1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 #include <linux/perf_event.h>
35
36 #include <asm/unaligned.h>
37
38 /* Registers */
39 #define BPF_R0 regs[BPF_REG_0]
40 #define BPF_R1 regs[BPF_REG_1]
41 #define BPF_R2 regs[BPF_REG_2]
42 #define BPF_R3 regs[BPF_REG_3]
43 #define BPF_R4 regs[BPF_REG_4]
44 #define BPF_R5 regs[BPF_REG_5]
45 #define BPF_R6 regs[BPF_REG_6]
46 #define BPF_R7 regs[BPF_REG_7]
47 #define BPF_R8 regs[BPF_REG_8]
48 #define BPF_R9 regs[BPF_REG_9]
49 #define BPF_R10 regs[BPF_REG_10]
50
51 /* Named registers */
52 #define DST regs[insn->dst_reg]
53 #define SRC regs[insn->src_reg]
54 #define FP regs[BPF_REG_FP]
55 #define ARG1 regs[BPF_REG_ARG1]
56 #define CTX regs[BPF_REG_CTX]
57 #define IMM insn->imm
58
59 /* No hurry in this branch
60 *
61 * Exported for the bpf jit load helper.
62 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 u8 *ptr = NULL;
66
67 if (k >= SKF_NET_OFF)
68 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 else if (k >= SKF_LL_OFF)
70 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71
72 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 return ptr;
74
75 return NULL;
76 }
77
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)78 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 struct bpf_prog_aux *aux;
82 struct bpf_prog *fp;
83
84 size = round_up(size, PAGE_SIZE);
85 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 if (fp == NULL)
87 return NULL;
88
89 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 if (aux == NULL) {
91 vfree(fp);
92 return NULL;
93 }
94
95 fp->pages = size / PAGE_SIZE;
96 fp->aux = aux;
97 fp->aux->prog = fp;
98 fp->jit_requested = ebpf_jit_enabled();
99
100 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101
102 return fp;
103 }
104 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)106 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107 gfp_t gfp_extra_flags)
108 {
109 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110 struct bpf_prog *fp;
111 u32 pages, delta;
112 int ret;
113
114 BUG_ON(fp_old == NULL);
115
116 size = round_up(size, PAGE_SIZE);
117 pages = size / PAGE_SIZE;
118 if (pages <= fp_old->pages)
119 return fp_old;
120
121 delta = pages - fp_old->pages;
122 ret = __bpf_prog_charge(fp_old->aux->user, delta);
123 if (ret)
124 return NULL;
125
126 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127 if (fp == NULL) {
128 __bpf_prog_uncharge(fp_old->aux->user, delta);
129 } else {
130 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
131 fp->pages = pages;
132 fp->aux->prog = fp;
133
134 /* We keep fp->aux from fp_old around in the new
135 * reallocated structure.
136 */
137 fp_old->aux = NULL;
138 __bpf_prog_free(fp_old);
139 }
140
141 return fp;
142 }
143
__bpf_prog_free(struct bpf_prog * fp)144 void __bpf_prog_free(struct bpf_prog *fp)
145 {
146 kfree(fp->aux);
147 vfree(fp);
148 }
149
bpf_prog_calc_tag(struct bpf_prog * fp)150 int bpf_prog_calc_tag(struct bpf_prog *fp)
151 {
152 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
153 u32 raw_size = bpf_prog_tag_scratch_size(fp);
154 u32 digest[SHA_DIGEST_WORDS];
155 u32 ws[SHA_WORKSPACE_WORDS];
156 u32 i, bsize, psize, blocks;
157 struct bpf_insn *dst;
158 bool was_ld_map;
159 u8 *raw, *todo;
160 __be32 *result;
161 __be64 *bits;
162
163 raw = vmalloc(raw_size);
164 if (!raw)
165 return -ENOMEM;
166
167 sha_init(digest);
168 memset(ws, 0, sizeof(ws));
169
170 /* We need to take out the map fd for the digest calculation
171 * since they are unstable from user space side.
172 */
173 dst = (void *)raw;
174 for (i = 0, was_ld_map = false; i < fp->len; i++) {
175 dst[i] = fp->insnsi[i];
176 if (!was_ld_map &&
177 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
178 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
179 was_ld_map = true;
180 dst[i].imm = 0;
181 } else if (was_ld_map &&
182 dst[i].code == 0 &&
183 dst[i].dst_reg == 0 &&
184 dst[i].src_reg == 0 &&
185 dst[i].off == 0) {
186 was_ld_map = false;
187 dst[i].imm = 0;
188 } else {
189 was_ld_map = false;
190 }
191 }
192
193 psize = bpf_prog_insn_size(fp);
194 memset(&raw[psize], 0, raw_size - psize);
195 raw[psize++] = 0x80;
196
197 bsize = round_up(psize, SHA_MESSAGE_BYTES);
198 blocks = bsize / SHA_MESSAGE_BYTES;
199 todo = raw;
200 if (bsize - psize >= sizeof(__be64)) {
201 bits = (__be64 *)(todo + bsize - sizeof(__be64));
202 } else {
203 bits = (__be64 *)(todo + bsize + bits_offset);
204 blocks++;
205 }
206 *bits = cpu_to_be64((psize - 1) << 3);
207
208 while (blocks--) {
209 sha_transform(digest, todo, ws);
210 todo += SHA_MESSAGE_BYTES;
211 }
212
213 result = (__force __be32 *)digest;
214 for (i = 0; i < SHA_DIGEST_WORDS; i++)
215 result[i] = cpu_to_be32(digest[i]);
216 memcpy(fp->tag, result, sizeof(fp->tag));
217
218 vfree(raw);
219 return 0;
220 }
221
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,u32 delta,u32 curr,const bool probe_pass)222 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
223 u32 curr, const bool probe_pass)
224 {
225 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
226 s64 imm = insn->imm;
227
228 if (curr < pos && curr + imm + 1 > pos)
229 imm += delta;
230 else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
231 imm -= delta;
232 if (imm < imm_min || imm > imm_max)
233 return -ERANGE;
234 if (!probe_pass)
235 insn->imm = imm;
236 return 0;
237 }
238
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,u32 delta,u32 curr,const bool probe_pass)239 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
240 u32 curr, const bool probe_pass)
241 {
242 const s32 off_min = S16_MIN, off_max = S16_MAX;
243 s32 off = insn->off;
244
245 if (curr < pos && curr + off + 1 > pos)
246 off += delta;
247 else if (curr > pos + delta && curr + off + 1 <= pos + delta)
248 off -= delta;
249 if (off < off_min || off > off_max)
250 return -ERANGE;
251 if (!probe_pass)
252 insn->off = off;
253 return 0;
254 }
255
bpf_adj_branches(struct bpf_prog * prog,u32 pos,u32 delta,const bool probe_pass)256 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
257 const bool probe_pass)
258 {
259 u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
260 struct bpf_insn *insn = prog->insnsi;
261 int ret = 0;
262
263 for (i = 0; i < insn_cnt; i++, insn++) {
264 u8 code;
265
266 /* In the probing pass we still operate on the original,
267 * unpatched image in order to check overflows before we
268 * do any other adjustments. Therefore skip the patchlet.
269 */
270 if (probe_pass && i == pos) {
271 i += delta + 1;
272 insn++;
273 }
274 code = insn->code;
275 if (BPF_CLASS(code) != BPF_JMP ||
276 BPF_OP(code) == BPF_EXIT)
277 continue;
278 /* Adjust offset of jmps if we cross patch boundaries. */
279 if (BPF_OP(code) == BPF_CALL) {
280 if (insn->src_reg != BPF_PSEUDO_CALL)
281 continue;
282 ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
283 probe_pass);
284 } else {
285 ret = bpf_adj_delta_to_off(insn, pos, delta, i,
286 probe_pass);
287 }
288 if (ret)
289 break;
290 }
291
292 return ret;
293 }
294
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)295 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
296 const struct bpf_insn *patch, u32 len)
297 {
298 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
299 const u32 cnt_max = S16_MAX;
300 struct bpf_prog *prog_adj;
301
302 /* Since our patchlet doesn't expand the image, we're done. */
303 if (insn_delta == 0) {
304 memcpy(prog->insnsi + off, patch, sizeof(*patch));
305 return prog;
306 }
307
308 insn_adj_cnt = prog->len + insn_delta;
309
310 /* Reject anything that would potentially let the insn->off
311 * target overflow when we have excessive program expansions.
312 * We need to probe here before we do any reallocation where
313 * we afterwards may not fail anymore.
314 */
315 if (insn_adj_cnt > cnt_max &&
316 bpf_adj_branches(prog, off, insn_delta, true))
317 return NULL;
318
319 /* Several new instructions need to be inserted. Make room
320 * for them. Likely, there's no need for a new allocation as
321 * last page could have large enough tailroom.
322 */
323 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
324 GFP_USER);
325 if (!prog_adj)
326 return NULL;
327
328 prog_adj->len = insn_adj_cnt;
329
330 /* Patching happens in 3 steps:
331 *
332 * 1) Move over tail of insnsi from next instruction onwards,
333 * so we can patch the single target insn with one or more
334 * new ones (patching is always from 1 to n insns, n > 0).
335 * 2) Inject new instructions at the target location.
336 * 3) Adjust branch offsets if necessary.
337 */
338 insn_rest = insn_adj_cnt - off - len;
339
340 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
341 sizeof(*patch) * insn_rest);
342 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
343
344 /* We are guaranteed to not fail at this point, otherwise
345 * the ship has sailed to reverse to the original state. An
346 * overflow cannot happen at this point.
347 */
348 BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
349
350 return prog_adj;
351 }
352
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)353 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
354 {
355 int i;
356
357 for (i = 0; i < fp->aux->func_cnt; i++)
358 bpf_prog_kallsyms_del(fp->aux->func[i]);
359 }
360
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)361 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
362 {
363 bpf_prog_kallsyms_del_subprogs(fp);
364 bpf_prog_kallsyms_del(fp);
365 }
366
367 #ifdef CONFIG_BPF_JIT
368 /* All BPF JIT sysctl knobs here. */
369 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
370 int bpf_jit_harden __read_mostly;
371 int bpf_jit_kallsyms __read_mostly;
372
373 static __always_inline void
bpf_get_prog_addr_region(const struct bpf_prog * prog,unsigned long * symbol_start,unsigned long * symbol_end)374 bpf_get_prog_addr_region(const struct bpf_prog *prog,
375 unsigned long *symbol_start,
376 unsigned long *symbol_end)
377 {
378 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
379 unsigned long addr = (unsigned long)hdr;
380
381 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
382
383 *symbol_start = addr;
384 *symbol_end = addr + hdr->pages * PAGE_SIZE;
385 }
386
bpf_get_prog_name(const struct bpf_prog * prog,char * sym)387 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
388 {
389 const char *end = sym + KSYM_NAME_LEN;
390
391 BUILD_BUG_ON(sizeof("bpf_prog_") +
392 sizeof(prog->tag) * 2 +
393 /* name has been null terminated.
394 * We should need +1 for the '_' preceding
395 * the name. However, the null character
396 * is double counted between the name and the
397 * sizeof("bpf_prog_") above, so we omit
398 * the +1 here.
399 */
400 sizeof(prog->aux->name) > KSYM_NAME_LEN);
401
402 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
403 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
404 if (prog->aux->name[0])
405 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
406 else
407 *sym = 0;
408 }
409
410 static __always_inline unsigned long
bpf_get_prog_addr_start(struct latch_tree_node * n)411 bpf_get_prog_addr_start(struct latch_tree_node *n)
412 {
413 unsigned long symbol_start, symbol_end;
414 const struct bpf_prog_aux *aux;
415
416 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
417 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
418
419 return symbol_start;
420 }
421
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)422 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
423 struct latch_tree_node *b)
424 {
425 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
426 }
427
bpf_tree_comp(void * key,struct latch_tree_node * n)428 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
429 {
430 unsigned long val = (unsigned long)key;
431 unsigned long symbol_start, symbol_end;
432 const struct bpf_prog_aux *aux;
433
434 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
435 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
436
437 if (val < symbol_start)
438 return -1;
439 if (val >= symbol_end)
440 return 1;
441
442 return 0;
443 }
444
445 static const struct latch_tree_ops bpf_tree_ops = {
446 .less = bpf_tree_less,
447 .comp = bpf_tree_comp,
448 };
449
450 static DEFINE_SPINLOCK(bpf_lock);
451 static LIST_HEAD(bpf_kallsyms);
452 static struct latch_tree_root bpf_tree __cacheline_aligned;
453
bpf_prog_ksym_node_add(struct bpf_prog_aux * aux)454 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
455 {
456 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
457 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
458 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
459 }
460
bpf_prog_ksym_node_del(struct bpf_prog_aux * aux)461 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
462 {
463 if (list_empty(&aux->ksym_lnode))
464 return;
465
466 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
467 list_del_rcu(&aux->ksym_lnode);
468 }
469
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)470 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
471 {
472 return fp->jited && !bpf_prog_was_classic(fp);
473 }
474
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)475 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
476 {
477 return list_empty(&fp->aux->ksym_lnode) ||
478 fp->aux->ksym_lnode.prev == LIST_POISON2;
479 }
480
bpf_prog_kallsyms_add(struct bpf_prog * fp)481 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
482 {
483 if (!bpf_prog_kallsyms_candidate(fp) ||
484 !capable(CAP_SYS_ADMIN))
485 return;
486
487 spin_lock_bh(&bpf_lock);
488 bpf_prog_ksym_node_add(fp->aux);
489 spin_unlock_bh(&bpf_lock);
490 }
491
bpf_prog_kallsyms_del(struct bpf_prog * fp)492 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
493 {
494 if (!bpf_prog_kallsyms_candidate(fp))
495 return;
496
497 spin_lock_bh(&bpf_lock);
498 bpf_prog_ksym_node_del(fp->aux);
499 spin_unlock_bh(&bpf_lock);
500 }
501
bpf_prog_kallsyms_find(unsigned long addr)502 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
503 {
504 struct latch_tree_node *n;
505
506 if (!bpf_jit_kallsyms_enabled())
507 return NULL;
508
509 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
510 return n ?
511 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
512 NULL;
513 }
514
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)515 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
516 unsigned long *off, char *sym)
517 {
518 unsigned long symbol_start, symbol_end;
519 struct bpf_prog *prog;
520 char *ret = NULL;
521
522 rcu_read_lock();
523 prog = bpf_prog_kallsyms_find(addr);
524 if (prog) {
525 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
526 bpf_get_prog_name(prog, sym);
527
528 ret = sym;
529 if (size)
530 *size = symbol_end - symbol_start;
531 if (off)
532 *off = addr - symbol_start;
533 }
534 rcu_read_unlock();
535
536 return ret;
537 }
538
is_bpf_text_address(unsigned long addr)539 bool is_bpf_text_address(unsigned long addr)
540 {
541 bool ret;
542
543 rcu_read_lock();
544 ret = bpf_prog_kallsyms_find(addr) != NULL;
545 rcu_read_unlock();
546
547 return ret;
548 }
549
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)550 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
551 char *sym)
552 {
553 unsigned long symbol_start, symbol_end;
554 struct bpf_prog_aux *aux;
555 unsigned int it = 0;
556 int ret = -ERANGE;
557
558 if (!bpf_jit_kallsyms_enabled())
559 return ret;
560
561 rcu_read_lock();
562 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
563 if (it++ != symnum)
564 continue;
565
566 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
567 bpf_get_prog_name(aux->prog, sym);
568
569 *value = symbol_start;
570 *type = BPF_SYM_ELF_TYPE;
571
572 ret = 0;
573 break;
574 }
575 rcu_read_unlock();
576
577 return ret;
578 }
579
580 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)581 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
582 unsigned int alignment,
583 bpf_jit_fill_hole_t bpf_fill_ill_insns)
584 {
585 struct bpf_binary_header *hdr;
586 unsigned int size, hole, start;
587
588 /* Most of BPF filters are really small, but if some of them
589 * fill a page, allow at least 128 extra bytes to insert a
590 * random section of illegal instructions.
591 */
592 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
593 hdr = module_alloc(size);
594 if (hdr == NULL)
595 return NULL;
596
597 /* Fill space with illegal/arch-dep instructions. */
598 bpf_fill_ill_insns(hdr, size);
599
600 hdr->pages = size / PAGE_SIZE;
601 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
602 PAGE_SIZE - sizeof(*hdr));
603 start = (get_random_int() % hole) & ~(alignment - 1);
604
605 /* Leave a random number of instructions before BPF code. */
606 *image_ptr = &hdr->image[start];
607
608 return hdr;
609 }
610
bpf_jit_binary_free(struct bpf_binary_header * hdr)611 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
612 {
613 module_memfree(hdr);
614 }
615
616 /* This symbol is only overridden by archs that have different
617 * requirements than the usual eBPF JITs, f.e. when they only
618 * implement cBPF JIT, do not set images read-only, etc.
619 */
bpf_jit_free(struct bpf_prog * fp)620 void __weak bpf_jit_free(struct bpf_prog *fp)
621 {
622 if (fp->jited) {
623 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
624
625 bpf_jit_binary_unlock_ro(hdr);
626 bpf_jit_binary_free(hdr);
627
628 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
629 }
630
631 bpf_prog_unlock_free(fp);
632 }
633
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff)634 static int bpf_jit_blind_insn(const struct bpf_insn *from,
635 const struct bpf_insn *aux,
636 struct bpf_insn *to_buff)
637 {
638 struct bpf_insn *to = to_buff;
639 u32 imm_rnd = get_random_int();
640 s16 off;
641
642 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
643 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
644
645 if (from->imm == 0 &&
646 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
647 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
648 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
649 goto out;
650 }
651
652 switch (from->code) {
653 case BPF_ALU | BPF_ADD | BPF_K:
654 case BPF_ALU | BPF_SUB | BPF_K:
655 case BPF_ALU | BPF_AND | BPF_K:
656 case BPF_ALU | BPF_OR | BPF_K:
657 case BPF_ALU | BPF_XOR | BPF_K:
658 case BPF_ALU | BPF_MUL | BPF_K:
659 case BPF_ALU | BPF_MOV | BPF_K:
660 case BPF_ALU | BPF_DIV | BPF_K:
661 case BPF_ALU | BPF_MOD | BPF_K:
662 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
663 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
664 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
665 break;
666
667 case BPF_ALU64 | BPF_ADD | BPF_K:
668 case BPF_ALU64 | BPF_SUB | BPF_K:
669 case BPF_ALU64 | BPF_AND | BPF_K:
670 case BPF_ALU64 | BPF_OR | BPF_K:
671 case BPF_ALU64 | BPF_XOR | BPF_K:
672 case BPF_ALU64 | BPF_MUL | BPF_K:
673 case BPF_ALU64 | BPF_MOV | BPF_K:
674 case BPF_ALU64 | BPF_DIV | BPF_K:
675 case BPF_ALU64 | BPF_MOD | BPF_K:
676 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
677 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
678 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
679 break;
680
681 case BPF_JMP | BPF_JEQ | BPF_K:
682 case BPF_JMP | BPF_JNE | BPF_K:
683 case BPF_JMP | BPF_JGT | BPF_K:
684 case BPF_JMP | BPF_JLT | BPF_K:
685 case BPF_JMP | BPF_JGE | BPF_K:
686 case BPF_JMP | BPF_JLE | BPF_K:
687 case BPF_JMP | BPF_JSGT | BPF_K:
688 case BPF_JMP | BPF_JSLT | BPF_K:
689 case BPF_JMP | BPF_JSGE | BPF_K:
690 case BPF_JMP | BPF_JSLE | BPF_K:
691 case BPF_JMP | BPF_JSET | BPF_K:
692 /* Accommodate for extra offset in case of a backjump. */
693 off = from->off;
694 if (off < 0)
695 off -= 2;
696 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
697 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
698 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
699 break;
700
701 case BPF_LD | BPF_IMM | BPF_DW:
702 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
703 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
704 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
705 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
706 break;
707 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
708 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
709 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
710 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
711 break;
712
713 case BPF_ST | BPF_MEM | BPF_DW:
714 case BPF_ST | BPF_MEM | BPF_W:
715 case BPF_ST | BPF_MEM | BPF_H:
716 case BPF_ST | BPF_MEM | BPF_B:
717 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
718 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
719 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
720 break;
721 }
722 out:
723 return to - to_buff;
724 }
725
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)726 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
727 gfp_t gfp_extra_flags)
728 {
729 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
730 struct bpf_prog *fp;
731
732 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
733 if (fp != NULL) {
734 /* aux->prog still points to the fp_other one, so
735 * when promoting the clone to the real program,
736 * this still needs to be adapted.
737 */
738 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
739 }
740
741 return fp;
742 }
743
bpf_prog_clone_free(struct bpf_prog * fp)744 static void bpf_prog_clone_free(struct bpf_prog *fp)
745 {
746 /* aux was stolen by the other clone, so we cannot free
747 * it from this path! It will be freed eventually by the
748 * other program on release.
749 *
750 * At this point, we don't need a deferred release since
751 * clone is guaranteed to not be locked.
752 */
753 fp->aux = NULL;
754 __bpf_prog_free(fp);
755 }
756
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)757 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
758 {
759 /* We have to repoint aux->prog to self, as we don't
760 * know whether fp here is the clone or the original.
761 */
762 fp->aux->prog = fp;
763 bpf_prog_clone_free(fp_other);
764 }
765
bpf_jit_blind_constants(struct bpf_prog * prog)766 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
767 {
768 struct bpf_insn insn_buff[16], aux[2];
769 struct bpf_prog *clone, *tmp;
770 int insn_delta, insn_cnt;
771 struct bpf_insn *insn;
772 int i, rewritten;
773
774 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
775 return prog;
776
777 clone = bpf_prog_clone_create(prog, GFP_USER);
778 if (!clone)
779 return ERR_PTR(-ENOMEM);
780
781 insn_cnt = clone->len;
782 insn = clone->insnsi;
783
784 for (i = 0; i < insn_cnt; i++, insn++) {
785 /* We temporarily need to hold the original ld64 insn
786 * so that we can still access the first part in the
787 * second blinding run.
788 */
789 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
790 insn[1].code == 0)
791 memcpy(aux, insn, sizeof(aux));
792
793 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
794 if (!rewritten)
795 continue;
796
797 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
798 if (!tmp) {
799 /* Patching may have repointed aux->prog during
800 * realloc from the original one, so we need to
801 * fix it up here on error.
802 */
803 bpf_jit_prog_release_other(prog, clone);
804 return ERR_PTR(-ENOMEM);
805 }
806
807 clone = tmp;
808 insn_delta = rewritten - 1;
809
810 /* Walk new program and skip insns we just inserted. */
811 insn = clone->insnsi + i + insn_delta;
812 insn_cnt += insn_delta;
813 i += insn_delta;
814 }
815
816 clone->blinded = 1;
817 return clone;
818 }
819 #endif /* CONFIG_BPF_JIT */
820
821 /* Base function for offset calculation. Needs to go into .text section,
822 * therefore keeping it non-static as well; will also be used by JITs
823 * anyway later on, so do not let the compiler omit it. This also needs
824 * to go into kallsyms for correlation from e.g. bpftool, so naming
825 * must not change.
826 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)827 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
828 {
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(__bpf_call_base);
832
833 /* All UAPI available opcodes. */
834 #define BPF_INSN_MAP(INSN_2, INSN_3) \
835 /* 32 bit ALU operations. */ \
836 /* Register based. */ \
837 INSN_3(ALU, ADD, X), \
838 INSN_3(ALU, SUB, X), \
839 INSN_3(ALU, AND, X), \
840 INSN_3(ALU, OR, X), \
841 INSN_3(ALU, LSH, X), \
842 INSN_3(ALU, RSH, X), \
843 INSN_3(ALU, XOR, X), \
844 INSN_3(ALU, MUL, X), \
845 INSN_3(ALU, MOV, X), \
846 INSN_3(ALU, DIV, X), \
847 INSN_3(ALU, MOD, X), \
848 INSN_2(ALU, NEG), \
849 INSN_3(ALU, END, TO_BE), \
850 INSN_3(ALU, END, TO_LE), \
851 /* Immediate based. */ \
852 INSN_3(ALU, ADD, K), \
853 INSN_3(ALU, SUB, K), \
854 INSN_3(ALU, AND, K), \
855 INSN_3(ALU, OR, K), \
856 INSN_3(ALU, LSH, K), \
857 INSN_3(ALU, RSH, K), \
858 INSN_3(ALU, XOR, K), \
859 INSN_3(ALU, MUL, K), \
860 INSN_3(ALU, MOV, K), \
861 INSN_3(ALU, DIV, K), \
862 INSN_3(ALU, MOD, K), \
863 /* 64 bit ALU operations. */ \
864 /* Register based. */ \
865 INSN_3(ALU64, ADD, X), \
866 INSN_3(ALU64, SUB, X), \
867 INSN_3(ALU64, AND, X), \
868 INSN_3(ALU64, OR, X), \
869 INSN_3(ALU64, LSH, X), \
870 INSN_3(ALU64, RSH, X), \
871 INSN_3(ALU64, XOR, X), \
872 INSN_3(ALU64, MUL, X), \
873 INSN_3(ALU64, MOV, X), \
874 INSN_3(ALU64, ARSH, X), \
875 INSN_3(ALU64, DIV, X), \
876 INSN_3(ALU64, MOD, X), \
877 INSN_2(ALU64, NEG), \
878 /* Immediate based. */ \
879 INSN_3(ALU64, ADD, K), \
880 INSN_3(ALU64, SUB, K), \
881 INSN_3(ALU64, AND, K), \
882 INSN_3(ALU64, OR, K), \
883 INSN_3(ALU64, LSH, K), \
884 INSN_3(ALU64, RSH, K), \
885 INSN_3(ALU64, XOR, K), \
886 INSN_3(ALU64, MUL, K), \
887 INSN_3(ALU64, MOV, K), \
888 INSN_3(ALU64, ARSH, K), \
889 INSN_3(ALU64, DIV, K), \
890 INSN_3(ALU64, MOD, K), \
891 /* Call instruction. */ \
892 INSN_2(JMP, CALL), \
893 /* Exit instruction. */ \
894 INSN_2(JMP, EXIT), \
895 /* Jump instructions. */ \
896 /* Register based. */ \
897 INSN_3(JMP, JEQ, X), \
898 INSN_3(JMP, JNE, X), \
899 INSN_3(JMP, JGT, X), \
900 INSN_3(JMP, JLT, X), \
901 INSN_3(JMP, JGE, X), \
902 INSN_3(JMP, JLE, X), \
903 INSN_3(JMP, JSGT, X), \
904 INSN_3(JMP, JSLT, X), \
905 INSN_3(JMP, JSGE, X), \
906 INSN_3(JMP, JSLE, X), \
907 INSN_3(JMP, JSET, X), \
908 /* Immediate based. */ \
909 INSN_3(JMP, JEQ, K), \
910 INSN_3(JMP, JNE, K), \
911 INSN_3(JMP, JGT, K), \
912 INSN_3(JMP, JLT, K), \
913 INSN_3(JMP, JGE, K), \
914 INSN_3(JMP, JLE, K), \
915 INSN_3(JMP, JSGT, K), \
916 INSN_3(JMP, JSLT, K), \
917 INSN_3(JMP, JSGE, K), \
918 INSN_3(JMP, JSLE, K), \
919 INSN_3(JMP, JSET, K), \
920 INSN_2(JMP, JA), \
921 /* Store instructions. */ \
922 /* Register based. */ \
923 INSN_3(STX, MEM, B), \
924 INSN_3(STX, MEM, H), \
925 INSN_3(STX, MEM, W), \
926 INSN_3(STX, MEM, DW), \
927 INSN_3(STX, XADD, W), \
928 INSN_3(STX, XADD, DW), \
929 /* Immediate based. */ \
930 INSN_3(ST, MEM, B), \
931 INSN_3(ST, MEM, H), \
932 INSN_3(ST, MEM, W), \
933 INSN_3(ST, MEM, DW), \
934 /* Load instructions. */ \
935 /* Register based. */ \
936 INSN_3(LDX, MEM, B), \
937 INSN_3(LDX, MEM, H), \
938 INSN_3(LDX, MEM, W), \
939 INSN_3(LDX, MEM, DW), \
940 /* Immediate based. */ \
941 INSN_3(LD, IMM, DW)
942
bpf_opcode_in_insntable(u8 code)943 bool bpf_opcode_in_insntable(u8 code)
944 {
945 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
946 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
947 static const bool public_insntable[256] = {
948 [0 ... 255] = false,
949 /* Now overwrite non-defaults ... */
950 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
951 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
952 [BPF_LD | BPF_ABS | BPF_B] = true,
953 [BPF_LD | BPF_ABS | BPF_H] = true,
954 [BPF_LD | BPF_ABS | BPF_W] = true,
955 [BPF_LD | BPF_IND | BPF_B] = true,
956 [BPF_LD | BPF_IND | BPF_H] = true,
957 [BPF_LD | BPF_IND | BPF_W] = true,
958 };
959 #undef BPF_INSN_3_TBL
960 #undef BPF_INSN_2_TBL
961 return public_insntable[code];
962 }
963
964 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
965 /**
966 * __bpf_prog_run - run eBPF program on a given context
967 * @ctx: is the data we are operating on
968 * @insn: is the array of eBPF instructions
969 *
970 * Decode and execute eBPF instructions.
971 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)972 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
973 {
974 u64 tmp;
975 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
976 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
977 static const void *jumptable[256] = {
978 [0 ... 255] = &&default_label,
979 /* Now overwrite non-defaults ... */
980 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
981 /* Non-UAPI available opcodes. */
982 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
983 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
984 };
985 #undef BPF_INSN_3_LBL
986 #undef BPF_INSN_2_LBL
987 u32 tail_call_cnt = 0;
988
989 #define CONT ({ insn++; goto select_insn; })
990 #define CONT_JMP ({ insn++; goto select_insn; })
991
992 select_insn:
993 goto *jumptable[insn->code];
994
995 /* ALU */
996 #define ALU(OPCODE, OP) \
997 ALU64_##OPCODE##_X: \
998 DST = DST OP SRC; \
999 CONT; \
1000 ALU_##OPCODE##_X: \
1001 DST = (u32) DST OP (u32) SRC; \
1002 CONT; \
1003 ALU64_##OPCODE##_K: \
1004 DST = DST OP IMM; \
1005 CONT; \
1006 ALU_##OPCODE##_K: \
1007 DST = (u32) DST OP (u32) IMM; \
1008 CONT;
1009
1010 ALU(ADD, +)
1011 ALU(SUB, -)
1012 ALU(AND, &)
1013 ALU(OR, |)
1014 ALU(LSH, <<)
1015 ALU(RSH, >>)
1016 ALU(XOR, ^)
1017 ALU(MUL, *)
1018 #undef ALU
1019 ALU_NEG:
1020 DST = (u32) -DST;
1021 CONT;
1022 ALU64_NEG:
1023 DST = -DST;
1024 CONT;
1025 ALU_MOV_X:
1026 DST = (u32) SRC;
1027 CONT;
1028 ALU_MOV_K:
1029 DST = (u32) IMM;
1030 CONT;
1031 ALU64_MOV_X:
1032 DST = SRC;
1033 CONT;
1034 ALU64_MOV_K:
1035 DST = IMM;
1036 CONT;
1037 LD_IMM_DW:
1038 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1039 insn++;
1040 CONT;
1041 ALU64_ARSH_X:
1042 (*(s64 *) &DST) >>= SRC;
1043 CONT;
1044 ALU64_ARSH_K:
1045 (*(s64 *) &DST) >>= IMM;
1046 CONT;
1047 ALU64_MOD_X:
1048 div64_u64_rem(DST, SRC, &tmp);
1049 DST = tmp;
1050 CONT;
1051 ALU_MOD_X:
1052 tmp = (u32) DST;
1053 DST = do_div(tmp, (u32) SRC);
1054 CONT;
1055 ALU64_MOD_K:
1056 div64_u64_rem(DST, IMM, &tmp);
1057 DST = tmp;
1058 CONT;
1059 ALU_MOD_K:
1060 tmp = (u32) DST;
1061 DST = do_div(tmp, (u32) IMM);
1062 CONT;
1063 ALU64_DIV_X:
1064 DST = div64_u64(DST, SRC);
1065 CONT;
1066 ALU_DIV_X:
1067 tmp = (u32) DST;
1068 do_div(tmp, (u32) SRC);
1069 DST = (u32) tmp;
1070 CONT;
1071 ALU64_DIV_K:
1072 DST = div64_u64(DST, IMM);
1073 CONT;
1074 ALU_DIV_K:
1075 tmp = (u32) DST;
1076 do_div(tmp, (u32) IMM);
1077 DST = (u32) tmp;
1078 CONT;
1079 ALU_END_TO_BE:
1080 switch (IMM) {
1081 case 16:
1082 DST = (__force u16) cpu_to_be16(DST);
1083 break;
1084 case 32:
1085 DST = (__force u32) cpu_to_be32(DST);
1086 break;
1087 case 64:
1088 DST = (__force u64) cpu_to_be64(DST);
1089 break;
1090 }
1091 CONT;
1092 ALU_END_TO_LE:
1093 switch (IMM) {
1094 case 16:
1095 DST = (__force u16) cpu_to_le16(DST);
1096 break;
1097 case 32:
1098 DST = (__force u32) cpu_to_le32(DST);
1099 break;
1100 case 64:
1101 DST = (__force u64) cpu_to_le64(DST);
1102 break;
1103 }
1104 CONT;
1105
1106 /* CALL */
1107 JMP_CALL:
1108 /* Function call scratches BPF_R1-BPF_R5 registers,
1109 * preserves BPF_R6-BPF_R9, and stores return value
1110 * into BPF_R0.
1111 */
1112 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1113 BPF_R4, BPF_R5);
1114 CONT;
1115
1116 JMP_CALL_ARGS:
1117 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1118 BPF_R3, BPF_R4,
1119 BPF_R5,
1120 insn + insn->off + 1);
1121 CONT;
1122
1123 JMP_TAIL_CALL: {
1124 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1125 struct bpf_array *array = container_of(map, struct bpf_array, map);
1126 struct bpf_prog *prog;
1127 u32 index = BPF_R3;
1128
1129 if (unlikely(index >= array->map.max_entries))
1130 goto out;
1131 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1132 goto out;
1133
1134 tail_call_cnt++;
1135
1136 prog = READ_ONCE(array->ptrs[index]);
1137 if (!prog)
1138 goto out;
1139
1140 /* ARG1 at this point is guaranteed to point to CTX from
1141 * the verifier side due to the fact that the tail call is
1142 * handeled like a helper, that is, bpf_tail_call_proto,
1143 * where arg1_type is ARG_PTR_TO_CTX.
1144 */
1145 insn = prog->insnsi;
1146 goto select_insn;
1147 out:
1148 CONT;
1149 }
1150 /* JMP */
1151 JMP_JA:
1152 insn += insn->off;
1153 CONT;
1154 JMP_JEQ_X:
1155 if (DST == SRC) {
1156 insn += insn->off;
1157 CONT_JMP;
1158 }
1159 CONT;
1160 JMP_JEQ_K:
1161 if (DST == IMM) {
1162 insn += insn->off;
1163 CONT_JMP;
1164 }
1165 CONT;
1166 JMP_JNE_X:
1167 if (DST != SRC) {
1168 insn += insn->off;
1169 CONT_JMP;
1170 }
1171 CONT;
1172 JMP_JNE_K:
1173 if (DST != IMM) {
1174 insn += insn->off;
1175 CONT_JMP;
1176 }
1177 CONT;
1178 JMP_JGT_X:
1179 if (DST > SRC) {
1180 insn += insn->off;
1181 CONT_JMP;
1182 }
1183 CONT;
1184 JMP_JGT_K:
1185 if (DST > IMM) {
1186 insn += insn->off;
1187 CONT_JMP;
1188 }
1189 CONT;
1190 JMP_JLT_X:
1191 if (DST < SRC) {
1192 insn += insn->off;
1193 CONT_JMP;
1194 }
1195 CONT;
1196 JMP_JLT_K:
1197 if (DST < IMM) {
1198 insn += insn->off;
1199 CONT_JMP;
1200 }
1201 CONT;
1202 JMP_JGE_X:
1203 if (DST >= SRC) {
1204 insn += insn->off;
1205 CONT_JMP;
1206 }
1207 CONT;
1208 JMP_JGE_K:
1209 if (DST >= IMM) {
1210 insn += insn->off;
1211 CONT_JMP;
1212 }
1213 CONT;
1214 JMP_JLE_X:
1215 if (DST <= SRC) {
1216 insn += insn->off;
1217 CONT_JMP;
1218 }
1219 CONT;
1220 JMP_JLE_K:
1221 if (DST <= IMM) {
1222 insn += insn->off;
1223 CONT_JMP;
1224 }
1225 CONT;
1226 JMP_JSGT_X:
1227 if (((s64) DST) > ((s64) SRC)) {
1228 insn += insn->off;
1229 CONT_JMP;
1230 }
1231 CONT;
1232 JMP_JSGT_K:
1233 if (((s64) DST) > ((s64) IMM)) {
1234 insn += insn->off;
1235 CONT_JMP;
1236 }
1237 CONT;
1238 JMP_JSLT_X:
1239 if (((s64) DST) < ((s64) SRC)) {
1240 insn += insn->off;
1241 CONT_JMP;
1242 }
1243 CONT;
1244 JMP_JSLT_K:
1245 if (((s64) DST) < ((s64) IMM)) {
1246 insn += insn->off;
1247 CONT_JMP;
1248 }
1249 CONT;
1250 JMP_JSGE_X:
1251 if (((s64) DST) >= ((s64) SRC)) {
1252 insn += insn->off;
1253 CONT_JMP;
1254 }
1255 CONT;
1256 JMP_JSGE_K:
1257 if (((s64) DST) >= ((s64) IMM)) {
1258 insn += insn->off;
1259 CONT_JMP;
1260 }
1261 CONT;
1262 JMP_JSLE_X:
1263 if (((s64) DST) <= ((s64) SRC)) {
1264 insn += insn->off;
1265 CONT_JMP;
1266 }
1267 CONT;
1268 JMP_JSLE_K:
1269 if (((s64) DST) <= ((s64) IMM)) {
1270 insn += insn->off;
1271 CONT_JMP;
1272 }
1273 CONT;
1274 JMP_JSET_X:
1275 if (DST & SRC) {
1276 insn += insn->off;
1277 CONT_JMP;
1278 }
1279 CONT;
1280 JMP_JSET_K:
1281 if (DST & IMM) {
1282 insn += insn->off;
1283 CONT_JMP;
1284 }
1285 CONT;
1286 JMP_EXIT:
1287 return BPF_R0;
1288
1289 /* STX and ST and LDX*/
1290 #define LDST(SIZEOP, SIZE) \
1291 STX_MEM_##SIZEOP: \
1292 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1293 CONT; \
1294 ST_MEM_##SIZEOP: \
1295 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1296 CONT; \
1297 LDX_MEM_##SIZEOP: \
1298 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1299 CONT;
1300
1301 LDST(B, u8)
1302 LDST(H, u16)
1303 LDST(W, u32)
1304 LDST(DW, u64)
1305 #undef LDST
1306 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1307 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1308 (DST + insn->off));
1309 CONT;
1310 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1311 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1312 (DST + insn->off));
1313 CONT;
1314
1315 default_label:
1316 /* If we ever reach this, we have a bug somewhere. Die hard here
1317 * instead of just returning 0; we could be somewhere in a subprog,
1318 * so execution could continue otherwise which we do /not/ want.
1319 *
1320 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1321 */
1322 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1323 BUG_ON(1);
1324 return 0;
1325 }
1326 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1327
1328 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1329 #define DEFINE_BPF_PROG_RUN(stack_size) \
1330 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1331 { \
1332 u64 stack[stack_size / sizeof(u64)]; \
1333 u64 regs[MAX_BPF_REG]; \
1334 \
1335 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1336 ARG1 = (u64) (unsigned long) ctx; \
1337 return ___bpf_prog_run(regs, insn, stack); \
1338 }
1339
1340 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1341 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1342 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1343 const struct bpf_insn *insn) \
1344 { \
1345 u64 stack[stack_size / sizeof(u64)]; \
1346 u64 regs[MAX_BPF_REG]; \
1347 \
1348 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1349 BPF_R1 = r1; \
1350 BPF_R2 = r2; \
1351 BPF_R3 = r3; \
1352 BPF_R4 = r4; \
1353 BPF_R5 = r5; \
1354 return ___bpf_prog_run(regs, insn, stack); \
1355 }
1356
1357 #define EVAL1(FN, X) FN(X)
1358 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1359 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1360 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1361 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1362 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1363
1364 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1365 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1366 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1367
1368 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1369 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1370 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1371
1372 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1373
1374 static unsigned int (*interpreters[])(const void *ctx,
1375 const struct bpf_insn *insn) = {
1376 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1377 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1378 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1379 };
1380 #undef PROG_NAME_LIST
1381 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1382 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1383 const struct bpf_insn *insn) = {
1384 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1385 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1386 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1387 };
1388 #undef PROG_NAME_LIST
1389
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1390 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1391 {
1392 stack_depth = max_t(u32, stack_depth, 1);
1393 insn->off = (s16) insn->imm;
1394 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1395 __bpf_call_base_args;
1396 insn->code = BPF_JMP | BPF_CALL_ARGS;
1397 }
1398
1399 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1400 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1401 const struct bpf_insn *insn)
1402 {
1403 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1404 * is not working properly, so warn about it!
1405 */
1406 WARN_ON_ONCE(1);
1407 return 0;
1408 }
1409 #endif
1410
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1411 bool bpf_prog_array_compatible(struct bpf_array *array,
1412 const struct bpf_prog *fp)
1413 {
1414 if (fp->kprobe_override)
1415 return false;
1416
1417 if (!array->owner_prog_type) {
1418 /* There's no owner yet where we could check for
1419 * compatibility.
1420 */
1421 array->owner_prog_type = fp->type;
1422 array->owner_jited = fp->jited;
1423
1424 return true;
1425 }
1426
1427 return array->owner_prog_type == fp->type &&
1428 array->owner_jited == fp->jited;
1429 }
1430
bpf_check_tail_call(const struct bpf_prog * fp)1431 static int bpf_check_tail_call(const struct bpf_prog *fp)
1432 {
1433 struct bpf_prog_aux *aux = fp->aux;
1434 int i;
1435
1436 for (i = 0; i < aux->used_map_cnt; i++) {
1437 struct bpf_map *map = aux->used_maps[i];
1438 struct bpf_array *array;
1439
1440 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1441 continue;
1442
1443 array = container_of(map, struct bpf_array, map);
1444 if (!bpf_prog_array_compatible(array, fp))
1445 return -EINVAL;
1446 }
1447
1448 return 0;
1449 }
1450
bpf_prog_select_func(struct bpf_prog * fp)1451 static void bpf_prog_select_func(struct bpf_prog *fp)
1452 {
1453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1454 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1455
1456 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1457 #else
1458 fp->bpf_func = __bpf_prog_ret0_warn;
1459 #endif
1460 }
1461
1462 /**
1463 * bpf_prog_select_runtime - select exec runtime for BPF program
1464 * @fp: bpf_prog populated with internal BPF program
1465 * @err: pointer to error variable
1466 *
1467 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1468 * The BPF program will be executed via BPF_PROG_RUN() macro.
1469 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1470 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1471 {
1472 /* In case of BPF to BPF calls, verifier did all the prep
1473 * work with regards to JITing, etc.
1474 */
1475 if (fp->bpf_func)
1476 goto finalize;
1477
1478 bpf_prog_select_func(fp);
1479
1480 /* eBPF JITs can rewrite the program in case constant
1481 * blinding is active. However, in case of error during
1482 * blinding, bpf_int_jit_compile() must always return a
1483 * valid program, which in this case would simply not
1484 * be JITed, but falls back to the interpreter.
1485 */
1486 if (!bpf_prog_is_dev_bound(fp->aux)) {
1487 fp = bpf_int_jit_compile(fp);
1488 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1489 if (!fp->jited) {
1490 *err = -ENOTSUPP;
1491 return fp;
1492 }
1493 #endif
1494 } else {
1495 *err = bpf_prog_offload_compile(fp);
1496 if (*err)
1497 return fp;
1498 }
1499
1500 finalize:
1501 bpf_prog_lock_ro(fp);
1502
1503 /* The tail call compatibility check can only be done at
1504 * this late stage as we need to determine, if we deal
1505 * with JITed or non JITed program concatenations and not
1506 * all eBPF JITs might immediately support all features.
1507 */
1508 *err = bpf_check_tail_call(fp);
1509
1510 return fp;
1511 }
1512 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1513
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1514 static unsigned int __bpf_prog_ret1(const void *ctx,
1515 const struct bpf_insn *insn)
1516 {
1517 return 1;
1518 }
1519
1520 static struct bpf_prog_dummy {
1521 struct bpf_prog prog;
1522 } dummy_bpf_prog = {
1523 .prog = {
1524 .bpf_func = __bpf_prog_ret1,
1525 },
1526 };
1527
1528 /* to avoid allocating empty bpf_prog_array for cgroups that
1529 * don't have bpf program attached use one global 'empty_prog_array'
1530 * It will not be modified the caller of bpf_prog_array_alloc()
1531 * (since caller requested prog_cnt == 0)
1532 * that pointer should be 'freed' by bpf_prog_array_free()
1533 */
1534 static struct {
1535 struct bpf_prog_array hdr;
1536 struct bpf_prog *null_prog;
1537 } empty_prog_array = {
1538 .null_prog = NULL,
1539 };
1540
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1541 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1542 {
1543 if (prog_cnt)
1544 return kzalloc(sizeof(struct bpf_prog_array) +
1545 sizeof(struct bpf_prog_array_item) *
1546 (prog_cnt + 1),
1547 flags);
1548
1549 return &empty_prog_array.hdr;
1550 }
1551
bpf_prog_array_free(struct bpf_prog_array __rcu * progs)1552 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1553 {
1554 if (!progs ||
1555 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1556 return;
1557 kfree_rcu(progs, rcu);
1558 }
1559
bpf_prog_array_length(struct bpf_prog_array __rcu * array)1560 int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
1561 {
1562 struct bpf_prog_array_item *item;
1563 u32 cnt = 0;
1564
1565 rcu_read_lock();
1566 item = rcu_dereference(array)->items;
1567 for (; item->prog; item++)
1568 if (item->prog != &dummy_bpf_prog.prog)
1569 cnt++;
1570 rcu_read_unlock();
1571 return cnt;
1572 }
1573
1574
bpf_prog_array_copy_core(struct bpf_prog_array __rcu * array,u32 * prog_ids,u32 request_cnt)1575 static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
1576 u32 *prog_ids,
1577 u32 request_cnt)
1578 {
1579 struct bpf_prog_array_item *item;
1580 int i = 0;
1581
1582 item = rcu_dereference_check(array, 1)->items;
1583 for (; item->prog; item++) {
1584 if (item->prog == &dummy_bpf_prog.prog)
1585 continue;
1586 prog_ids[i] = item->prog->aux->id;
1587 if (++i == request_cnt) {
1588 item++;
1589 break;
1590 }
1591 }
1592
1593 return !!(item->prog);
1594 }
1595
bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu * array,__u32 __user * prog_ids,u32 cnt)1596 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
1597 __u32 __user *prog_ids, u32 cnt)
1598 {
1599 unsigned long err = 0;
1600 bool nospc;
1601 u32 *ids;
1602
1603 /* users of this function are doing:
1604 * cnt = bpf_prog_array_length();
1605 * if (cnt > 0)
1606 * bpf_prog_array_copy_to_user(..., cnt);
1607 * so below kcalloc doesn't need extra cnt > 0 check, but
1608 * bpf_prog_array_length() releases rcu lock and
1609 * prog array could have been swapped with empty or larger array,
1610 * so always copy 'cnt' prog_ids to the user.
1611 * In a rare race the user will see zero prog_ids
1612 */
1613 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1614 if (!ids)
1615 return -ENOMEM;
1616 rcu_read_lock();
1617 nospc = bpf_prog_array_copy_core(array, ids, cnt);
1618 rcu_read_unlock();
1619 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1620 kfree(ids);
1621 if (err)
1622 return -EFAULT;
1623 if (nospc)
1624 return -ENOSPC;
1625 return 0;
1626 }
1627
bpf_prog_array_delete_safe(struct bpf_prog_array __rcu * array,struct bpf_prog * old_prog)1628 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
1629 struct bpf_prog *old_prog)
1630 {
1631 struct bpf_prog_array_item *item = array->items;
1632
1633 for (; item->prog; item++)
1634 if (item->prog == old_prog) {
1635 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1636 break;
1637 }
1638 }
1639
bpf_prog_array_copy(struct bpf_prog_array __rcu * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)1640 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1641 struct bpf_prog *exclude_prog,
1642 struct bpf_prog *include_prog,
1643 struct bpf_prog_array **new_array)
1644 {
1645 int new_prog_cnt, carry_prog_cnt = 0;
1646 struct bpf_prog_array_item *existing;
1647 struct bpf_prog_array *array;
1648 bool found_exclude = false;
1649 int new_prog_idx = 0;
1650
1651 /* Figure out how many existing progs we need to carry over to
1652 * the new array.
1653 */
1654 if (old_array) {
1655 existing = old_array->items;
1656 for (; existing->prog; existing++) {
1657 if (existing->prog == exclude_prog) {
1658 found_exclude = true;
1659 continue;
1660 }
1661 if (existing->prog != &dummy_bpf_prog.prog)
1662 carry_prog_cnt++;
1663 if (existing->prog == include_prog)
1664 return -EEXIST;
1665 }
1666 }
1667
1668 if (exclude_prog && !found_exclude)
1669 return -ENOENT;
1670
1671 /* How many progs (not NULL) will be in the new array? */
1672 new_prog_cnt = carry_prog_cnt;
1673 if (include_prog)
1674 new_prog_cnt += 1;
1675
1676 /* Do we have any prog (not NULL) in the new array? */
1677 if (!new_prog_cnt) {
1678 *new_array = NULL;
1679 return 0;
1680 }
1681
1682 /* +1 as the end of prog_array is marked with NULL */
1683 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1684 if (!array)
1685 return -ENOMEM;
1686
1687 /* Fill in the new prog array */
1688 if (carry_prog_cnt) {
1689 existing = old_array->items;
1690 for (; existing->prog; existing++)
1691 if (existing->prog != exclude_prog &&
1692 existing->prog != &dummy_bpf_prog.prog) {
1693 array->items[new_prog_idx++].prog =
1694 existing->prog;
1695 }
1696 }
1697 if (include_prog)
1698 array->items[new_prog_idx++].prog = include_prog;
1699 array->items[new_prog_idx].prog = NULL;
1700 *new_array = array;
1701 return 0;
1702 }
1703
bpf_prog_array_copy_info(struct bpf_prog_array __rcu * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)1704 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1705 u32 *prog_ids, u32 request_cnt,
1706 u32 *prog_cnt)
1707 {
1708 u32 cnt = 0;
1709
1710 if (array)
1711 cnt = bpf_prog_array_length(array);
1712
1713 *prog_cnt = cnt;
1714
1715 /* return early if user requested only program count or nothing to copy */
1716 if (!request_cnt || !cnt)
1717 return 0;
1718
1719 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1720 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1721 : 0;
1722 }
1723
bpf_prog_free_deferred(struct work_struct * work)1724 static void bpf_prog_free_deferred(struct work_struct *work)
1725 {
1726 struct bpf_prog_aux *aux;
1727 int i;
1728
1729 aux = container_of(work, struct bpf_prog_aux, work);
1730 if (bpf_prog_is_dev_bound(aux))
1731 bpf_prog_offload_destroy(aux->prog);
1732 #ifdef CONFIG_PERF_EVENTS
1733 if (aux->prog->has_callchain_buf)
1734 put_callchain_buffers();
1735 #endif
1736 for (i = 0; i < aux->func_cnt; i++)
1737 bpf_jit_free(aux->func[i]);
1738 if (aux->func_cnt) {
1739 kfree(aux->func);
1740 bpf_prog_unlock_free(aux->prog);
1741 } else {
1742 bpf_jit_free(aux->prog);
1743 }
1744 }
1745
1746 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)1747 void bpf_prog_free(struct bpf_prog *fp)
1748 {
1749 struct bpf_prog_aux *aux = fp->aux;
1750
1751 INIT_WORK(&aux->work, bpf_prog_free_deferred);
1752 schedule_work(&aux->work);
1753 }
1754 EXPORT_SYMBOL_GPL(bpf_prog_free);
1755
1756 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1757 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1758
bpf_user_rnd_init_once(void)1759 void bpf_user_rnd_init_once(void)
1760 {
1761 prandom_init_once(&bpf_user_rnd_state);
1762 }
1763
BPF_CALL_0(bpf_user_rnd_u32)1764 BPF_CALL_0(bpf_user_rnd_u32)
1765 {
1766 /* Should someone ever have the rather unwise idea to use some
1767 * of the registers passed into this function, then note that
1768 * this function is called from native eBPF and classic-to-eBPF
1769 * transformations. Register assignments from both sides are
1770 * different, f.e. classic always sets fn(ctx, A, X) here.
1771 */
1772 struct rnd_state *state;
1773 u32 res;
1774
1775 state = &get_cpu_var(bpf_user_rnd_state);
1776 res = prandom_u32_state(state);
1777 put_cpu_var(bpf_user_rnd_state);
1778
1779 return res;
1780 }
1781
1782 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1783 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1784 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1785 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1786
1787 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1788 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1789 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1790 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1791
1792 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1793 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1794 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1795 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1796 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
1797 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
1798 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
1799
bpf_get_trace_printk_proto(void)1800 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1801 {
1802 return NULL;
1803 }
1804
1805 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)1806 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1807 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1808 {
1809 return -ENOTSUPP;
1810 }
1811 EXPORT_SYMBOL_GPL(bpf_event_output);
1812
1813 /* Always built-in helper functions. */
1814 const struct bpf_func_proto bpf_tail_call_proto = {
1815 .func = NULL,
1816 .gpl_only = false,
1817 .ret_type = RET_VOID,
1818 .arg1_type = ARG_PTR_TO_CTX,
1819 .arg2_type = ARG_CONST_MAP_PTR,
1820 .arg3_type = ARG_ANYTHING,
1821 };
1822
1823 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1824 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1825 * eBPF and implicitly also cBPF can get JITed!
1826 */
bpf_int_jit_compile(struct bpf_prog * prog)1827 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1828 {
1829 return prog;
1830 }
1831
1832 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1833 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1834 */
bpf_jit_compile(struct bpf_prog * prog)1835 void __weak bpf_jit_compile(struct bpf_prog *prog)
1836 {
1837 }
1838
bpf_helper_changes_pkt_data(void * func)1839 bool __weak bpf_helper_changes_pkt_data(void *func)
1840 {
1841 return false;
1842 }
1843
1844 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1845 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1846 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1847 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1848 int len)
1849 {
1850 return -EFAULT;
1851 }
1852
1853 /* All definitions of tracepoints related to BPF. */
1854 #define CREATE_TRACE_POINTS
1855 #include <linux/bpf_trace.h>
1856
1857 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1858