1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX 6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53 VC4_REG32(PV_CONTROL),
54 VC4_REG32(PV_V_CONTROL),
55 VC4_REG32(PV_VSYNCD_EVEN),
56 VC4_REG32(PV_HORZA),
57 VC4_REG32(PV_HORZB),
58 VC4_REG32(PV_VERTA),
59 VC4_REG32(PV_VERTB),
60 VC4_REG32(PV_VERTA_EVEN),
61 VC4_REG32(PV_VERTB_EVEN),
62 VC4_REG32(PV_INTEN),
63 VC4_REG32(PV_INTSTAT),
64 VC4_REG32(PV_STAT),
65 VC4_REG32(PV_HACT_ACT),
66 };
67
68 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 /* Top/base are supposed to be 4-pixel aligned, but the
73 * Raspberry Pi firmware fills the low bits (which are
74 * presumably ignored).
75 */
76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79 return top - base + 4;
80 }
81
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 bool in_vblank_irq,
84 int *vpos, int *hpos,
85 ktime_t *stime, ktime_t *etime,
86 const struct drm_display_mode *mode)
87 {
88 struct drm_device *dev = crtc->dev;
89 struct vc4_dev *vc4 = to_vc4_dev(dev);
90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 unsigned int cob_size;
93 u32 val;
94 int fifo_lines;
95 int vblank_lines;
96 bool ret = false;
97
98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100 /* Get optional system timestamp before query. */
101 if (stime)
102 *stime = ktime_get();
103
104 /*
105 * Read vertical scanline which is currently composed for our
106 * pixelvalve by the HVS, and also the scaler status.
107 */
108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110 /* Get optional system timestamp after query. */
111 if (etime)
112 *etime = ktime_get();
113
114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116 /* Vertical position of hvs composed scanline. */
117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 *hpos = 0;
119
120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 *vpos /= 2;
122
123 /* Use hpos to correct for field offset in interlaced mode. */
124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 *hpos += mode->crtc_htotal / 2;
126 }
127
128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 /* This is the offset we need for translating hvs -> pv scanout pos. */
130 fifo_lines = cob_size / mode->crtc_hdisplay;
131
132 if (fifo_lines > 0)
133 ret = true;
134
135 /* HVS more than fifo_lines into frame for compositing? */
136 if (*vpos > fifo_lines) {
137 /*
138 * We are in active scanout and can get some meaningful results
139 * from HVS. The actual PV scanout can not trail behind more
140 * than fifo_lines as that is the fifo's capacity. Assume that
141 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 * refilling the fifo and PV consuming from the fifo, ie.
143 * whenever the PV consumes and frees up a scanline in the
144 * fifo, the HVS will immediately refill it, therefore
145 * incrementing vpos. Therefore we choose HVS read position -
146 * fifo size in scanlines as a estimate of the real scanout
147 * position of the PV.
148 */
149 *vpos -= fifo_lines + 1;
150
151 return ret;
152 }
153
154 /*
155 * Less: This happens when we are in vblank and the HVS, after getting
156 * the VSTART restart signal from the PV, just started refilling its
157 * fifo with new lines from the top-most lines of the new framebuffers.
158 * The PV does not scan out in vblank, so does not remove lines from
159 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 * We can't get meaningful readings wrt. scanline position of the PV
161 * and need to make things up in a approximative but consistent way.
162 */
163 vblank_lines = mode->vtotal - mode->vdisplay;
164
165 if (in_vblank_irq) {
166 /*
167 * Assume the irq handler got called close to first
168 * line of vblank, so PV has about a full vblank
169 * scanlines to go, and as a base timestamp use the
170 * one taken at entry into vblank irq handler, so it
171 * is not affected by random delays due to lock
172 * contention on event_lock or vblank_time lock in
173 * the core.
174 */
175 *vpos = -vblank_lines;
176
177 if (stime)
178 *stime = vc4_crtc->t_vblank;
179 if (etime)
180 *etime = vc4_crtc->t_vblank;
181
182 /*
183 * If the HVS fifo is not yet full then we know for certain
184 * we are at the very beginning of vblank, as the hvs just
185 * started refilling, and the stime and etime timestamps
186 * truly correspond to start of vblank.
187 *
188 * Unfortunately there's no way to report this to upper levels
189 * and make it more useful.
190 */
191 } else {
192 /*
193 * No clue where we are inside vblank. Return a vpos of zero,
194 * which will cause calling code to just return the etime
195 * timestamp uncorrected. At least this is no worse than the
196 * standard fallback.
197 */
198 *vpos = 0;
199 }
200
201 return ret;
202 }
203
vc4_crtc_destroy(struct drm_crtc * crtc)204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206 drm_crtc_cleanup(crtc);
207 }
208
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 u32 fifo_len_bytes = pv_data->fifo_depth;
214
215 /*
216 * Pixels are pulled from the HVS if the number of bytes is
217 * lower than the FIFO full level.
218 *
219 * The latency of the pixel fetch mechanism is 6 pixels, so we
220 * need to convert those 6 pixels in bytes, depending on the
221 * format, and then subtract that from the length of the FIFO
222 * to make sure we never end up in a situation where the FIFO
223 * is full.
224 */
225 switch (format) {
226 case PV_CONTROL_FORMAT_DSIV_16:
227 case PV_CONTROL_FORMAT_DSIC_16:
228 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
229 case PV_CONTROL_FORMAT_DSIV_18:
230 return fifo_len_bytes - 14;
231 case PV_CONTROL_FORMAT_24:
232 case PV_CONTROL_FORMAT_DSIV_24:
233 default:
234 /*
235 * For some reason, the pixelvalve4 doesn't work with
236 * the usual formula and will only work with 32.
237 */
238 if (crtc_data->hvs_output == 5)
239 return 32;
240
241 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
242 }
243 }
244
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)245 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
246 u32 format)
247 {
248 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
249 u32 ret = 0;
250
251 ret |= VC4_SET_FIELD((level >> 6),
252 PV5_CONTROL_FIFO_LEVEL_HIGH);
253
254 return ret | VC4_SET_FIELD(level & 0x3f,
255 PV_CONTROL_FIFO_LEVEL);
256 }
257
258 /*
259 * Returns the encoder attached to the CRTC.
260 *
261 * VC4 can only scan out to one encoder at a time, while the DRM core
262 * allows drivers to push pixels to more than one encoder from the
263 * same CRTC.
264 */
vc4_get_crtc_encoder(struct drm_crtc * crtc)265 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
266 {
267 struct drm_connector *connector;
268 struct drm_connector_list_iter conn_iter;
269
270 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
271 drm_for_each_connector_iter(connector, &conn_iter) {
272 if (connector->state->crtc == crtc) {
273 drm_connector_list_iter_end(&conn_iter);
274 return connector->encoder;
275 }
276 }
277 drm_connector_list_iter_end(&conn_iter);
278
279 return NULL;
280 }
281
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)282 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
283 {
284 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
285
286 /* The PV needs to be disabled before it can be flushed */
287 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
288 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
289 }
290
vc4_crtc_config_pv(struct drm_crtc * crtc)291 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
292 {
293 struct drm_device *dev = crtc->dev;
294 struct vc4_dev *vc4 = to_vc4_dev(dev);
295 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
299 struct drm_crtc_state *state = crtc->state;
300 struct drm_display_mode *mode = &state->adjusted_mode;
301 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
302 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
303 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
304 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
305 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
306 u8 ppc = pv_data->pixels_per_clock;
307 bool debug_dump_regs = false;
308
309 if (debug_dump_regs) {
310 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
311 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
312 drm_crtc_index(crtc));
313 drm_print_regset32(&p, &vc4_crtc->regset);
314 }
315
316 vc4_crtc_pixelvalve_reset(crtc);
317
318 CRTC_WRITE(PV_HORZA,
319 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
320 PV_HORZA_HBP) |
321 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
322 PV_HORZA_HSYNC));
323
324 CRTC_WRITE(PV_HORZB,
325 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
326 PV_HORZB_HFP) |
327 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
328 PV_HORZB_HACTIVE));
329
330 CRTC_WRITE(PV_VERTA,
331 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
332 PV_VERTA_VBP) |
333 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
334 PV_VERTA_VSYNC));
335 CRTC_WRITE(PV_VERTB,
336 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
337 PV_VERTB_VFP) |
338 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
339
340 if (interlace) {
341 CRTC_WRITE(PV_VERTA_EVEN,
342 VC4_SET_FIELD(mode->crtc_vtotal -
343 mode->crtc_vsync_end - 1,
344 PV_VERTA_VBP) |
345 VC4_SET_FIELD(mode->crtc_vsync_end -
346 mode->crtc_vsync_start,
347 PV_VERTA_VSYNC));
348 CRTC_WRITE(PV_VERTB_EVEN,
349 VC4_SET_FIELD(mode->crtc_vsync_start -
350 mode->crtc_vdisplay,
351 PV_VERTB_VFP) |
352 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
353
354 /* We set up first field even mode for HDMI. VEC's
355 * NTSC mode would want first field odd instead, once
356 * we support it (to do so, set ODD_FIRST and put the
357 * delay in VSYNCD_EVEN instead).
358 */
359 CRTC_WRITE(PV_V_CONTROL,
360 PV_VCONTROL_CONTINUOUS |
361 (is_dsi ? PV_VCONTROL_DSI : 0) |
362 PV_VCONTROL_INTERLACE |
363 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
364 PV_VCONTROL_ODD_DELAY));
365 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
366 } else {
367 CRTC_WRITE(PV_V_CONTROL,
368 PV_VCONTROL_CONTINUOUS |
369 (is_dsi ? PV_VCONTROL_DSI : 0));
370 }
371
372 if (is_dsi)
373 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
374
375 if (vc4->hvs->hvs5)
376 CRTC_WRITE(PV_MUX_CFG,
377 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
378 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
379
380 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
381 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
382 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
383 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
384 PV_CONTROL_CLR_AT_START |
385 PV_CONTROL_TRIGGER_UNDERFLOW |
386 PV_CONTROL_WAIT_HSTART |
387 VC4_SET_FIELD(vc4_encoder->clock_select,
388 PV_CONTROL_CLK_SELECT));
389
390 if (debug_dump_regs) {
391 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
392 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
393 drm_crtc_index(crtc));
394 drm_print_regset32(&p, &vc4_crtc->regset);
395 }
396 }
397
require_hvs_enabled(struct drm_device * dev)398 static void require_hvs_enabled(struct drm_device *dev)
399 {
400 struct vc4_dev *vc4 = to_vc4_dev(dev);
401
402 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
403 SCALER_DISPCTRL_ENABLE);
404 }
405
vc4_crtc_disable(struct drm_crtc * crtc,unsigned int channel)406 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
407 {
408 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
409 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
410 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
411 struct drm_device *dev = crtc->dev;
412 int ret;
413
414 CRTC_WRITE(PV_V_CONTROL,
415 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
416 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
417 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
418
419 /*
420 * This delay is needed to avoid to get a pixel stuck in an
421 * unflushable FIFO between the pixelvalve and the HDMI
422 * controllers on the BCM2711.
423 *
424 * Timing is fairly sensitive here, so mdelay is the safest
425 * approach.
426 *
427 * If it was to be reworked, the stuck pixel happens on a
428 * BCM2711 when changing mode with a good probability, so a
429 * script that changes mode on a regular basis should trigger
430 * the bug after less than 10 attempts. It manifests itself with
431 * every pixels being shifted by one to the right, and thus the
432 * last pixel of a line actually being displayed as the first
433 * pixel on the next line.
434 */
435 mdelay(20);
436
437 if (vc4_encoder && vc4_encoder->post_crtc_disable)
438 vc4_encoder->post_crtc_disable(encoder);
439
440 vc4_crtc_pixelvalve_reset(crtc);
441 vc4_hvs_stop_channel(dev, channel);
442
443 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
444 vc4_encoder->post_crtc_powerdown(encoder);
445
446 return 0;
447 }
448
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)449 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
450 {
451 struct drm_device *drm = crtc->dev;
452 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
453 int channel;
454
455 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
456 "brcm,bcm2711-pixelvalve2") ||
457 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
458 "brcm,bcm2711-pixelvalve4")))
459 return 0;
460
461 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
462 return 0;
463
464 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
465 return 0;
466
467 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
468 if (channel < 0)
469 return 0;
470
471 return vc4_crtc_disable(crtc, channel);
472 }
473
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)474 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
475 struct drm_crtc_state *old_state)
476 {
477 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
478 struct drm_device *dev = crtc->dev;
479
480 require_hvs_enabled(dev);
481
482 /* Disable vblank irq handling before crtc is disabled. */
483 drm_crtc_vblank_off(crtc);
484
485 vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
486
487 /*
488 * Make sure we issue a vblank event after disabling the CRTC if
489 * someone was waiting it.
490 */
491 if (crtc->state->event) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&dev->event_lock, flags);
495 drm_crtc_send_vblank_event(crtc, crtc->state->event);
496 crtc->state->event = NULL;
497 spin_unlock_irqrestore(&dev->event_lock, flags);
498 }
499 }
500
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)501 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
502 struct drm_crtc_state *old_state)
503 {
504 struct drm_device *dev = crtc->dev;
505 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
506 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
507 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
508
509 require_hvs_enabled(dev);
510
511 /* Enable vblank irq handling before crtc is started otherwise
512 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
513 */
514 drm_crtc_vblank_on(crtc);
515
516 vc4_hvs_atomic_enable(crtc, old_state);
517
518 if (vc4_encoder->pre_crtc_configure)
519 vc4_encoder->pre_crtc_configure(encoder);
520
521 vc4_crtc_config_pv(crtc);
522
523 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
524
525 if (vc4_encoder->pre_crtc_enable)
526 vc4_encoder->pre_crtc_enable(encoder);
527
528 /* When feeding the transposer block the pixelvalve is unneeded and
529 * should not be enabled.
530 */
531 CRTC_WRITE(PV_V_CONTROL,
532 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
533
534 if (vc4_encoder->post_crtc_enable)
535 vc4_encoder->post_crtc_enable(encoder);
536 }
537
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)538 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
539 const struct drm_display_mode *mode)
540 {
541 /* Do not allow doublescan modes from user space */
542 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
543 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
544 crtc->base.id);
545 return MODE_NO_DBLESCAN;
546 }
547
548 return MODE_OK;
549 }
550
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)551 void vc4_crtc_get_margins(struct drm_crtc_state *state,
552 unsigned int *left, unsigned int *right,
553 unsigned int *top, unsigned int *bottom)
554 {
555 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
556 struct drm_connector_state *conn_state;
557 struct drm_connector *conn;
558 int i;
559
560 *left = vc4_state->margins.left;
561 *right = vc4_state->margins.right;
562 *top = vc4_state->margins.top;
563 *bottom = vc4_state->margins.bottom;
564
565 /* We have to interate over all new connector states because
566 * vc4_crtc_get_margins() might be called before
567 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
568 * might be outdated.
569 */
570 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
571 if (conn_state->crtc != state->crtc)
572 continue;
573
574 *left = conn_state->tv.margins.left;
575 *right = conn_state->tv.margins.right;
576 *top = conn_state->tv.margins.top;
577 *bottom = conn_state->tv.margins.bottom;
578 break;
579 }
580 }
581
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)582 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
583 struct drm_crtc_state *state)
584 {
585 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
586 struct drm_connector *conn;
587 struct drm_connector_state *conn_state;
588 int ret, i;
589
590 ret = vc4_hvs_atomic_check(crtc, state);
591 if (ret)
592 return ret;
593
594 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
595 if (conn_state->crtc != crtc)
596 continue;
597
598 vc4_state->margins.left = conn_state->tv.margins.left;
599 vc4_state->margins.right = conn_state->tv.margins.right;
600 vc4_state->margins.top = conn_state->tv.margins.top;
601 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
602 break;
603 }
604
605 return 0;
606 }
607
vc4_enable_vblank(struct drm_crtc * crtc)608 static int vc4_enable_vblank(struct drm_crtc *crtc)
609 {
610 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
611
612 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
613
614 return 0;
615 }
616
vc4_disable_vblank(struct drm_crtc * crtc)617 static void vc4_disable_vblank(struct drm_crtc *crtc)
618 {
619 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
620
621 CRTC_WRITE(PV_INTEN, 0);
622 }
623
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)624 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
625 {
626 struct drm_crtc *crtc = &vc4_crtc->base;
627 struct drm_device *dev = crtc->dev;
628 struct vc4_dev *vc4 = to_vc4_dev(dev);
629 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
630 u32 chan = vc4_state->assigned_channel;
631 unsigned long flags;
632
633 spin_lock_irqsave(&dev->event_lock, flags);
634 if (vc4_crtc->event &&
635 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
636 vc4_state->feed_txp)) {
637 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
638 vc4_crtc->event = NULL;
639 drm_crtc_vblank_put(crtc);
640
641 /* Wait for the page flip to unmask the underrun to ensure that
642 * the display list was updated by the hardware. Before that
643 * happens, the HVS will be using the previous display list with
644 * the CRTC and encoder already reconfigured, leading to
645 * underruns. This can be seen when reconfiguring the CRTC.
646 */
647 vc4_hvs_unmask_underrun(dev, chan);
648 }
649 spin_unlock_irqrestore(&dev->event_lock, flags);
650 }
651
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)652 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
653 {
654 crtc->t_vblank = ktime_get();
655 drm_crtc_handle_vblank(&crtc->base);
656 vc4_crtc_handle_page_flip(crtc);
657 }
658
vc4_crtc_irq_handler(int irq,void * data)659 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
660 {
661 struct vc4_crtc *vc4_crtc = data;
662 u32 stat = CRTC_READ(PV_INTSTAT);
663 irqreturn_t ret = IRQ_NONE;
664
665 if (stat & PV_INT_VFP_START) {
666 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
667 vc4_crtc_handle_vblank(vc4_crtc);
668 ret = IRQ_HANDLED;
669 }
670
671 return ret;
672 }
673
674 struct vc4_async_flip_state {
675 struct drm_crtc *crtc;
676 struct drm_framebuffer *fb;
677 struct drm_framebuffer *old_fb;
678 struct drm_pending_vblank_event *event;
679
680 struct vc4_seqno_cb cb;
681 };
682
683 /* Called when the V3D execution for the BO being flipped to is done, so that
684 * we can actually update the plane's address to point to it.
685 */
686 static void
vc4_async_page_flip_complete(struct vc4_seqno_cb * cb)687 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
688 {
689 struct vc4_async_flip_state *flip_state =
690 container_of(cb, struct vc4_async_flip_state, cb);
691 struct drm_crtc *crtc = flip_state->crtc;
692 struct drm_device *dev = crtc->dev;
693 struct vc4_dev *vc4 = to_vc4_dev(dev);
694 struct drm_plane *plane = crtc->primary;
695
696 vc4_plane_async_set_fb(plane, flip_state->fb);
697 if (flip_state->event) {
698 unsigned long flags;
699
700 spin_lock_irqsave(&dev->event_lock, flags);
701 drm_crtc_send_vblank_event(crtc, flip_state->event);
702 spin_unlock_irqrestore(&dev->event_lock, flags);
703 }
704
705 drm_crtc_vblank_put(crtc);
706 drm_framebuffer_put(flip_state->fb);
707
708 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
709 * when the planes are updated through the async update path.
710 * FIXME: we should move to generic async-page-flip when it's
711 * available, so that we can get rid of this hand-made cleanup_fb()
712 * logic.
713 */
714 if (flip_state->old_fb) {
715 struct drm_gem_cma_object *cma_bo;
716 struct vc4_bo *bo;
717
718 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
719 bo = to_vc4_bo(&cma_bo->base);
720 vc4_bo_dec_usecnt(bo);
721 drm_framebuffer_put(flip_state->old_fb);
722 }
723
724 kfree(flip_state);
725
726 up(&vc4->async_modeset);
727 }
728
729 /* Implements async (non-vblank-synced) page flips.
730 *
731 * The page flip ioctl needs to return immediately, so we grab the
732 * modeset semaphore on the pipe, and queue the address update for
733 * when V3D is done with the BO being flipped to.
734 */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)735 static int vc4_async_page_flip(struct drm_crtc *crtc,
736 struct drm_framebuffer *fb,
737 struct drm_pending_vblank_event *event,
738 uint32_t flags)
739 {
740 struct drm_device *dev = crtc->dev;
741 struct vc4_dev *vc4 = to_vc4_dev(dev);
742 struct drm_plane *plane = crtc->primary;
743 int ret = 0;
744 struct vc4_async_flip_state *flip_state;
745 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
746 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
747
748 /* Increment the BO usecnt here, so that we never end up with an
749 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
750 * plane is later updated through the non-async path.
751 * FIXME: we should move to generic async-page-flip when it's
752 * available, so that we can get rid of this hand-made prepare_fb()
753 * logic.
754 */
755 ret = vc4_bo_inc_usecnt(bo);
756 if (ret)
757 return ret;
758
759 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
760 if (!flip_state) {
761 vc4_bo_dec_usecnt(bo);
762 return -ENOMEM;
763 }
764
765 drm_framebuffer_get(fb);
766 flip_state->fb = fb;
767 flip_state->crtc = crtc;
768 flip_state->event = event;
769
770 /* Make sure all other async modesetes have landed. */
771 ret = down_interruptible(&vc4->async_modeset);
772 if (ret) {
773 drm_framebuffer_put(fb);
774 vc4_bo_dec_usecnt(bo);
775 kfree(flip_state);
776 return ret;
777 }
778
779 /* Save the current FB before it's replaced by the new one in
780 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
781 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
782 * it consistent.
783 * FIXME: we should move to generic async-page-flip when it's
784 * available, so that we can get rid of this hand-made cleanup_fb()
785 * logic.
786 */
787 flip_state->old_fb = plane->state->fb;
788 if (flip_state->old_fb)
789 drm_framebuffer_get(flip_state->old_fb);
790
791 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
792
793 /* Immediately update the plane's legacy fb pointer, so that later
794 * modeset prep sees the state that will be present when the semaphore
795 * is released.
796 */
797 drm_atomic_set_fb_for_plane(plane->state, fb);
798
799 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
800 vc4_async_page_flip_complete);
801
802 /* Driver takes ownership of state on successful async commit. */
803 return 0;
804 }
805
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)806 int vc4_page_flip(struct drm_crtc *crtc,
807 struct drm_framebuffer *fb,
808 struct drm_pending_vblank_event *event,
809 uint32_t flags,
810 struct drm_modeset_acquire_ctx *ctx)
811 {
812 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
813 return vc4_async_page_flip(crtc, fb, event, flags);
814 else
815 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
816 }
817
vc4_crtc_duplicate_state(struct drm_crtc * crtc)818 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
819 {
820 struct vc4_crtc_state *vc4_state, *old_vc4_state;
821
822 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
823 if (!vc4_state)
824 return NULL;
825
826 old_vc4_state = to_vc4_crtc_state(crtc->state);
827 vc4_state->feed_txp = old_vc4_state->feed_txp;
828 vc4_state->margins = old_vc4_state->margins;
829 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
830
831 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
832 return &vc4_state->base;
833 }
834
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)835 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
836 struct drm_crtc_state *state)
837 {
838 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
839 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
840
841 if (drm_mm_node_allocated(&vc4_state->mm)) {
842 unsigned long flags;
843
844 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
845 drm_mm_remove_node(&vc4_state->mm);
846 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
847
848 }
849
850 drm_atomic_helper_crtc_destroy_state(crtc, state);
851 }
852
vc4_crtc_reset(struct drm_crtc * crtc)853 void vc4_crtc_reset(struct drm_crtc *crtc)
854 {
855 struct vc4_crtc_state *vc4_crtc_state;
856
857 if (crtc->state)
858 vc4_crtc_destroy_state(crtc, crtc->state);
859
860 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
861 if (!vc4_crtc_state) {
862 crtc->state = NULL;
863 return;
864 }
865
866 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
867 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
868 }
869
870 static const struct drm_crtc_funcs vc4_crtc_funcs = {
871 .set_config = drm_atomic_helper_set_config,
872 .destroy = vc4_crtc_destroy,
873 .page_flip = vc4_page_flip,
874 .set_property = NULL,
875 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
876 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
877 .reset = vc4_crtc_reset,
878 .atomic_duplicate_state = vc4_crtc_duplicate_state,
879 .atomic_destroy_state = vc4_crtc_destroy_state,
880 .gamma_set = drm_atomic_helper_legacy_gamma_set,
881 .enable_vblank = vc4_enable_vblank,
882 .disable_vblank = vc4_disable_vblank,
883 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
884 };
885
886 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
887 .mode_valid = vc4_crtc_mode_valid,
888 .atomic_check = vc4_crtc_atomic_check,
889 .atomic_flush = vc4_hvs_atomic_flush,
890 .atomic_enable = vc4_crtc_atomic_enable,
891 .atomic_disable = vc4_crtc_atomic_disable,
892 .get_scanout_position = vc4_crtc_get_scanout_position,
893 };
894
895 static const struct vc4_pv_data bcm2835_pv0_data = {
896 .base = {
897 .hvs_available_channels = BIT(0),
898 .hvs_output = 0,
899 },
900 .debugfs_name = "crtc0_regs",
901 .fifo_depth = 64,
902 .pixels_per_clock = 1,
903 .encoder_types = {
904 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
905 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
906 },
907 };
908
909 static const struct vc4_pv_data bcm2835_pv1_data = {
910 .base = {
911 .hvs_available_channels = BIT(2),
912 .hvs_output = 2,
913 },
914 .debugfs_name = "crtc1_regs",
915 .fifo_depth = 64,
916 .pixels_per_clock = 1,
917 .encoder_types = {
918 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
919 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
920 },
921 };
922
923 static const struct vc4_pv_data bcm2835_pv2_data = {
924 .base = {
925 .hvs_available_channels = BIT(1),
926 .hvs_output = 1,
927 },
928 .debugfs_name = "crtc2_regs",
929 .fifo_depth = 64,
930 .pixels_per_clock = 1,
931 .encoder_types = {
932 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
933 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
934 },
935 };
936
937 static const struct vc4_pv_data bcm2711_pv0_data = {
938 .base = {
939 .hvs_available_channels = BIT(0),
940 .hvs_output = 0,
941 },
942 .debugfs_name = "crtc0_regs",
943 .fifo_depth = 64,
944 .pixels_per_clock = 1,
945 .encoder_types = {
946 [0] = VC4_ENCODER_TYPE_DSI0,
947 [1] = VC4_ENCODER_TYPE_DPI,
948 },
949 };
950
951 static const struct vc4_pv_data bcm2711_pv1_data = {
952 .base = {
953 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
954 .hvs_output = 3,
955 },
956 .debugfs_name = "crtc1_regs",
957 .fifo_depth = 64,
958 .pixels_per_clock = 1,
959 .encoder_types = {
960 [0] = VC4_ENCODER_TYPE_DSI1,
961 [1] = VC4_ENCODER_TYPE_SMI,
962 },
963 };
964
965 static const struct vc4_pv_data bcm2711_pv2_data = {
966 .base = {
967 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
968 .hvs_output = 4,
969 },
970 .debugfs_name = "crtc2_regs",
971 .fifo_depth = 256,
972 .pixels_per_clock = 2,
973 .encoder_types = {
974 [0] = VC4_ENCODER_TYPE_HDMI0,
975 },
976 };
977
978 static const struct vc4_pv_data bcm2711_pv3_data = {
979 .base = {
980 .hvs_available_channels = BIT(1),
981 .hvs_output = 1,
982 },
983 .debugfs_name = "crtc3_regs",
984 .fifo_depth = 64,
985 .pixels_per_clock = 1,
986 .encoder_types = {
987 [0] = VC4_ENCODER_TYPE_VEC,
988 },
989 };
990
991 static const struct vc4_pv_data bcm2711_pv4_data = {
992 .base = {
993 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
994 .hvs_output = 5,
995 },
996 .debugfs_name = "crtc4_regs",
997 .fifo_depth = 64,
998 .pixels_per_clock = 2,
999 .encoder_types = {
1000 [0] = VC4_ENCODER_TYPE_HDMI1,
1001 },
1002 };
1003
1004 static const struct of_device_id vc4_crtc_dt_match[] = {
1005 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1006 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1007 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1008 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1009 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1010 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1011 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1012 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1013 {}
1014 };
1015
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1016 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1017 struct drm_crtc *crtc)
1018 {
1019 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1020 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1021 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1022 struct drm_encoder *encoder;
1023
1024 drm_for_each_encoder(encoder, drm) {
1025 struct vc4_encoder *vc4_encoder;
1026 int i;
1027
1028 vc4_encoder = to_vc4_encoder(encoder);
1029 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1030 if (vc4_encoder->type == encoder_types[i]) {
1031 vc4_encoder->clock_select = i;
1032 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1033 break;
1034 }
1035 }
1036 }
1037 }
1038
vc4_crtc_init(struct drm_device * drm,struct vc4_crtc * vc4_crtc,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs)1039 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1040 const struct drm_crtc_funcs *crtc_funcs,
1041 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1042 {
1043 struct vc4_dev *vc4 = to_vc4_dev(drm);
1044 struct drm_crtc *crtc = &vc4_crtc->base;
1045 struct drm_plane *primary_plane;
1046 unsigned int i;
1047
1048 /* For now, we create just the primary and the legacy cursor
1049 * planes. We should be able to stack more planes on easily,
1050 * but to do that we would need to compute the bandwidth
1051 * requirement of the plane configuration, and reject ones
1052 * that will take too much.
1053 */
1054 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1055 if (IS_ERR(primary_plane)) {
1056 dev_err(drm->dev, "failed to construct primary plane\n");
1057 return PTR_ERR(primary_plane);
1058 }
1059
1060 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1061 crtc_funcs, NULL);
1062 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1063
1064 if (!vc4->hvs->hvs5) {
1065 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1066
1067 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1068
1069 /* We support CTM, but only for one CRTC at a time. It's therefore
1070 * implemented as private driver state in vc4_kms, not here.
1071 */
1072 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1073 }
1074
1075 for (i = 0; i < crtc->gamma_size; i++) {
1076 vc4_crtc->lut_r[i] = i;
1077 vc4_crtc->lut_g[i] = i;
1078 vc4_crtc->lut_b[i] = i;
1079 }
1080
1081 return 0;
1082 }
1083
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1084 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1085 {
1086 struct platform_device *pdev = to_platform_device(dev);
1087 struct drm_device *drm = dev_get_drvdata(master);
1088 const struct vc4_pv_data *pv_data;
1089 struct vc4_crtc *vc4_crtc;
1090 struct drm_crtc *crtc;
1091 struct drm_plane *destroy_plane, *temp;
1092 int ret;
1093
1094 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1095 if (!vc4_crtc)
1096 return -ENOMEM;
1097 crtc = &vc4_crtc->base;
1098
1099 pv_data = of_device_get_match_data(dev);
1100 if (!pv_data)
1101 return -ENODEV;
1102 vc4_crtc->data = &pv_data->base;
1103 vc4_crtc->pdev = pdev;
1104
1105 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1106 if (IS_ERR(vc4_crtc->regs))
1107 return PTR_ERR(vc4_crtc->regs);
1108
1109 vc4_crtc->regset.base = vc4_crtc->regs;
1110 vc4_crtc->regset.regs = crtc_regs;
1111 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1112
1113 ret = vc4_crtc_init(drm, vc4_crtc,
1114 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1115 if (ret)
1116 return ret;
1117 vc4_set_crtc_possible_masks(drm, crtc);
1118
1119 CRTC_WRITE(PV_INTEN, 0);
1120 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1121 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1122 vc4_crtc_irq_handler,
1123 IRQF_SHARED,
1124 "vc4 crtc", vc4_crtc);
1125 if (ret)
1126 goto err_destroy_planes;
1127
1128 platform_set_drvdata(pdev, vc4_crtc);
1129
1130 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1131 &vc4_crtc->regset);
1132
1133 return 0;
1134
1135 err_destroy_planes:
1136 list_for_each_entry_safe(destroy_plane, temp,
1137 &drm->mode_config.plane_list, head) {
1138 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1139 destroy_plane->funcs->destroy(destroy_plane);
1140 }
1141
1142 return ret;
1143 }
1144
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1145 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1146 void *data)
1147 {
1148 struct platform_device *pdev = to_platform_device(dev);
1149 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1150
1151 vc4_crtc_destroy(&vc4_crtc->base);
1152
1153 CRTC_WRITE(PV_INTEN, 0);
1154
1155 platform_set_drvdata(pdev, NULL);
1156 }
1157
1158 static const struct component_ops vc4_crtc_ops = {
1159 .bind = vc4_crtc_bind,
1160 .unbind = vc4_crtc_unbind,
1161 };
1162
vc4_crtc_dev_probe(struct platform_device * pdev)1163 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1164 {
1165 return component_add(&pdev->dev, &vc4_crtc_ops);
1166 }
1167
vc4_crtc_dev_remove(struct platform_device * pdev)1168 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1169 {
1170 component_del(&pdev->dev, &vc4_crtc_ops);
1171 return 0;
1172 }
1173
1174 struct platform_driver vc4_crtc_driver = {
1175 .probe = vc4_crtc_dev_probe,
1176 .remove = vc4_crtc_dev_remove,
1177 .driver = {
1178 .name = "vc4_crtc",
1179 .of_match_table = vc4_crtc_dt_match,
1180 },
1181 };
1182