1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32
33 static const struct vm_operations_struct xfs_file_vm_ops;
34
35 /*
36 * Decide if the given file range is aligned to the size of the fundamental
37 * allocation unit for the file.
38 */
39 static bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)40 xfs_is_falloc_aligned(
41 struct xfs_inode *ip,
42 loff_t pos,
43 long long int len)
44 {
45 struct xfs_mount *mp = ip->i_mount;
46 uint64_t mask;
47
48 if (XFS_IS_REALTIME_INODE(ip)) {
49 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
50 u64 rextbytes;
51 u32 mod;
52
53 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
54 div_u64_rem(pos, rextbytes, &mod);
55 if (mod)
56 return false;
57 div_u64_rem(len, rextbytes, &mod);
58 return mod == 0;
59 }
60 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
61 } else {
62 mask = mp->m_sb.sb_blocksize - 1;
63 }
64
65 return !((pos | len) & mask);
66 }
67
68 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)69 xfs_update_prealloc_flags(
70 struct xfs_inode *ip,
71 enum xfs_prealloc_flags flags)
72 {
73 struct xfs_trans *tp;
74 int error;
75
76 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
77 0, 0, 0, &tp);
78 if (error)
79 return error;
80
81 xfs_ilock(ip, XFS_ILOCK_EXCL);
82 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
83
84 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
85 VFS_I(ip)->i_mode &= ~S_ISUID;
86 if (VFS_I(ip)->i_mode & S_IXGRP)
87 VFS_I(ip)->i_mode &= ~S_ISGID;
88 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
89 }
90
91 if (flags & XFS_PREALLOC_SET)
92 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
93 if (flags & XFS_PREALLOC_CLEAR)
94 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
95
96 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
97 if (flags & XFS_PREALLOC_SYNC)
98 xfs_trans_set_sync(tp);
99 return xfs_trans_commit(tp);
100 }
101
102 /*
103 * Fsync operations on directories are much simpler than on regular files,
104 * as there is no file data to flush, and thus also no need for explicit
105 * cache flush operations, and there are no non-transaction metadata updates
106 * on directories either.
107 */
108 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)109 xfs_dir_fsync(
110 struct file *file,
111 loff_t start,
112 loff_t end,
113 int datasync)
114 {
115 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
116
117 trace_xfs_dir_fsync(ip);
118 return xfs_log_force_inode(ip);
119 }
120
121 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)122 xfs_file_fsync(
123 struct file *file,
124 loff_t start,
125 loff_t end,
126 int datasync)
127 {
128 struct inode *inode = file->f_mapping->host;
129 struct xfs_inode *ip = XFS_I(inode);
130 struct xfs_inode_log_item *iip = ip->i_itemp;
131 struct xfs_mount *mp = ip->i_mount;
132 int error = 0;
133 int log_flushed = 0;
134 xfs_lsn_t lsn = 0;
135
136 trace_xfs_file_fsync(ip);
137
138 error = file_write_and_wait_range(file, start, end);
139 if (error)
140 return error;
141
142 if (XFS_FORCED_SHUTDOWN(mp))
143 return -EIO;
144
145 xfs_iflags_clear(ip, XFS_ITRUNCATED);
146
147 /*
148 * If we have an RT and/or log subvolume we need to make sure to flush
149 * the write cache the device used for file data first. This is to
150 * ensure newly written file data make it to disk before logging the new
151 * inode size in case of an extending write.
152 */
153 if (XFS_IS_REALTIME_INODE(ip))
154 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
155 else if (mp->m_logdev_targp != mp->m_ddev_targp)
156 xfs_blkdev_issue_flush(mp->m_ddev_targp);
157
158 /*
159 * All metadata updates are logged, which means that we just have to
160 * flush the log up to the latest LSN that touched the inode. If we have
161 * concurrent fsync/fdatasync() calls, we need them to all block on the
162 * log force before we clear the ili_fsync_fields field. This ensures
163 * that we don't get a racing sync operation that does not wait for the
164 * metadata to hit the journal before returning. If we race with
165 * clearing the ili_fsync_fields, then all that will happen is the log
166 * force will do nothing as the lsn will already be on disk. We can't
167 * race with setting ili_fsync_fields because that is done under
168 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
169 * until after the ili_fsync_fields is cleared.
170 */
171 xfs_ilock(ip, XFS_ILOCK_SHARED);
172 if (xfs_ipincount(ip)) {
173 if (!datasync ||
174 (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
175 lsn = iip->ili_last_lsn;
176 }
177
178 if (lsn) {
179 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
180 spin_lock(&iip->ili_lock);
181 iip->ili_fsync_fields = 0;
182 spin_unlock(&iip->ili_lock);
183 }
184 xfs_iunlock(ip, XFS_ILOCK_SHARED);
185
186 /*
187 * If we only have a single device, and the log force about was
188 * a no-op we might have to flush the data device cache here.
189 * This can only happen for fdatasync/O_DSYNC if we were overwriting
190 * an already allocated file and thus do not have any metadata to
191 * commit.
192 */
193 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
194 mp->m_logdev_targp == mp->m_ddev_targp)
195 xfs_blkdev_issue_flush(mp->m_ddev_targp);
196
197 return error;
198 }
199
200 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)201 xfs_file_dio_aio_read(
202 struct kiocb *iocb,
203 struct iov_iter *to)
204 {
205 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
206 size_t count = iov_iter_count(to);
207 ssize_t ret;
208
209 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
210
211 if (!count)
212 return 0; /* skip atime */
213
214 file_accessed(iocb->ki_filp);
215
216 if (iocb->ki_flags & IOCB_NOWAIT) {
217 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
218 return -EAGAIN;
219 } else {
220 xfs_ilock(ip, XFS_IOLOCK_SHARED);
221 }
222 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
223 is_sync_kiocb(iocb));
224 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
225
226 return ret;
227 }
228
229 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)230 xfs_file_dax_read(
231 struct kiocb *iocb,
232 struct iov_iter *to)
233 {
234 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
235 size_t count = iov_iter_count(to);
236 ssize_t ret = 0;
237
238 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
239
240 if (!count)
241 return 0; /* skip atime */
242
243 if (iocb->ki_flags & IOCB_NOWAIT) {
244 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
245 return -EAGAIN;
246 } else {
247 xfs_ilock(ip, XFS_IOLOCK_SHARED);
248 }
249
250 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
251 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
252
253 file_accessed(iocb->ki_filp);
254 return ret;
255 }
256
257 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)258 xfs_file_buffered_aio_read(
259 struct kiocb *iocb,
260 struct iov_iter *to)
261 {
262 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
263 ssize_t ret;
264
265 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
266
267 if (iocb->ki_flags & IOCB_NOWAIT) {
268 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
269 return -EAGAIN;
270 } else {
271 xfs_ilock(ip, XFS_IOLOCK_SHARED);
272 }
273 ret = generic_file_read_iter(iocb, to);
274 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
275
276 return ret;
277 }
278
279 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)280 xfs_file_read_iter(
281 struct kiocb *iocb,
282 struct iov_iter *to)
283 {
284 struct inode *inode = file_inode(iocb->ki_filp);
285 struct xfs_mount *mp = XFS_I(inode)->i_mount;
286 ssize_t ret = 0;
287
288 XFS_STATS_INC(mp, xs_read_calls);
289
290 if (XFS_FORCED_SHUTDOWN(mp))
291 return -EIO;
292
293 if (IS_DAX(inode))
294 ret = xfs_file_dax_read(iocb, to);
295 else if (iocb->ki_flags & IOCB_DIRECT)
296 ret = xfs_file_dio_aio_read(iocb, to);
297 else
298 ret = xfs_file_buffered_aio_read(iocb, to);
299
300 if (ret > 0)
301 XFS_STATS_ADD(mp, xs_read_bytes, ret);
302 return ret;
303 }
304
305 /*
306 * Common pre-write limit and setup checks.
307 *
308 * Called with the iolocked held either shared and exclusive according to
309 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
310 * if called for a direct write beyond i_size.
311 */
312 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)313 xfs_file_aio_write_checks(
314 struct kiocb *iocb,
315 struct iov_iter *from,
316 int *iolock)
317 {
318 struct file *file = iocb->ki_filp;
319 struct inode *inode = file->f_mapping->host;
320 struct xfs_inode *ip = XFS_I(inode);
321 ssize_t error = 0;
322 size_t count = iov_iter_count(from);
323 bool drained_dio = false;
324 loff_t isize;
325
326 restart:
327 error = generic_write_checks(iocb, from);
328 if (error <= 0)
329 return error;
330
331 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
332 if (error)
333 return error;
334
335 /*
336 * For changing security info in file_remove_privs() we need i_rwsem
337 * exclusively.
338 */
339 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
340 xfs_iunlock(ip, *iolock);
341 *iolock = XFS_IOLOCK_EXCL;
342 xfs_ilock(ip, *iolock);
343 goto restart;
344 }
345 /*
346 * If the offset is beyond the size of the file, we need to zero any
347 * blocks that fall between the existing EOF and the start of this
348 * write. If zeroing is needed and we are currently holding the
349 * iolock shared, we need to update it to exclusive which implies
350 * having to redo all checks before.
351 *
352 * We need to serialise against EOF updates that occur in IO
353 * completions here. We want to make sure that nobody is changing the
354 * size while we do this check until we have placed an IO barrier (i.e.
355 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
356 * The spinlock effectively forms a memory barrier once we have the
357 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
358 * and hence be able to correctly determine if we need to run zeroing.
359 */
360 spin_lock(&ip->i_flags_lock);
361 isize = i_size_read(inode);
362 if (iocb->ki_pos > isize) {
363 spin_unlock(&ip->i_flags_lock);
364 if (!drained_dio) {
365 if (*iolock == XFS_IOLOCK_SHARED) {
366 xfs_iunlock(ip, *iolock);
367 *iolock = XFS_IOLOCK_EXCL;
368 xfs_ilock(ip, *iolock);
369 iov_iter_reexpand(from, count);
370 }
371 /*
372 * We now have an IO submission barrier in place, but
373 * AIO can do EOF updates during IO completion and hence
374 * we now need to wait for all of them to drain. Non-AIO
375 * DIO will have drained before we are given the
376 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
377 * no-op.
378 */
379 inode_dio_wait(inode);
380 drained_dio = true;
381 goto restart;
382 }
383
384 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
385 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
386 NULL, &xfs_buffered_write_iomap_ops);
387 if (error)
388 return error;
389 } else
390 spin_unlock(&ip->i_flags_lock);
391
392 /*
393 * Updating the timestamps will grab the ilock again from
394 * xfs_fs_dirty_inode, so we have to call it after dropping the
395 * lock above. Eventually we should look into a way to avoid
396 * the pointless lock roundtrip.
397 */
398 return file_modified(file);
399 }
400
401 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)402 xfs_dio_write_end_io(
403 struct kiocb *iocb,
404 ssize_t size,
405 int error,
406 unsigned flags)
407 {
408 struct inode *inode = file_inode(iocb->ki_filp);
409 struct xfs_inode *ip = XFS_I(inode);
410 loff_t offset = iocb->ki_pos;
411 unsigned int nofs_flag;
412
413 trace_xfs_end_io_direct_write(ip, offset, size);
414
415 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
416 return -EIO;
417
418 if (error)
419 return error;
420 if (!size)
421 return 0;
422
423 /*
424 * Capture amount written on completion as we can't reliably account
425 * for it on submission.
426 */
427 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
428
429 /*
430 * We can allocate memory here while doing writeback on behalf of
431 * memory reclaim. To avoid memory allocation deadlocks set the
432 * task-wide nofs context for the following operations.
433 */
434 nofs_flag = memalloc_nofs_save();
435
436 if (flags & IOMAP_DIO_COW) {
437 error = xfs_reflink_end_cow(ip, offset, size);
438 if (error)
439 goto out;
440 }
441
442 /*
443 * Unwritten conversion updates the in-core isize after extent
444 * conversion but before updating the on-disk size. Updating isize any
445 * earlier allows a racing dio read to find unwritten extents before
446 * they are converted.
447 */
448 if (flags & IOMAP_DIO_UNWRITTEN) {
449 error = xfs_iomap_write_unwritten(ip, offset, size, true);
450 goto out;
451 }
452
453 /*
454 * We need to update the in-core inode size here so that we don't end up
455 * with the on-disk inode size being outside the in-core inode size. We
456 * have no other method of updating EOF for AIO, so always do it here
457 * if necessary.
458 *
459 * We need to lock the test/set EOF update as we can be racing with
460 * other IO completions here to update the EOF. Failing to serialise
461 * here can result in EOF moving backwards and Bad Things Happen when
462 * that occurs.
463 */
464 spin_lock(&ip->i_flags_lock);
465 if (offset + size > i_size_read(inode)) {
466 i_size_write(inode, offset + size);
467 spin_unlock(&ip->i_flags_lock);
468 error = xfs_setfilesize(ip, offset, size);
469 } else {
470 spin_unlock(&ip->i_flags_lock);
471 }
472
473 out:
474 memalloc_nofs_restore(nofs_flag);
475 return error;
476 }
477
478 static const struct iomap_dio_ops xfs_dio_write_ops = {
479 .end_io = xfs_dio_write_end_io,
480 };
481
482 /*
483 * xfs_file_dio_aio_write - handle direct IO writes
484 *
485 * Lock the inode appropriately to prepare for and issue a direct IO write.
486 * By separating it from the buffered write path we remove all the tricky to
487 * follow locking changes and looping.
488 *
489 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
490 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
491 * pages are flushed out.
492 *
493 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
494 * allowing them to be done in parallel with reads and other direct IO writes.
495 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
496 * needs to do sub-block zeroing and that requires serialisation against other
497 * direct IOs to the same block. In this case we need to serialise the
498 * submission of the unaligned IOs so that we don't get racing block zeroing in
499 * the dio layer. To avoid the problem with aio, we also need to wait for
500 * outstanding IOs to complete so that unwritten extent conversion is completed
501 * before we try to map the overlapping block. This is currently implemented by
502 * hitting it with a big hammer (i.e. inode_dio_wait()).
503 *
504 * Returns with locks held indicated by @iolock and errors indicated by
505 * negative return values.
506 */
507 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)508 xfs_file_dio_aio_write(
509 struct kiocb *iocb,
510 struct iov_iter *from)
511 {
512 struct file *file = iocb->ki_filp;
513 struct address_space *mapping = file->f_mapping;
514 struct inode *inode = mapping->host;
515 struct xfs_inode *ip = XFS_I(inode);
516 struct xfs_mount *mp = ip->i_mount;
517 ssize_t ret = 0;
518 int unaligned_io = 0;
519 int iolock;
520 size_t count = iov_iter_count(from);
521 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
522
523 /* DIO must be aligned to device logical sector size */
524 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
525 return -EINVAL;
526
527 /*
528 * Don't take the exclusive iolock here unless the I/O is unaligned to
529 * the file system block size. We don't need to consider the EOF
530 * extension case here because xfs_file_aio_write_checks() will relock
531 * the inode as necessary for EOF zeroing cases and fill out the new
532 * inode size as appropriate.
533 */
534 if ((iocb->ki_pos & mp->m_blockmask) ||
535 ((iocb->ki_pos + count) & mp->m_blockmask)) {
536 unaligned_io = 1;
537
538 /*
539 * We can't properly handle unaligned direct I/O to reflink
540 * files yet, as we can't unshare a partial block.
541 */
542 if (xfs_is_cow_inode(ip)) {
543 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
544 return -ENOTBLK;
545 }
546 iolock = XFS_IOLOCK_EXCL;
547 } else {
548 iolock = XFS_IOLOCK_SHARED;
549 }
550
551 if (iocb->ki_flags & IOCB_NOWAIT) {
552 /* unaligned dio always waits, bail */
553 if (unaligned_io)
554 return -EAGAIN;
555 if (!xfs_ilock_nowait(ip, iolock))
556 return -EAGAIN;
557 } else {
558 xfs_ilock(ip, iolock);
559 }
560
561 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
562 if (ret)
563 goto out;
564 count = iov_iter_count(from);
565
566 /*
567 * If we are doing unaligned IO, we can't allow any other overlapping IO
568 * in-flight at the same time or we risk data corruption. Wait for all
569 * other IO to drain before we submit. If the IO is aligned, demote the
570 * iolock if we had to take the exclusive lock in
571 * xfs_file_aio_write_checks() for other reasons.
572 */
573 if (unaligned_io) {
574 inode_dio_wait(inode);
575 } else if (iolock == XFS_IOLOCK_EXCL) {
576 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
577 iolock = XFS_IOLOCK_SHARED;
578 }
579
580 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
581 /*
582 * If unaligned, this is the only IO in-flight. Wait on it before we
583 * release the iolock to prevent subsequent overlapping IO.
584 */
585 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
586 &xfs_dio_write_ops,
587 is_sync_kiocb(iocb) || unaligned_io);
588 out:
589 xfs_iunlock(ip, iolock);
590
591 /*
592 * No fallback to buffered IO after short writes for XFS, direct I/O
593 * will either complete fully or return an error.
594 */
595 ASSERT(ret < 0 || ret == count);
596 return ret;
597 }
598
599 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)600 xfs_file_dax_write(
601 struct kiocb *iocb,
602 struct iov_iter *from)
603 {
604 struct inode *inode = iocb->ki_filp->f_mapping->host;
605 struct xfs_inode *ip = XFS_I(inode);
606 int iolock = XFS_IOLOCK_EXCL;
607 ssize_t ret, error = 0;
608 size_t count;
609 loff_t pos;
610
611 if (iocb->ki_flags & IOCB_NOWAIT) {
612 if (!xfs_ilock_nowait(ip, iolock))
613 return -EAGAIN;
614 } else {
615 xfs_ilock(ip, iolock);
616 }
617
618 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
619 if (ret)
620 goto out;
621
622 pos = iocb->ki_pos;
623 count = iov_iter_count(from);
624
625 trace_xfs_file_dax_write(ip, count, pos);
626 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
627 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
628 i_size_write(inode, iocb->ki_pos);
629 error = xfs_setfilesize(ip, pos, ret);
630 }
631 out:
632 xfs_iunlock(ip, iolock);
633 if (error)
634 return error;
635
636 if (ret > 0) {
637 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
638
639 /* Handle various SYNC-type writes */
640 ret = generic_write_sync(iocb, ret);
641 }
642 return ret;
643 }
644
645 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)646 xfs_file_buffered_aio_write(
647 struct kiocb *iocb,
648 struct iov_iter *from)
649 {
650 struct file *file = iocb->ki_filp;
651 struct address_space *mapping = file->f_mapping;
652 struct inode *inode = mapping->host;
653 struct xfs_inode *ip = XFS_I(inode);
654 ssize_t ret;
655 int enospc = 0;
656 int iolock;
657
658 if (iocb->ki_flags & IOCB_NOWAIT)
659 return -EOPNOTSUPP;
660
661 write_retry:
662 iolock = XFS_IOLOCK_EXCL;
663 xfs_ilock(ip, iolock);
664
665 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
666 if (ret)
667 goto out;
668
669 /* We can write back this queue in page reclaim */
670 current->backing_dev_info = inode_to_bdi(inode);
671
672 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
673 ret = iomap_file_buffered_write(iocb, from,
674 &xfs_buffered_write_iomap_ops);
675 if (likely(ret >= 0))
676 iocb->ki_pos += ret;
677
678 /*
679 * If we hit a space limit, try to free up some lingering preallocated
680 * space before returning an error. In the case of ENOSPC, first try to
681 * write back all dirty inodes to free up some of the excess reserved
682 * metadata space. This reduces the chances that the eofblocks scan
683 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
684 * also behaves as a filter to prevent too many eofblocks scans from
685 * running at the same time.
686 */
687 if (ret == -EDQUOT && !enospc) {
688 xfs_iunlock(ip, iolock);
689 enospc = xfs_inode_free_quota_eofblocks(ip);
690 if (enospc)
691 goto write_retry;
692 enospc = xfs_inode_free_quota_cowblocks(ip);
693 if (enospc)
694 goto write_retry;
695 iolock = 0;
696 } else if (ret == -ENOSPC && !enospc) {
697 struct xfs_eofblocks eofb = {0};
698
699 enospc = 1;
700 xfs_flush_inodes(ip->i_mount);
701
702 xfs_iunlock(ip, iolock);
703 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
704 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
705 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
706 goto write_retry;
707 }
708
709 current->backing_dev_info = NULL;
710 out:
711 if (iolock)
712 xfs_iunlock(ip, iolock);
713
714 if (ret > 0) {
715 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
716 /* Handle various SYNC-type writes */
717 ret = generic_write_sync(iocb, ret);
718 }
719 return ret;
720 }
721
722 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)723 xfs_file_write_iter(
724 struct kiocb *iocb,
725 struct iov_iter *from)
726 {
727 struct file *file = iocb->ki_filp;
728 struct address_space *mapping = file->f_mapping;
729 struct inode *inode = mapping->host;
730 struct xfs_inode *ip = XFS_I(inode);
731 ssize_t ret;
732 size_t ocount = iov_iter_count(from);
733
734 XFS_STATS_INC(ip->i_mount, xs_write_calls);
735
736 if (ocount == 0)
737 return 0;
738
739 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
740 return -EIO;
741
742 if (IS_DAX(inode))
743 return xfs_file_dax_write(iocb, from);
744
745 if (iocb->ki_flags & IOCB_DIRECT) {
746 /*
747 * Allow a directio write to fall back to a buffered
748 * write *only* in the case that we're doing a reflink
749 * CoW. In all other directio scenarios we do not
750 * allow an operation to fall back to buffered mode.
751 */
752 ret = xfs_file_dio_aio_write(iocb, from);
753 if (ret != -ENOTBLK)
754 return ret;
755 }
756
757 return xfs_file_buffered_aio_write(iocb, from);
758 }
759
760 static void
xfs_wait_dax_page(struct inode * inode)761 xfs_wait_dax_page(
762 struct inode *inode)
763 {
764 struct xfs_inode *ip = XFS_I(inode);
765
766 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
767 schedule();
768 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
769 }
770
771 static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)772 xfs_break_dax_layouts(
773 struct inode *inode,
774 bool *retry)
775 {
776 struct page *page;
777
778 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
779
780 page = dax_layout_busy_page(inode->i_mapping);
781 if (!page)
782 return 0;
783
784 *retry = true;
785 return ___wait_var_event(&page->_refcount,
786 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
787 0, 0, xfs_wait_dax_page(inode));
788 }
789
790 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)791 xfs_break_layouts(
792 struct inode *inode,
793 uint *iolock,
794 enum layout_break_reason reason)
795 {
796 bool retry;
797 int error;
798
799 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
800
801 do {
802 retry = false;
803 switch (reason) {
804 case BREAK_UNMAP:
805 error = xfs_break_dax_layouts(inode, &retry);
806 if (error || retry)
807 break;
808 /* fall through */
809 case BREAK_WRITE:
810 error = xfs_break_leased_layouts(inode, iolock, &retry);
811 break;
812 default:
813 WARN_ON_ONCE(1);
814 error = -EINVAL;
815 }
816 } while (error == 0 && retry);
817
818 return error;
819 }
820
821 #define XFS_FALLOC_FL_SUPPORTED \
822 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
823 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
824 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
825
826 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)827 xfs_file_fallocate(
828 struct file *file,
829 int mode,
830 loff_t offset,
831 loff_t len)
832 {
833 struct inode *inode = file_inode(file);
834 struct xfs_inode *ip = XFS_I(inode);
835 long error;
836 enum xfs_prealloc_flags flags = 0;
837 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
838 loff_t new_size = 0;
839 bool do_file_insert = false;
840
841 if (!S_ISREG(inode->i_mode))
842 return -EINVAL;
843 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
844 return -EOPNOTSUPP;
845
846 xfs_ilock(ip, iolock);
847 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
848 if (error)
849 goto out_unlock;
850
851 /*
852 * Must wait for all AIO to complete before we continue as AIO can
853 * change the file size on completion without holding any locks we
854 * currently hold. We must do this first because AIO can update both
855 * the on disk and in memory inode sizes, and the operations that follow
856 * require the in-memory size to be fully up-to-date.
857 */
858 inode_dio_wait(inode);
859
860 /*
861 * Now AIO and DIO has drained we flush and (if necessary) invalidate
862 * the cached range over the first operation we are about to run.
863 *
864 * We care about zero and collapse here because they both run a hole
865 * punch over the range first. Because that can zero data, and the range
866 * of invalidation for the shift operations is much larger, we still do
867 * the required flush for collapse in xfs_prepare_shift().
868 *
869 * Insert has the same range requirements as collapse, and we extend the
870 * file first which can zero data. Hence insert has the same
871 * flush/invalidate requirements as collapse and so they are both
872 * handled at the right time by xfs_prepare_shift().
873 */
874 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
875 FALLOC_FL_COLLAPSE_RANGE)) {
876 error = xfs_flush_unmap_range(ip, offset, len);
877 if (error)
878 goto out_unlock;
879 }
880
881 if (mode & FALLOC_FL_PUNCH_HOLE) {
882 error = xfs_free_file_space(ip, offset, len);
883 if (error)
884 goto out_unlock;
885 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
886 if (!xfs_is_falloc_aligned(ip, offset, len)) {
887 error = -EINVAL;
888 goto out_unlock;
889 }
890
891 /*
892 * There is no need to overlap collapse range with EOF,
893 * in which case it is effectively a truncate operation
894 */
895 if (offset + len >= i_size_read(inode)) {
896 error = -EINVAL;
897 goto out_unlock;
898 }
899
900 new_size = i_size_read(inode) - len;
901
902 error = xfs_collapse_file_space(ip, offset, len);
903 if (error)
904 goto out_unlock;
905 } else if (mode & FALLOC_FL_INSERT_RANGE) {
906 loff_t isize = i_size_read(inode);
907
908 if (!xfs_is_falloc_aligned(ip, offset, len)) {
909 error = -EINVAL;
910 goto out_unlock;
911 }
912
913 /*
914 * New inode size must not exceed ->s_maxbytes, accounting for
915 * possible signed overflow.
916 */
917 if (inode->i_sb->s_maxbytes - isize < len) {
918 error = -EFBIG;
919 goto out_unlock;
920 }
921 new_size = isize + len;
922
923 /* Offset should be less than i_size */
924 if (offset >= isize) {
925 error = -EINVAL;
926 goto out_unlock;
927 }
928 do_file_insert = true;
929 } else {
930 flags |= XFS_PREALLOC_SET;
931
932 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
933 offset + len > i_size_read(inode)) {
934 new_size = offset + len;
935 error = inode_newsize_ok(inode, new_size);
936 if (error)
937 goto out_unlock;
938 }
939
940 if (mode & FALLOC_FL_ZERO_RANGE) {
941 /*
942 * Punch a hole and prealloc the range. We use a hole
943 * punch rather than unwritten extent conversion for two
944 * reasons:
945 *
946 * 1.) Hole punch handles partial block zeroing for us.
947 * 2.) If prealloc returns ENOSPC, the file range is
948 * still zero-valued by virtue of the hole punch.
949 */
950 unsigned int blksize = i_blocksize(inode);
951
952 trace_xfs_zero_file_space(ip);
953
954 error = xfs_free_file_space(ip, offset, len);
955 if (error)
956 goto out_unlock;
957
958 len = round_up(offset + len, blksize) -
959 round_down(offset, blksize);
960 offset = round_down(offset, blksize);
961 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
962 error = xfs_reflink_unshare(ip, offset, len);
963 if (error)
964 goto out_unlock;
965 } else {
966 /*
967 * If always_cow mode we can't use preallocations and
968 * thus should not create them.
969 */
970 if (xfs_is_always_cow_inode(ip)) {
971 error = -EOPNOTSUPP;
972 goto out_unlock;
973 }
974 }
975
976 if (!xfs_is_always_cow_inode(ip)) {
977 error = xfs_alloc_file_space(ip, offset, len,
978 XFS_BMAPI_PREALLOC);
979 if (error)
980 goto out_unlock;
981 }
982 }
983
984 if (file->f_flags & O_DSYNC)
985 flags |= XFS_PREALLOC_SYNC;
986
987 error = xfs_update_prealloc_flags(ip, flags);
988 if (error)
989 goto out_unlock;
990
991 /* Change file size if needed */
992 if (new_size) {
993 struct iattr iattr;
994
995 iattr.ia_valid = ATTR_SIZE;
996 iattr.ia_size = new_size;
997 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
998 if (error)
999 goto out_unlock;
1000 }
1001
1002 /*
1003 * Perform hole insertion now that the file size has been
1004 * updated so that if we crash during the operation we don't
1005 * leave shifted extents past EOF and hence losing access to
1006 * the data that is contained within them.
1007 */
1008 if (do_file_insert)
1009 error = xfs_insert_file_space(ip, offset, len);
1010
1011 out_unlock:
1012 xfs_iunlock(ip, iolock);
1013 return error;
1014 }
1015
1016 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1017 xfs_file_fadvise(
1018 struct file *file,
1019 loff_t start,
1020 loff_t end,
1021 int advice)
1022 {
1023 struct xfs_inode *ip = XFS_I(file_inode(file));
1024 int ret;
1025 int lockflags = 0;
1026
1027 /*
1028 * Operations creating pages in page cache need protection from hole
1029 * punching and similar ops
1030 */
1031 if (advice == POSIX_FADV_WILLNEED) {
1032 lockflags = XFS_IOLOCK_SHARED;
1033 xfs_ilock(ip, lockflags);
1034 }
1035 ret = generic_fadvise(file, start, end, advice);
1036 if (lockflags)
1037 xfs_iunlock(ip, lockflags);
1038 return ret;
1039 }
1040
1041 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)1042 static inline bool xfs_file_sync_writes(struct file *filp)
1043 {
1044 struct xfs_inode *ip = XFS_I(file_inode(filp));
1045
1046 if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1047 return true;
1048 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1049 return true;
1050 if (IS_SYNC(file_inode(filp)))
1051 return true;
1052
1053 return false;
1054 }
1055
1056 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1057 xfs_file_remap_range(
1058 struct file *file_in,
1059 loff_t pos_in,
1060 struct file *file_out,
1061 loff_t pos_out,
1062 loff_t len,
1063 unsigned int remap_flags)
1064 {
1065 struct inode *inode_in = file_inode(file_in);
1066 struct xfs_inode *src = XFS_I(inode_in);
1067 struct inode *inode_out = file_inode(file_out);
1068 struct xfs_inode *dest = XFS_I(inode_out);
1069 struct xfs_mount *mp = src->i_mount;
1070 loff_t remapped = 0;
1071 xfs_extlen_t cowextsize;
1072 int ret;
1073
1074 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1075 return -EINVAL;
1076
1077 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1078 return -EOPNOTSUPP;
1079
1080 if (XFS_FORCED_SHUTDOWN(mp))
1081 return -EIO;
1082
1083 /* Prepare and then clone file data. */
1084 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1085 &len, remap_flags);
1086 if (ret || len == 0)
1087 return ret;
1088
1089 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1090
1091 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1092 &remapped);
1093 if (ret)
1094 goto out_unlock;
1095
1096 /*
1097 * Carry the cowextsize hint from src to dest if we're sharing the
1098 * entire source file to the entire destination file, the source file
1099 * has a cowextsize hint, and the destination file does not.
1100 */
1101 cowextsize = 0;
1102 if (pos_in == 0 && len == i_size_read(inode_in) &&
1103 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1104 pos_out == 0 && len >= i_size_read(inode_out) &&
1105 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1106 cowextsize = src->i_d.di_cowextsize;
1107
1108 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1109 remap_flags);
1110 if (ret)
1111 goto out_unlock;
1112
1113 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1114 xfs_log_force_inode(dest);
1115 out_unlock:
1116 xfs_iunlock2_io_mmap(src, dest);
1117 if (ret)
1118 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1119 return remapped > 0 ? remapped : ret;
1120 }
1121
1122 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1123 xfs_file_open(
1124 struct inode *inode,
1125 struct file *file)
1126 {
1127 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1128 return -EFBIG;
1129 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1130 return -EIO;
1131 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1132 return 0;
1133 }
1134
1135 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1136 xfs_dir_open(
1137 struct inode *inode,
1138 struct file *file)
1139 {
1140 struct xfs_inode *ip = XFS_I(inode);
1141 int mode;
1142 int error;
1143
1144 error = xfs_file_open(inode, file);
1145 if (error)
1146 return error;
1147
1148 /*
1149 * If there are any blocks, read-ahead block 0 as we're almost
1150 * certain to have the next operation be a read there.
1151 */
1152 mode = xfs_ilock_data_map_shared(ip);
1153 if (ip->i_df.if_nextents > 0)
1154 error = xfs_dir3_data_readahead(ip, 0, 0);
1155 xfs_iunlock(ip, mode);
1156 return error;
1157 }
1158
1159 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1160 xfs_file_release(
1161 struct inode *inode,
1162 struct file *filp)
1163 {
1164 return xfs_release(XFS_I(inode));
1165 }
1166
1167 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1168 xfs_file_readdir(
1169 struct file *file,
1170 struct dir_context *ctx)
1171 {
1172 struct inode *inode = file_inode(file);
1173 xfs_inode_t *ip = XFS_I(inode);
1174 size_t bufsize;
1175
1176 /*
1177 * The Linux API doesn't pass down the total size of the buffer
1178 * we read into down to the filesystem. With the filldir concept
1179 * it's not needed for correct information, but the XFS dir2 leaf
1180 * code wants an estimate of the buffer size to calculate it's
1181 * readahead window and size the buffers used for mapping to
1182 * physical blocks.
1183 *
1184 * Try to give it an estimate that's good enough, maybe at some
1185 * point we can change the ->readdir prototype to include the
1186 * buffer size. For now we use the current glibc buffer size.
1187 */
1188 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1189
1190 return xfs_readdir(NULL, ip, ctx, bufsize);
1191 }
1192
1193 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1194 xfs_file_llseek(
1195 struct file *file,
1196 loff_t offset,
1197 int whence)
1198 {
1199 struct inode *inode = file->f_mapping->host;
1200
1201 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1202 return -EIO;
1203
1204 switch (whence) {
1205 default:
1206 return generic_file_llseek(file, offset, whence);
1207 case SEEK_HOLE:
1208 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1209 break;
1210 case SEEK_DATA:
1211 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1212 break;
1213 }
1214
1215 if (offset < 0)
1216 return offset;
1217 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1218 }
1219
1220 /*
1221 * Locking for serialisation of IO during page faults. This results in a lock
1222 * ordering of:
1223 *
1224 * mmap_lock (MM)
1225 * sb_start_pagefault(vfs, freeze)
1226 * i_mmaplock (XFS - truncate serialisation)
1227 * page_lock (MM)
1228 * i_lock (XFS - extent map serialisation)
1229 */
1230 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1231 __xfs_filemap_fault(
1232 struct vm_fault *vmf,
1233 enum page_entry_size pe_size,
1234 bool write_fault)
1235 {
1236 struct inode *inode = file_inode(vmf->vma->vm_file);
1237 struct xfs_inode *ip = XFS_I(inode);
1238 vm_fault_t ret;
1239
1240 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1241
1242 if (write_fault) {
1243 sb_start_pagefault(inode->i_sb);
1244 file_update_time(vmf->vma->vm_file);
1245 }
1246
1247 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1248 if (IS_DAX(inode)) {
1249 pfn_t pfn;
1250
1251 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1252 (write_fault && !vmf->cow_page) ?
1253 &xfs_direct_write_iomap_ops :
1254 &xfs_read_iomap_ops);
1255 if (ret & VM_FAULT_NEEDDSYNC)
1256 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1257 } else {
1258 if (write_fault)
1259 ret = iomap_page_mkwrite(vmf,
1260 &xfs_buffered_write_iomap_ops);
1261 else
1262 ret = filemap_fault(vmf);
1263 }
1264 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1265
1266 if (write_fault)
1267 sb_end_pagefault(inode->i_sb);
1268 return ret;
1269 }
1270
1271 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1272 xfs_is_write_fault(
1273 struct vm_fault *vmf)
1274 {
1275 return (vmf->flags & FAULT_FLAG_WRITE) &&
1276 (vmf->vma->vm_flags & VM_SHARED);
1277 }
1278
1279 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1280 xfs_filemap_fault(
1281 struct vm_fault *vmf)
1282 {
1283 /* DAX can shortcut the normal fault path on write faults! */
1284 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1285 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1286 xfs_is_write_fault(vmf));
1287 }
1288
1289 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1290 xfs_filemap_huge_fault(
1291 struct vm_fault *vmf,
1292 enum page_entry_size pe_size)
1293 {
1294 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1295 return VM_FAULT_FALLBACK;
1296
1297 /* DAX can shortcut the normal fault path on write faults! */
1298 return __xfs_filemap_fault(vmf, pe_size,
1299 xfs_is_write_fault(vmf));
1300 }
1301
1302 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1303 xfs_filemap_page_mkwrite(
1304 struct vm_fault *vmf)
1305 {
1306 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1307 }
1308
1309 /*
1310 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1311 * on write faults. In reality, it needs to serialise against truncate and
1312 * prepare memory for writing so handle is as standard write fault.
1313 */
1314 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1315 xfs_filemap_pfn_mkwrite(
1316 struct vm_fault *vmf)
1317 {
1318
1319 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1320 }
1321
1322 static void
xfs_filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1323 xfs_filemap_map_pages(
1324 struct vm_fault *vmf,
1325 pgoff_t start_pgoff,
1326 pgoff_t end_pgoff)
1327 {
1328 struct inode *inode = file_inode(vmf->vma->vm_file);
1329
1330 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1331 filemap_map_pages(vmf, start_pgoff, end_pgoff);
1332 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1333 }
1334
1335 static const struct vm_operations_struct xfs_file_vm_ops = {
1336 .fault = xfs_filemap_fault,
1337 .huge_fault = xfs_filemap_huge_fault,
1338 .map_pages = xfs_filemap_map_pages,
1339 .page_mkwrite = xfs_filemap_page_mkwrite,
1340 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1341 };
1342
1343 STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1344 xfs_file_mmap(
1345 struct file *file,
1346 struct vm_area_struct *vma)
1347 {
1348 struct inode *inode = file_inode(file);
1349 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1350
1351 /*
1352 * We don't support synchronous mappings for non-DAX files and
1353 * for DAX files if underneath dax_device is not synchronous.
1354 */
1355 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1356 return -EOPNOTSUPP;
1357
1358 file_accessed(file);
1359 vma->vm_ops = &xfs_file_vm_ops;
1360 if (IS_DAX(inode))
1361 vma->vm_flags |= VM_HUGEPAGE;
1362 return 0;
1363 }
1364
1365 const struct file_operations xfs_file_operations = {
1366 .llseek = xfs_file_llseek,
1367 .read_iter = xfs_file_read_iter,
1368 .write_iter = xfs_file_write_iter,
1369 .splice_read = generic_file_splice_read,
1370 .splice_write = iter_file_splice_write,
1371 .iopoll = iomap_dio_iopoll,
1372 .unlocked_ioctl = xfs_file_ioctl,
1373 #ifdef CONFIG_COMPAT
1374 .compat_ioctl = xfs_file_compat_ioctl,
1375 #endif
1376 .mmap = xfs_file_mmap,
1377 .mmap_supported_flags = MAP_SYNC,
1378 .open = xfs_file_open,
1379 .release = xfs_file_release,
1380 .fsync = xfs_file_fsync,
1381 .get_unmapped_area = thp_get_unmapped_area,
1382 .fallocate = xfs_file_fallocate,
1383 .fadvise = xfs_file_fadvise,
1384 .remap_file_range = xfs_file_remap_range,
1385 };
1386
1387 const struct file_operations xfs_dir_file_operations = {
1388 .open = xfs_dir_open,
1389 .read = generic_read_dir,
1390 .iterate_shared = xfs_file_readdir,
1391 .llseek = generic_file_llseek,
1392 .unlocked_ioctl = xfs_file_ioctl,
1393 #ifdef CONFIG_COMPAT
1394 .compat_ioctl = xfs_file_compat_ioctl,
1395 #endif
1396 .fsync = xfs_dir_fsync,
1397 };
1398