1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Broadcom
4 */
5
6 /**
7 * DOC: VC4 DSI0/DSI1 module
8 *
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
12 *
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
15 *
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
19 */
20
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_of.h>
37 #include <drm/drm_panel.h>
38 #include <drm/drm_probe_helper.h>
39
40 #include "vc4_drv.h"
41 #include "vc4_regs.h"
42
43 #define DSI_CMD_FIFO_DEPTH 16
44 #define DSI_PIX_FIFO_DEPTH 256
45 #define DSI_PIX_FIFO_WIDTH 4
46
47 #define DSI0_CTRL 0x00
48
49 /* Command packet control. */
50 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
51 #define DSI1_TXPKT1C 0x04
52 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
53 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
54 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
55 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
56
57 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
58 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
59 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
60 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
61 /* Primary display where cmdfifo provides part of the payload and
62 * pixelvalve the rest.
63 */
64 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
65 /* Secondary display where cmdfifo provides part of the payload and
66 * pixfifo the rest.
67 */
68 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
69
70 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
71 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
72
73 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
74 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
75 /* Command only. Uses TXPKT1H and DISPLAY_NO */
76 # define DSI_TXPKT1C_CMD_CTRL_TX 0
77 /* Command with BTA for either ack or read data. */
78 # define DSI_TXPKT1C_CMD_CTRL_RX 1
79 /* Trigger according to TRIG_CMD */
80 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
81 /* BTA alone for getting error status after a command, or a TE trigger
82 * without a previous command.
83 */
84 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
85
86 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
87 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
88 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
89 # define DSI_TXPKT1C_CMD_EN BIT(0)
90
91 /* Command packet header. */
92 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
93 #define DSI1_TXPKT1H 0x08
94 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
95 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
96 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
97 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
98 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
99 # define DSI_TXPKT1H_BC_DT_SHIFT 0
100
101 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
102 #define DSI1_RXPKT1H 0x14
103 # define DSI_RXPKT1H_CRC_ERR BIT(31)
104 # define DSI_RXPKT1H_DET_ERR BIT(30)
105 # define DSI_RXPKT1H_ECC_ERR BIT(29)
106 # define DSI_RXPKT1H_COR_ERR BIT(28)
107 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
108 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
109 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
110 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
111 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
112 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
113 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
114 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
115 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
116 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
117 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
118 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
119
120 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
121 #define DSI1_RXPKT2H 0x18
122 # define DSI_RXPKT1H_DET_ERR BIT(30)
123 # define DSI_RXPKT1H_ECC_ERR BIT(29)
124 # define DSI_RXPKT1H_COR_ERR BIT(28)
125 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
126 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
127 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
128 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
129 # define DSI_RXPKT1H_DT_SHIFT 0
130
131 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
132 #define DSI1_TXPKT_CMD_FIFO 0x1c
133
134 #define DSI0_DISP0_CTRL 0x18
135 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
136 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
137 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
138 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
139 # define DSI_DISP0_LP_STOP_DISABLE 0
140 # define DSI_DISP0_LP_STOP_PERLINE 1
141 # define DSI_DISP0_LP_STOP_PERFRAME 2
142
143 /* Transmit RGB pixels and null packets only during HACTIVE, instead
144 * of going to LP-STOP.
145 */
146 # define DSI_DISP_HACTIVE_NULL BIT(10)
147 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
148 # define DSI_DISP_VBLP_CTRL BIT(9)
149 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
150 # define DSI_DISP_HFP_CTRL BIT(8)
151 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HBP_CTRL BIT(7)
153 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
154 # define DSI_DISP0_CHANNEL_SHIFT 5
155 /* Enables end events for HSYNC/VSYNC, not just start events. */
156 # define DSI_DISP0_ST_END BIT(4)
157 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
158 # define DSI_DISP0_PFORMAT_SHIFT 2
159 # define DSI_PFORMAT_RGB565 0
160 # define DSI_PFORMAT_RGB666_PACKED 1
161 # define DSI_PFORMAT_RGB666 2
162 # define DSI_PFORMAT_RGB888 3
163 /* Default is VIDEO mode. */
164 # define DSI_DISP0_COMMAND_MODE BIT(1)
165 # define DSI_DISP0_ENABLE BIT(0)
166
167 #define DSI0_DISP1_CTRL 0x1c
168 #define DSI1_DISP1_CTRL 0x2c
169 /* Format of the data written to TXPKT_PIX_FIFO. */
170 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
171 # define DSI_DISP1_PFORMAT_SHIFT 1
172 # define DSI_DISP1_PFORMAT_16BIT 0
173 # define DSI_DISP1_PFORMAT_24BIT 1
174 # define DSI_DISP1_PFORMAT_32BIT_LE 2
175 # define DSI_DISP1_PFORMAT_32BIT_BE 3
176
177 /* DISP1 is always command mode. */
178 # define DSI_DISP1_ENABLE BIT(0)
179
180 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
181
182 #define DSI0_INT_STAT 0x24
183 #define DSI0_INT_EN 0x28
184 # define DSI1_INT_PHY_D3_ULPS BIT(30)
185 # define DSI1_INT_PHY_D3_STOP BIT(29)
186 # define DSI1_INT_PHY_D2_ULPS BIT(28)
187 # define DSI1_INT_PHY_D2_STOP BIT(27)
188 # define DSI1_INT_PHY_D1_ULPS BIT(26)
189 # define DSI1_INT_PHY_D1_STOP BIT(25)
190 # define DSI1_INT_PHY_D0_ULPS BIT(24)
191 # define DSI1_INT_PHY_D0_STOP BIT(23)
192 # define DSI1_INT_FIFO_ERR BIT(22)
193 # define DSI1_INT_PHY_DIR_RTF BIT(21)
194 # define DSI1_INT_PHY_RXLPDT BIT(20)
195 # define DSI1_INT_PHY_RXTRIG BIT(19)
196 # define DSI1_INT_PHY_D0_LPDT BIT(18)
197 # define DSI1_INT_PHY_DIR_FTR BIT(17)
198
199 /* Signaled when the clock lane enters the given state. */
200 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
201 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
202 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
203
204 /* Signaled on timeouts */
205 # define DSI1_INT_PR_TO BIT(13)
206 # define DSI1_INT_TA_TO BIT(12)
207 # define DSI1_INT_LPRX_TO BIT(11)
208 # define DSI1_INT_HSTX_TO BIT(10)
209
210 /* Contention on a line when trying to drive the line low */
211 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
212 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
213
214 /* Control error: incorrect line state sequence on data lane 0. */
215 # define DSI1_INT_ERR_CONTROL BIT(7)
216 /* LPDT synchronization error (bits received not a multiple of 8. */
217
218 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
219 /* Signaled after receiving an error packet from the display in
220 * response to a read.
221 */
222 # define DSI1_INT_RXPKT2 BIT(5)
223 /* Signaled after receiving a packet. The header and optional short
224 * response will be in RXPKT1H, and a long response will be in the
225 * RXPKT_FIFO.
226 */
227 # define DSI1_INT_RXPKT1 BIT(4)
228 # define DSI1_INT_TXPKT2_DONE BIT(3)
229 # define DSI1_INT_TXPKT2_END BIT(2)
230 /* Signaled after all repeats of TXPKT1 are transferred. */
231 # define DSI1_INT_TXPKT1_DONE BIT(1)
232 /* Signaled after each TXPKT1 repeat is scheduled. */
233 # define DSI1_INT_TXPKT1_END BIT(0)
234
235 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
236 DSI1_INT_ERR_CONTROL | \
237 DSI1_INT_ERR_CONT_LP0 | \
238 DSI1_INT_ERR_CONT_LP1 | \
239 DSI1_INT_HSTX_TO | \
240 DSI1_INT_LPRX_TO | \
241 DSI1_INT_TA_TO | \
242 DSI1_INT_PR_TO)
243
244 #define DSI0_STAT 0x2c
245 #define DSI0_HSTX_TO_CNT 0x30
246 #define DSI0_LPRX_TO_CNT 0x34
247 #define DSI0_TA_TO_CNT 0x38
248 #define DSI0_PR_TO_CNT 0x3c
249 #define DSI0_PHYC 0x40
250 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
251 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
252 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
253 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
254 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
255 # define DSI1_PHYC_CLANE_ULPS BIT(17)
256 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
257 # define DSI_PHYC_DLANE3_ULPS BIT(13)
258 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
259 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
260 # define DSI0_PHYC_CLANE_ULPS BIT(9)
261 # define DSI_PHYC_DLANE2_ULPS BIT(9)
262 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
263 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
264 # define DSI_PHYC_DLANE1_ULPS BIT(5)
265 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
266 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
267 # define DSI_PHYC_DLANE0_ULPS BIT(1)
268 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
269
270 #define DSI0_HS_CLT0 0x44
271 #define DSI0_HS_CLT1 0x48
272 #define DSI0_HS_CLT2 0x4c
273 #define DSI0_HS_DLT3 0x50
274 #define DSI0_HS_DLT4 0x54
275 #define DSI0_HS_DLT5 0x58
276 #define DSI0_HS_DLT6 0x5c
277 #define DSI0_HS_DLT7 0x60
278
279 #define DSI0_PHY_AFEC0 0x64
280 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
281 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
282 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
283 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
284 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
285 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
286 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
287 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
288 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
289 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
290 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
291 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
292 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
293 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
294 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
297 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
298 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
299 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
300 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
301 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
302 # define DSI1_PHY_AFEC0_RESET BIT(13)
303 # define DSI1_PHY_AFEC0_PD BIT(12)
304 # define DSI0_PHY_AFEC0_RESET BIT(11)
305 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
306 # define DSI0_PHY_AFEC0_PD BIT(10)
307 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
308 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
309 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
310 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
311 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
312 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
313 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
314 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
315 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
316
317 #define DSI0_PHY_AFEC1 0x68
318 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
319 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
320 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
321 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
322 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
323 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
324
325 #define DSI0_TST_SEL 0x6c
326 #define DSI0_TST_MON 0x70
327 #define DSI0_ID 0x74
328 # define DSI_ID_VALUE 0x00647369
329
330 #define DSI1_CTRL 0x00
331 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
332 # define DSI_CTRL_HS_CLKC_SHIFT 14
333 # define DSI_CTRL_HS_CLKC_BYTE 0
334 # define DSI_CTRL_HS_CLKC_DDR2 1
335 # define DSI_CTRL_HS_CLKC_DDR 2
336
337 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
338 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
339 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
340 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
341 # define DSI_CTRL_CAL_BYTE BIT(9)
342 # define DSI_CTRL_INV_BYTE BIT(8)
343 # define DSI_CTRL_CLR_LDF BIT(7)
344 # define DSI0_CTRL_CLR_PBCF BIT(6)
345 # define DSI1_CTRL_CLR_RXF BIT(6)
346 # define DSI0_CTRL_CLR_CPBCF BIT(5)
347 # define DSI1_CTRL_CLR_PDF BIT(5)
348 # define DSI0_CTRL_CLR_PDF BIT(4)
349 # define DSI1_CTRL_CLR_CDF BIT(4)
350 # define DSI0_CTRL_CLR_CDF BIT(3)
351 # define DSI0_CTRL_CTRL2 BIT(2)
352 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
353 # define DSI0_CTRL_CTRL1 BIT(1)
354 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
355 # define DSI0_CTRL_CTRL0 BIT(0)
356 # define DSI1_CTRL_EN BIT(0)
357 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
358 DSI0_CTRL_CLR_PBCF | \
359 DSI0_CTRL_CLR_CPBCF | \
360 DSI0_CTRL_CLR_PDF | \
361 DSI0_CTRL_CLR_CDF)
362 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
363 DSI1_CTRL_CLR_RXF | \
364 DSI1_CTRL_CLR_PDF | \
365 DSI1_CTRL_CLR_CDF)
366
367 #define DSI1_TXPKT2C 0x0c
368 #define DSI1_TXPKT2H 0x10
369 #define DSI1_TXPKT_PIX_FIFO 0x20
370 #define DSI1_RXPKT_FIFO 0x24
371 #define DSI1_DISP0_CTRL 0x28
372 #define DSI1_INT_STAT 0x30
373 #define DSI1_INT_EN 0x34
374 /* State reporting bits. These mostly behave like INT_STAT, where
375 * writing a 1 clears the bit.
376 */
377 #define DSI1_STAT 0x38
378 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
379 # define DSI1_STAT_PHY_D3_STOP BIT(30)
380 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
381 # define DSI1_STAT_PHY_D2_STOP BIT(28)
382 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
383 # define DSI1_STAT_PHY_D1_STOP BIT(26)
384 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
385 # define DSI1_STAT_PHY_D0_STOP BIT(24)
386 # define DSI1_STAT_FIFO_ERR BIT(23)
387 # define DSI1_STAT_PHY_RXLPDT BIT(22)
388 # define DSI1_STAT_PHY_RXTRIG BIT(21)
389 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
390 /* Set when in forward direction */
391 # define DSI1_STAT_PHY_DIR BIT(19)
392 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
393 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
394 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
395 # define DSI1_STAT_PR_TO BIT(15)
396 # define DSI1_STAT_TA_TO BIT(14)
397 # define DSI1_STAT_LPRX_TO BIT(13)
398 # define DSI1_STAT_HSTX_TO BIT(12)
399 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
400 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
401 # define DSI1_STAT_ERR_CONTROL BIT(9)
402 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
403 # define DSI1_STAT_RXPKT2 BIT(7)
404 # define DSI1_STAT_RXPKT1 BIT(6)
405 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
406 # define DSI1_STAT_TXPKT2_DONE BIT(4)
407 # define DSI1_STAT_TXPKT2_END BIT(3)
408 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
409 # define DSI1_STAT_TXPKT1_DONE BIT(1)
410 # define DSI1_STAT_TXPKT1_END BIT(0)
411
412 #define DSI1_HSTX_TO_CNT 0x3c
413 #define DSI1_LPRX_TO_CNT 0x40
414 #define DSI1_TA_TO_CNT 0x44
415 #define DSI1_PR_TO_CNT 0x48
416 #define DSI1_PHYC 0x4c
417
418 #define DSI1_HS_CLT0 0x50
419 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
420 # define DSI_HS_CLT0_CZERO_SHIFT 18
421 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
422 # define DSI_HS_CLT0_CPRE_SHIFT 9
423 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
424 # define DSI_HS_CLT0_CPREP_SHIFT 0
425
426 #define DSI1_HS_CLT1 0x54
427 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
428 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
429 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
430 # define DSI_HS_CLT1_CPOST_SHIFT 0
431
432 #define DSI1_HS_CLT2 0x58
433 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
434 # define DSI_HS_CLT2_WUP_SHIFT 0
435
436 #define DSI1_HS_DLT3 0x5c
437 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
438 # define DSI_HS_DLT3_EXIT_SHIFT 18
439 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
440 # define DSI_HS_DLT3_ZERO_SHIFT 9
441 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
442 # define DSI_HS_DLT3_PRE_SHIFT 0
443
444 #define DSI1_HS_DLT4 0x60
445 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
446 # define DSI_HS_DLT4_ANLAT_SHIFT 18
447 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
448 # define DSI_HS_DLT4_TRAIL_SHIFT 9
449 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
450 # define DSI_HS_DLT4_LPX_SHIFT 0
451
452 #define DSI1_HS_DLT5 0x64
453 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
454 # define DSI_HS_DLT5_INIT_SHIFT 0
455
456 #define DSI1_HS_DLT6 0x68
457 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
458 # define DSI_HS_DLT6_TA_GET_SHIFT 24
459 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
460 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
461 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
462 # define DSI_HS_DLT6_TA_GO_SHIFT 8
463 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
464 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
465
466 #define DSI1_HS_DLT7 0x6c
467 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
468 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
469
470 #define DSI1_PHY_AFEC0 0x70
471
472 #define DSI1_PHY_AFEC1 0x74
473 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
474 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
481 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
482 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
483
484 #define DSI1_TST_SEL 0x78
485 #define DSI1_TST_MON 0x7c
486 #define DSI1_PHY_TST1 0x80
487 #define DSI1_PHY_TST2 0x84
488 #define DSI1_PHY_FIFO_STAT 0x88
489 /* Actually, all registers in the range that aren't otherwise claimed
490 * will return the ID.
491 */
492 #define DSI1_ID 0x8c
493
494 /* General DSI hardware state. */
495 struct vc4_dsi {
496 struct platform_device *pdev;
497
498 struct mipi_dsi_host dsi_host;
499 struct drm_encoder *encoder;
500 struct drm_bridge *bridge;
501
502 void __iomem *regs;
503
504 struct dma_chan *reg_dma_chan;
505 dma_addr_t reg_dma_paddr;
506 u32 *reg_dma_mem;
507 dma_addr_t reg_paddr;
508
509 /* Whether we're on bcm2835's DSI0 or DSI1. */
510 int port;
511
512 /* DSI channel for the panel we're connected to. */
513 u32 channel;
514 u32 lanes;
515 u32 format;
516 u32 divider;
517 u32 mode_flags;
518
519 /* Input clock from CPRMAN to the digital PHY, for the DSI
520 * escape clock.
521 */
522 struct clk *escape_clock;
523
524 /* Input clock to the analog PHY, used to generate the DSI bit
525 * clock.
526 */
527 struct clk *pll_phy_clock;
528
529 /* HS Clocks generated within the DSI analog PHY. */
530 struct clk_fixed_factor phy_clocks[3];
531
532 struct clk_hw_onecell_data *clk_onecell;
533
534 /* Pixel clock output to the pixelvalve, generated from the HS
535 * clock.
536 */
537 struct clk *pixel_clock;
538
539 struct completion xfer_completion;
540 int xfer_result;
541
542 struct debugfs_regset32 regset;
543 };
544
545 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
546
547 static inline void
dsi_dma_workaround_write(struct vc4_dsi * dsi,u32 offset,u32 val)548 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
549 {
550 struct dma_chan *chan = dsi->reg_dma_chan;
551 struct dma_async_tx_descriptor *tx;
552 dma_cookie_t cookie;
553 int ret;
554
555 /* DSI0 should be able to write normally. */
556 if (!chan) {
557 writel(val, dsi->regs + offset);
558 return;
559 }
560
561 *dsi->reg_dma_mem = val;
562
563 tx = chan->device->device_prep_dma_memcpy(chan,
564 dsi->reg_paddr + offset,
565 dsi->reg_dma_paddr,
566 4, 0);
567 if (!tx) {
568 DRM_ERROR("Failed to set up DMA register write\n");
569 return;
570 }
571
572 cookie = tx->tx_submit(tx);
573 ret = dma_submit_error(cookie);
574 if (ret) {
575 DRM_ERROR("Failed to submit DMA: %d\n", ret);
576 return;
577 }
578 ret = dma_sync_wait(chan, cookie);
579 if (ret)
580 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
581 }
582
583 #define DSI_READ(offset) readl(dsi->regs + (offset))
584 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
585 #define DSI_PORT_READ(offset) \
586 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
587 #define DSI_PORT_WRITE(offset, val) \
588 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
589 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
590
591 /* VC4 DSI encoder KMS struct */
592 struct vc4_dsi_encoder {
593 struct vc4_encoder base;
594 struct vc4_dsi *dsi;
595 };
596
597 static inline struct vc4_dsi_encoder *
to_vc4_dsi_encoder(struct drm_encoder * encoder)598 to_vc4_dsi_encoder(struct drm_encoder *encoder)
599 {
600 return container_of(encoder, struct vc4_dsi_encoder, base.base);
601 }
602
603 static const struct debugfs_reg32 dsi0_regs[] = {
604 VC4_REG32(DSI0_CTRL),
605 VC4_REG32(DSI0_STAT),
606 VC4_REG32(DSI0_HSTX_TO_CNT),
607 VC4_REG32(DSI0_LPRX_TO_CNT),
608 VC4_REG32(DSI0_TA_TO_CNT),
609 VC4_REG32(DSI0_PR_TO_CNT),
610 VC4_REG32(DSI0_DISP0_CTRL),
611 VC4_REG32(DSI0_DISP1_CTRL),
612 VC4_REG32(DSI0_INT_STAT),
613 VC4_REG32(DSI0_INT_EN),
614 VC4_REG32(DSI0_PHYC),
615 VC4_REG32(DSI0_HS_CLT0),
616 VC4_REG32(DSI0_HS_CLT1),
617 VC4_REG32(DSI0_HS_CLT2),
618 VC4_REG32(DSI0_HS_DLT3),
619 VC4_REG32(DSI0_HS_DLT4),
620 VC4_REG32(DSI0_HS_DLT5),
621 VC4_REG32(DSI0_HS_DLT6),
622 VC4_REG32(DSI0_HS_DLT7),
623 VC4_REG32(DSI0_PHY_AFEC0),
624 VC4_REG32(DSI0_PHY_AFEC1),
625 VC4_REG32(DSI0_ID),
626 };
627
628 static const struct debugfs_reg32 dsi1_regs[] = {
629 VC4_REG32(DSI1_CTRL),
630 VC4_REG32(DSI1_STAT),
631 VC4_REG32(DSI1_HSTX_TO_CNT),
632 VC4_REG32(DSI1_LPRX_TO_CNT),
633 VC4_REG32(DSI1_TA_TO_CNT),
634 VC4_REG32(DSI1_PR_TO_CNT),
635 VC4_REG32(DSI1_DISP0_CTRL),
636 VC4_REG32(DSI1_DISP1_CTRL),
637 VC4_REG32(DSI1_INT_STAT),
638 VC4_REG32(DSI1_INT_EN),
639 VC4_REG32(DSI1_PHYC),
640 VC4_REG32(DSI1_HS_CLT0),
641 VC4_REG32(DSI1_HS_CLT1),
642 VC4_REG32(DSI1_HS_CLT2),
643 VC4_REG32(DSI1_HS_DLT3),
644 VC4_REG32(DSI1_HS_DLT4),
645 VC4_REG32(DSI1_HS_DLT5),
646 VC4_REG32(DSI1_HS_DLT6),
647 VC4_REG32(DSI1_HS_DLT7),
648 VC4_REG32(DSI1_PHY_AFEC0),
649 VC4_REG32(DSI1_PHY_AFEC1),
650 VC4_REG32(DSI1_ID),
651 };
652
vc4_dsi_encoder_destroy(struct drm_encoder * encoder)653 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
654 {
655 drm_encoder_cleanup(encoder);
656 }
657
658 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
659 .destroy = vc4_dsi_encoder_destroy,
660 };
661
vc4_dsi_latch_ulps(struct vc4_dsi * dsi,bool latch)662 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
663 {
664 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
665
666 if (latch)
667 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
668 else
669 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
670
671 DSI_PORT_WRITE(PHY_AFEC0, afec0);
672 }
673
674 /* Enters or exits Ultra Low Power State. */
vc4_dsi_ulps(struct vc4_dsi * dsi,bool ulps)675 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
676 {
677 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
678 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
679 DSI_PHYC_DLANE0_ULPS |
680 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
681 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
682 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
683 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
684 DSI1_STAT_PHY_D0_ULPS |
685 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
686 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
687 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
688 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
689 DSI1_STAT_PHY_D0_STOP |
690 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
691 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
692 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
693 int ret;
694 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
695 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
696
697 if (ulps == ulps_currently_enabled)
698 return;
699
700 DSI_PORT_WRITE(STAT, stat_ulps);
701 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
702 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
703 if (ret) {
704 dev_warn(&dsi->pdev->dev,
705 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
706 DSI_PORT_READ(STAT));
707 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
708 vc4_dsi_latch_ulps(dsi, false);
709 return;
710 }
711
712 /* The DSI module can't be disabled while the module is
713 * generating ULPS state. So, to be able to disable the
714 * module, we have the AFE latch the ULPS state and continue
715 * on to having the module enter STOP.
716 */
717 vc4_dsi_latch_ulps(dsi, ulps);
718
719 DSI_PORT_WRITE(STAT, stat_stop);
720 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
721 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
722 if (ret) {
723 dev_warn(&dsi->pdev->dev,
724 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
725 DSI_PORT_READ(STAT));
726 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
727 return;
728 }
729 }
730
731 static u32
dsi_hs_timing(u32 ui_ns,u32 ns,u32 ui)732 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
733 {
734 /* The HS timings have to be rounded up to a multiple of 8
735 * because we're using the byte clock.
736 */
737 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
738 }
739
740 /* ESC always runs at 100Mhz. */
741 #define ESC_TIME_NS 10
742
743 static u32
dsi_esc_timing(u32 ns)744 dsi_esc_timing(u32 ns)
745 {
746 return DIV_ROUND_UP(ns, ESC_TIME_NS);
747 }
748
vc4_dsi_encoder_disable(struct drm_encoder * encoder)749 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
750 {
751 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
752 struct vc4_dsi *dsi = vc4_encoder->dsi;
753 struct device *dev = &dsi->pdev->dev;
754
755 drm_bridge_disable(dsi->bridge);
756 vc4_dsi_ulps(dsi, true);
757 drm_bridge_post_disable(dsi->bridge);
758
759 clk_disable_unprepare(dsi->pll_phy_clock);
760 clk_disable_unprepare(dsi->escape_clock);
761 clk_disable_unprepare(dsi->pixel_clock);
762
763 pm_runtime_put(dev);
764 }
765
766 /* Extends the mode's blank intervals to handle BCM2835's integer-only
767 * DSI PLL divider.
768 *
769 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
770 * driver since most peripherals are hanging off of the PLLD_PER
771 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
772 * the pixel clock), only has an integer divider off of DSI.
773 *
774 * To get our panel mode to refresh at the expected 60Hz, we need to
775 * extend the horizontal blank time. This means we drive a
776 * higher-than-expected clock rate to the panel, but that's what the
777 * firmware does too.
778 */
vc4_dsi_encoder_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)779 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
780 const struct drm_display_mode *mode,
781 struct drm_display_mode *adjusted_mode)
782 {
783 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
784 struct vc4_dsi *dsi = vc4_encoder->dsi;
785 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
786 unsigned long parent_rate = clk_get_rate(phy_parent);
787 unsigned long pixel_clock_hz = mode->clock * 1000;
788 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
789 int divider;
790
791 /* Find what divider gets us a faster clock than the requested
792 * pixel clock.
793 */
794 for (divider = 1; divider < 8; divider++) {
795 if (parent_rate / divider < pll_clock) {
796 divider--;
797 break;
798 }
799 }
800
801 /* Now that we've picked a PLL divider, calculate back to its
802 * pixel clock.
803 */
804 pll_clock = parent_rate / divider;
805 pixel_clock_hz = pll_clock / dsi->divider;
806
807 adjusted_mode->clock = pixel_clock_hz / 1000;
808
809 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
810 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
811 mode->clock;
812 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
813 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
814
815 return true;
816 }
817
vc4_dsi_encoder_enable(struct drm_encoder * encoder)818 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
819 {
820 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
821 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
822 struct vc4_dsi *dsi = vc4_encoder->dsi;
823 struct device *dev = &dsi->pdev->dev;
824 bool debug_dump_regs = false;
825 unsigned long hs_clock;
826 u32 ui_ns;
827 /* Minimum LP state duration in escape clock cycles. */
828 u32 lpx = dsi_esc_timing(60);
829 unsigned long pixel_clock_hz = mode->clock * 1000;
830 unsigned long dsip_clock;
831 unsigned long phy_clock;
832 int ret;
833
834 ret = pm_runtime_get_sync(dev);
835 if (ret) {
836 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
837 return;
838 }
839
840 if (debug_dump_regs) {
841 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
842 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
843 drm_print_regset32(&p, &dsi->regset);
844 }
845
846 /* Round up the clk_set_rate() request slightly, since
847 * PLLD_DSI1 is an integer divider and its rate selection will
848 * never round up.
849 */
850 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
851 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
852 if (ret) {
853 dev_err(&dsi->pdev->dev,
854 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
855 }
856
857 /* Reset the DSI and all its fifos. */
858 DSI_PORT_WRITE(CTRL,
859 DSI_CTRL_SOFT_RESET_CFG |
860 DSI_PORT_BIT(CTRL_RESET_FIFOS));
861
862 DSI_PORT_WRITE(CTRL,
863 DSI_CTRL_HSDT_EOT_DISABLE |
864 DSI_CTRL_RX_LPDT_EOT_DISABLE);
865
866 /* Clear all stat bits so we see what has happened during enable. */
867 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
868
869 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
870 if (dsi->port == 0) {
871 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
872 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
873
874 if (dsi->lanes < 2)
875 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
876
877 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
878 afec0 |= DSI0_PHY_AFEC0_RESET;
879
880 DSI_PORT_WRITE(PHY_AFEC0, afec0);
881
882 DSI_PORT_WRITE(PHY_AFEC1,
883 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
884 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
885 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
886 } else {
887 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
888 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
889 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
890 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
891 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
892 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
893 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
894
895 if (dsi->lanes < 4)
896 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
897 if (dsi->lanes < 3)
898 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
899 if (dsi->lanes < 2)
900 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
901
902 afec0 |= DSI1_PHY_AFEC0_RESET;
903
904 DSI_PORT_WRITE(PHY_AFEC0, afec0);
905
906 DSI_PORT_WRITE(PHY_AFEC1, 0);
907
908 /* AFEC reset hold time */
909 mdelay(1);
910 }
911
912 ret = clk_prepare_enable(dsi->escape_clock);
913 if (ret) {
914 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
915 return;
916 }
917
918 ret = clk_prepare_enable(dsi->pll_phy_clock);
919 if (ret) {
920 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
921 return;
922 }
923
924 hs_clock = clk_get_rate(dsi->pll_phy_clock);
925
926 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
927 * not the pixel clock rate. DSIxP take from the APHY's byte,
928 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
929 * that rate. Separately, a value derived from PIX_CLK_DIV
930 * and HS_CLKC is fed into the PV to divide down to the actual
931 * pixel clock for pushing pixels into DSI.
932 */
933 dsip_clock = phy_clock / 8;
934 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
935 if (ret) {
936 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
937 dsip_clock, ret);
938 }
939
940 ret = clk_prepare_enable(dsi->pixel_clock);
941 if (ret) {
942 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
943 return;
944 }
945
946 /* How many ns one DSI unit interval is. Note that the clock
947 * is DDR, so there's an extra divide by 2.
948 */
949 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
950
951 DSI_PORT_WRITE(HS_CLT0,
952 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
953 DSI_HS_CLT0_CZERO) |
954 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
955 DSI_HS_CLT0_CPRE) |
956 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
957 DSI_HS_CLT0_CPREP));
958
959 DSI_PORT_WRITE(HS_CLT1,
960 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
961 DSI_HS_CLT1_CTRAIL) |
962 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
963 DSI_HS_CLT1_CPOST));
964
965 DSI_PORT_WRITE(HS_CLT2,
966 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
967 DSI_HS_CLT2_WUP));
968
969 DSI_PORT_WRITE(HS_DLT3,
970 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
971 DSI_HS_DLT3_EXIT) |
972 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
973 DSI_HS_DLT3_ZERO) |
974 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
975 DSI_HS_DLT3_PRE));
976
977 DSI_PORT_WRITE(HS_DLT4,
978 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
979 DSI_HS_DLT4_LPX) |
980 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
981 dsi_hs_timing(ui_ns, 60, 4)),
982 DSI_HS_DLT4_TRAIL) |
983 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
984
985 /* T_INIT is how long STOP is driven after power-up to
986 * indicate to the slave (also coming out of power-up) that
987 * master init is complete, and should be greater than the
988 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
989 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
990 * T_INIT,SLAVE, while allowing protocols on top of it to give
991 * greater minimums. The vc4 firmware uses an extremely
992 * conservative 5ms, and we maintain that here.
993 */
994 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
995 5 * 1000 * 1000, 0),
996 DSI_HS_DLT5_INIT));
997
998 DSI_PORT_WRITE(HS_DLT6,
999 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1000 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1001 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1002 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1003
1004 DSI_PORT_WRITE(HS_DLT7,
1005 VC4_SET_FIELD(dsi_esc_timing(1000000),
1006 DSI_HS_DLT7_LP_WUP));
1007
1008 DSI_PORT_WRITE(PHYC,
1009 DSI_PHYC_DLANE0_ENABLE |
1010 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1011 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1012 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1013 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1014 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1015 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1016 (dsi->port == 0 ?
1017 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1018 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1019
1020 DSI_PORT_WRITE(CTRL,
1021 DSI_PORT_READ(CTRL) |
1022 DSI_CTRL_CAL_BYTE);
1023
1024 /* HS timeout in HS clock cycles: disabled. */
1025 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1026 /* LP receive timeout in HS clocks. */
1027 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1028 /* Bus turnaround timeout */
1029 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1030 /* Display reset sequence timeout */
1031 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1032
1033 /* Set up DISP1 for transferring long command payloads through
1034 * the pixfifo.
1035 */
1036 DSI_PORT_WRITE(DISP1_CTRL,
1037 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1038 DSI_DISP1_PFORMAT) |
1039 DSI_DISP1_ENABLE);
1040
1041 /* Ungate the block. */
1042 if (dsi->port == 0)
1043 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1044 else
1045 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1046
1047 /* Bring AFE out of reset. */
1048 if (dsi->port == 0) {
1049 } else {
1050 DSI_PORT_WRITE(PHY_AFEC0,
1051 DSI_PORT_READ(PHY_AFEC0) &
1052 ~DSI1_PHY_AFEC0_RESET);
1053 }
1054
1055 vc4_dsi_ulps(dsi, false);
1056
1057 drm_bridge_pre_enable(dsi->bridge);
1058
1059 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1060 DSI_PORT_WRITE(DISP0_CTRL,
1061 VC4_SET_FIELD(dsi->divider,
1062 DSI_DISP0_PIX_CLK_DIV) |
1063 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1064 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1065 DSI_DISP0_LP_STOP_CTRL) |
1066 DSI_DISP0_ST_END |
1067 DSI_DISP0_ENABLE);
1068 } else {
1069 DSI_PORT_WRITE(DISP0_CTRL,
1070 DSI_DISP0_COMMAND_MODE |
1071 DSI_DISP0_ENABLE);
1072 }
1073
1074 drm_bridge_enable(dsi->bridge);
1075
1076 if (debug_dump_regs) {
1077 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1078 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1079 drm_print_regset32(&p, &dsi->regset);
1080 }
1081 }
1082
vc4_dsi_host_transfer(struct mipi_dsi_host * host,const struct mipi_dsi_msg * msg)1083 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1084 const struct mipi_dsi_msg *msg)
1085 {
1086 struct vc4_dsi *dsi = host_to_dsi(host);
1087 struct mipi_dsi_packet packet;
1088 u32 pkth = 0, pktc = 0;
1089 int i, ret;
1090 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1091 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1092
1093 mipi_dsi_create_packet(&packet, msg);
1094
1095 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1096 pkth |= VC4_SET_FIELD(packet.header[1] |
1097 (packet.header[2] << 8),
1098 DSI_TXPKT1H_BC_PARAM);
1099 if (is_long) {
1100 /* Divide data across the various FIFOs we have available.
1101 * The command FIFO takes byte-oriented data, but is of
1102 * limited size. The pixel FIFO (never actually used for
1103 * pixel data in reality) is word oriented, and substantially
1104 * larger. So, we use the pixel FIFO for most of the data,
1105 * sending the residual bytes in the command FIFO at the start.
1106 *
1107 * With this arrangement, the command FIFO will never get full.
1108 */
1109 if (packet.payload_length <= 16) {
1110 cmd_fifo_len = packet.payload_length;
1111 pix_fifo_len = 0;
1112 } else {
1113 cmd_fifo_len = (packet.payload_length %
1114 DSI_PIX_FIFO_WIDTH);
1115 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1116 DSI_PIX_FIFO_WIDTH);
1117 }
1118
1119 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1120
1121 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1122 }
1123
1124 if (msg->rx_len) {
1125 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1126 DSI_TXPKT1C_CMD_CTRL);
1127 } else {
1128 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1129 DSI_TXPKT1C_CMD_CTRL);
1130 }
1131
1132 for (i = 0; i < cmd_fifo_len; i++)
1133 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1134 for (i = 0; i < pix_fifo_len; i++) {
1135 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1136
1137 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1138 pix[0] |
1139 pix[1] << 8 |
1140 pix[2] << 16 |
1141 pix[3] << 24);
1142 }
1143
1144 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1145 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1146 if (is_long)
1147 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1148
1149 /* Send one copy of the packet. Larger repeats are used for pixel
1150 * data in command mode.
1151 */
1152 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1153
1154 pktc |= DSI_TXPKT1C_CMD_EN;
1155 if (pix_fifo_len) {
1156 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1157 DSI_TXPKT1C_DISPLAY_NO);
1158 } else {
1159 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1160 DSI_TXPKT1C_DISPLAY_NO);
1161 }
1162
1163 /* Enable the appropriate interrupt for the transfer completion. */
1164 dsi->xfer_result = 0;
1165 reinit_completion(&dsi->xfer_completion);
1166 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1167 if (msg->rx_len) {
1168 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1169 DSI1_INT_PHY_DIR_RTF));
1170 } else {
1171 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1172 DSI1_INT_TXPKT1_DONE));
1173 }
1174
1175 /* Send the packet. */
1176 DSI_PORT_WRITE(TXPKT1H, pkth);
1177 DSI_PORT_WRITE(TXPKT1C, pktc);
1178
1179 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1180 msecs_to_jiffies(1000))) {
1181 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1182 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1183 DSI_PORT_READ(INT_STAT));
1184 ret = -ETIMEDOUT;
1185 } else {
1186 ret = dsi->xfer_result;
1187 }
1188
1189 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1190
1191 if (ret)
1192 goto reset_fifo_and_return;
1193
1194 if (ret == 0 && msg->rx_len) {
1195 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1196 u8 *msg_rx = msg->rx_buf;
1197
1198 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1199 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1200 DSI_RXPKT1H_BC_PARAM);
1201
1202 if (rxlen != msg->rx_len) {
1203 DRM_ERROR("DSI returned %db, expecting %db\n",
1204 rxlen, (int)msg->rx_len);
1205 ret = -ENXIO;
1206 goto reset_fifo_and_return;
1207 }
1208
1209 for (i = 0; i < msg->rx_len; i++)
1210 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1211 } else {
1212 /* FINISHME: Handle AWER */
1213
1214 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1215 DSI_RXPKT1H_SHORT_0);
1216 if (msg->rx_len > 1) {
1217 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1218 DSI_RXPKT1H_SHORT_1);
1219 }
1220 }
1221 }
1222
1223 return ret;
1224
1225 reset_fifo_and_return:
1226 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1227
1228 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1229 udelay(1);
1230 DSI_PORT_WRITE(CTRL,
1231 DSI_PORT_READ(CTRL) |
1232 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1233
1234 DSI_PORT_WRITE(TXPKT1C, 0);
1235 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1236 return ret;
1237 }
1238
vc4_dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1239 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1240 struct mipi_dsi_device *device)
1241 {
1242 struct vc4_dsi *dsi = host_to_dsi(host);
1243
1244 dsi->lanes = device->lanes;
1245 dsi->channel = device->channel;
1246 dsi->mode_flags = device->mode_flags;
1247
1248 switch (device->format) {
1249 case MIPI_DSI_FMT_RGB888:
1250 dsi->format = DSI_PFORMAT_RGB888;
1251 dsi->divider = 24 / dsi->lanes;
1252 break;
1253 case MIPI_DSI_FMT_RGB666:
1254 dsi->format = DSI_PFORMAT_RGB666;
1255 dsi->divider = 24 / dsi->lanes;
1256 break;
1257 case MIPI_DSI_FMT_RGB666_PACKED:
1258 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1259 dsi->divider = 18 / dsi->lanes;
1260 break;
1261 case MIPI_DSI_FMT_RGB565:
1262 dsi->format = DSI_PFORMAT_RGB565;
1263 dsi->divider = 16 / dsi->lanes;
1264 break;
1265 default:
1266 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1267 dsi->format);
1268 return 0;
1269 }
1270
1271 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1272 dev_err(&dsi->pdev->dev,
1273 "Only VIDEO mode panels supported currently.\n");
1274 return 0;
1275 }
1276
1277 return 0;
1278 }
1279
vc4_dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1280 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1281 struct mipi_dsi_device *device)
1282 {
1283 return 0;
1284 }
1285
1286 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1287 .attach = vc4_dsi_host_attach,
1288 .detach = vc4_dsi_host_detach,
1289 .transfer = vc4_dsi_host_transfer,
1290 };
1291
1292 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1293 .disable = vc4_dsi_encoder_disable,
1294 .enable = vc4_dsi_encoder_enable,
1295 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1296 };
1297
1298 static const struct of_device_id vc4_dsi_dt_match[] = {
1299 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1300 {}
1301 };
1302
dsi_handle_error(struct vc4_dsi * dsi,irqreturn_t * ret,u32 stat,u32 bit,const char * type)1303 static void dsi_handle_error(struct vc4_dsi *dsi,
1304 irqreturn_t *ret, u32 stat, u32 bit,
1305 const char *type)
1306 {
1307 if (!(stat & bit))
1308 return;
1309
1310 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1311 *ret = IRQ_HANDLED;
1312 }
1313
1314 /*
1315 * Initial handler for port 1 where we need the reg_dma workaround.
1316 * The register DMA writes sleep, so we can't do it in the top half.
1317 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1318 * parent interrupt contrller until our interrupt thread is done.
1319 */
vc4_dsi_irq_defer_to_thread_handler(int irq,void * data)1320 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1321 {
1322 struct vc4_dsi *dsi = data;
1323 u32 stat = DSI_PORT_READ(INT_STAT);
1324
1325 if (!stat)
1326 return IRQ_NONE;
1327
1328 return IRQ_WAKE_THREAD;
1329 }
1330
1331 /*
1332 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1333 * 1 where we need the reg_dma workaround.
1334 */
vc4_dsi_irq_handler(int irq,void * data)1335 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1336 {
1337 struct vc4_dsi *dsi = data;
1338 u32 stat = DSI_PORT_READ(INT_STAT);
1339 irqreturn_t ret = IRQ_NONE;
1340
1341 DSI_PORT_WRITE(INT_STAT, stat);
1342
1343 dsi_handle_error(dsi, &ret, stat,
1344 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1345 dsi_handle_error(dsi, &ret, stat,
1346 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1347 dsi_handle_error(dsi, &ret, stat,
1348 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1349 dsi_handle_error(dsi, &ret, stat,
1350 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1351 dsi_handle_error(dsi, &ret, stat,
1352 DSI1_INT_HSTX_TO, "HSTX timeout");
1353 dsi_handle_error(dsi, &ret, stat,
1354 DSI1_INT_LPRX_TO, "LPRX timeout");
1355 dsi_handle_error(dsi, &ret, stat,
1356 DSI1_INT_TA_TO, "turnaround timeout");
1357 dsi_handle_error(dsi, &ret, stat,
1358 DSI1_INT_PR_TO, "peripheral reset timeout");
1359
1360 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1361 complete(&dsi->xfer_completion);
1362 ret = IRQ_HANDLED;
1363 } else if (stat & DSI1_INT_HSTX_TO) {
1364 complete(&dsi->xfer_completion);
1365 dsi->xfer_result = -ETIMEDOUT;
1366 ret = IRQ_HANDLED;
1367 }
1368
1369 return ret;
1370 }
1371
1372 /**
1373 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1374 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1375 * @dsi: DSI encoder
1376 */
1377 static int
vc4_dsi_init_phy_clocks(struct vc4_dsi * dsi)1378 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1379 {
1380 struct device *dev = &dsi->pdev->dev;
1381 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1382 static const struct {
1383 const char *dsi0_name, *dsi1_name;
1384 int div;
1385 } phy_clocks[] = {
1386 { "dsi0_byte", "dsi1_byte", 8 },
1387 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1388 { "dsi0_ddr", "dsi1_ddr", 2 },
1389 };
1390 int i;
1391
1392 dsi->clk_onecell = devm_kzalloc(dev,
1393 sizeof(*dsi->clk_onecell) +
1394 ARRAY_SIZE(phy_clocks) *
1395 sizeof(struct clk_hw *),
1396 GFP_KERNEL);
1397 if (!dsi->clk_onecell)
1398 return -ENOMEM;
1399 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1400
1401 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1402 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1403 struct clk_init_data init;
1404 int ret;
1405
1406 /* We just use core fixed factor clock ops for the PHY
1407 * clocks. The clocks are actually gated by the
1408 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1409 * setting if we use the DDR/DDR2 clocks. However,
1410 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1411 * setting both our parent DSI PLL's rate and this
1412 * clock's rate, so it knows if DDR/DDR2 are going to
1413 * be used and could enable the gates itself.
1414 */
1415 fix->mult = 1;
1416 fix->div = phy_clocks[i].div;
1417 fix->hw.init = &init;
1418
1419 memset(&init, 0, sizeof(init));
1420 init.parent_names = &parent_name;
1421 init.num_parents = 1;
1422 if (dsi->port == 1)
1423 init.name = phy_clocks[i].dsi1_name;
1424 else
1425 init.name = phy_clocks[i].dsi0_name;
1426 init.ops = &clk_fixed_factor_ops;
1427
1428 ret = devm_clk_hw_register(dev, &fix->hw);
1429 if (ret)
1430 return ret;
1431
1432 dsi->clk_onecell->hws[i] = &fix->hw;
1433 }
1434
1435 return of_clk_add_hw_provider(dev->of_node,
1436 of_clk_hw_onecell_get,
1437 dsi->clk_onecell);
1438 }
1439
vc4_dsi_bind(struct device * dev,struct device * master,void * data)1440 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1441 {
1442 struct platform_device *pdev = to_platform_device(dev);
1443 struct drm_device *drm = dev_get_drvdata(master);
1444 struct vc4_dev *vc4 = to_vc4_dev(drm);
1445 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1446 struct vc4_dsi_encoder *vc4_dsi_encoder;
1447 struct drm_panel *panel;
1448 const struct of_device_id *match;
1449 dma_cap_mask_t dma_mask;
1450 int ret;
1451
1452 match = of_match_device(vc4_dsi_dt_match, dev);
1453 if (!match)
1454 return -ENODEV;
1455
1456 dsi->port = (uintptr_t)match->data;
1457
1458 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1459 GFP_KERNEL);
1460 if (!vc4_dsi_encoder)
1461 return -ENOMEM;
1462 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1463 vc4_dsi_encoder->dsi = dsi;
1464 dsi->encoder = &vc4_dsi_encoder->base.base;
1465
1466 dsi->regs = vc4_ioremap_regs(pdev, 0);
1467 if (IS_ERR(dsi->regs))
1468 return PTR_ERR(dsi->regs);
1469
1470 dsi->regset.base = dsi->regs;
1471 if (dsi->port == 0) {
1472 dsi->regset.regs = dsi0_regs;
1473 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1474 } else {
1475 dsi->regset.regs = dsi1_regs;
1476 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1477 }
1478
1479 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1480 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1481 DSI_PORT_READ(ID), DSI_ID_VALUE);
1482 return -ENODEV;
1483 }
1484
1485 /* DSI1 has a broken AXI slave that doesn't respond to writes
1486 * from the ARM. It does handle writes from the DMA engine,
1487 * so set up a channel for talking to it.
1488 */
1489 if (dsi->port == 1) {
1490 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1491 &dsi->reg_dma_paddr,
1492 GFP_KERNEL);
1493 if (!dsi->reg_dma_mem) {
1494 DRM_ERROR("Failed to get DMA memory\n");
1495 return -ENOMEM;
1496 }
1497
1498 dma_cap_zero(dma_mask);
1499 dma_cap_set(DMA_MEMCPY, dma_mask);
1500 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1501 if (IS_ERR(dsi->reg_dma_chan)) {
1502 ret = PTR_ERR(dsi->reg_dma_chan);
1503 if (ret != -EPROBE_DEFER)
1504 DRM_ERROR("Failed to get DMA channel: %d\n",
1505 ret);
1506 return ret;
1507 }
1508
1509 /* Get the physical address of the device's registers. The
1510 * struct resource for the regs gives us the bus address
1511 * instead.
1512 */
1513 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1514 0, NULL, NULL));
1515 }
1516
1517 init_completion(&dsi->xfer_completion);
1518 /* At startup enable error-reporting interrupts and nothing else. */
1519 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1520 /* Clear any existing interrupt state. */
1521 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1522
1523 if (dsi->reg_dma_mem)
1524 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1525 vc4_dsi_irq_defer_to_thread_handler,
1526 vc4_dsi_irq_handler,
1527 IRQF_ONESHOT,
1528 "vc4 dsi", dsi);
1529 else
1530 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1531 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1532 if (ret) {
1533 if (ret != -EPROBE_DEFER)
1534 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1535 return ret;
1536 }
1537
1538 dsi->escape_clock = devm_clk_get(dev, "escape");
1539 if (IS_ERR(dsi->escape_clock)) {
1540 ret = PTR_ERR(dsi->escape_clock);
1541 if (ret != -EPROBE_DEFER)
1542 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1543 return ret;
1544 }
1545
1546 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1547 if (IS_ERR(dsi->pll_phy_clock)) {
1548 ret = PTR_ERR(dsi->pll_phy_clock);
1549 if (ret != -EPROBE_DEFER)
1550 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1551 return ret;
1552 }
1553
1554 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1555 if (IS_ERR(dsi->pixel_clock)) {
1556 ret = PTR_ERR(dsi->pixel_clock);
1557 if (ret != -EPROBE_DEFER)
1558 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1559 return ret;
1560 }
1561
1562 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1563 &panel, &dsi->bridge);
1564 if (ret) {
1565 /* If the bridge or panel pointed by dev->of_node is not
1566 * enabled, just return 0 here so that we don't prevent the DRM
1567 * dev from being registered. Of course that means the DSI
1568 * encoder won't be exposed, but that's not a problem since
1569 * nothing is connected to it.
1570 */
1571 if (ret == -ENODEV)
1572 return 0;
1573
1574 return ret;
1575 }
1576
1577 if (panel) {
1578 dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1579 DRM_MODE_CONNECTOR_DSI);
1580 if (IS_ERR(dsi->bridge))
1581 return PTR_ERR(dsi->bridge);
1582 }
1583
1584 /* The esc clock rate is supposed to always be 100Mhz. */
1585 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1586 if (ret) {
1587 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1588 return ret;
1589 }
1590
1591 ret = vc4_dsi_init_phy_clocks(dsi);
1592 if (ret)
1593 return ret;
1594
1595 if (dsi->port == 1)
1596 vc4->dsi1 = dsi;
1597
1598 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1599 DRM_MODE_ENCODER_DSI, NULL);
1600 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1601
1602 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1603 if (ret) {
1604 dev_err(dev, "bridge attach failed: %d\n", ret);
1605 return ret;
1606 }
1607 /* Disable the atomic helper calls into the bridge. We
1608 * manually call the bridge pre_enable / enable / etc. calls
1609 * from our driver, since we need to sequence them within the
1610 * encoder's enable/disable paths.
1611 */
1612 dsi->encoder->bridge = NULL;
1613
1614 if (dsi->port == 0)
1615 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1616 else
1617 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1618
1619 pm_runtime_enable(dev);
1620
1621 return 0;
1622 }
1623
vc4_dsi_unbind(struct device * dev,struct device * master,void * data)1624 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1625 void *data)
1626 {
1627 struct drm_device *drm = dev_get_drvdata(master);
1628 struct vc4_dev *vc4 = to_vc4_dev(drm);
1629 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1630
1631 if (dsi->bridge)
1632 pm_runtime_disable(dev);
1633
1634 vc4_dsi_encoder_destroy(dsi->encoder);
1635
1636 if (dsi->port == 1)
1637 vc4->dsi1 = NULL;
1638 }
1639
1640 static const struct component_ops vc4_dsi_ops = {
1641 .bind = vc4_dsi_bind,
1642 .unbind = vc4_dsi_unbind,
1643 };
1644
vc4_dsi_dev_probe(struct platform_device * pdev)1645 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1646 {
1647 struct device *dev = &pdev->dev;
1648 struct vc4_dsi *dsi;
1649 int ret;
1650
1651 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1652 if (!dsi)
1653 return -ENOMEM;
1654 dev_set_drvdata(dev, dsi);
1655
1656 dsi->pdev = pdev;
1657
1658 /* Note, the initialization sequence for DSI and panels is
1659 * tricky. The component bind above won't get past its
1660 * -EPROBE_DEFER until the panel/bridge probes. The
1661 * panel/bridge will return -EPROBE_DEFER until it has a
1662 * mipi_dsi_host to register its device to. So, we register
1663 * the host during pdev probe time, so vc4 as a whole can then
1664 * -EPROBE_DEFER its component bind process until the panel
1665 * successfully attaches.
1666 */
1667 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1668 dsi->dsi_host.dev = dev;
1669 mipi_dsi_host_register(&dsi->dsi_host);
1670
1671 ret = component_add(&pdev->dev, &vc4_dsi_ops);
1672 if (ret) {
1673 mipi_dsi_host_unregister(&dsi->dsi_host);
1674 return ret;
1675 }
1676
1677 return 0;
1678 }
1679
vc4_dsi_dev_remove(struct platform_device * pdev)1680 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1681 {
1682 struct device *dev = &pdev->dev;
1683 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1684
1685 component_del(&pdev->dev, &vc4_dsi_ops);
1686 mipi_dsi_host_unregister(&dsi->dsi_host);
1687
1688 return 0;
1689 }
1690
1691 struct platform_driver vc4_dsi_driver = {
1692 .probe = vc4_dsi_dev_probe,
1693 .remove = vc4_dsi_dev_remove,
1694 .driver = {
1695 .name = "vc4_dsi",
1696 .of_match_table = vc4_dsi_dt_match,
1697 },
1698 };
1699