (tx_channel < 0) {
1680 	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1681 	tx_release (dev);
1682 	return tx_channel;
1683       }
1684     }
1685 
1686     PRINTD (DBG_TX, "got channel");
1687     SELECT_TX_CHANNEL(dev, tx_channel);
1688 
1689     dev->last_vc = channel;
1690     dev->tx_last = tx_channel;
1691   }
1692 
1693   PRINTD (DBG_TX, "using channel %u", tx_channel);
1694 
1695   YELLOW_LED_OFF(dev);
1696 
1697   // TX start transfer
1698 
1699   {
1700     unsigned int tx_len = skb->len;
1701     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1702     // remember this so we can free it later
1703     dev->tx_skb = skb;
1704 
1705     if (tx_iovcnt) {
1706       // scatter gather transfer
1707       dev->tx_regions = tx_iovcnt;
1708       dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1709       dev->tx_bytes = 0;
1710       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1711 	      skb->data, tx_len);
1712       tx_release (dev);
1713       hrz_kfree_skb (skb);
1714       return -EIO;
1715     } else {
1716       // simple transfer
1717       dev->tx_regions = 0;
1718       dev->tx_iovec = NULL;
1719       dev->tx_bytes = tx_len;
1720       dev->tx_addr = skb->data;
1721       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1722 	      skb->data, tx_len);
1723     }
1724 
1725     // and do the business
1726     tx_schedule (dev, 0);
1727 
1728   }
1729 
1730   return 0;
1731 }
1732 
1733 /********** reset a card **********/
1734 
hrz_reset(const hrz_dev * dev)1735 static void hrz_reset (const hrz_dev * dev) {
1736   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1737 
1738   // why not set RESET_HORIZON to one and wait for the card to
1739   // reassert that bit as zero? Like so:
1740   control_0_reg = control_0_reg & RESET_HORIZON;
1741   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1742   while (control_0_reg & RESET_HORIZON)
1743     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1744 
1745   // old reset code retained:
1746   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1747 	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1748   // just guessing here
1749   udelay (1000);
1750 
1751   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1752 }
1753 
1754 /********** read the burnt in address **********/
1755 
WRITE_IT_WAIT(const hrz_dev * dev,u32 ctrl)1756 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1757 {
1758 	wr_regl (dev, CONTROL_0_REG, ctrl);
1759 	udelay (5);
1760 }
1761 
CLOCK_IT(const hrz_dev * dev,u32 ctrl)1762 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1763 {
1764 	// DI must be valid around rising SK edge
1765 	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1766 	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1767 }
1768 
read_bia(const hrz_dev * dev,u16 addr)1769 static u16 read_bia(const hrz_dev *dev, u16 addr)
1770 {
1771   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1772 
1773   const unsigned int addr_bits = 6;
1774   const unsigned int data_bits = 16;
1775 
1776   unsigned int i;
1777 
1778   u16 res;
1779 
1780   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1781   WRITE_IT_WAIT(dev, ctrl);
1782 
1783   // wake Serial EEPROM and send 110 (READ) command
1784   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1785   CLOCK_IT(dev, ctrl);
1786 
1787   ctrl |= SEEPROM_DI;
1788   CLOCK_IT(dev, ctrl);
1789 
1790   ctrl &= ~SEEPROM_DI;
1791   CLOCK_IT(dev, ctrl);
1792 
1793   for (i=0; i<addr_bits; i++) {
1794     if (addr & (1 << (addr_bits-1)))
1795       ctrl |= SEEPROM_DI;
1796     else
1797       ctrl &= ~SEEPROM_DI;
1798 
1799     CLOCK_IT(dev, ctrl);
1800 
1801     addr = addr << 1;
1802   }
1803 
1804   // we could check that we have DO = 0 here
1805   ctrl &= ~SEEPROM_DI;
1806 
1807   res = 0;
1808   for (i=0;i<data_bits;i++) {
1809     res = res >> 1;
1810 
1811     CLOCK_IT(dev, ctrl);
1812 
1813     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1814       res |= (1 << (data_bits-1));
1815   }
1816 
1817   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1818   WRITE_IT_WAIT(dev, ctrl);
1819 
1820   return res;
1821 }
1822 
1823 /********** initialise a card **********/
1824 
hrz_init(hrz_dev * dev)1825 static int hrz_init(hrz_dev *dev)
1826 {
1827   int onefivefive;
1828 
1829   u16 chan;
1830 
1831   int buff_count;
1832 
1833   HDW * mem;
1834 
1835   cell_buf * tx_desc;
1836   cell_buf * rx_desc;
1837 
1838   u32 ctrl;
1839 
1840   ctrl = rd_regl (dev, CONTROL_0_REG);
1841   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1842   onefivefive = ctrl & ATM_LAYER_STATUS;
1843 
1844   if (onefivefive)
1845     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1846   else
1847     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1848 
1849   printk (":");
1850   // Reset the card to get everything in a known state
1851 
1852   printk (" reset");
1853   hrz_reset (dev);
1854 
1855   // Clear all the buffer memory
1856 
1857   printk (" clearing memory");
1858 
1859   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1860     wr_mem (dev, mem, 0);
1861 
1862   printk (" tx channels");
1863 
1864   // All transmit eight channels are set up as AAL5 ABR channels with
1865   // a 16us cell spacing. Why?
1866 
1867   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1868   // buffer at 110h etc.
1869 
1870   for (chan = 0; chan < TX_CHANS; ++chan) {
1871     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1872     cell_buf * buf = &memmap->inittxbufs[chan];
1873 
1874     // initialise the read and write buffer pointers
1875     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1876     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1877 
1878     // set the status of the initial buffers to empty
1879     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1880   }
1881 
1882   // Use space bufn3 at the moment for tx buffers
1883 
1884   printk (" tx buffers");
1885 
1886   tx_desc = memmap->bufn3;
1887 
1888   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1889 
1890   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1891     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1892     tx_desc++;
1893   }
1894 
1895   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1896 
1897   // Initialise the transmit free buffer count
1898   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1899 
1900   printk (" rx channels");
1901 
1902   // Initialise all of the receive channels to be AAL5 disabled with
1903   // an interrupt threshold of 0
1904 
1905   for (chan = 0; chan < RX_CHANS; ++chan) {
1906     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1907 
1908     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1909   }
1910 
1911   printk (" rx buffers");
1912 
1913   // Use space bufn4 at the moment for rx buffers
1914 
1915   rx_desc = memmap->bufn4;
1916 
1917   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1918 
1919   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1920     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1921 
1922     rx_desc++;
1923   }
1924 
1925   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1926 
1927   // Initialise the receive free buffer count
1928   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1929 
1930   // Initialize Horizons registers
1931 
1932   // TX config
1933   wr_regw (dev, TX_CONFIG_OFF,
1934 	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1935 
1936   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1937   wr_regw (dev, RX_CONFIG_OFF,
1938 	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1939 
1940   // RX line config
1941   wr_regw (dev, RX_LINE_CONFIG_OFF,
1942 	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1943 
1944   // Set the max AAL5 cell count to be just enough to contain the
1945   // largest AAL5 frame that the user wants to receive
1946   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1947 	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1948 
1949   // Enable receive
1950   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1951 
1952   printk (" control");
1953 
1954   // Drive the OE of the LEDs then turn the green LED on
1955   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1956   wr_regl (dev, CONTROL_0_REG, ctrl);
1957 
1958   // Test for a 155-capable card
1959 
1960   if (onefivefive) {
1961     // Select 155 mode... make this a choice (or: how do we detect
1962     // external line speed and switch?)
1963     ctrl |= ATM_LAYER_SELECT;
1964     wr_regl (dev, CONTROL_0_REG, ctrl);
1965 
1966     // test SUNI-lite vs SAMBA
1967 
1968     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1969     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1970     // engineers.  It'll never work.
1971 
1972     if (rd_framer (dev, 0) & 0x00f0) {
1973       // SUNI
1974       printk (" SUNI");
1975 
1976       // Reset, just in case
1977       wr_framer (dev, 0x00, 0x0080);
1978       wr_framer (dev, 0x00, 0x0000);
1979 
1980       // Configure transmit FIFO
1981       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1982 
1983       // Set line timed mode
1984       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1985     } else {
1986       // SAMBA
1987       printk (" SAMBA");
1988 
1989       // Reset, just in case
1990       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1991       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1992 
1993       // Turn off diagnostic loopback and enable line-timed mode
1994       wr_framer (dev, 0, 0x0002);
1995 
1996       // Turn on transmit outputs
1997       wr_framer (dev, 2, 0x0B80);
1998     }
1999   } else {
2000     // Select 25 mode
2001     ctrl &= ~ATM_LAYER_SELECT;
2002 
2003     // Madge B154 setup
2004     // none required?
2005   }
2006 
2007   printk (" LEDs");
2008 
2009   GREEN_LED_ON(dev);
2010   YELLOW_LED_ON(dev);
2011 
2012   printk (" ESI=");
2013 
2014   {
2015     u16 b = 0;
2016     int i;
2017     u8 * esi = dev->atm_dev->esi;
2018 
2019     // in the card I have, EEPROM
2020     // addresses 0, 1, 2 contain 0
2021     // addresess 5, 6 etc. contain ffff
2022     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2023     // the read_bia routine gets the BIA in Ethernet bit order
2024 
2025     for (i=0; i < ESI_LEN; ++i) {
2026       if (i % 2 == 0)
2027 	b = read_bia (dev, i/2 + 2);
2028       else
2029 	b = b >> 8;
2030       esi[i] = b & 0xFF;
2031       printk ("%02x", esi[i]);
2032     }
2033   }
2034 
2035   // Enable RX_Q and ?X_COMPLETE interrupts only
2036   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2037   printk (" IRQ on");
2038 
2039   printk (".\n");
2040 
2041   return onefivefive;
2042 }
2043 
2044 /********** check max_sdu **********/
2045 
check_max_sdu(hrz_aal aal,struct atm_trafprm * tp,unsigned int max_frame_size)2046 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2047   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2048 
2049   switch (aal) {
2050     case aal0:
2051       if (!(tp->max_sdu)) {
2052 	PRINTD (DBG_QOS, "defaulting max_sdu");
2053 	tp->max_sdu = ATM_AAL0_SDU;
2054       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2055 	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2056 	return -EINVAL;
2057       }
2058       break;
2059     case aal34:
2060       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2061 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2062 	tp->max_sdu = ATM_MAX_AAL34_PDU;
2063       }
2064       break;
2065     case aal5:
2066       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2067 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2068 	tp->max_sdu = max_frame_size;
2069       }
2070       break;
2071   }
2072   return 0;
2073 }
2074 
2075 /********** check pcr **********/
2076 
2077 // something like this should be part of ATM Linux
atm_pcr_check(struct atm_trafprm * tp,unsigned int pcr)2078 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2079   // we are assuming non-UBR, and non-special values of pcr
2080   if (tp->min_pcr == ATM_MAX_PCR)
2081     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2082   else if (tp->min_pcr < 0)
2083     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2084   else if (tp->min_pcr && tp->min_pcr > pcr)
2085     PRINTD (DBG_QOS, "pcr less than min_pcr");
2086   else
2087     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2088     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2089     // [this would get rid of next two conditionals]
2090     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2091       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2092     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2093       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2094     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2095       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2096     else {
2097       // each limit unspecified or not violated
2098       PRINTD (DBG_QOS, "xBR(pcr) OK");
2099       return 0;
2100     }
2101   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2102 	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2103   return -EINVAL;
2104 }
2105 
2106 /********** open VC **********/
2107 
hrz_open(struct atm_vcc * atm_vcc)2108 static int hrz_open (struct atm_vcc *atm_vcc)
2109 {
2110   int error;
2111   u16 channel;
2112 
2113   struct atm_qos * qos;
2114   struct atm_trafprm * txtp;
2115   struct atm_trafprm * rxtp;
2116 
2117   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2118   hrz_vcc vcc;
2119   hrz_vcc * vccp; // allocated late
2120   short vpi = atm_vcc->vpi;
2121   int vci = atm_vcc->vci;
2122   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2123 
2124 #ifdef ATM_VPI_UNSPEC
2125   // UNSPEC is deprecated, remove this code eventually
2126   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2127     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2128     return -EINVAL;
2129   }
2130 #endif
2131 
2132   error = vpivci_to_channel (&channel, vpi, vci);
2133   if (error) {
2134     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2135     return error;
2136   }
2137 
2138   vcc.channel = channel;
2139   // max speed for the moment
2140   vcc.tx_rate = 0x0;
2141 
2142   qos = &atm_vcc->qos;
2143 
2144   // check AAL and remember it
2145   switch (qos->aal) {
2146     case ATM_AAL0:
2147       // we would if it were 48 bytes and not 52!
2148       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2149       vcc.aal = aal0;
2150       break;
2151     case ATM_AAL34:
2152       // we would if I knew how do the SAR!
2153       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2154       vcc.aal = aal34;
2155       break;
2156     case ATM_AAL5:
2157       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2158       vcc.aal = aal5;
2159       break;
2160     default:
2161       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2162       return -EINVAL;
2163   }
2164 
2165   // TX traffic parameters
2166 
2167   // there are two, interrelated problems here: 1. the reservation of
2168   // PCR is not a binary choice, we are given bounds and/or a
2169   // desirable value; 2. the device is only capable of certain values,
2170   // most of which are not integers. It is almost certainly acceptable
2171   // to be off by a maximum of 1 to 10 cps.
2172 
2173   // Pragmatic choice: always store an integral PCR as that which has
2174   // been allocated, even if we allocate a little (or a lot) less,
2175   // after rounding. The actual allocation depends on what we can
2176   // manage with our rate selection algorithm. The rate selection
2177   // algorithm is given an integral PCR and a tolerance and told
2178   // whether it should round the value up or down if the tolerance is
2179   // exceeded; it returns: a) the actual rate selected (rounded up to
2180   // the nearest integer), b) a bit pattern to feed to the timer
2181   // register, and c) a failure value if no applicable rate exists.
2182 
2183   // Part of the job is done by atm_pcr_goal which gives us a PCR
2184   // specification which says: EITHER grab the maximum available PCR
2185   // (and perhaps a lower bound which we musn't pass), OR grab this
2186   // amount, rounding down if you have to (and perhaps a lower bound
2187   // which we musn't pass) OR grab this amount, rounding up if you
2188   // have to (and perhaps an upper bound which we musn't pass). If any
2189   // bounds ARE passed we fail. Note that rounding is only rounding to
2190   // match device limitations, we do not round down to satisfy
2191   // bandwidth availability even if this would not violate any given
2192   // lower bound.
2193 
2194   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2195   // (say) so this is not even a binary fixpoint cell rate (but this
2196   // device can do it). To avoid this sort of hassle we use a
2197   // tolerance parameter (currently fixed at 10 cps).
2198 
2199   PRINTD (DBG_QOS, "TX:");
2200 
2201   txtp = &qos->txtp;
2202 
2203   // set up defaults for no traffic
2204   vcc.tx_rate = 0;
2205   // who knows what would actually happen if you try and send on this?
2206   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2207   vcc.tx_pcr_bits = CLOCK_DISABLE;
2208 #if 0
2209   vcc.tx_scr_bits = CLOCK_DISABLE;
2210   vcc.tx_bucket_bits = 0;
2211 #endif
2212 
2213   if (txtp->traffic_class != ATM_NONE) {
2214     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2215     if (error) {
2216       PRINTD (DBG_QOS, "TX max_sdu check failed");
2217       return error;
2218     }
2219 
2220     switch (txtp->traffic_class) {
2221       case ATM_UBR: {
2222 	// we take "the PCR" as a rate-cap
2223 	// not reserved
2224 	vcc.tx_rate = 0;
2225 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2226 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2227 	break;
2228       }
2229 #if 0
2230       case ATM_ABR: {
2231 	// reserve min, allow up to max
2232 	vcc.tx_rate = 0; // ?
2233 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2234 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2235 	break;
2236       }
2237 #endif
2238       case ATM_CBR: {
2239 	int pcr = atm_pcr_goal (txtp);
2240 	rounding r;
2241 	if (!pcr) {
2242 	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2243 	  // should really have: once someone gets unlimited bandwidth
2244 	  // that no more non-UBR channels can be opened until the
2245 	  // unlimited one closes?? For the moment, round_down means
2246 	  // greedy people actually get something and not nothing
2247 	  r = round_down;
2248 	  // slight race (no locking) here so we may get -EAGAIN
2249 	  // later; the greedy bastards would deserve it :)
2250 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2251 	  pcr = dev->tx_avail;
2252 	} else if (pcr < 0) {
2253 	  r = round_down;
2254 	  pcr = -pcr;
2255 	} else {
2256 	  r = round_up;
2257 	}
2258 	error = make_rate_with_tolerance (dev, pcr, r, 10,
2259 					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2260 	if (error) {
2261 	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2262 	  return error;
2263 	}
2264 	// not really clear what further checking is needed
2265 	error = atm_pcr_check (txtp, vcc.tx_rate);
2266 	if (error) {
2267 	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2268 	  return error;
2269 	}
2270 	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2271 	break;
2272       }
2273 #if 0
2274       case ATM_VBR: {
2275 	int pcr = atm_pcr_goal (txtp);
2276 	// int scr = atm_scr_goal (txtp);
2277 	int scr = pcr/2; // just for fun
2278 	unsigned int mbs = 60; // just for fun
2279 	rounding pr;
2280 	rounding sr;
2281 	unsigned int bucket;
2282 	if (!pcr) {
2283 	  pr = round_nearest;
2284 	  pcr = 1<<30;
2285 	} else if (pcr < 0) {
2286 	  pr = round_down;
2287 	  pcr = -pcr;
2288 	} else {
2289 	  pr = round_up;
2290 	}
2291 	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2292 					  &vcc.tx_pcr_bits, 0);
2293 	if (!scr) {
2294 	  // see comments for PCR with CBR above
2295 	  sr = round_down;
2296 	  // slight race (no locking) here so we may get -EAGAIN
2297 	  // later; the greedy bastards would deserve it :)
2298 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2299 	  scr = dev->tx_avail;
2300 	} else if (scr < 0) {
2301 	  sr = round_down;
2302 	  scr = -scr;
2303 	} else {
2304 	  sr = round_up;
2305 	}
2306 	error = make_rate_with_tolerance (dev, scr, sr, 10,
2307 					  &vcc.tx_scr_bits, &vcc.tx_rate);
2308 	if (error) {
2309 	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2310 	  return error;
2311 	}
2312 	// not really clear what further checking is needed
2313 	// error = atm_scr_check (txtp, vcc.tx_rate);
2314 	if (error) {
2315 	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2316 	  return error;
2317 	}
2318 	// bucket calculations (from a piece of paper...) cell bucket
2319 	// capacity must be largest integer smaller than m(p-s)/p + 1
2320 	// where m = max burst size, p = pcr, s = scr
2321 	bucket = mbs*(pcr-scr)/pcr;
2322 	if (bucket*pcr != mbs*(pcr-scr))
2323 	  bucket += 1;
2324 	if (bucket > BUCKET_MAX_SIZE) {
2325 	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2326 		  bucket, BUCKET_MAX_SIZE);
2327 	  bucket = BUCKET_MAX_SIZE;
2328 	}
2329 	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2330 	vcc.tx_bucket_bits = bucket;
2331 	break;
2332       }
2333 #endif
2334       default: {
2335 	PRINTD (DBG_QOS, "unsupported TX traffic class");
2336 	return -EINVAL;
2337       }
2338     }
2339   }
2340 
2341   // RX traffic parameters
2342 
2343   PRINTD (DBG_QOS, "RX:");
2344 
2345   rxtp = &qos->rxtp;
2346 
2347   // set up defaults for no traffic
2348   vcc.rx_rate = 0;
2349 
2350   if (rxtp->traffic_class != ATM_NONE) {
2351     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2352     if (error) {
2353       PRINTD (DBG_QOS, "RX max_sdu check failed");
2354       return error;
2355     }
2356     switch (rxtp->traffic_class) {
2357       case ATM_UBR: {
2358 	// not reserved
2359 	break;
2360       }
2361 #if 0
2362       case ATM_ABR: {
2363 	// reserve min
2364 	vcc.rx_rate = 0; // ?
2365 	break;
2366       }
2367 #endif
2368       case ATM_CBR: {
2369 	int pcr = atm_pcr_goal (rxtp);
2370 	if (!pcr) {
2371 	  // slight race (no locking) here so we may get -EAGAIN
2372 	  // later; the greedy bastards would deserve it :)
2373 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2374 	  pcr = dev->rx_avail;
2375 	} else if (pcr < 0) {
2376 	  pcr = -pcr;
2377 	}
2378 	vcc.rx_rate = pcr;
2379 	// not really clear what further checking is needed
2380 	error = atm_pcr_check (rxtp, vcc.rx_rate);
2381 	if (error) {
2382 	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2383 	  return error;
2384 	}
2385 	break;
2386       }
2387 #if 0
2388       case ATM_VBR: {
2389 	// int scr = atm_scr_goal (rxtp);
2390 	int scr = 1<<16; // just for fun
2391 	if (!scr) {
2392 	  // slight race (no locking) here so we may get -EAGAIN
2393 	  // later; the greedy bastards would deserve it :)
2394 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2395 	  scr = dev->rx_avail;
2396 	} else if (scr < 0) {
2397 	  scr = -scr;
2398 	}
2399 	vcc.rx_rate = scr;
2400 	// not really clear what further checking is needed
2401 	// error = atm_scr_check (rxtp, vcc.rx_rate);
2402 	if (error) {
2403 	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2404 	  return error;
2405 	}
2406 	break;
2407       }
2408 #endif
2409       default: {
2410 	PRINTD (DBG_QOS, "unsupported RX traffic class");
2411 	return -EINVAL;
2412       }
2413     }
2414   }
2415 
2416 
2417   // late abort useful for diagnostics
2418   if (vcc.aal != aal5) {
2419     PRINTD (DBG_QOS, "AAL not supported");
2420     return -EINVAL;
2421   }
2422 
2423   // get space for our vcc stuff and copy parameters into it
2424   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2425   if (!vccp) {
2426     PRINTK (KERN_ERR, "out of memory!");
2427     return -ENOMEM;
2428   }
2429   *vccp = vcc;
2430 
2431   // clear error and grab cell rate resource lock
2432   error = 0;
2433   spin_lock (&dev->rate_lock);
2434 
2435   if (vcc.tx_rate > dev->tx_avail) {
2436     PRINTD (DBG_QOS, "not enough TX PCR left");
2437     error = -EAGAIN;
2438   }
2439 
2440   if (vcc.rx_rate > dev->rx_avail) {
2441     PRINTD (DBG_QOS, "not enough RX PCR left");
2442     error = -EAGAIN;
2443   }
2444 
2445   if (!error) {
2446     // really consume cell rates
2447     dev->tx_avail -= vcc.tx_rate;
2448     dev->rx_avail -= vcc.rx_rate;
2449     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2450 	    vcc.tx_rate, vcc.rx_rate);
2451   }
2452 
2453   // release lock and exit on error
2454   spin_unlock (&dev->rate_lock);
2455   if (error) {
2456     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2457     kfree (vccp);
2458     return error;
2459   }
2460 
2461   // this is "immediately before allocating the connection identifier
2462   // in hardware" - so long as the next call does not fail :)
2463   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2464 
2465   // any errors here are very serious and should never occur
2466 
2467   if (rxtp->traffic_class != ATM_NONE) {
2468     if (dev->rxer[channel]) {
2469       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2470       error = -EBUSY;
2471     }
2472     if (!error)
2473       error = hrz_open_rx (dev, channel);
2474     if (error) {
2475       kfree (vccp);
2476       return error;
2477     }
2478     // this link allows RX frames through
2479     dev->rxer[channel] = atm_vcc;
2480   }
2481 
2482   // success, set elements of atm_vcc
2483   atm_vcc->dev_data = (void *) vccp;
2484 
2485   // indicate readiness
2486   set_bit(ATM_VF_READY,&atm_vcc->flags);
2487 
2488   return 0;
2489 }
2490 
2491 /********** close VC **********/
2492 
hrz_close(struct atm_vcc * atm_vcc)2493 static void hrz_close (struct atm_vcc * atm_vcc) {
2494   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2495   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2496   u16 channel = vcc->channel;
2497   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2498 
2499   // indicate unreadiness
2500   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2501 
2502   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2503     unsigned int i;
2504 
2505     // let any TX on this channel that has started complete
2506     // no restart, just keep trying
2507     while (tx_hold (dev))
2508       ;
2509     // remove record of any tx_channel having been setup for this channel
2510     for (i = 0; i < TX_CHANS; ++i)
2511       if (dev->tx_channel_record[i] == channel) {
2512 	dev->tx_channel_record[i] = -1;
2513 	break;
2514       }
2515     if (dev->last_vc == channel)
2516       dev->tx_last = -1;
2517     tx_release (dev);
2518   }
2519 
2520   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2521     // disable RXing - it tries quite hard
2522     hrz_close_rx (dev, channel);
2523     // forget the vcc - no more skbs will be pushed
2524     if (atm_vcc != dev->rxer[channel])
2525       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2526 	      "arghhh! we're going to die!",
2527 	      atm_vcc, dev->rxer[channel]);
2528     dev->rxer[channel] = NULL;
2529   }
2530 
2531   // atomically release our rate reservation
2532   spin_lock (&dev->rate_lock);
2533   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2534 	  vcc->tx_rate, vcc->rx_rate);
2535   dev->tx_avail += vcc->tx_rate;
2536   dev->rx_avail += vcc->rx_rate;
2537   spin_unlock (&dev->rate_lock);
2538 
2539   // free our structure
2540   kfree (vcc);
2541   // say the VPI/VCI is free again
2542   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2543 }
2544 
2545 #if 0
2546 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2547 			   void *optval, int optlen) {
2548   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2549   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2550   switch (level) {
2551     case SOL_SOCKET:
2552       switch (optname) {
2553 //	case SO_BCTXOPT:
2554 //	  break;
2555 //	case SO_BCRXOPT:
2556 //	  break;
2557 	default:
2558 	  return -ENOPROTOOPT;
2559       };
2560       break;
2561   }
2562   return -EINVAL;
2563 }
2564 
2565 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2566 			   void *optval, unsigned int optlen) {
2567   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2568   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2569   switch (level) {
2570     case SOL_SOCKET:
2571       switch (optname) {
2572 //	case SO_BCTXOPT:
2573 //	  break;
2574 //	case SO_BCRXOPT:
2575 //	  break;
2576 	default:
2577 	  return -ENOPROTOOPT;
2578       };
2579       break;
2580   }
2581   return -EINVAL;
2582 }
2583 #endif
2584 
2585 #if 0
2586 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2587   hrz_dev * dev = HRZ_DEV(atm_dev);
2588   PRINTD (DBG_FLOW, "hrz_ioctl");
2589   return -1;
2590 }
2591 
2592 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2593   hrz_dev * dev = HRZ_DEV(atm_dev);
2594   PRINTD (DBG_FLOW, "hrz_phy_get");
2595   return 0;
2596 }
2597 
2598 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2599 			 unsigned long addr) {
2600   hrz_dev * dev = HRZ_DEV(atm_dev);
2601   PRINTD (DBG_FLOW, "hrz_phy_put");
2602 }
2603 
2604 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2605   hrz_dev * dev = HRZ_DEV(vcc->dev);
2606   PRINTD (DBG_FLOW, "hrz_change_qos");
2607   return -1;
2608 }
2609 #endif
2610 
2611 /********** proc file contents **********/
2612 
hrz_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)2613 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2614   hrz_dev * dev = HRZ_DEV(atm_dev);
2615   int left = *pos;
2616   PRINTD (DBG_FLOW, "hrz_proc_read");
2617 
2618   /* more diagnostics here? */
2619 
2620 #if 0
2621   if (!left--) {
2622     unsigned int count = sprintf (page, "vbr buckets:");
2623     unsigned int i;
2624     for (i = 0; i < TX_CHANS; ++i)
2625       count += sprintf (page, " %u/%u",
2626 			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2627 			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2628     count += sprintf (page+count, ".\n");
2629     return count;
2630   }
2631 #endif
2632 
2633   if (!left--)
2634     return sprintf (page,
2635 		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2636 		    dev->tx_cell_count, dev->rx_cell_count,
2637 		    dev->hec_error_count, dev->unassigned_cell_count);
2638 
2639   if (!left--)
2640     return sprintf (page,
2641 		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2642 		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2643 		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2644 		    dev->noof_spare_buffers);
2645 
2646   if (!left--)
2647     return sprintf (page,
2648 		    "cps remaining: TX %u, RX %u\n",
2649 		    dev->tx_avail, dev->rx_avail);
2650 
2651   return 0;
2652 }
2653 
2654 static const struct atmdev_ops hrz_ops = {
2655   .open	= hrz_open,
2656   .close	= hrz_close,
2657   .send	= hrz_send,
2658   .proc_read	= hrz_proc_read,
2659   .owner	= THIS_MODULE,
2660 };
2661 
hrz_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2662 static int hrz_probe(struct pci_dev *pci_dev,
2663 		     const struct pci_device_id *pci_ent)
2664 {
2665 	hrz_dev * dev;
2666 	int err = 0;
2667 
2668 	// adapter slot free, read resources from PCI configuration space
2669 	u32 iobase = pci_resource_start (pci_dev, 0);
2670 	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2671 	unsigned int irq;
2672 	unsigned char lat;
2673 
2674 	PRINTD (DBG_FLOW, "hrz_probe");
2675 
2676 	if (pci_enable_device(pci_dev))
2677 		return -EINVAL;
2678 
2679 	/* XXX DEV_LABEL is a guess */
2680 	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2681 		err = -EINVAL;
2682 		goto out_disable;
2683 	}
2684 
2685 	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2686 	if (!dev) {
2687 		// perhaps we should be nice: deregister all adapters and abort?
2688 		PRINTD(DBG_ERR, "out of memory");
2689 		err = -ENOMEM;
2690 		goto out_release;
2691 	}
2692 
2693 	pci_set_drvdata(pci_dev, dev);
2694 
2695 	// grab IRQ and install handler - move this someplace more sensible
2696 	irq = pci_dev->irq;
2697 	if (request_irq(irq,
2698 			interrupt_handler,
2699 			IRQF_SHARED, /* irqflags guess */
2700 			DEV_LABEL, /* name guess */
2701 			dev)) {
2702 		PRINTD(DBG_WARN, "request IRQ failed!");
2703 		err = -EINVAL;
2704 		goto out_free;
2705 	}
2706 
2707 	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2708 	       iobase, irq, membase);
2709 
2710 	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2711 					NULL);
2712 	if (!(dev->atm_dev)) {
2713 		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2714 		err = -EINVAL;
2715 		goto out_free_irq;
2716 	}
2717 
2718 	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2719 	       dev->atm_dev->number, dev, dev->atm_dev);
2720 	dev->atm_dev->dev_data = (void *) dev;
2721 	dev->pci_dev = pci_dev;
2722 
2723 	// enable bus master accesses
2724 	pci_set_master(pci_dev);
2725 
2726 	// frobnicate latency (upwards, usually)
2727 	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2728 	if (pci_lat) {
2729 		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2730 		       "changing", lat, pci_lat);
2731 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2732 	} else if (lat < MIN_PCI_LATENCY) {
2733 		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2734 		       "increasing", lat, MIN_PCI_LATENCY);
2735 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2736 	}
2737 
2738 	dev->iobase = iobase;
2739 	dev->irq = irq;
2740 	dev->membase = membase;
2741 
2742 	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2743 	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2744 
2745 	// these next three are performance hacks
2746 	dev->last_vc = -1;
2747 	dev->tx_last = -1;
2748 	dev->tx_idle = 0;
2749 
2750 	dev->tx_regions = 0;
2751 	dev->tx_bytes = 0;
2752 	dev->tx_skb = NULL;
2753 	dev->tx_iovec = NULL;
2754 
2755 	dev->tx_cell_count = 0;
2756 	dev->rx_cell_count = 0;
2757 	dev->hec_error_count = 0;
2758 	dev->unassigned_cell_count = 0;
2759 
2760 	dev->noof_spare_buffers = 0;
2761 
2762 	{
2763 		unsigned int i;
2764 		for (i = 0; i < TX_CHANS; ++i)
2765 			dev->tx_channel_record[i] = -1;
2766 	}
2767 
2768 	dev->flags = 0;
2769 
2770 	// Allocate cell rates and remember ASIC version
2771 	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2772 	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2773 	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2774 
2775 	if (hrz_init(dev)) {
2776 		// to be really pedantic, this should be ATM_OC3c_PCR
2777 		dev->tx_avail = ATM_OC3_PCR;
2778 		dev->rx_avail = ATM_OC3_PCR;
2779 		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2780 	} else {
2781 		dev->tx_avail = ((25600000/8)*26)/(27*53);
2782 		dev->rx_avail = ((25600000/8)*26)/(27*53);
2783 		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2784 	}
2785 
2786 	// rate changes spinlock
2787 	spin_lock_init(&dev->rate_lock);
2788 
2789 	// on-board memory access spinlock; we want atomic reads and
2790 	// writes to adapter memory (handles IRQ and SMP)
2791 	spin_lock_init(&dev->mem_lock);
2792 
2793 	init_waitqueue_head(&dev->tx_queue);
2794 
2795 	// vpi in 0..4, vci in 6..10
2796 	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2797 	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2798 
2799 	timer_setup(&dev->housekeeping, do_housekeeping, 0);
2800 	mod_timer(&dev->housekeeping, jiffies);
2801 
2802 out:
2803 	return err;
2804 
2805 out_free_irq:
2806 	free_irq(irq, dev);
2807 out_free:
2808 	kfree(dev);
2809 out_release:
2810 	release_region(iobase, HRZ_IO_EXTENT);
2811 out_disable:
2812 	pci_disable_device(pci_dev);
2813 	goto out;
2814 }
2815 
hrz_remove_one(struct pci_dev * pci_dev)2816 static void hrz_remove_one(struct pci_dev *pci_dev)
2817 {
2818 	hrz_dev *dev;
2819 
2820 	dev = pci_get_drvdata(pci_dev);
2821 
2822 	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2823 	del_timer_sync(&dev->housekeeping);
2824 	hrz_reset(dev);
2825 	atm_dev_deregister(dev->atm_dev);
2826 	free_irq(dev->irq, dev);
2827 	release_region(dev->iobase, HRZ_IO_EXTENT);
2828 	kfree(dev);
2829 
2830 	pci_disable_device(pci_dev);
2831 }
2832 
hrz_check_args(void)2833 static void __init hrz_check_args (void) {
2834 #ifdef DEBUG_HORIZON
2835   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2836 #else
2837   if (debug)
2838     PRINTK (KERN_NOTICE, "no debug support in this image");
2839 #endif
2840 
2841   if (vpi_bits > HRZ_MAX_VPI)
2842     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2843 	    vpi_bits = HRZ_MAX_VPI);
2844 
2845   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2846     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2847 	    max_tx_size = TX_AAL5_LIMIT);
2848 
2849   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2850     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2851 	    max_rx_size = RX_AAL5_LIMIT);
2852 
2853   return;
2854 }
2855 
2856 MODULE_AUTHOR(maintainer_string);
2857 MODULE_DESCRIPTION(description_string);
2858 MODULE_LICENSE("GPL");
2859 module_param(debug, ushort, 0644);
2860 module_param(vpi_bits, ushort, 0);
2861 module_param(max_tx_size, int, 0);
2862 module_param(max_rx_size, int, 0);
2863 module_param(pci_lat, byte, 0);
2864 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2865 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2866 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2867 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2868 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2869 
2870 static const struct pci_device_id hrz_pci_tbl[] = {
2871 	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2872 	  0, 0, 0 },
2873 	{ 0, }
2874 };
2875 
2876 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2877 
2878 static struct pci_driver hrz_driver = {
2879 	.name =		"horizon",
2880 	.probe =	hrz_probe,
2881 	.remove =	hrz_remove_one,
2882 	.id_table =	hrz_pci_tbl,
2883 };
2884 
2885 /********** module entry **********/
2886 
hrz_module_init(void)2887 static int __init hrz_module_init (void) {
2888   BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
2889 
2890   show_version();
2891 
2892   // check arguments
2893   hrz_check_args();
2894 
2895   // get the juice
2896   return pci_register_driver(&hrz_driver);
2897 }
2898 
2899 /********** module exit **********/
2900 
hrz_module_exit(void)2901 static void __exit hrz_module_exit (void) {
2902   PRINTD (DBG_FLOW, "cleanup_module");
2903 
2904   pci_unregister_driver(&hrz_driver);
2905 }
2906 
2907 module_init(hrz_module_init);
2908 module_exit(hrz_module_exit);
2909