1 /*******************************************************************************
2
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN 256
60
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
64 */
65 #define TSI108_RXBUF_SIZE 1536
66
67 #define TSI108_TXRING_LEN 256
68
69 #define TSI108_TX_INT_FREQ 64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78 void __iomem *regs; /* Base of normal regs */
79 void __iomem *phyregs; /* Base of register bank used for PHY access */
80
81 struct net_device *dev;
82 struct napi_struct napi;
83
84 unsigned int phy; /* Index of PHY for this interface */
85 unsigned int irq_num;
86 unsigned int id;
87 unsigned int phy_type;
88
89 struct timer_list timer;/* Timer that triggers the check phy function */
90 unsigned int rxtail; /* Next entry in rxring to read */
91 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree; /* Number of free, allocated RX buffers */
93
94 unsigned int rxpending; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
97
98 unsigned int txtail; /* Next TX descriptor to check status on */
99 unsigned int txhead; /* Next TX descriptor to use */
100
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
104 * explicitly. */
105
106 unsigned int txfree;
107
108 unsigned int phy_ok; /* The PHY is currently powered on. */
109
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
113
114 unsigned int link_up;
115 unsigned int speed;
116 unsigned int duplex;
117
118 tx_desc *txring;
119 rx_desc *rxring;
120 struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123 dma_addr_t txdma, rxdma;
124
125 /* txlock nests in misclock and phy_lock */
126
127 spinlock_t txlock, misclock;
128
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
133 */
134
135 struct net_device_stats stats;
136 struct net_device_stats tmpstats;
137
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
140 */
141
142 unsigned long rx_fcs; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_underruns; /* Add to rx_length_errors */
146 unsigned long rx_overruns; /* Add to rx_length_errors */
147
148 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
150
151 unsigned long mc_hash[16];
152 u32 msg_enable; /* debug message level */
153 struct mii_if_info mii_if;
154 unsigned int init_media;
155
156 struct platform_device *pdev;
157 };
158
159 /* Structure for a device driver */
160
161 static struct platform_driver tsi_eth_driver = {
162 .probe = tsi108_init_one,
163 .remove = tsi108_ether_remove,
164 .driver = {
165 .name = "tsi-ethernet",
166 },
167 };
168
169 static void tsi108_timed_checker(struct timer_list *t);
170
171 #ifdef DEBUG
dump_eth_one(struct net_device * dev)172 static void dump_eth_one(struct net_device *dev)
173 {
174 struct tsi108_prv_data *data = netdev_priv(dev);
175
176 printk("Dumping %s...\n", dev->name);
177 printk("intstat %x intmask %x phy_ok %d"
178 " link %d speed %d duplex %d\n",
179 TSI_READ(TSI108_EC_INTSTAT),
180 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
181 data->link_up, data->speed, data->duplex);
182
183 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
184 data->txhead, data->txtail, data->txfree,
185 TSI_READ(TSI108_EC_TXSTAT),
186 TSI_READ(TSI108_EC_TXESTAT),
187 TSI_READ(TSI108_EC_TXERR));
188
189 printk("RX: head %d, tail %d, free %d, stat %x,"
190 " estat %x, err %x, pending %d\n\n",
191 data->rxhead, data->rxtail, data->rxfree,
192 TSI_READ(TSI108_EC_RXSTAT),
193 TSI_READ(TSI108_EC_RXESTAT),
194 TSI_READ(TSI108_EC_RXERR), data->rxpending);
195 }
196 #endif
197
198 /* Synchronization is needed between the thread and up/down events.
199 * Note that the PHY is accessed through the same registers for both
200 * interfaces, so this can't be made interface-specific.
201 */
202
203 static DEFINE_SPINLOCK(phy_lock);
204
tsi108_read_mii(struct tsi108_prv_data * data,int reg)205 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
206 {
207 unsigned i;
208
209 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
210 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
211 (reg << TSI108_MAC_MII_ADDR_REG));
212 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
213 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
214 for (i = 0; i < 100; i++) {
215 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
216 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
217 break;
218 udelay(10);
219 }
220
221 if (i == 100)
222 return 0xffff;
223 else
224 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
225 }
226
tsi108_write_mii(struct tsi108_prv_data * data,int reg,u16 val)227 static void tsi108_write_mii(struct tsi108_prv_data *data,
228 int reg, u16 val)
229 {
230 unsigned i = 100;
231 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
232 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
233 (reg << TSI108_MAC_MII_ADDR_REG));
234 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
235 while (i--) {
236 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
237 TSI108_MAC_MII_IND_BUSY))
238 break;
239 udelay(10);
240 }
241 }
242
tsi108_mdio_read(struct net_device * dev,int addr,int reg)243 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
244 {
245 struct tsi108_prv_data *data = netdev_priv(dev);
246 return tsi108_read_mii(data, reg);
247 }
248
tsi108_mdio_write(struct net_device * dev,int addr,int reg,int val)249 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
250 {
251 struct tsi108_prv_data *data = netdev_priv(dev);
252 tsi108_write_mii(data, reg, val);
253 }
254
tsi108_write_tbi(struct tsi108_prv_data * data,int reg,u16 val)255 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
256 int reg, u16 val)
257 {
258 unsigned i = 1000;
259 TSI_WRITE(TSI108_MAC_MII_ADDR,
260 (0x1e << TSI108_MAC_MII_ADDR_PHY)
261 | (reg << TSI108_MAC_MII_ADDR_REG));
262 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
263 while(i--) {
264 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
265 return;
266 udelay(10);
267 }
268 printk(KERN_ERR "%s function time out\n", __func__);
269 }
270
mii_speed(struct mii_if_info * mii)271 static int mii_speed(struct mii_if_info *mii)
272 {
273 int advert, lpa, val, media;
274 int lpa2 = 0;
275 int speed;
276
277 if (!mii_link_ok(mii))
278 return 0;
279
280 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
281 if ((val & BMSR_ANEGCOMPLETE) == 0)
282 return 0;
283
284 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
285 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
286 media = mii_nway_result(advert & lpa);
287
288 if (mii->supports_gmii)
289 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
290
291 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
292 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
293 return speed;
294 }
295
tsi108_check_phy(struct net_device * dev)296 static void tsi108_check_phy(struct net_device *dev)
297 {
298 struct tsi108_prv_data *data = netdev_priv(dev);
299 u32 mac_cfg2_reg, portctrl_reg;
300 u32 duplex;
301 u32 speed;
302 unsigned long flags;
303
304 spin_lock_irqsave(&phy_lock, flags);
305
306 if (!data->phy_ok)
307 goto out;
308
309 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
310 data->init_media = 0;
311
312 if (netif_carrier_ok(dev)) {
313
314 speed = mii_speed(&data->mii_if);
315
316 if ((speed != data->speed) || duplex) {
317
318 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
319 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
320
321 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
322
323 if (speed == 1000) {
324 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
325 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
326 } else {
327 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
328 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
329 }
330
331 data->speed = speed;
332
333 if (data->mii_if.full_duplex) {
334 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
335 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
336 data->duplex = 2;
337 } else {
338 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
339 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
340 data->duplex = 1;
341 }
342
343 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
344 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
345 }
346
347 if (data->link_up == 0) {
348 /* The manual says it can take 3-4 usecs for the speed change
349 * to take effect.
350 */
351 udelay(5);
352
353 spin_lock(&data->txlock);
354 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
355 netif_wake_queue(dev);
356
357 data->link_up = 1;
358 spin_unlock(&data->txlock);
359 }
360 } else {
361 if (data->link_up == 1) {
362 netif_stop_queue(dev);
363 data->link_up = 0;
364 printk(KERN_NOTICE "%s : link is down\n", dev->name);
365 }
366
367 goto out;
368 }
369
370
371 out:
372 spin_unlock_irqrestore(&phy_lock, flags);
373 }
374
375 static inline void
tsi108_stat_carry_one(int carry,int carry_bit,int carry_shift,unsigned long * upper)376 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
377 unsigned long *upper)
378 {
379 if (carry & carry_bit)
380 *upper += carry_shift;
381 }
382
tsi108_stat_carry(struct net_device * dev)383 static void tsi108_stat_carry(struct net_device *dev)
384 {
385 struct tsi108_prv_data *data = netdev_priv(dev);
386 u32 carry1, carry2;
387
388 spin_lock_irq(&data->misclock);
389
390 carry1 = TSI_READ(TSI108_STAT_CARRY1);
391 carry2 = TSI_READ(TSI108_STAT_CARRY2);
392
393 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
394 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
395
396 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
397 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
398
399 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
400 TSI108_STAT_RXPKTS_CARRY,
401 &data->stats.rx_packets);
402
403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
404 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
405
406 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
407 TSI108_STAT_RXMCAST_CARRY,
408 &data->stats.multicast);
409
410 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
411 TSI108_STAT_RXALIGN_CARRY,
412 &data->stats.rx_frame_errors);
413
414 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
415 TSI108_STAT_RXLENGTH_CARRY,
416 &data->stats.rx_length_errors);
417
418 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
419 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
420
421 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
422 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
423
424 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
425 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
426
427 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
428 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
429
430 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
431 TSI108_STAT_RXDROP_CARRY,
432 &data->stats.rx_missed_errors);
433
434 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
435 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
436
437 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
438 TSI108_STAT_TXPKTS_CARRY,
439 &data->stats.tx_packets);
440
441 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
442 TSI108_STAT_TXEXDEF_CARRY,
443 &data->stats.tx_aborted_errors);
444
445 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
446 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
447
448 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
449 TSI108_STAT_TXTCOL_CARRY,
450 &data->stats.collisions);
451
452 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
453 TSI108_STAT_TXPAUSEDROP_CARRY,
454 &data->tx_pause_drop);
455
456 spin_unlock_irq(&data->misclock);
457 }
458
459 /* Read a stat counter atomically with respect to carries.
460 * data->misclock must be held.
461 */
462 static inline unsigned long
tsi108_read_stat(struct tsi108_prv_data * data,int reg,int carry_bit,int carry_shift,unsigned long * upper)463 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
464 int carry_shift, unsigned long *upper)
465 {
466 int carryreg;
467 unsigned long val;
468
469 if (reg < 0xb0)
470 carryreg = TSI108_STAT_CARRY1;
471 else
472 carryreg = TSI108_STAT_CARRY2;
473
474 again:
475 val = TSI_READ(reg) | *upper;
476
477 /* Check to see if it overflowed, but the interrupt hasn't
478 * been serviced yet. If so, handle the carry here, and
479 * try again.
480 */
481
482 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
483 *upper += carry_shift;
484 TSI_WRITE(carryreg, carry_bit);
485 goto again;
486 }
487
488 return val;
489 }
490
tsi108_get_stats(struct net_device * dev)491 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
492 {
493 unsigned long excol;
494
495 struct tsi108_prv_data *data = netdev_priv(dev);
496 spin_lock_irq(&data->misclock);
497
498 data->tmpstats.rx_packets =
499 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
500 TSI108_STAT_CARRY1_RXPKTS,
501 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
502
503 data->tmpstats.tx_packets =
504 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
505 TSI108_STAT_CARRY2_TXPKTS,
506 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
507
508 data->tmpstats.rx_bytes =
509 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
510 TSI108_STAT_CARRY1_RXBYTES,
511 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
512
513 data->tmpstats.tx_bytes =
514 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
515 TSI108_STAT_CARRY2_TXBYTES,
516 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
517
518 data->tmpstats.multicast =
519 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
520 TSI108_STAT_CARRY1_RXMCAST,
521 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
522
523 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
524 TSI108_STAT_CARRY2_TXEXCOL,
525 TSI108_STAT_TXEXCOL_CARRY,
526 &data->tx_coll_abort);
527
528 data->tmpstats.collisions =
529 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
530 TSI108_STAT_CARRY2_TXTCOL,
531 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
532
533 data->tmpstats.collisions += excol;
534
535 data->tmpstats.rx_length_errors =
536 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
537 TSI108_STAT_CARRY1_RXLENGTH,
538 TSI108_STAT_RXLENGTH_CARRY,
539 &data->stats.rx_length_errors);
540
541 data->tmpstats.rx_length_errors +=
542 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
543 TSI108_STAT_CARRY1_RXRUNT,
544 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
545
546 data->tmpstats.rx_length_errors +=
547 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
548 TSI108_STAT_CARRY1_RXJUMBO,
549 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
550
551 data->tmpstats.rx_frame_errors =
552 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
553 TSI108_STAT_CARRY1_RXALIGN,
554 TSI108_STAT_RXALIGN_CARRY,
555 &data->stats.rx_frame_errors);
556
557 data->tmpstats.rx_frame_errors +=
558 tsi108_read_stat(data, TSI108_STAT_RXFCS,
559 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
560 &data->rx_fcs);
561
562 data->tmpstats.rx_frame_errors +=
563 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
564 TSI108_STAT_CARRY1_RXFRAG,
565 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
566
567 data->tmpstats.rx_missed_errors =
568 tsi108_read_stat(data, TSI108_STAT_RXDROP,
569 TSI108_STAT_CARRY1_RXDROP,
570 TSI108_STAT_RXDROP_CARRY,
571 &data->stats.rx_missed_errors);
572
573 /* These three are maintained by software. */
574 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
575 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
576
577 data->tmpstats.tx_aborted_errors =
578 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
579 TSI108_STAT_CARRY2_TXEXDEF,
580 TSI108_STAT_TXEXDEF_CARRY,
581 &data->stats.tx_aborted_errors);
582
583 data->tmpstats.tx_aborted_errors +=
584 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
585 TSI108_STAT_CARRY2_TXPAUSE,
586 TSI108_STAT_TXPAUSEDROP_CARRY,
587 &data->tx_pause_drop);
588
589 data->tmpstats.tx_aborted_errors += excol;
590
591 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
592 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
593 data->tmpstats.rx_crc_errors +
594 data->tmpstats.rx_frame_errors +
595 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
596
597 spin_unlock_irq(&data->misclock);
598 return &data->tmpstats;
599 }
600
tsi108_restart_rx(struct tsi108_prv_data * data,struct net_device * dev)601 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
602 {
603 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
604 TSI108_EC_RXQ_PTRHIGH_VALID);
605
606 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
607 | TSI108_EC_RXCTRL_QUEUE0);
608 }
609
tsi108_restart_tx(struct tsi108_prv_data * data)610 static void tsi108_restart_tx(struct tsi108_prv_data * data)
611 {
612 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
613 TSI108_EC_TXQ_PTRHIGH_VALID);
614
615 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
616 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
617 }
618
619 /* txlock must be held by caller, with IRQs disabled, and
620 * with permission to re-enable them when the lock is dropped.
621 */
tsi108_complete_tx(struct net_device * dev)622 static void tsi108_complete_tx(struct net_device *dev)
623 {
624 struct tsi108_prv_data *data = netdev_priv(dev);
625 int tx;
626 struct sk_buff *skb;
627 int release = 0;
628
629 while (!data->txfree || data->txhead != data->txtail) {
630 tx = data->txtail;
631
632 if (data->txring[tx].misc & TSI108_TX_OWN)
633 break;
634
635 skb = data->txskbs[tx];
636
637 if (!(data->txring[tx].misc & TSI108_TX_OK))
638 printk("%s: bad tx packet, misc %x\n",
639 dev->name, data->txring[tx].misc);
640
641 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
642 data->txfree++;
643
644 if (data->txring[tx].misc & TSI108_TX_EOF) {
645 dev_kfree_skb_any(skb);
646 release++;
647 }
648 }
649
650 if (release) {
651 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
652 netif_wake_queue(dev);
653 }
654 }
655
tsi108_send_packet(struct sk_buff * skb,struct net_device * dev)656 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
657 {
658 struct tsi108_prv_data *data = netdev_priv(dev);
659 int frags = skb_shinfo(skb)->nr_frags + 1;
660 int i;
661
662 if (!data->phy_ok && net_ratelimit())
663 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
664
665 if (!data->link_up) {
666 printk(KERN_ERR "%s: Transmit while link is down!\n",
667 dev->name);
668 netif_stop_queue(dev);
669 return NETDEV_TX_BUSY;
670 }
671
672 if (data->txfree < MAX_SKB_FRAGS + 1) {
673 netif_stop_queue(dev);
674
675 if (net_ratelimit())
676 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
677 dev->name);
678 return NETDEV_TX_BUSY;
679 }
680
681 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
682 netif_stop_queue(dev);
683 }
684
685 spin_lock_irq(&data->txlock);
686
687 for (i = 0; i < frags; i++) {
688 int misc = 0;
689 int tx = data->txhead;
690
691 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
692 * the interrupt bit. TX descriptor-complete interrupts are
693 * enabled when the queue fills up, and masked when there is
694 * still free space. This way, when saturating the outbound
695 * link, the tx interrupts are kept to a reasonable level.
696 * When the queue is not full, reclamation of skbs still occurs
697 * as new packets are transmitted, or on a queue-empty
698 * interrupt.
699 */
700
701 if ((tx % TSI108_TX_INT_FREQ == 0) &&
702 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
703 misc = TSI108_TX_INT;
704
705 data->txskbs[tx] = skb;
706
707 if (i == 0) {
708 data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
709 skb->data, skb_headlen(skb),
710 DMA_TO_DEVICE);
711 data->txring[tx].len = skb_headlen(skb);
712 misc |= TSI108_TX_SOF;
713 } else {
714 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
715
716 data->txring[tx].buf0 =
717 skb_frag_dma_map(&data->pdev->dev, frag,
718 0, skb_frag_size(frag),
719 DMA_TO_DEVICE);
720 data->txring[tx].len = skb_frag_size(frag);
721 }
722
723 if (i == frags - 1)
724 misc |= TSI108_TX_EOF;
725
726 if (netif_msg_pktdata(data)) {
727 int i;
728 printk("%s: Tx Frame contents (%d)\n", dev->name,
729 skb->len);
730 for (i = 0; i < skb->len; i++)
731 printk(" %2.2x", skb->data[i]);
732 printk(".\n");
733 }
734 data->txring[tx].misc = misc | TSI108_TX_OWN;
735
736 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
737 data->txfree--;
738 }
739
740 tsi108_complete_tx(dev);
741
742 /* This must be done after the check for completed tx descriptors,
743 * so that the tail pointer is correct.
744 */
745
746 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
747 tsi108_restart_tx(data);
748
749 spin_unlock_irq(&data->txlock);
750 return NETDEV_TX_OK;
751 }
752
tsi108_complete_rx(struct net_device * dev,int budget)753 static int tsi108_complete_rx(struct net_device *dev, int budget)
754 {
755 struct tsi108_prv_data *data = netdev_priv(dev);
756 int done = 0;
757
758 while (data->rxfree && done != budget) {
759 int rx = data->rxtail;
760 struct sk_buff *skb;
761
762 if (data->rxring[rx].misc & TSI108_RX_OWN)
763 break;
764
765 skb = data->rxskbs[rx];
766 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
767 data->rxfree--;
768 done++;
769
770 if (data->rxring[rx].misc & TSI108_RX_BAD) {
771 spin_lock_irq(&data->misclock);
772
773 if (data->rxring[rx].misc & TSI108_RX_CRC)
774 data->stats.rx_crc_errors++;
775 if (data->rxring[rx].misc & TSI108_RX_OVER)
776 data->stats.rx_fifo_errors++;
777
778 spin_unlock_irq(&data->misclock);
779
780 dev_kfree_skb_any(skb);
781 continue;
782 }
783 if (netif_msg_pktdata(data)) {
784 int i;
785 printk("%s: Rx Frame contents (%d)\n",
786 dev->name, data->rxring[rx].len);
787 for (i = 0; i < data->rxring[rx].len; i++)
788 printk(" %2.2x", skb->data[i]);
789 printk(".\n");
790 }
791
792 skb_put(skb, data->rxring[rx].len);
793 skb->protocol = eth_type_trans(skb, dev);
794 netif_receive_skb(skb);
795 }
796
797 return done;
798 }
799
tsi108_refill_rx(struct net_device * dev,int budget)800 static int tsi108_refill_rx(struct net_device *dev, int budget)
801 {
802 struct tsi108_prv_data *data = netdev_priv(dev);
803 int done = 0;
804
805 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
806 int rx = data->rxhead;
807 struct sk_buff *skb;
808
809 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
810 data->rxskbs[rx] = skb;
811 if (!skb)
812 break;
813
814 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
815 skb->data, TSI108_RX_SKB_SIZE,
816 DMA_FROM_DEVICE);
817
818 /* Sometimes the hardware sets blen to zero after packet
819 * reception, even though the manual says that it's only ever
820 * modified by the driver.
821 */
822
823 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
824 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
825
826 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
827 data->rxfree++;
828 done++;
829 }
830
831 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
832 TSI108_EC_RXSTAT_QUEUE0))
833 tsi108_restart_rx(data, dev);
834
835 return done;
836 }
837
tsi108_poll(struct napi_struct * napi,int budget)838 static int tsi108_poll(struct napi_struct *napi, int budget)
839 {
840 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
841 struct net_device *dev = data->dev;
842 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
843 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
844 int num_received = 0, num_filled = 0;
845
846 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
847 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
848
849 TSI_WRITE(TSI108_EC_RXESTAT, estat);
850 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
851
852 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
853 num_received = tsi108_complete_rx(dev, budget);
854
855 /* This should normally fill no more slots than the number of
856 * packets received in tsi108_complete_rx(). The exception
857 * is when we previously ran out of memory for RX SKBs. In that
858 * case, it's helpful to obey the budget, not only so that the
859 * CPU isn't hogged, but so that memory (which may still be low)
860 * is not hogged by one device.
861 *
862 * A work unit is considered to be two SKBs to allow us to catch
863 * up when the ring has shrunk due to out-of-memory but we're
864 * still removing the full budget's worth of packets each time.
865 */
866
867 if (data->rxfree < TSI108_RXRING_LEN)
868 num_filled = tsi108_refill_rx(dev, budget * 2);
869
870 if (intstat & TSI108_INT_RXERROR) {
871 u32 err = TSI_READ(TSI108_EC_RXERR);
872 TSI_WRITE(TSI108_EC_RXERR, err);
873
874 if (err) {
875 if (net_ratelimit())
876 printk(KERN_DEBUG "%s: RX error %x\n",
877 dev->name, err);
878
879 if (!(TSI_READ(TSI108_EC_RXSTAT) &
880 TSI108_EC_RXSTAT_QUEUE0))
881 tsi108_restart_rx(data, dev);
882 }
883 }
884
885 if (intstat & TSI108_INT_RXOVERRUN) {
886 spin_lock_irq(&data->misclock);
887 data->stats.rx_fifo_errors++;
888 spin_unlock_irq(&data->misclock);
889 }
890
891 if (num_received < budget) {
892 data->rxpending = 0;
893 napi_complete_done(napi, num_received);
894
895 TSI_WRITE(TSI108_EC_INTMASK,
896 TSI_READ(TSI108_EC_INTMASK)
897 & ~(TSI108_INT_RXQUEUE0
898 | TSI108_INT_RXTHRESH |
899 TSI108_INT_RXOVERRUN |
900 TSI108_INT_RXERROR |
901 TSI108_INT_RXWAIT));
902 } else {
903 data->rxpending = 1;
904 }
905
906 return num_received;
907 }
908
tsi108_rx_int(struct net_device * dev)909 static void tsi108_rx_int(struct net_device *dev)
910 {
911 struct tsi108_prv_data *data = netdev_priv(dev);
912
913 /* A race could cause dev to already be scheduled, so it's not an
914 * error if that happens (and interrupts shouldn't be re-masked,
915 * because that can cause harmful races, if poll has already
916 * unmasked them but not cleared LINK_STATE_SCHED).
917 *
918 * This can happen if this code races with tsi108_poll(), which masks
919 * the interrupts after tsi108_irq_one() read the mask, but before
920 * napi_schedule is called. It could also happen due to calls
921 * from tsi108_check_rxring().
922 */
923
924 if (napi_schedule_prep(&data->napi)) {
925 /* Mask, rather than ack, the receive interrupts. The ack
926 * will happen in tsi108_poll().
927 */
928
929 TSI_WRITE(TSI108_EC_INTMASK,
930 TSI_READ(TSI108_EC_INTMASK) |
931 TSI108_INT_RXQUEUE0
932 | TSI108_INT_RXTHRESH |
933 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
934 TSI108_INT_RXWAIT);
935 __napi_schedule(&data->napi);
936 } else {
937 if (!netif_running(dev)) {
938 /* This can happen if an interrupt occurs while the
939 * interface is being brought down, as the START
940 * bit is cleared before the stop function is called.
941 *
942 * In this case, the interrupts must be masked, or
943 * they will continue indefinitely.
944 *
945 * There's a race here if the interface is brought down
946 * and then up in rapid succession, as the device could
947 * be made running after the above check and before
948 * the masking below. This will only happen if the IRQ
949 * thread has a lower priority than the task brining
950 * up the interface. Fixing this race would likely
951 * require changes in generic code.
952 */
953
954 TSI_WRITE(TSI108_EC_INTMASK,
955 TSI_READ
956 (TSI108_EC_INTMASK) |
957 TSI108_INT_RXQUEUE0 |
958 TSI108_INT_RXTHRESH |
959 TSI108_INT_RXOVERRUN |
960 TSI108_INT_RXERROR |
961 TSI108_INT_RXWAIT);
962 }
963 }
964 }
965
966 /* If the RX ring has run out of memory, try periodically
967 * to allocate some more, as otherwise poll would never
968 * get called (apart from the initial end-of-queue condition).
969 *
970 * This is called once per second (by default) from the thread.
971 */
972
tsi108_check_rxring(struct net_device * dev)973 static void tsi108_check_rxring(struct net_device *dev)
974 {
975 struct tsi108_prv_data *data = netdev_priv(dev);
976
977 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
978 * directly, so as to keep the receive path single-threaded
979 * (and thus not needing a lock).
980 */
981
982 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
983 tsi108_rx_int(dev);
984 }
985
tsi108_tx_int(struct net_device * dev)986 static void tsi108_tx_int(struct net_device *dev)
987 {
988 struct tsi108_prv_data *data = netdev_priv(dev);
989 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
990
991 TSI_WRITE(TSI108_EC_TXESTAT, estat);
992 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
993 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
994 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
995 u32 err = TSI_READ(TSI108_EC_TXERR);
996 TSI_WRITE(TSI108_EC_TXERR, err);
997
998 if (err && net_ratelimit())
999 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1000 }
1001
1002 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1003 spin_lock(&data->txlock);
1004 tsi108_complete_tx(dev);
1005 spin_unlock(&data->txlock);
1006 }
1007 }
1008
1009
tsi108_irq(int irq,void * dev_id)1010 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1011 {
1012 struct net_device *dev = dev_id;
1013 struct tsi108_prv_data *data = netdev_priv(dev);
1014 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1015
1016 if (!(stat & TSI108_INT_ANY))
1017 return IRQ_NONE; /* Not our interrupt */
1018
1019 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1020
1021 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1022 TSI108_INT_TXERROR))
1023 tsi108_tx_int(dev);
1024 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1025 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1026 TSI108_INT_RXERROR))
1027 tsi108_rx_int(dev);
1028
1029 if (stat & TSI108_INT_SFN) {
1030 if (net_ratelimit())
1031 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1032 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1033 }
1034
1035 if (stat & TSI108_INT_STATCARRY) {
1036 tsi108_stat_carry(dev);
1037 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1038 }
1039
1040 return IRQ_HANDLED;
1041 }
1042
tsi108_stop_ethernet(struct net_device * dev)1043 static void tsi108_stop_ethernet(struct net_device *dev)
1044 {
1045 struct tsi108_prv_data *data = netdev_priv(dev);
1046 int i = 1000;
1047 /* Disable all TX and RX queues ... */
1048 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1049 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1050
1051 /* ...and wait for them to become idle */
1052 while(i--) {
1053 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1054 break;
1055 udelay(10);
1056 }
1057 i = 1000;
1058 while(i--){
1059 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1060 return;
1061 udelay(10);
1062 }
1063 printk(KERN_ERR "%s function time out\n", __func__);
1064 }
1065
tsi108_reset_ether(struct tsi108_prv_data * data)1066 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1067 {
1068 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1069 udelay(100);
1070 TSI_WRITE(TSI108_MAC_CFG1, 0);
1071
1072 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1073 udelay(100);
1074 TSI_WRITE(TSI108_EC_PORTCTRL,
1075 TSI_READ(TSI108_EC_PORTCTRL) &
1076 ~TSI108_EC_PORTCTRL_STATRST);
1077
1078 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1079 udelay(100);
1080 TSI_WRITE(TSI108_EC_TXCFG,
1081 TSI_READ(TSI108_EC_TXCFG) &
1082 ~TSI108_EC_TXCFG_RST);
1083
1084 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1085 udelay(100);
1086 TSI_WRITE(TSI108_EC_RXCFG,
1087 TSI_READ(TSI108_EC_RXCFG) &
1088 ~TSI108_EC_RXCFG_RST);
1089
1090 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1091 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1092 TSI108_MAC_MII_MGMT_RST);
1093 udelay(100);
1094 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1095 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1096 ~(TSI108_MAC_MII_MGMT_RST |
1097 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1098 }
1099
tsi108_get_mac(struct net_device * dev)1100 static int tsi108_get_mac(struct net_device *dev)
1101 {
1102 struct tsi108_prv_data *data = netdev_priv(dev);
1103 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1104 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1105
1106 /* Note that the octets are reversed from what the manual says,
1107 * producing an even weirder ordering...
1108 */
1109 if (word2 == 0 && word1 == 0) {
1110 dev->dev_addr[0] = 0x00;
1111 dev->dev_addr[1] = 0x06;
1112 dev->dev_addr[2] = 0xd2;
1113 dev->dev_addr[3] = 0x00;
1114 dev->dev_addr[4] = 0x00;
1115 if (0x8 == data->phy)
1116 dev->dev_addr[5] = 0x01;
1117 else
1118 dev->dev_addr[5] = 0x02;
1119
1120 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1121
1122 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1123 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1124
1125 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1126 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1127 } else {
1128 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1129 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1130 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1131 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1132 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1133 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1134 }
1135
1136 if (!is_valid_ether_addr(dev->dev_addr)) {
1137 printk(KERN_ERR
1138 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1139 dev->name, word1, word2);
1140 return -EINVAL;
1141 }
1142
1143 return 0;
1144 }
1145
tsi108_set_mac(struct net_device * dev,void * addr)1146 static int tsi108_set_mac(struct net_device *dev, void *addr)
1147 {
1148 struct tsi108_prv_data *data = netdev_priv(dev);
1149 u32 word1, word2;
1150 int i;
1151
1152 if (!is_valid_ether_addr(addr))
1153 return -EADDRNOTAVAIL;
1154
1155 for (i = 0; i < 6; i++)
1156 /* +2 is for the offset of the HW addr type */
1157 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1158
1159 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1160
1161 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1162 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1163
1164 spin_lock_irq(&data->misclock);
1165 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1166 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1167 spin_lock(&data->txlock);
1168
1169 if (data->txfree && data->link_up)
1170 netif_wake_queue(dev);
1171
1172 spin_unlock(&data->txlock);
1173 spin_unlock_irq(&data->misclock);
1174 return 0;
1175 }
1176
1177 /* Protected by dev->xmit_lock. */
tsi108_set_rx_mode(struct net_device * dev)1178 static void tsi108_set_rx_mode(struct net_device *dev)
1179 {
1180 struct tsi108_prv_data *data = netdev_priv(dev);
1181 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1182
1183 if (dev->flags & IFF_PROMISC) {
1184 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1185 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1186 goto out;
1187 }
1188
1189 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1190
1191 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1192 int i;
1193 struct netdev_hw_addr *ha;
1194 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1195
1196 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1197
1198 netdev_for_each_mc_addr(ha, dev) {
1199 u32 hash, crc;
1200
1201 crc = ether_crc(6, ha->addr);
1202 hash = crc >> 23;
1203 __set_bit(hash, &data->mc_hash[0]);
1204 }
1205
1206 TSI_WRITE(TSI108_EC_HASHADDR,
1207 TSI108_EC_HASHADDR_AUTOINC |
1208 TSI108_EC_HASHADDR_MCAST);
1209
1210 for (i = 0; i < 16; i++) {
1211 /* The manual says that the hardware may drop
1212 * back-to-back writes to the data register.
1213 */
1214 udelay(1);
1215 TSI_WRITE(TSI108_EC_HASHDATA,
1216 data->mc_hash[i]);
1217 }
1218 }
1219
1220 out:
1221 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1222 }
1223
tsi108_init_phy(struct net_device * dev)1224 static void tsi108_init_phy(struct net_device *dev)
1225 {
1226 struct tsi108_prv_data *data = netdev_priv(dev);
1227 u32 i = 0;
1228 u16 phyval = 0;
1229 unsigned long flags;
1230
1231 spin_lock_irqsave(&phy_lock, flags);
1232
1233 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1234 while (--i) {
1235 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1236 break;
1237 udelay(10);
1238 }
1239 if (i == 0)
1240 printk(KERN_ERR "%s function time out\n", __func__);
1241
1242 if (data->phy_type == TSI108_PHY_BCM54XX) {
1243 tsi108_write_mii(data, 0x09, 0x0300);
1244 tsi108_write_mii(data, 0x10, 0x1020);
1245 tsi108_write_mii(data, 0x1c, 0x8c00);
1246 }
1247
1248 tsi108_write_mii(data,
1249 MII_BMCR,
1250 BMCR_ANENABLE | BMCR_ANRESTART);
1251 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1252 cpu_relax();
1253
1254 /* Set G/MII mode and receive clock select in TBI control #2. The
1255 * second port won't work if this isn't done, even though we don't
1256 * use TBI mode.
1257 */
1258
1259 tsi108_write_tbi(data, 0x11, 0x30);
1260
1261 /* FIXME: It seems to take more than 2 back-to-back reads to the
1262 * PHY_STAT register before the link up status bit is set.
1263 */
1264
1265 data->link_up = 0;
1266
1267 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1268 BMSR_LSTATUS)) {
1269 if (i++ > (MII_READ_DELAY / 10)) {
1270 break;
1271 }
1272 spin_unlock_irqrestore(&phy_lock, flags);
1273 msleep(10);
1274 spin_lock_irqsave(&phy_lock, flags);
1275 }
1276
1277 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1278 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1279 data->phy_ok = 1;
1280 data->init_media = 1;
1281 spin_unlock_irqrestore(&phy_lock, flags);
1282 }
1283
tsi108_kill_phy(struct net_device * dev)1284 static void tsi108_kill_phy(struct net_device *dev)
1285 {
1286 struct tsi108_prv_data *data = netdev_priv(dev);
1287 unsigned long flags;
1288
1289 spin_lock_irqsave(&phy_lock, flags);
1290 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1291 data->phy_ok = 0;
1292 spin_unlock_irqrestore(&phy_lock, flags);
1293 }
1294
tsi108_open(struct net_device * dev)1295 static int tsi108_open(struct net_device *dev)
1296 {
1297 int i;
1298 struct tsi108_prv_data *data = netdev_priv(dev);
1299 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1300 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1301
1302 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1303 if (i != 0) {
1304 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1305 data->id, data->irq_num);
1306 return i;
1307 } else {
1308 dev->irq = data->irq_num;
1309 printk(KERN_NOTICE
1310 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1311 data->id, dev->irq, dev->name);
1312 }
1313
1314 data->rxring = dma_zalloc_coherent(&data->pdev->dev, rxring_size,
1315 &data->rxdma, GFP_KERNEL);
1316 if (!data->rxring)
1317 return -ENOMEM;
1318
1319 data->txring = dma_zalloc_coherent(&data->pdev->dev, txring_size,
1320 &data->txdma, GFP_KERNEL);
1321 if (!data->txring) {
1322 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1323 data->rxdma);
1324 return -ENOMEM;
1325 }
1326
1327 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1329 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1330 data->rxring[i].vlan = 0;
1331 }
1332
1333 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1334
1335 data->rxtail = 0;
1336 data->rxhead = 0;
1337
1338 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1339 struct sk_buff *skb;
1340
1341 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1342 if (!skb) {
1343 /* Bah. No memory for now, but maybe we'll get
1344 * some more later.
1345 * For now, we'll live with the smaller ring.
1346 */
1347 printk(KERN_WARNING
1348 "%s: Could only allocate %d receive skb(s).\n",
1349 dev->name, i);
1350 data->rxhead = i;
1351 break;
1352 }
1353
1354 data->rxskbs[i] = skb;
1355 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1356 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1357 }
1358
1359 data->rxfree = i;
1360 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1361
1362 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1363 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1364 data->txring[i].misc = 0;
1365 }
1366
1367 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1368 data->txtail = 0;
1369 data->txhead = 0;
1370 data->txfree = TSI108_TXRING_LEN;
1371 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1372 tsi108_init_phy(dev);
1373
1374 napi_enable(&data->napi);
1375
1376 timer_setup(&data->timer, tsi108_timed_checker, 0);
1377 mod_timer(&data->timer, jiffies + 1);
1378
1379 tsi108_restart_rx(data, dev);
1380
1381 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1382
1383 TSI_WRITE(TSI108_EC_INTMASK,
1384 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1385 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1386 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1387 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1388
1389 TSI_WRITE(TSI108_MAC_CFG1,
1390 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1391 netif_start_queue(dev);
1392 return 0;
1393 }
1394
tsi108_close(struct net_device * dev)1395 static int tsi108_close(struct net_device *dev)
1396 {
1397 struct tsi108_prv_data *data = netdev_priv(dev);
1398
1399 netif_stop_queue(dev);
1400 napi_disable(&data->napi);
1401
1402 del_timer_sync(&data->timer);
1403
1404 tsi108_stop_ethernet(dev);
1405 tsi108_kill_phy(dev);
1406 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1407 TSI_WRITE(TSI108_MAC_CFG1, 0);
1408
1409 /* Check for any pending TX packets, and drop them. */
1410
1411 while (!data->txfree || data->txhead != data->txtail) {
1412 int tx = data->txtail;
1413 struct sk_buff *skb;
1414 skb = data->txskbs[tx];
1415 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1416 data->txfree++;
1417 dev_kfree_skb(skb);
1418 }
1419
1420 free_irq(data->irq_num, dev);
1421
1422 /* Discard the RX ring. */
1423
1424 while (data->rxfree) {
1425 int rx = data->rxtail;
1426 struct sk_buff *skb;
1427
1428 skb = data->rxskbs[rx];
1429 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1430 data->rxfree--;
1431 dev_kfree_skb(skb);
1432 }
1433
1434 dma_free_coherent(&data->pdev->dev,
1435 TSI108_RXRING_LEN * sizeof(rx_desc),
1436 data->rxring, data->rxdma);
1437 dma_free_coherent(&data->pdev->dev,
1438 TSI108_TXRING_LEN * sizeof(tx_desc),
1439 data->txring, data->txdma);
1440
1441 return 0;
1442 }
1443
tsi108_init_mac(struct net_device * dev)1444 static void tsi108_init_mac(struct net_device *dev)
1445 {
1446 struct tsi108_prv_data *data = netdev_priv(dev);
1447
1448 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1449 TSI108_MAC_CFG2_PADCRC);
1450
1451 TSI_WRITE(TSI108_EC_TXTHRESH,
1452 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1453 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1454
1455 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1456 ~(TSI108_STAT_CARRY1_RXBYTES |
1457 TSI108_STAT_CARRY1_RXPKTS |
1458 TSI108_STAT_CARRY1_RXFCS |
1459 TSI108_STAT_CARRY1_RXMCAST |
1460 TSI108_STAT_CARRY1_RXALIGN |
1461 TSI108_STAT_CARRY1_RXLENGTH |
1462 TSI108_STAT_CARRY1_RXRUNT |
1463 TSI108_STAT_CARRY1_RXJUMBO |
1464 TSI108_STAT_CARRY1_RXFRAG |
1465 TSI108_STAT_CARRY1_RXJABBER |
1466 TSI108_STAT_CARRY1_RXDROP));
1467
1468 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1469 ~(TSI108_STAT_CARRY2_TXBYTES |
1470 TSI108_STAT_CARRY2_TXPKTS |
1471 TSI108_STAT_CARRY2_TXEXDEF |
1472 TSI108_STAT_CARRY2_TXEXCOL |
1473 TSI108_STAT_CARRY2_TXTCOL |
1474 TSI108_STAT_CARRY2_TXPAUSE));
1475
1476 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1477 TSI_WRITE(TSI108_MAC_CFG1, 0);
1478
1479 TSI_WRITE(TSI108_EC_RXCFG,
1480 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1481
1482 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1483 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1484 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485 TSI108_EC_TXQ_CFG_SFNPORT));
1486
1487 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1488 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1489 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1490 TSI108_EC_RXQ_CFG_SFNPORT));
1491
1492 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1493 TSI108_EC_TXQ_BUFCFG_BURST256 |
1494 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1496
1497 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1498 TSI108_EC_RXQ_BUFCFG_BURST256 |
1499 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1500 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1501
1502 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1503 }
1504
tsi108_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1505 static int tsi108_get_link_ksettings(struct net_device *dev,
1506 struct ethtool_link_ksettings *cmd)
1507 {
1508 struct tsi108_prv_data *data = netdev_priv(dev);
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&data->txlock, flags);
1512 mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1513 spin_unlock_irqrestore(&data->txlock, flags);
1514
1515 return 0;
1516 }
1517
tsi108_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1518 static int tsi108_set_link_ksettings(struct net_device *dev,
1519 const struct ethtool_link_ksettings *cmd)
1520 {
1521 struct tsi108_prv_data *data = netdev_priv(dev);
1522 unsigned long flags;
1523 int rc;
1524
1525 spin_lock_irqsave(&data->txlock, flags);
1526 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1527 spin_unlock_irqrestore(&data->txlock, flags);
1528
1529 return rc;
1530 }
1531
tsi108_do_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1532 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1533 {
1534 struct tsi108_prv_data *data = netdev_priv(dev);
1535 if (!netif_running(dev))
1536 return -EINVAL;
1537 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1538 }
1539
1540 static const struct ethtool_ops tsi108_ethtool_ops = {
1541 .get_link = ethtool_op_get_link,
1542 .get_link_ksettings = tsi108_get_link_ksettings,
1543 .set_link_ksettings = tsi108_set_link_ksettings,
1544 };
1545
1546 static const struct net_device_ops tsi108_netdev_ops = {
1547 .ndo_open = tsi108_open,
1548 .ndo_stop = tsi108_close,
1549 .ndo_start_xmit = tsi108_send_packet,
1550 .ndo_set_rx_mode = tsi108_set_rx_mode,
1551 .ndo_get_stats = tsi108_get_stats,
1552 .ndo_do_ioctl = tsi108_do_ioctl,
1553 .ndo_set_mac_address = tsi108_set_mac,
1554 .ndo_validate_addr = eth_validate_addr,
1555 };
1556
1557 static int
tsi108_init_one(struct platform_device * pdev)1558 tsi108_init_one(struct platform_device *pdev)
1559 {
1560 struct net_device *dev = NULL;
1561 struct tsi108_prv_data *data = NULL;
1562 hw_info *einfo;
1563 int err = 0;
1564
1565 einfo = dev_get_platdata(&pdev->dev);
1566
1567 if (NULL == einfo) {
1568 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1569 pdev->id);
1570 return -ENODEV;
1571 }
1572
1573 /* Create an ethernet device instance */
1574
1575 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1576 if (!dev)
1577 return -ENOMEM;
1578
1579 printk("tsi108_eth%d: probe...\n", pdev->id);
1580 data = netdev_priv(dev);
1581 data->dev = dev;
1582 data->pdev = pdev;
1583
1584 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1585 pdev->id, einfo->regs, einfo->phyregs,
1586 einfo->phy, einfo->irq_num);
1587
1588 data->regs = ioremap(einfo->regs, 0x400);
1589 if (NULL == data->regs) {
1590 err = -ENOMEM;
1591 goto regs_fail;
1592 }
1593
1594 data->phyregs = ioremap(einfo->phyregs, 0x400);
1595 if (NULL == data->phyregs) {
1596 err = -ENOMEM;
1597 goto phyregs_fail;
1598 }
1599 /* MII setup */
1600 data->mii_if.dev = dev;
1601 data->mii_if.mdio_read = tsi108_mdio_read;
1602 data->mii_if.mdio_write = tsi108_mdio_write;
1603 data->mii_if.phy_id = einfo->phy;
1604 data->mii_if.phy_id_mask = 0x1f;
1605 data->mii_if.reg_num_mask = 0x1f;
1606
1607 data->phy = einfo->phy;
1608 data->phy_type = einfo->phy_type;
1609 data->irq_num = einfo->irq_num;
1610 data->id = pdev->id;
1611 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1612 dev->netdev_ops = &tsi108_netdev_ops;
1613 dev->ethtool_ops = &tsi108_ethtool_ops;
1614
1615 /* Apparently, the Linux networking code won't use scatter-gather
1616 * if the hardware doesn't do checksums. However, it's faster
1617 * to checksum in place and use SG, as (among other reasons)
1618 * the cache won't be dirtied (which then has to be flushed
1619 * before DMA). The checksumming is done by the driver (via
1620 * a new function skb_csum_dev() in net/core/skbuff.c).
1621 */
1622
1623 dev->features = NETIF_F_HIGHDMA;
1624
1625 spin_lock_init(&data->txlock);
1626 spin_lock_init(&data->misclock);
1627
1628 tsi108_reset_ether(data);
1629 tsi108_kill_phy(dev);
1630
1631 if ((err = tsi108_get_mac(dev)) != 0) {
1632 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1633 dev->name);
1634 goto register_fail;
1635 }
1636
1637 tsi108_init_mac(dev);
1638 err = register_netdev(dev);
1639 if (err) {
1640 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1641 dev->name);
1642 goto register_fail;
1643 }
1644
1645 platform_set_drvdata(pdev, dev);
1646 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1647 dev->name, dev->dev_addr);
1648 #ifdef DEBUG
1649 data->msg_enable = DEBUG;
1650 dump_eth_one(dev);
1651 #endif
1652
1653 return 0;
1654
1655 register_fail:
1656 iounmap(data->phyregs);
1657
1658 phyregs_fail:
1659 iounmap(data->regs);
1660
1661 regs_fail:
1662 free_netdev(dev);
1663 return err;
1664 }
1665
1666 /* There's no way to either get interrupts from the PHY when
1667 * something changes, or to have the Tsi108 automatically communicate
1668 * with the PHY to reconfigure itself.
1669 *
1670 * Thus, we have to do it using a timer.
1671 */
1672
tsi108_timed_checker(struct timer_list * t)1673 static void tsi108_timed_checker(struct timer_list *t)
1674 {
1675 struct tsi108_prv_data *data = from_timer(data, t, timer);
1676 struct net_device *dev = data->dev;
1677
1678 tsi108_check_phy(dev);
1679 tsi108_check_rxring(dev);
1680 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1681 }
1682
tsi108_ether_remove(struct platform_device * pdev)1683 static int tsi108_ether_remove(struct platform_device *pdev)
1684 {
1685 struct net_device *dev = platform_get_drvdata(pdev);
1686 struct tsi108_prv_data *priv = netdev_priv(dev);
1687
1688 unregister_netdev(dev);
1689 tsi108_stop_ethernet(dev);
1690 iounmap(priv->regs);
1691 iounmap(priv->phyregs);
1692 free_netdev(dev);
1693
1694 return 0;
1695 }
1696 module_platform_driver(tsi_eth_driver);
1697
1698 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1699 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1700 MODULE_LICENSE("GPL");
1701 MODULE_ALIAS("platform:tsi-ethernet");
1702