1 /*******************************************************************************
2 
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9 
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 
19 *******************************************************************************/
20 
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51 
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54 
55 #include "tsi108_eth.h"
56 
57 #define MII_READ_DELAY 10000	/* max link wait time in msec */
58 
59 #define TSI108_RXRING_LEN     256
60 
61 /* NOTE: The driver currently does not support receiving packets
62  * larger than the buffer size, so don't decrease this (unless you
63  * want to add such support).
64  */
65 #define TSI108_RXBUF_SIZE     1536
66 
67 #define TSI108_TXRING_LEN     256
68 
69 #define TSI108_TX_INT_FREQ    64
70 
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73 
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76 
77 struct tsi108_prv_data {
78 	void  __iomem *regs;	/* Base of normal regs */
79 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
80 
81 	struct net_device *dev;
82 	struct napi_struct napi;
83 
84 	unsigned int phy;		/* Index of PHY for this interface */
85 	unsigned int irq_num;
86 	unsigned int id;
87 	unsigned int phy_type;
88 
89 	struct timer_list timer;/* Timer that triggers the check phy function */
90 	unsigned int rxtail;	/* Next entry in rxring to read */
91 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
92 	unsigned int rxfree;	/* Number of free, allocated RX buffers */
93 
94 	unsigned int rxpending;	/* Non-zero if there are still descriptors
95 				 * to be processed from a previous descriptor
96 				 * interrupt condition that has been cleared */
97 
98 	unsigned int txtail;	/* Next TX descriptor to check status on */
99 	unsigned int txhead;	/* Next TX descriptor to use */
100 
101 	/* Number of free TX descriptors.  This could be calculated from
102 	 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 	 * full and empty conditions, but it's simpler to just keep track
104 	 * explicitly. */
105 
106 	unsigned int txfree;
107 
108 	unsigned int phy_ok;		/* The PHY is currently powered on. */
109 
110 	/* PHY status (duplex is 1 for half, 2 for full,
111 	 * so that the default 0 indicates that neither has
112 	 * yet been configured). */
113 
114 	unsigned int link_up;
115 	unsigned int speed;
116 	unsigned int duplex;
117 
118 	tx_desc *txring;
119 	rx_desc *rxring;
120 	struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122 
123 	dma_addr_t txdma, rxdma;
124 
125 	/* txlock nests in misclock and phy_lock */
126 
127 	spinlock_t txlock, misclock;
128 
129 	/* stats is used to hold the upper bits of each hardware counter,
130 	 * and tmpstats is used to hold the full values for returning
131 	 * to the caller of get_stats().  They must be separate in case
132 	 * an overflow interrupt occurs before the stats are consumed.
133 	 */
134 
135 	struct net_device_stats stats;
136 	struct net_device_stats tmpstats;
137 
138 	/* These stats are kept separate in hardware, thus require individual
139 	 * fields for handling carry.  They are combined in get_stats.
140 	 */
141 
142 	unsigned long rx_fcs;	/* Add to rx_frame_errors */
143 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
144 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
145 	unsigned long rx_underruns;	/* Add to rx_length_errors */
146 	unsigned long rx_overruns;	/* Add to rx_length_errors */
147 
148 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
149 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
150 
151 	unsigned long mc_hash[16];
152 	u32 msg_enable;			/* debug message level */
153 	struct mii_if_info mii_if;
154 	unsigned int init_media;
155 
156 	struct platform_device *pdev;
157 };
158 
159 /* Structure for a device driver */
160 
161 static struct platform_driver tsi_eth_driver = {
162 	.probe = tsi108_init_one,
163 	.remove = tsi108_ether_remove,
164 	.driver	= {
165 		.name = "tsi-ethernet",
166 	},
167 };
168 
169 static void tsi108_timed_checker(struct timer_list *t);
170 
171 #ifdef DEBUG
dump_eth_one(struct net_device * dev)172 static void dump_eth_one(struct net_device *dev)
173 {
174 	struct tsi108_prv_data *data = netdev_priv(dev);
175 
176 	printk("Dumping %s...\n", dev->name);
177 	printk("intstat %x intmask %x phy_ok %d"
178 	       " link %d speed %d duplex %d\n",
179 	       TSI_READ(TSI108_EC_INTSTAT),
180 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
181 	       data->link_up, data->speed, data->duplex);
182 
183 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
184 	       data->txhead, data->txtail, data->txfree,
185 	       TSI_READ(TSI108_EC_TXSTAT),
186 	       TSI_READ(TSI108_EC_TXESTAT),
187 	       TSI_READ(TSI108_EC_TXERR));
188 
189 	printk("RX: head %d, tail %d, free %d, stat %x,"
190 	       " estat %x, err %x, pending %d\n\n",
191 	       data->rxhead, data->rxtail, data->rxfree,
192 	       TSI_READ(TSI108_EC_RXSTAT),
193 	       TSI_READ(TSI108_EC_RXESTAT),
194 	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
195 }
196 #endif
197 
198 /* Synchronization is needed between the thread and up/down events.
199  * Note that the PHY is accessed through the same registers for both
200  * interfaces, so this can't be made interface-specific.
201  */
202 
203 static DEFINE_SPINLOCK(phy_lock);
204 
tsi108_read_mii(struct tsi108_prv_data * data,int reg)205 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
206 {
207 	unsigned i;
208 
209 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
210 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
211 				(reg << TSI108_MAC_MII_ADDR_REG));
212 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
213 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
214 	for (i = 0; i < 100; i++) {
215 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
216 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
217 			break;
218 		udelay(10);
219 	}
220 
221 	if (i == 100)
222 		return 0xffff;
223 	else
224 		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
225 }
226 
tsi108_write_mii(struct tsi108_prv_data * data,int reg,u16 val)227 static void tsi108_write_mii(struct tsi108_prv_data *data,
228 				int reg, u16 val)
229 {
230 	unsigned i = 100;
231 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
232 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
233 				(reg << TSI108_MAC_MII_ADDR_REG));
234 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
235 	while (i--) {
236 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
237 			TSI108_MAC_MII_IND_BUSY))
238 			break;
239 		udelay(10);
240 	}
241 }
242 
tsi108_mdio_read(struct net_device * dev,int addr,int reg)243 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
244 {
245 	struct tsi108_prv_data *data = netdev_priv(dev);
246 	return tsi108_read_mii(data, reg);
247 }
248 
tsi108_mdio_write(struct net_device * dev,int addr,int reg,int val)249 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
250 {
251 	struct tsi108_prv_data *data = netdev_priv(dev);
252 	tsi108_write_mii(data, reg, val);
253 }
254 
tsi108_write_tbi(struct tsi108_prv_data * data,int reg,u16 val)255 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
256 					int reg, u16 val)
257 {
258 	unsigned i = 1000;
259 	TSI_WRITE(TSI108_MAC_MII_ADDR,
260 			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
261 			     | (reg << TSI108_MAC_MII_ADDR_REG));
262 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
263 	while(i--) {
264 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
265 			return;
266 		udelay(10);
267 	}
268 	printk(KERN_ERR "%s function time out\n", __func__);
269 }
270 
mii_speed(struct mii_if_info * mii)271 static int mii_speed(struct mii_if_info *mii)
272 {
273 	int advert, lpa, val, media;
274 	int lpa2 = 0;
275 	int speed;
276 
277 	if (!mii_link_ok(mii))
278 		return 0;
279 
280 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
281 	if ((val & BMSR_ANEGCOMPLETE) == 0)
282 		return 0;
283 
284 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
285 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
286 	media = mii_nway_result(advert & lpa);
287 
288 	if (mii->supports_gmii)
289 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
290 
291 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
292 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
293 	return speed;
294 }
295 
tsi108_check_phy(struct net_device * dev)296 static void tsi108_check_phy(struct net_device *dev)
297 {
298 	struct tsi108_prv_data *data = netdev_priv(dev);
299 	u32 mac_cfg2_reg, portctrl_reg;
300 	u32 duplex;
301 	u32 speed;
302 	unsigned long flags;
303 
304 	spin_lock_irqsave(&phy_lock, flags);
305 
306 	if (!data->phy_ok)
307 		goto out;
308 
309 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
310 	data->init_media = 0;
311 
312 	if (netif_carrier_ok(dev)) {
313 
314 		speed = mii_speed(&data->mii_if);
315 
316 		if ((speed != data->speed) || duplex) {
317 
318 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
319 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
320 
321 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
322 
323 			if (speed == 1000) {
324 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
325 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
326 			} else {
327 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
328 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
329 			}
330 
331 			data->speed = speed;
332 
333 			if (data->mii_if.full_duplex) {
334 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
335 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
336 				data->duplex = 2;
337 			} else {
338 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
339 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
340 				data->duplex = 1;
341 			}
342 
343 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
344 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
345 		}
346 
347 		if (data->link_up == 0) {
348 			/* The manual says it can take 3-4 usecs for the speed change
349 			 * to take effect.
350 			 */
351 			udelay(5);
352 
353 			spin_lock(&data->txlock);
354 			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
355 				netif_wake_queue(dev);
356 
357 			data->link_up = 1;
358 			spin_unlock(&data->txlock);
359 		}
360 	} else {
361 		if (data->link_up == 1) {
362 			netif_stop_queue(dev);
363 			data->link_up = 0;
364 			printk(KERN_NOTICE "%s : link is down\n", dev->name);
365 		}
366 
367 		goto out;
368 	}
369 
370 
371 out:
372 	spin_unlock_irqrestore(&phy_lock, flags);
373 }
374 
375 static inline void
tsi108_stat_carry_one(int carry,int carry_bit,int carry_shift,unsigned long * upper)376 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
377 		      unsigned long *upper)
378 {
379 	if (carry & carry_bit)
380 		*upper += carry_shift;
381 }
382 
tsi108_stat_carry(struct net_device * dev)383 static void tsi108_stat_carry(struct net_device *dev)
384 {
385 	struct tsi108_prv_data *data = netdev_priv(dev);
386 	u32 carry1, carry2;
387 
388 	spin_lock_irq(&data->misclock);
389 
390 	carry1 = TSI_READ(TSI108_STAT_CARRY1);
391 	carry2 = TSI_READ(TSI108_STAT_CARRY2);
392 
393 	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
394 	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
395 
396 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
397 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
398 
399 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
400 			      TSI108_STAT_RXPKTS_CARRY,
401 			      &data->stats.rx_packets);
402 
403 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
404 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
405 
406 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
407 			      TSI108_STAT_RXMCAST_CARRY,
408 			      &data->stats.multicast);
409 
410 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
411 			      TSI108_STAT_RXALIGN_CARRY,
412 			      &data->stats.rx_frame_errors);
413 
414 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
415 			      TSI108_STAT_RXLENGTH_CARRY,
416 			      &data->stats.rx_length_errors);
417 
418 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
419 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
420 
421 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
422 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
423 
424 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
425 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
426 
427 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
428 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
429 
430 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
431 			      TSI108_STAT_RXDROP_CARRY,
432 			      &data->stats.rx_missed_errors);
433 
434 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
435 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
436 
437 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
438 			      TSI108_STAT_TXPKTS_CARRY,
439 			      &data->stats.tx_packets);
440 
441 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
442 			      TSI108_STAT_TXEXDEF_CARRY,
443 			      &data->stats.tx_aborted_errors);
444 
445 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
446 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
447 
448 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
449 			      TSI108_STAT_TXTCOL_CARRY,
450 			      &data->stats.collisions);
451 
452 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
453 			      TSI108_STAT_TXPAUSEDROP_CARRY,
454 			      &data->tx_pause_drop);
455 
456 	spin_unlock_irq(&data->misclock);
457 }
458 
459 /* Read a stat counter atomically with respect to carries.
460  * data->misclock must be held.
461  */
462 static inline unsigned long
tsi108_read_stat(struct tsi108_prv_data * data,int reg,int carry_bit,int carry_shift,unsigned long * upper)463 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
464 		 int carry_shift, unsigned long *upper)
465 {
466 	int carryreg;
467 	unsigned long val;
468 
469 	if (reg < 0xb0)
470 		carryreg = TSI108_STAT_CARRY1;
471 	else
472 		carryreg = TSI108_STAT_CARRY2;
473 
474       again:
475 	val = TSI_READ(reg) | *upper;
476 
477 	/* Check to see if it overflowed, but the interrupt hasn't
478 	 * been serviced yet.  If so, handle the carry here, and
479 	 * try again.
480 	 */
481 
482 	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
483 		*upper += carry_shift;
484 		TSI_WRITE(carryreg, carry_bit);
485 		goto again;
486 	}
487 
488 	return val;
489 }
490 
tsi108_get_stats(struct net_device * dev)491 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
492 {
493 	unsigned long excol;
494 
495 	struct tsi108_prv_data *data = netdev_priv(dev);
496 	spin_lock_irq(&data->misclock);
497 
498 	data->tmpstats.rx_packets =
499 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
500 			     TSI108_STAT_CARRY1_RXPKTS,
501 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
502 
503 	data->tmpstats.tx_packets =
504 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
505 			     TSI108_STAT_CARRY2_TXPKTS,
506 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
507 
508 	data->tmpstats.rx_bytes =
509 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
510 			     TSI108_STAT_CARRY1_RXBYTES,
511 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
512 
513 	data->tmpstats.tx_bytes =
514 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
515 			     TSI108_STAT_CARRY2_TXBYTES,
516 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
517 
518 	data->tmpstats.multicast =
519 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
520 			     TSI108_STAT_CARRY1_RXMCAST,
521 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
522 
523 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
524 				 TSI108_STAT_CARRY2_TXEXCOL,
525 				 TSI108_STAT_TXEXCOL_CARRY,
526 				 &data->tx_coll_abort);
527 
528 	data->tmpstats.collisions =
529 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
530 			     TSI108_STAT_CARRY2_TXTCOL,
531 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
532 
533 	data->tmpstats.collisions += excol;
534 
535 	data->tmpstats.rx_length_errors =
536 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
537 			     TSI108_STAT_CARRY1_RXLENGTH,
538 			     TSI108_STAT_RXLENGTH_CARRY,
539 			     &data->stats.rx_length_errors);
540 
541 	data->tmpstats.rx_length_errors +=
542 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
543 			     TSI108_STAT_CARRY1_RXRUNT,
544 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
545 
546 	data->tmpstats.rx_length_errors +=
547 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
548 			     TSI108_STAT_CARRY1_RXJUMBO,
549 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
550 
551 	data->tmpstats.rx_frame_errors =
552 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
553 			     TSI108_STAT_CARRY1_RXALIGN,
554 			     TSI108_STAT_RXALIGN_CARRY,
555 			     &data->stats.rx_frame_errors);
556 
557 	data->tmpstats.rx_frame_errors +=
558 	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
559 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
560 			     &data->rx_fcs);
561 
562 	data->tmpstats.rx_frame_errors +=
563 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
564 			     TSI108_STAT_CARRY1_RXFRAG,
565 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
566 
567 	data->tmpstats.rx_missed_errors =
568 	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
569 			     TSI108_STAT_CARRY1_RXDROP,
570 			     TSI108_STAT_RXDROP_CARRY,
571 			     &data->stats.rx_missed_errors);
572 
573 	/* These three are maintained by software. */
574 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
575 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
576 
577 	data->tmpstats.tx_aborted_errors =
578 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
579 			     TSI108_STAT_CARRY2_TXEXDEF,
580 			     TSI108_STAT_TXEXDEF_CARRY,
581 			     &data->stats.tx_aborted_errors);
582 
583 	data->tmpstats.tx_aborted_errors +=
584 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
585 			     TSI108_STAT_CARRY2_TXPAUSE,
586 			     TSI108_STAT_TXPAUSEDROP_CARRY,
587 			     &data->tx_pause_drop);
588 
589 	data->tmpstats.tx_aborted_errors += excol;
590 
591 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
592 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
593 	    data->tmpstats.rx_crc_errors +
594 	    data->tmpstats.rx_frame_errors +
595 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
596 
597 	spin_unlock_irq(&data->misclock);
598 	return &data->tmpstats;
599 }
600 
tsi108_restart_rx(struct tsi108_prv_data * data,struct net_device * dev)601 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
602 {
603 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
604 			     TSI108_EC_RXQ_PTRHIGH_VALID);
605 
606 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
607 			     | TSI108_EC_RXCTRL_QUEUE0);
608 }
609 
tsi108_restart_tx(struct tsi108_prv_data * data)610 static void tsi108_restart_tx(struct tsi108_prv_data * data)
611 {
612 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
613 			     TSI108_EC_TXQ_PTRHIGH_VALID);
614 
615 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
616 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
617 }
618 
619 /* txlock must be held by caller, with IRQs disabled, and
620  * with permission to re-enable them when the lock is dropped.
621  */
tsi108_complete_tx(struct net_device * dev)622 static void tsi108_complete_tx(struct net_device *dev)
623 {
624 	struct tsi108_prv_data *data = netdev_priv(dev);
625 	int tx;
626 	struct sk_buff *skb;
627 	int release = 0;
628 
629 	while (!data->txfree || data->txhead != data->txtail) {
630 		tx = data->txtail;
631 
632 		if (data->txring[tx].misc & TSI108_TX_OWN)
633 			break;
634 
635 		skb = data->txskbs[tx];
636 
637 		if (!(data->txring[tx].misc & TSI108_TX_OK))
638 			printk("%s: bad tx packet, misc %x\n",
639 			       dev->name, data->txring[tx].misc);
640 
641 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
642 		data->txfree++;
643 
644 		if (data->txring[tx].misc & TSI108_TX_EOF) {
645 			dev_kfree_skb_any(skb);
646 			release++;
647 		}
648 	}
649 
650 	if (release) {
651 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
652 			netif_wake_queue(dev);
653 	}
654 }
655 
tsi108_send_packet(struct sk_buff * skb,struct net_device * dev)656 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
657 {
658 	struct tsi108_prv_data *data = netdev_priv(dev);
659 	int frags = skb_shinfo(skb)->nr_frags + 1;
660 	int i;
661 
662 	if (!data->phy_ok && net_ratelimit())
663 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
664 
665 	if (!data->link_up) {
666 		printk(KERN_ERR "%s: Transmit while link is down!\n",
667 		       dev->name);
668 		netif_stop_queue(dev);
669 		return NETDEV_TX_BUSY;
670 	}
671 
672 	if (data->txfree < MAX_SKB_FRAGS + 1) {
673 		netif_stop_queue(dev);
674 
675 		if (net_ratelimit())
676 			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
677 			       dev->name);
678 		return NETDEV_TX_BUSY;
679 	}
680 
681 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
682 		netif_stop_queue(dev);
683 	}
684 
685 	spin_lock_irq(&data->txlock);
686 
687 	for (i = 0; i < frags; i++) {
688 		int misc = 0;
689 		int tx = data->txhead;
690 
691 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
692 		 * the interrupt bit.  TX descriptor-complete interrupts are
693 		 * enabled when the queue fills up, and masked when there is
694 		 * still free space.  This way, when saturating the outbound
695 		 * link, the tx interrupts are kept to a reasonable level.
696 		 * When the queue is not full, reclamation of skbs still occurs
697 		 * as new packets are transmitted, or on a queue-empty
698 		 * interrupt.
699 		 */
700 
701 		if ((tx % TSI108_TX_INT_FREQ == 0) &&
702 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
703 			misc = TSI108_TX_INT;
704 
705 		data->txskbs[tx] = skb;
706 
707 		if (i == 0) {
708 			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
709 					skb->data, skb_headlen(skb),
710 					DMA_TO_DEVICE);
711 			data->txring[tx].len = skb_headlen(skb);
712 			misc |= TSI108_TX_SOF;
713 		} else {
714 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
715 
716 			data->txring[tx].buf0 =
717 				skb_frag_dma_map(&data->pdev->dev, frag,
718 						0, skb_frag_size(frag),
719 						DMA_TO_DEVICE);
720 			data->txring[tx].len = skb_frag_size(frag);
721 		}
722 
723 		if (i == frags - 1)
724 			misc |= TSI108_TX_EOF;
725 
726 		if (netif_msg_pktdata(data)) {
727 			int i;
728 			printk("%s: Tx Frame contents (%d)\n", dev->name,
729 			       skb->len);
730 			for (i = 0; i < skb->len; i++)
731 				printk(" %2.2x", skb->data[i]);
732 			printk(".\n");
733 		}
734 		data->txring[tx].misc = misc | TSI108_TX_OWN;
735 
736 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
737 		data->txfree--;
738 	}
739 
740 	tsi108_complete_tx(dev);
741 
742 	/* This must be done after the check for completed tx descriptors,
743 	 * so that the tail pointer is correct.
744 	 */
745 
746 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
747 		tsi108_restart_tx(data);
748 
749 	spin_unlock_irq(&data->txlock);
750 	return NETDEV_TX_OK;
751 }
752 
tsi108_complete_rx(struct net_device * dev,int budget)753 static int tsi108_complete_rx(struct net_device *dev, int budget)
754 {
755 	struct tsi108_prv_data *data = netdev_priv(dev);
756 	int done = 0;
757 
758 	while (data->rxfree && done != budget) {
759 		int rx = data->rxtail;
760 		struct sk_buff *skb;
761 
762 		if (data->rxring[rx].misc & TSI108_RX_OWN)
763 			break;
764 
765 		skb = data->rxskbs[rx];
766 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
767 		data->rxfree--;
768 		done++;
769 
770 		if (data->rxring[rx].misc & TSI108_RX_BAD) {
771 			spin_lock_irq(&data->misclock);
772 
773 			if (data->rxring[rx].misc & TSI108_RX_CRC)
774 				data->stats.rx_crc_errors++;
775 			if (data->rxring[rx].misc & TSI108_RX_OVER)
776 				data->stats.rx_fifo_errors++;
777 
778 			spin_unlock_irq(&data->misclock);
779 
780 			dev_kfree_skb_any(skb);
781 			continue;
782 		}
783 		if (netif_msg_pktdata(data)) {
784 			int i;
785 			printk("%s: Rx Frame contents (%d)\n",
786 			       dev->name, data->rxring[rx].len);
787 			for (i = 0; i < data->rxring[rx].len; i++)
788 				printk(" %2.2x", skb->data[i]);
789 			printk(".\n");
790 		}
791 
792 		skb_put(skb, data->rxring[rx].len);
793 		skb->protocol = eth_type_trans(skb, dev);
794 		netif_receive_skb(skb);
795 	}
796 
797 	return done;
798 }
799 
tsi108_refill_rx(struct net_device * dev,int budget)800 static int tsi108_refill_rx(struct net_device *dev, int budget)
801 {
802 	struct tsi108_prv_data *data = netdev_priv(dev);
803 	int done = 0;
804 
805 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
806 		int rx = data->rxhead;
807 		struct sk_buff *skb;
808 
809 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
810 		data->rxskbs[rx] = skb;
811 		if (!skb)
812 			break;
813 
814 		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
815 				skb->data, TSI108_RX_SKB_SIZE,
816 				DMA_FROM_DEVICE);
817 
818 		/* Sometimes the hardware sets blen to zero after packet
819 		 * reception, even though the manual says that it's only ever
820 		 * modified by the driver.
821 		 */
822 
823 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
824 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
825 
826 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
827 		data->rxfree++;
828 		done++;
829 	}
830 
831 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
832 			   TSI108_EC_RXSTAT_QUEUE0))
833 		tsi108_restart_rx(data, dev);
834 
835 	return done;
836 }
837 
tsi108_poll(struct napi_struct * napi,int budget)838 static int tsi108_poll(struct napi_struct *napi, int budget)
839 {
840 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
841 	struct net_device *dev = data->dev;
842 	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
843 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
844 	int num_received = 0, num_filled = 0;
845 
846 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
847 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
848 
849 	TSI_WRITE(TSI108_EC_RXESTAT, estat);
850 	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
851 
852 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
853 		num_received = tsi108_complete_rx(dev, budget);
854 
855 	/* This should normally fill no more slots than the number of
856 	 * packets received in tsi108_complete_rx().  The exception
857 	 * is when we previously ran out of memory for RX SKBs.  In that
858 	 * case, it's helpful to obey the budget, not only so that the
859 	 * CPU isn't hogged, but so that memory (which may still be low)
860 	 * is not hogged by one device.
861 	 *
862 	 * A work unit is considered to be two SKBs to allow us to catch
863 	 * up when the ring has shrunk due to out-of-memory but we're
864 	 * still removing the full budget's worth of packets each time.
865 	 */
866 
867 	if (data->rxfree < TSI108_RXRING_LEN)
868 		num_filled = tsi108_refill_rx(dev, budget * 2);
869 
870 	if (intstat & TSI108_INT_RXERROR) {
871 		u32 err = TSI_READ(TSI108_EC_RXERR);
872 		TSI_WRITE(TSI108_EC_RXERR, err);
873 
874 		if (err) {
875 			if (net_ratelimit())
876 				printk(KERN_DEBUG "%s: RX error %x\n",
877 				       dev->name, err);
878 
879 			if (!(TSI_READ(TSI108_EC_RXSTAT) &
880 			      TSI108_EC_RXSTAT_QUEUE0))
881 				tsi108_restart_rx(data, dev);
882 		}
883 	}
884 
885 	if (intstat & TSI108_INT_RXOVERRUN) {
886 		spin_lock_irq(&data->misclock);
887 		data->stats.rx_fifo_errors++;
888 		spin_unlock_irq(&data->misclock);
889 	}
890 
891 	if (num_received < budget) {
892 		data->rxpending = 0;
893 		napi_complete_done(napi, num_received);
894 
895 		TSI_WRITE(TSI108_EC_INTMASK,
896 				     TSI_READ(TSI108_EC_INTMASK)
897 				     & ~(TSI108_INT_RXQUEUE0
898 					 | TSI108_INT_RXTHRESH |
899 					 TSI108_INT_RXOVERRUN |
900 					 TSI108_INT_RXERROR |
901 					 TSI108_INT_RXWAIT));
902 	} else {
903 		data->rxpending = 1;
904 	}
905 
906 	return num_received;
907 }
908 
tsi108_rx_int(struct net_device * dev)909 static void tsi108_rx_int(struct net_device *dev)
910 {
911 	struct tsi108_prv_data *data = netdev_priv(dev);
912 
913 	/* A race could cause dev to already be scheduled, so it's not an
914 	 * error if that happens (and interrupts shouldn't be re-masked,
915 	 * because that can cause harmful races, if poll has already
916 	 * unmasked them but not cleared LINK_STATE_SCHED).
917 	 *
918 	 * This can happen if this code races with tsi108_poll(), which masks
919 	 * the interrupts after tsi108_irq_one() read the mask, but before
920 	 * napi_schedule is called.  It could also happen due to calls
921 	 * from tsi108_check_rxring().
922 	 */
923 
924 	if (napi_schedule_prep(&data->napi)) {
925 		/* Mask, rather than ack, the receive interrupts.  The ack
926 		 * will happen in tsi108_poll().
927 		 */
928 
929 		TSI_WRITE(TSI108_EC_INTMASK,
930 				     TSI_READ(TSI108_EC_INTMASK) |
931 				     TSI108_INT_RXQUEUE0
932 				     | TSI108_INT_RXTHRESH |
933 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
934 				     TSI108_INT_RXWAIT);
935 		__napi_schedule(&data->napi);
936 	} else {
937 		if (!netif_running(dev)) {
938 			/* This can happen if an interrupt occurs while the
939 			 * interface is being brought down, as the START
940 			 * bit is cleared before the stop function is called.
941 			 *
942 			 * In this case, the interrupts must be masked, or
943 			 * they will continue indefinitely.
944 			 *
945 			 * There's a race here if the interface is brought down
946 			 * and then up in rapid succession, as the device could
947 			 * be made running after the above check and before
948 			 * the masking below.  This will only happen if the IRQ
949 			 * thread has a lower priority than the task brining
950 			 * up the interface.  Fixing this race would likely
951 			 * require changes in generic code.
952 			 */
953 
954 			TSI_WRITE(TSI108_EC_INTMASK,
955 					     TSI_READ
956 					     (TSI108_EC_INTMASK) |
957 					     TSI108_INT_RXQUEUE0 |
958 					     TSI108_INT_RXTHRESH |
959 					     TSI108_INT_RXOVERRUN |
960 					     TSI108_INT_RXERROR |
961 					     TSI108_INT_RXWAIT);
962 		}
963 	}
964 }
965 
966 /* If the RX ring has run out of memory, try periodically
967  * to allocate some more, as otherwise poll would never
968  * get called (apart from the initial end-of-queue condition).
969  *
970  * This is called once per second (by default) from the thread.
971  */
972 
tsi108_check_rxring(struct net_device * dev)973 static void tsi108_check_rxring(struct net_device *dev)
974 {
975 	struct tsi108_prv_data *data = netdev_priv(dev);
976 
977 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
978 	 * directly, so as to keep the receive path single-threaded
979 	 * (and thus not needing a lock).
980 	 */
981 
982 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
983 		tsi108_rx_int(dev);
984 }
985 
tsi108_tx_int(struct net_device * dev)986 static void tsi108_tx_int(struct net_device *dev)
987 {
988 	struct tsi108_prv_data *data = netdev_priv(dev);
989 	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
990 
991 	TSI_WRITE(TSI108_EC_TXESTAT, estat);
992 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
993 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
994 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
995 		u32 err = TSI_READ(TSI108_EC_TXERR);
996 		TSI_WRITE(TSI108_EC_TXERR, err);
997 
998 		if (err && net_ratelimit())
999 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1000 	}
1001 
1002 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1003 		spin_lock(&data->txlock);
1004 		tsi108_complete_tx(dev);
1005 		spin_unlock(&data->txlock);
1006 	}
1007 }
1008 
1009 
tsi108_irq(int irq,void * dev_id)1010 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1011 {
1012 	struct net_device *dev = dev_id;
1013 	struct tsi108_prv_data *data = netdev_priv(dev);
1014 	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1015 
1016 	if (!(stat & TSI108_INT_ANY))
1017 		return IRQ_NONE;	/* Not our interrupt */
1018 
1019 	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1020 
1021 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1022 		    TSI108_INT_TXERROR))
1023 		tsi108_tx_int(dev);
1024 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1025 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1026 		    TSI108_INT_RXERROR))
1027 		tsi108_rx_int(dev);
1028 
1029 	if (stat & TSI108_INT_SFN) {
1030 		if (net_ratelimit())
1031 			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1032 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1033 	}
1034 
1035 	if (stat & TSI108_INT_STATCARRY) {
1036 		tsi108_stat_carry(dev);
1037 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1038 	}
1039 
1040 	return IRQ_HANDLED;
1041 }
1042 
tsi108_stop_ethernet(struct net_device * dev)1043 static void tsi108_stop_ethernet(struct net_device *dev)
1044 {
1045 	struct tsi108_prv_data *data = netdev_priv(dev);
1046 	int i = 1000;
1047 	/* Disable all TX and RX queues ... */
1048 	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1049 	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1050 
1051 	/* ...and wait for them to become idle */
1052 	while(i--) {
1053 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1054 			break;
1055 		udelay(10);
1056 	}
1057 	i = 1000;
1058 	while(i--){
1059 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1060 			return;
1061 		udelay(10);
1062 	}
1063 	printk(KERN_ERR "%s function time out\n", __func__);
1064 }
1065 
tsi108_reset_ether(struct tsi108_prv_data * data)1066 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1067 {
1068 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1069 	udelay(100);
1070 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1071 
1072 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1073 	udelay(100);
1074 	TSI_WRITE(TSI108_EC_PORTCTRL,
1075 			     TSI_READ(TSI108_EC_PORTCTRL) &
1076 			     ~TSI108_EC_PORTCTRL_STATRST);
1077 
1078 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1079 	udelay(100);
1080 	TSI_WRITE(TSI108_EC_TXCFG,
1081 			     TSI_READ(TSI108_EC_TXCFG) &
1082 			     ~TSI108_EC_TXCFG_RST);
1083 
1084 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1085 	udelay(100);
1086 	TSI_WRITE(TSI108_EC_RXCFG,
1087 			     TSI_READ(TSI108_EC_RXCFG) &
1088 			     ~TSI108_EC_RXCFG_RST);
1089 
1090 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1091 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1092 			     TSI108_MAC_MII_MGMT_RST);
1093 	udelay(100);
1094 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1095 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1096 			     ~(TSI108_MAC_MII_MGMT_RST |
1097 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1098 }
1099 
tsi108_get_mac(struct net_device * dev)1100 static int tsi108_get_mac(struct net_device *dev)
1101 {
1102 	struct tsi108_prv_data *data = netdev_priv(dev);
1103 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1104 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1105 
1106 	/* Note that the octets are reversed from what the manual says,
1107 	 * producing an even weirder ordering...
1108 	 */
1109 	if (word2 == 0 && word1 == 0) {
1110 		dev->dev_addr[0] = 0x00;
1111 		dev->dev_addr[1] = 0x06;
1112 		dev->dev_addr[2] = 0xd2;
1113 		dev->dev_addr[3] = 0x00;
1114 		dev->dev_addr[4] = 0x00;
1115 		if (0x8 == data->phy)
1116 			dev->dev_addr[5] = 0x01;
1117 		else
1118 			dev->dev_addr[5] = 0x02;
1119 
1120 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1121 
1122 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1123 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1124 
1125 		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1126 		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1127 	} else {
1128 		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1129 		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1130 		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1131 		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1132 		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1133 		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1134 	}
1135 
1136 	if (!is_valid_ether_addr(dev->dev_addr)) {
1137 		printk(KERN_ERR
1138 		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1139 		       dev->name, word1, word2);
1140 		return -EINVAL;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
tsi108_set_mac(struct net_device * dev,void * addr)1146 static int tsi108_set_mac(struct net_device *dev, void *addr)
1147 {
1148 	struct tsi108_prv_data *data = netdev_priv(dev);
1149 	u32 word1, word2;
1150 	int i;
1151 
1152 	if (!is_valid_ether_addr(addr))
1153 		return -EADDRNOTAVAIL;
1154 
1155 	for (i = 0; i < 6; i++)
1156 		/* +2 is for the offset of the HW addr type */
1157 		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1158 
1159 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1160 
1161 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1162 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1163 
1164 	spin_lock_irq(&data->misclock);
1165 	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1166 	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1167 	spin_lock(&data->txlock);
1168 
1169 	if (data->txfree && data->link_up)
1170 		netif_wake_queue(dev);
1171 
1172 	spin_unlock(&data->txlock);
1173 	spin_unlock_irq(&data->misclock);
1174 	return 0;
1175 }
1176 
1177 /* Protected by dev->xmit_lock. */
tsi108_set_rx_mode(struct net_device * dev)1178 static void tsi108_set_rx_mode(struct net_device *dev)
1179 {
1180 	struct tsi108_prv_data *data = netdev_priv(dev);
1181 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1182 
1183 	if (dev->flags & IFF_PROMISC) {
1184 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1185 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1186 		goto out;
1187 	}
1188 
1189 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1190 
1191 	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1192 		int i;
1193 		struct netdev_hw_addr *ha;
1194 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1195 
1196 		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1197 
1198 		netdev_for_each_mc_addr(ha, dev) {
1199 			u32 hash, crc;
1200 
1201 			crc = ether_crc(6, ha->addr);
1202 			hash = crc >> 23;
1203 			__set_bit(hash, &data->mc_hash[0]);
1204 		}
1205 
1206 		TSI_WRITE(TSI108_EC_HASHADDR,
1207 				     TSI108_EC_HASHADDR_AUTOINC |
1208 				     TSI108_EC_HASHADDR_MCAST);
1209 
1210 		for (i = 0; i < 16; i++) {
1211 			/* The manual says that the hardware may drop
1212 			 * back-to-back writes to the data register.
1213 			 */
1214 			udelay(1);
1215 			TSI_WRITE(TSI108_EC_HASHDATA,
1216 					     data->mc_hash[i]);
1217 		}
1218 	}
1219 
1220       out:
1221 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1222 }
1223 
tsi108_init_phy(struct net_device * dev)1224 static void tsi108_init_phy(struct net_device *dev)
1225 {
1226 	struct tsi108_prv_data *data = netdev_priv(dev);
1227 	u32 i = 0;
1228 	u16 phyval = 0;
1229 	unsigned long flags;
1230 
1231 	spin_lock_irqsave(&phy_lock, flags);
1232 
1233 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1234 	while (--i) {
1235 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1236 			break;
1237 		udelay(10);
1238 	}
1239 	if (i == 0)
1240 		printk(KERN_ERR "%s function time out\n", __func__);
1241 
1242 	if (data->phy_type == TSI108_PHY_BCM54XX) {
1243 		tsi108_write_mii(data, 0x09, 0x0300);
1244 		tsi108_write_mii(data, 0x10, 0x1020);
1245 		tsi108_write_mii(data, 0x1c, 0x8c00);
1246 	}
1247 
1248 	tsi108_write_mii(data,
1249 			 MII_BMCR,
1250 			 BMCR_ANENABLE | BMCR_ANRESTART);
1251 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1252 		cpu_relax();
1253 
1254 	/* Set G/MII mode and receive clock select in TBI control #2.  The
1255 	 * second port won't work if this isn't done, even though we don't
1256 	 * use TBI mode.
1257 	 */
1258 
1259 	tsi108_write_tbi(data, 0x11, 0x30);
1260 
1261 	/* FIXME: It seems to take more than 2 back-to-back reads to the
1262 	 * PHY_STAT register before the link up status bit is set.
1263 	 */
1264 
1265 	data->link_up = 0;
1266 
1267 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1268 		 BMSR_LSTATUS)) {
1269 		if (i++ > (MII_READ_DELAY / 10)) {
1270 			break;
1271 		}
1272 		spin_unlock_irqrestore(&phy_lock, flags);
1273 		msleep(10);
1274 		spin_lock_irqsave(&phy_lock, flags);
1275 	}
1276 
1277 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1278 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1279 	data->phy_ok = 1;
1280 	data->init_media = 1;
1281 	spin_unlock_irqrestore(&phy_lock, flags);
1282 }
1283 
tsi108_kill_phy(struct net_device * dev)1284 static void tsi108_kill_phy(struct net_device *dev)
1285 {
1286 	struct tsi108_prv_data *data = netdev_priv(dev);
1287 	unsigned long flags;
1288 
1289 	spin_lock_irqsave(&phy_lock, flags);
1290 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1291 	data->phy_ok = 0;
1292 	spin_unlock_irqrestore(&phy_lock, flags);
1293 }
1294 
tsi108_open(struct net_device * dev)1295 static int tsi108_open(struct net_device *dev)
1296 {
1297 	int i;
1298 	struct tsi108_prv_data *data = netdev_priv(dev);
1299 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1300 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1301 
1302 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1303 	if (i != 0) {
1304 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1305 		       data->id, data->irq_num);
1306 		return i;
1307 	} else {
1308 		dev->irq = data->irq_num;
1309 		printk(KERN_NOTICE
1310 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1311 		       data->id, dev->irq, dev->name);
1312 	}
1313 
1314 	data->rxring = dma_zalloc_coherent(&data->pdev->dev, rxring_size,
1315 			&data->rxdma, GFP_KERNEL);
1316 	if (!data->rxring)
1317 		return -ENOMEM;
1318 
1319 	data->txring = dma_zalloc_coherent(&data->pdev->dev, txring_size,
1320 			&data->txdma, GFP_KERNEL);
1321 	if (!data->txring) {
1322 		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1323 				    data->rxdma);
1324 		return -ENOMEM;
1325 	}
1326 
1327 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1329 		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1330 		data->rxring[i].vlan = 0;
1331 	}
1332 
1333 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1334 
1335 	data->rxtail = 0;
1336 	data->rxhead = 0;
1337 
1338 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1339 		struct sk_buff *skb;
1340 
1341 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1342 		if (!skb) {
1343 			/* Bah.  No memory for now, but maybe we'll get
1344 			 * some more later.
1345 			 * For now, we'll live with the smaller ring.
1346 			 */
1347 			printk(KERN_WARNING
1348 			       "%s: Could only allocate %d receive skb(s).\n",
1349 			       dev->name, i);
1350 			data->rxhead = i;
1351 			break;
1352 		}
1353 
1354 		data->rxskbs[i] = skb;
1355 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1356 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1357 	}
1358 
1359 	data->rxfree = i;
1360 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1361 
1362 	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1363 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1364 		data->txring[i].misc = 0;
1365 	}
1366 
1367 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1368 	data->txtail = 0;
1369 	data->txhead = 0;
1370 	data->txfree = TSI108_TXRING_LEN;
1371 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1372 	tsi108_init_phy(dev);
1373 
1374 	napi_enable(&data->napi);
1375 
1376 	timer_setup(&data->timer, tsi108_timed_checker, 0);
1377 	mod_timer(&data->timer, jiffies + 1);
1378 
1379 	tsi108_restart_rx(data, dev);
1380 
1381 	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1382 
1383 	TSI_WRITE(TSI108_EC_INTMASK,
1384 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1385 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1386 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1387 			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1388 
1389 	TSI_WRITE(TSI108_MAC_CFG1,
1390 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1391 	netif_start_queue(dev);
1392 	return 0;
1393 }
1394 
tsi108_close(struct net_device * dev)1395 static int tsi108_close(struct net_device *dev)
1396 {
1397 	struct tsi108_prv_data *data = netdev_priv(dev);
1398 
1399 	netif_stop_queue(dev);
1400 	napi_disable(&data->napi);
1401 
1402 	del_timer_sync(&data->timer);
1403 
1404 	tsi108_stop_ethernet(dev);
1405 	tsi108_kill_phy(dev);
1406 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1407 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1408 
1409 	/* Check for any pending TX packets, and drop them. */
1410 
1411 	while (!data->txfree || data->txhead != data->txtail) {
1412 		int tx = data->txtail;
1413 		struct sk_buff *skb;
1414 		skb = data->txskbs[tx];
1415 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1416 		data->txfree++;
1417 		dev_kfree_skb(skb);
1418 	}
1419 
1420 	free_irq(data->irq_num, dev);
1421 
1422 	/* Discard the RX ring. */
1423 
1424 	while (data->rxfree) {
1425 		int rx = data->rxtail;
1426 		struct sk_buff *skb;
1427 
1428 		skb = data->rxskbs[rx];
1429 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1430 		data->rxfree--;
1431 		dev_kfree_skb(skb);
1432 	}
1433 
1434 	dma_free_coherent(&data->pdev->dev,
1435 			    TSI108_RXRING_LEN * sizeof(rx_desc),
1436 			    data->rxring, data->rxdma);
1437 	dma_free_coherent(&data->pdev->dev,
1438 			    TSI108_TXRING_LEN * sizeof(tx_desc),
1439 			    data->txring, data->txdma);
1440 
1441 	return 0;
1442 }
1443 
tsi108_init_mac(struct net_device * dev)1444 static void tsi108_init_mac(struct net_device *dev)
1445 {
1446 	struct tsi108_prv_data *data = netdev_priv(dev);
1447 
1448 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1449 			     TSI108_MAC_CFG2_PADCRC);
1450 
1451 	TSI_WRITE(TSI108_EC_TXTHRESH,
1452 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1453 			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1454 
1455 	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1456 			     ~(TSI108_STAT_CARRY1_RXBYTES |
1457 			       TSI108_STAT_CARRY1_RXPKTS |
1458 			       TSI108_STAT_CARRY1_RXFCS |
1459 			       TSI108_STAT_CARRY1_RXMCAST |
1460 			       TSI108_STAT_CARRY1_RXALIGN |
1461 			       TSI108_STAT_CARRY1_RXLENGTH |
1462 			       TSI108_STAT_CARRY1_RXRUNT |
1463 			       TSI108_STAT_CARRY1_RXJUMBO |
1464 			       TSI108_STAT_CARRY1_RXFRAG |
1465 			       TSI108_STAT_CARRY1_RXJABBER |
1466 			       TSI108_STAT_CARRY1_RXDROP));
1467 
1468 	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1469 			     ~(TSI108_STAT_CARRY2_TXBYTES |
1470 			       TSI108_STAT_CARRY2_TXPKTS |
1471 			       TSI108_STAT_CARRY2_TXEXDEF |
1472 			       TSI108_STAT_CARRY2_TXEXCOL |
1473 			       TSI108_STAT_CARRY2_TXTCOL |
1474 			       TSI108_STAT_CARRY2_TXPAUSE));
1475 
1476 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1477 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1478 
1479 	TSI_WRITE(TSI108_EC_RXCFG,
1480 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1481 
1482 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1483 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1484 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485 						TSI108_EC_TXQ_CFG_SFNPORT));
1486 
1487 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1488 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1489 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1490 						TSI108_EC_RXQ_CFG_SFNPORT));
1491 
1492 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1493 			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1494 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495 						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1496 
1497 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1498 			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1499 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1500 						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1501 
1502 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1503 }
1504 
tsi108_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1505 static int tsi108_get_link_ksettings(struct net_device *dev,
1506 				     struct ethtool_link_ksettings *cmd)
1507 {
1508 	struct tsi108_prv_data *data = netdev_priv(dev);
1509 	unsigned long flags;
1510 
1511 	spin_lock_irqsave(&data->txlock, flags);
1512 	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1513 	spin_unlock_irqrestore(&data->txlock, flags);
1514 
1515 	return 0;
1516 }
1517 
tsi108_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1518 static int tsi108_set_link_ksettings(struct net_device *dev,
1519 				     const struct ethtool_link_ksettings *cmd)
1520 {
1521 	struct tsi108_prv_data *data = netdev_priv(dev);
1522 	unsigned long flags;
1523 	int rc;
1524 
1525 	spin_lock_irqsave(&data->txlock, flags);
1526 	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1527 	spin_unlock_irqrestore(&data->txlock, flags);
1528 
1529 	return rc;
1530 }
1531 
tsi108_do_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1532 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1533 {
1534 	struct tsi108_prv_data *data = netdev_priv(dev);
1535 	if (!netif_running(dev))
1536 		return -EINVAL;
1537 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1538 }
1539 
1540 static const struct ethtool_ops tsi108_ethtool_ops = {
1541 	.get_link 	= ethtool_op_get_link,
1542 	.get_link_ksettings	= tsi108_get_link_ksettings,
1543 	.set_link_ksettings	= tsi108_set_link_ksettings,
1544 };
1545 
1546 static const struct net_device_ops tsi108_netdev_ops = {
1547 	.ndo_open		= tsi108_open,
1548 	.ndo_stop		= tsi108_close,
1549 	.ndo_start_xmit		= tsi108_send_packet,
1550 	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1551 	.ndo_get_stats		= tsi108_get_stats,
1552 	.ndo_do_ioctl		= tsi108_do_ioctl,
1553 	.ndo_set_mac_address	= tsi108_set_mac,
1554 	.ndo_validate_addr	= eth_validate_addr,
1555 };
1556 
1557 static int
tsi108_init_one(struct platform_device * pdev)1558 tsi108_init_one(struct platform_device *pdev)
1559 {
1560 	struct net_device *dev = NULL;
1561 	struct tsi108_prv_data *data = NULL;
1562 	hw_info *einfo;
1563 	int err = 0;
1564 
1565 	einfo = dev_get_platdata(&pdev->dev);
1566 
1567 	if (NULL == einfo) {
1568 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1569 		       pdev->id);
1570 		return -ENODEV;
1571 	}
1572 
1573 	/* Create an ethernet device instance */
1574 
1575 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1576 	if (!dev)
1577 		return -ENOMEM;
1578 
1579 	printk("tsi108_eth%d: probe...\n", pdev->id);
1580 	data = netdev_priv(dev);
1581 	data->dev = dev;
1582 	data->pdev = pdev;
1583 
1584 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1585 			pdev->id, einfo->regs, einfo->phyregs,
1586 			einfo->phy, einfo->irq_num);
1587 
1588 	data->regs = ioremap(einfo->regs, 0x400);
1589 	if (NULL == data->regs) {
1590 		err = -ENOMEM;
1591 		goto regs_fail;
1592 	}
1593 
1594 	data->phyregs = ioremap(einfo->phyregs, 0x400);
1595 	if (NULL == data->phyregs) {
1596 		err = -ENOMEM;
1597 		goto phyregs_fail;
1598 	}
1599 /* MII setup */
1600 	data->mii_if.dev = dev;
1601 	data->mii_if.mdio_read = tsi108_mdio_read;
1602 	data->mii_if.mdio_write = tsi108_mdio_write;
1603 	data->mii_if.phy_id = einfo->phy;
1604 	data->mii_if.phy_id_mask = 0x1f;
1605 	data->mii_if.reg_num_mask = 0x1f;
1606 
1607 	data->phy = einfo->phy;
1608 	data->phy_type = einfo->phy_type;
1609 	data->irq_num = einfo->irq_num;
1610 	data->id = pdev->id;
1611 	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1612 	dev->netdev_ops = &tsi108_netdev_ops;
1613 	dev->ethtool_ops = &tsi108_ethtool_ops;
1614 
1615 	/* Apparently, the Linux networking code won't use scatter-gather
1616 	 * if the hardware doesn't do checksums.  However, it's faster
1617 	 * to checksum in place and use SG, as (among other reasons)
1618 	 * the cache won't be dirtied (which then has to be flushed
1619 	 * before DMA).  The checksumming is done by the driver (via
1620 	 * a new function skb_csum_dev() in net/core/skbuff.c).
1621 	 */
1622 
1623 	dev->features = NETIF_F_HIGHDMA;
1624 
1625 	spin_lock_init(&data->txlock);
1626 	spin_lock_init(&data->misclock);
1627 
1628 	tsi108_reset_ether(data);
1629 	tsi108_kill_phy(dev);
1630 
1631 	if ((err = tsi108_get_mac(dev)) != 0) {
1632 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1633 		       dev->name);
1634 		goto register_fail;
1635 	}
1636 
1637 	tsi108_init_mac(dev);
1638 	err = register_netdev(dev);
1639 	if (err) {
1640 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1641 				dev->name);
1642 		goto register_fail;
1643 	}
1644 
1645 	platform_set_drvdata(pdev, dev);
1646 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1647 	       dev->name, dev->dev_addr);
1648 #ifdef DEBUG
1649 	data->msg_enable = DEBUG;
1650 	dump_eth_one(dev);
1651 #endif
1652 
1653 	return 0;
1654 
1655 register_fail:
1656 	iounmap(data->phyregs);
1657 
1658 phyregs_fail:
1659 	iounmap(data->regs);
1660 
1661 regs_fail:
1662 	free_netdev(dev);
1663 	return err;
1664 }
1665 
1666 /* There's no way to either get interrupts from the PHY when
1667  * something changes, or to have the Tsi108 automatically communicate
1668  * with the PHY to reconfigure itself.
1669  *
1670  * Thus, we have to do it using a timer.
1671  */
1672 
tsi108_timed_checker(struct timer_list * t)1673 static void tsi108_timed_checker(struct timer_list *t)
1674 {
1675 	struct tsi108_prv_data *data = from_timer(data, t, timer);
1676 	struct net_device *dev = data->dev;
1677 
1678 	tsi108_check_phy(dev);
1679 	tsi108_check_rxring(dev);
1680 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1681 }
1682 
tsi108_ether_remove(struct platform_device * pdev)1683 static int tsi108_ether_remove(struct platform_device *pdev)
1684 {
1685 	struct net_device *dev = platform_get_drvdata(pdev);
1686 	struct tsi108_prv_data *priv = netdev_priv(dev);
1687 
1688 	unregister_netdev(dev);
1689 	tsi108_stop_ethernet(dev);
1690 	iounmap(priv->regs);
1691 	iounmap(priv->phyregs);
1692 	free_netdev(dev);
1693 
1694 	return 0;
1695 }
1696 module_platform_driver(tsi_eth_driver);
1697 
1698 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1699 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1700 MODULE_LICENSE("GPL");
1701 MODULE_ALIAS("platform:tsi-ethernet");
1702