1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
67
68 #include "tree.h"
69 #include "rcu.h"
70
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75
76 /* Data structures. */
77
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 .gpwrap = true,
80 #ifdef CONFIG_RCU_NOCB_CPU
81 .cblist.flags = SEGCBLIST_RCU_CORE,
82 #endif
83 };
84 static struct rcu_state rcu_state = {
85 .level = { &rcu_state.node[0] },
86 .gp_state = RCU_GP_IDLE,
87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
90 .name = RCU_NAME,
91 .abbr = RCU_ABBR,
92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
95 };
96
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
148 static void invoke_rcu_core(void);
149 static void rcu_report_exp_rdp(struct rcu_data *rdp);
150 static void sync_sched_exp_online_cleanup(int cpu);
151 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
152 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
153 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
154 static bool rcu_init_invoked(void);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
157
158 /*
159 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
160 * real-time priority(enabling/disabling) is controlled by
161 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
162 */
163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
164 module_param(kthread_prio, int, 0444);
165
166 /* Delay in jiffies for grace-period initialization delays, debug only. */
167
168 static int gp_preinit_delay;
169 module_param(gp_preinit_delay, int, 0444);
170 static int gp_init_delay;
171 module_param(gp_init_delay, int, 0444);
172 static int gp_cleanup_delay;
173 module_param(gp_cleanup_delay, int, 0444);
174
175 // Add delay to rcu_read_unlock() for strict grace periods.
176 static int rcu_unlock_delay;
177 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
178 module_param(rcu_unlock_delay, int, 0444);
179 #endif
180
181 /*
182 * This rcu parameter is runtime-read-only. It reflects
183 * a minimum allowed number of objects which can be cached
184 * per-CPU. Object size is equal to one page. This value
185 * can be changed at boot time.
186 */
187 static int rcu_min_cached_objs = 5;
188 module_param(rcu_min_cached_objs, int, 0444);
189
190 // A page shrinker can ask for pages to be freed to make them
191 // available for other parts of the system. This usually happens
192 // under low memory conditions, and in that case we should also
193 // defer page-cache filling for a short time period.
194 //
195 // The default value is 5 seconds, which is long enough to reduce
196 // interference with the shrinker while it asks other systems to
197 // drain their caches.
198 static int rcu_delay_page_cache_fill_msec = 5000;
199 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
200
201 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)202 int rcu_get_gp_kthreads_prio(void)
203 {
204 return kthread_prio;
205 }
206 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
207
208 /*
209 * Number of grace periods between delays, normalized by the duration of
210 * the delay. The longer the delay, the more the grace periods between
211 * each delay. The reason for this normalization is that it means that,
212 * for non-zero delays, the overall slowdown of grace periods is constant
213 * regardless of the duration of the delay. This arrangement balances
214 * the need for long delays to increase some race probabilities with the
215 * need for fast grace periods to increase other race probabilities.
216 */
217 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
218
219 /*
220 * Return true if an RCU grace period is in progress. The READ_ONCE()s
221 * permit this function to be invoked without holding the root rcu_node
222 * structure's ->lock, but of course results can be subject to change.
223 */
rcu_gp_in_progress(void)224 static int rcu_gp_in_progress(void)
225 {
226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
227 }
228
229 /*
230 * Return the number of callbacks queued on the specified CPU.
231 * Handles both the nocbs and normal cases.
232 */
rcu_get_n_cbs_cpu(int cpu)233 static long rcu_get_n_cbs_cpu(int cpu)
234 {
235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
236
237 if (rcu_segcblist_is_enabled(&rdp->cblist))
238 return rcu_segcblist_n_cbs(&rdp->cblist);
239 return 0;
240 }
241
rcu_softirq_qs(void)242 void rcu_softirq_qs(void)
243 {
244 rcu_qs();
245 rcu_preempt_deferred_qs(current);
246 rcu_tasks_qs(current, false);
247 }
248
249 /*
250 * Reset the current CPU's ->dynticks counter to indicate that the
251 * newly onlined CPU is no longer in an extended quiescent state.
252 * This will either leave the counter unchanged, or increment it
253 * to the next non-quiescent value.
254 *
255 * The non-atomic test/increment sequence works because the upper bits
256 * of the ->dynticks counter are manipulated only by the corresponding CPU,
257 * or when the corresponding CPU is offline.
258 */
rcu_dynticks_eqs_online(void)259 static void rcu_dynticks_eqs_online(void)
260 {
261 if (ct_dynticks() & RCU_DYNTICKS_IDX)
262 return;
263 ct_state_inc(RCU_DYNTICKS_IDX);
264 }
265
266 /*
267 * Snapshot the ->dynticks counter with full ordering so as to allow
268 * stable comparison of this counter with past and future snapshots.
269 */
rcu_dynticks_snap(int cpu)270 static int rcu_dynticks_snap(int cpu)
271 {
272 smp_mb(); // Fundamental RCU ordering guarantee.
273 return ct_dynticks_cpu_acquire(cpu);
274 }
275
276 /*
277 * Return true if the snapshot returned from rcu_dynticks_snap()
278 * indicates that RCU is in an extended quiescent state.
279 */
rcu_dynticks_in_eqs(int snap)280 static bool rcu_dynticks_in_eqs(int snap)
281 {
282 return !(snap & RCU_DYNTICKS_IDX);
283 }
284
285 /*
286 * Return true if the CPU corresponding to the specified rcu_data
287 * structure has spent some time in an extended quiescent state since
288 * rcu_dynticks_snap() returned the specified snapshot.
289 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)290 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
291 {
292 return snap != rcu_dynticks_snap(rdp->cpu);
293 }
294
295 /*
296 * Return true if the referenced integer is zero while the specified
297 * CPU remains within a single extended quiescent state.
298 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)299 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
300 {
301 int snap;
302
303 // If not quiescent, force back to earlier extended quiescent state.
304 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
305 smp_rmb(); // Order ->dynticks and *vp reads.
306 if (READ_ONCE(*vp))
307 return false; // Non-zero, so report failure;
308 smp_rmb(); // Order *vp read and ->dynticks re-read.
309
310 // If still in the same extended quiescent state, we are good!
311 return snap == ct_dynticks_cpu(cpu);
312 }
313
314 /*
315 * Let the RCU core know that this CPU has gone through the scheduler,
316 * which is a quiescent state. This is called when the need for a
317 * quiescent state is urgent, so we burn an atomic operation and full
318 * memory barriers to let the RCU core know about it, regardless of what
319 * this CPU might (or might not) do in the near future.
320 *
321 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
322 *
323 * The caller must have disabled interrupts and must not be idle.
324 */
rcu_momentary_dyntick_idle(void)325 notrace void rcu_momentary_dyntick_idle(void)
326 {
327 int seq;
328
329 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
330 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
331 /* It is illegal to call this from idle state. */
332 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
333 rcu_preempt_deferred_qs(current);
334 }
335 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
336
337 /**
338 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
339 *
340 * If the current CPU is idle and running at a first-level (not nested)
341 * interrupt, or directly, from idle, return true.
342 *
343 * The caller must have at least disabled IRQs.
344 */
rcu_is_cpu_rrupt_from_idle(void)345 static int rcu_is_cpu_rrupt_from_idle(void)
346 {
347 long nesting;
348
349 /*
350 * Usually called from the tick; but also used from smp_function_call()
351 * for expedited grace periods. This latter can result in running from
352 * the idle task, instead of an actual IPI.
353 */
354 lockdep_assert_irqs_disabled();
355
356 /* Check for counter underflows */
357 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
358 "RCU dynticks_nesting counter underflow!");
359 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
360 "RCU dynticks_nmi_nesting counter underflow/zero!");
361
362 /* Are we at first interrupt nesting level? */
363 nesting = ct_dynticks_nmi_nesting();
364 if (nesting > 1)
365 return false;
366
367 /*
368 * If we're not in an interrupt, we must be in the idle task!
369 */
370 WARN_ON_ONCE(!nesting && !is_idle_task(current));
371
372 /* Does CPU appear to be idle from an RCU standpoint? */
373 return ct_dynticks_nesting() == 0;
374 }
375
376 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
377 // Maximum callbacks per rcu_do_batch ...
378 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
379 static long blimit = DEFAULT_RCU_BLIMIT;
380 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
381 static long qhimark = DEFAULT_RCU_QHIMARK;
382 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
383 static long qlowmark = DEFAULT_RCU_QLOMARK;
384 #define DEFAULT_RCU_QOVLD_MULT 2
385 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
386 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
387 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
388
389 module_param(blimit, long, 0444);
390 module_param(qhimark, long, 0444);
391 module_param(qlowmark, long, 0444);
392 module_param(qovld, long, 0444);
393
394 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
395 static ulong jiffies_till_next_fqs = ULONG_MAX;
396 static bool rcu_kick_kthreads;
397 static int rcu_divisor = 7;
398 module_param(rcu_divisor, int, 0644);
399
400 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
401 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
402 module_param(rcu_resched_ns, long, 0644);
403
404 /*
405 * How long the grace period must be before we start recruiting
406 * quiescent-state help from rcu_note_context_switch().
407 */
408 static ulong jiffies_till_sched_qs = ULONG_MAX;
409 module_param(jiffies_till_sched_qs, ulong, 0444);
410 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
411 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
412
413 /*
414 * Make sure that we give the grace-period kthread time to detect any
415 * idle CPUs before taking active measures to force quiescent states.
416 * However, don't go below 100 milliseconds, adjusted upwards for really
417 * large systems.
418 */
adjust_jiffies_till_sched_qs(void)419 static void adjust_jiffies_till_sched_qs(void)
420 {
421 unsigned long j;
422
423 /* If jiffies_till_sched_qs was specified, respect the request. */
424 if (jiffies_till_sched_qs != ULONG_MAX) {
425 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
426 return;
427 }
428 /* Otherwise, set to third fqs scan, but bound below on large system. */
429 j = READ_ONCE(jiffies_till_first_fqs) +
430 2 * READ_ONCE(jiffies_till_next_fqs);
431 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
432 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
433 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
434 WRITE_ONCE(jiffies_to_sched_qs, j);
435 }
436
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)437 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
438 {
439 ulong j;
440 int ret = kstrtoul(val, 0, &j);
441
442 if (!ret) {
443 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
444 adjust_jiffies_till_sched_qs();
445 }
446 return ret;
447 }
448
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)449 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
450 {
451 ulong j;
452 int ret = kstrtoul(val, 0, &j);
453
454 if (!ret) {
455 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
456 adjust_jiffies_till_sched_qs();
457 }
458 return ret;
459 }
460
461 static const struct kernel_param_ops first_fqs_jiffies_ops = {
462 .set = param_set_first_fqs_jiffies,
463 .get = param_get_ulong,
464 };
465
466 static const struct kernel_param_ops next_fqs_jiffies_ops = {
467 .set = param_set_next_fqs_jiffies,
468 .get = param_get_ulong,
469 };
470
471 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
472 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
473 module_param(rcu_kick_kthreads, bool, 0644);
474
475 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
476 static int rcu_pending(int user);
477
478 /*
479 * Return the number of RCU GPs completed thus far for debug & stats.
480 */
rcu_get_gp_seq(void)481 unsigned long rcu_get_gp_seq(void)
482 {
483 return READ_ONCE(rcu_state.gp_seq);
484 }
485 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
486
487 /*
488 * Return the number of RCU expedited batches completed thus far for
489 * debug & stats. Odd numbers mean that a batch is in progress, even
490 * numbers mean idle. The value returned will thus be roughly double
491 * the cumulative batches since boot.
492 */
rcu_exp_batches_completed(void)493 unsigned long rcu_exp_batches_completed(void)
494 {
495 return rcu_state.expedited_sequence;
496 }
497 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
498
499 /*
500 * Return the root node of the rcu_state structure.
501 */
rcu_get_root(void)502 static struct rcu_node *rcu_get_root(void)
503 {
504 return &rcu_state.node[0];
505 }
506
507 /*
508 * Send along grace-period-related data for rcutorture diagnostics.
509 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)510 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
511 unsigned long *gp_seq)
512 {
513 switch (test_type) {
514 case RCU_FLAVOR:
515 *flags = READ_ONCE(rcu_state.gp_flags);
516 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
517 break;
518 default:
519 break;
520 }
521 }
522 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
523
524 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
525 /*
526 * An empty function that will trigger a reschedule on
527 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
528 */
late_wakeup_func(struct irq_work * work)529 static void late_wakeup_func(struct irq_work *work)
530 {
531 }
532
533 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
534 IRQ_WORK_INIT(late_wakeup_func);
535
536 /*
537 * If either:
538 *
539 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
540 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
541 *
542 * In these cases the late RCU wake ups aren't supported in the resched loops and our
543 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
544 * get re-enabled again.
545 */
rcu_irq_work_resched(void)546 noinstr void rcu_irq_work_resched(void)
547 {
548 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
549
550 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
551 return;
552
553 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
554 return;
555
556 instrumentation_begin();
557 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
558 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
559 }
560 instrumentation_end();
561 }
562 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
563
564 #ifdef CONFIG_PROVE_RCU
565 /**
566 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
567 */
rcu_irq_exit_check_preempt(void)568 void rcu_irq_exit_check_preempt(void)
569 {
570 lockdep_assert_irqs_disabled();
571
572 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
573 "RCU dynticks_nesting counter underflow/zero!");
574 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
575 DYNTICK_IRQ_NONIDLE,
576 "Bad RCU dynticks_nmi_nesting counter\n");
577 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
578 "RCU in extended quiescent state!");
579 }
580 #endif /* #ifdef CONFIG_PROVE_RCU */
581
582 #ifdef CONFIG_NO_HZ_FULL
583 /**
584 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
585 *
586 * The scheduler tick is not normally enabled when CPUs enter the kernel
587 * from nohz_full userspace execution. After all, nohz_full userspace
588 * execution is an RCU quiescent state and the time executing in the kernel
589 * is quite short. Except of course when it isn't. And it is not hard to
590 * cause a large system to spend tens of seconds or even minutes looping
591 * in the kernel, which can cause a number of problems, include RCU CPU
592 * stall warnings.
593 *
594 * Therefore, if a nohz_full CPU fails to report a quiescent state
595 * in a timely manner, the RCU grace-period kthread sets that CPU's
596 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
597 * exception will invoke this function, which will turn on the scheduler
598 * tick, which will enable RCU to detect that CPU's quiescent states,
599 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
600 * The tick will be disabled once a quiescent state is reported for
601 * this CPU.
602 *
603 * Of course, in carefully tuned systems, there might never be an
604 * interrupt or exception. In that case, the RCU grace-period kthread
605 * will eventually cause one to happen. However, in less carefully
606 * controlled environments, this function allows RCU to get what it
607 * needs without creating otherwise useless interruptions.
608 */
__rcu_irq_enter_check_tick(void)609 void __rcu_irq_enter_check_tick(void)
610 {
611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612
613 // If we're here from NMI there's nothing to do.
614 if (in_nmi())
615 return;
616
617 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
618 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
619
620 if (!tick_nohz_full_cpu(rdp->cpu) ||
621 !READ_ONCE(rdp->rcu_urgent_qs) ||
622 READ_ONCE(rdp->rcu_forced_tick)) {
623 // RCU doesn't need nohz_full help from this CPU, or it is
624 // already getting that help.
625 return;
626 }
627
628 // We get here only when not in an extended quiescent state and
629 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
630 // already watching and (2) The fact that we are in an interrupt
631 // handler and that the rcu_node lock is an irq-disabled lock
632 // prevents self-deadlock. So we can safely recheck under the lock.
633 // Note that the nohz_full state currently cannot change.
634 raw_spin_lock_rcu_node(rdp->mynode);
635 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
636 // A nohz_full CPU is in the kernel and RCU needs a
637 // quiescent state. Turn on the tick!
638 WRITE_ONCE(rdp->rcu_forced_tick, true);
639 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
640 }
641 raw_spin_unlock_rcu_node(rdp->mynode);
642 }
643 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
644 #endif /* CONFIG_NO_HZ_FULL */
645
646 /*
647 * Check to see if any future non-offloaded RCU-related work will need
648 * to be done by the current CPU, even if none need be done immediately,
649 * returning 1 if so. This function is part of the RCU implementation;
650 * it is -not- an exported member of the RCU API. This is used by
651 * the idle-entry code to figure out whether it is safe to disable the
652 * scheduler-clock interrupt.
653 *
654 * Just check whether or not this CPU has non-offloaded RCU callbacks
655 * queued.
656 */
rcu_needs_cpu(void)657 int rcu_needs_cpu(void)
658 {
659 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
660 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
661 }
662
663 /*
664 * If any sort of urgency was applied to the current CPU (for example,
665 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
666 * to get to a quiescent state, disable it.
667 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)668 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
669 {
670 raw_lockdep_assert_held_rcu_node(rdp->mynode);
671 WRITE_ONCE(rdp->rcu_urgent_qs, false);
672 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
673 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
674 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
675 WRITE_ONCE(rdp->rcu_forced_tick, false);
676 }
677 }
678
679 /**
680 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
681 *
682 * Return @true if RCU is watching the running CPU and @false otherwise.
683 * An @true return means that this CPU can safely enter RCU read-side
684 * critical sections.
685 *
686 * Although calls to rcu_is_watching() from most parts of the kernel
687 * will return @true, there are important exceptions. For example, if the
688 * current CPU is deep within its idle loop, in kernel entry/exit code,
689 * or offline, rcu_is_watching() will return @false.
690 *
691 * Make notrace because it can be called by the internal functions of
692 * ftrace, and making this notrace removes unnecessary recursion calls.
693 */
rcu_is_watching(void)694 notrace bool rcu_is_watching(void)
695 {
696 bool ret;
697
698 preempt_disable_notrace();
699 ret = !rcu_dynticks_curr_cpu_in_eqs();
700 preempt_enable_notrace();
701 return ret;
702 }
703 EXPORT_SYMBOL_GPL(rcu_is_watching);
704
705 /*
706 * If a holdout task is actually running, request an urgent quiescent
707 * state from its CPU. This is unsynchronized, so migrations can cause
708 * the request to go to the wrong CPU. Which is OK, all that will happen
709 * is that the CPU's next context switch will be a bit slower and next
710 * time around this task will generate another request.
711 */
rcu_request_urgent_qs_task(struct task_struct * t)712 void rcu_request_urgent_qs_task(struct task_struct *t)
713 {
714 int cpu;
715
716 barrier();
717 cpu = task_cpu(t);
718 if (!task_curr(t))
719 return; /* This task is not running on that CPU. */
720 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
721 }
722
723 /*
724 * When trying to report a quiescent state on behalf of some other CPU,
725 * it is our responsibility to check for and handle potential overflow
726 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
727 * After all, the CPU might be in deep idle state, and thus executing no
728 * code whatsoever.
729 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)730 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
731 {
732 raw_lockdep_assert_held_rcu_node(rnp);
733 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
734 rnp->gp_seq))
735 WRITE_ONCE(rdp->gpwrap, true);
736 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
737 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
738 }
739
740 /*
741 * Snapshot the specified CPU's dynticks counter so that we can later
742 * credit them with an implicit quiescent state. Return 1 if this CPU
743 * is in dynticks idle mode, which is an extended quiescent state.
744 */
dyntick_save_progress_counter(struct rcu_data * rdp)745 static int dyntick_save_progress_counter(struct rcu_data *rdp)
746 {
747 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
748 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
749 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
750 rcu_gpnum_ovf(rdp->mynode, rdp);
751 return 1;
752 }
753 return 0;
754 }
755
756 /*
757 * Return true if the specified CPU has passed through a quiescent
758 * state by virtue of being in or having passed through an dynticks
759 * idle state since the last call to dyntick_save_progress_counter()
760 * for this same CPU, or by virtue of having been offline.
761 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)762 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
763 {
764 unsigned long jtsq;
765 struct rcu_node *rnp = rdp->mynode;
766
767 /*
768 * If the CPU passed through or entered a dynticks idle phase with
769 * no active irq/NMI handlers, then we can safely pretend that the CPU
770 * already acknowledged the request to pass through a quiescent
771 * state. Either way, that CPU cannot possibly be in an RCU
772 * read-side critical section that started before the beginning
773 * of the current RCU grace period.
774 */
775 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
776 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
777 rcu_gpnum_ovf(rnp, rdp);
778 return 1;
779 }
780
781 /*
782 * Complain if a CPU that is considered to be offline from RCU's
783 * perspective has not yet reported a quiescent state. After all,
784 * the offline CPU should have reported a quiescent state during
785 * the CPU-offline process, or, failing that, by rcu_gp_init()
786 * if it ran concurrently with either the CPU going offline or the
787 * last task on a leaf rcu_node structure exiting its RCU read-side
788 * critical section while all CPUs corresponding to that structure
789 * are offline. This added warning detects bugs in any of these
790 * code paths.
791 *
792 * The rcu_node structure's ->lock is held here, which excludes
793 * the relevant portions the CPU-hotplug code, the grace-period
794 * initialization code, and the rcu_read_unlock() code paths.
795 *
796 * For more detail, please refer to the "Hotplug CPU" section
797 * of RCU's Requirements documentation.
798 */
799 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
800 struct rcu_node *rnp1;
801
802 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
803 __func__, rnp->grplo, rnp->grphi, rnp->level,
804 (long)rnp->gp_seq, (long)rnp->completedqs);
805 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
806 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
807 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
808 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
809 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
810 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
811 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
812 return 1; /* Break things loose after complaining. */
813 }
814
815 /*
816 * A CPU running for an extended time within the kernel can
817 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
818 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
819 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
820 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
821 * variable are safe because the assignments are repeated if this
822 * CPU failed to pass through a quiescent state. This code
823 * also checks .jiffies_resched in case jiffies_to_sched_qs
824 * is set way high.
825 */
826 jtsq = READ_ONCE(jiffies_to_sched_qs);
827 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
828 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
829 time_after(jiffies, rcu_state.jiffies_resched) ||
830 rcu_state.cbovld)) {
831 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
832 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
833 smp_store_release(&rdp->rcu_urgent_qs, true);
834 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
835 WRITE_ONCE(rdp->rcu_urgent_qs, true);
836 }
837
838 /*
839 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
840 * The above code handles this, but only for straight cond_resched().
841 * And some in-kernel loops check need_resched() before calling
842 * cond_resched(), which defeats the above code for CPUs that are
843 * running in-kernel with scheduling-clock interrupts disabled.
844 * So hit them over the head with the resched_cpu() hammer!
845 */
846 if (tick_nohz_full_cpu(rdp->cpu) &&
847 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
848 rcu_state.cbovld)) {
849 WRITE_ONCE(rdp->rcu_urgent_qs, true);
850 resched_cpu(rdp->cpu);
851 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
852 }
853
854 /*
855 * If more than halfway to RCU CPU stall-warning time, invoke
856 * resched_cpu() more frequently to try to loosen things up a bit.
857 * Also check to see if the CPU is getting hammered with interrupts,
858 * but only once per grace period, just to keep the IPIs down to
859 * a dull roar.
860 */
861 if (time_after(jiffies, rcu_state.jiffies_resched)) {
862 if (time_after(jiffies,
863 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
864 resched_cpu(rdp->cpu);
865 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
866 }
867 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
868 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
869 (rnp->ffmask & rdp->grpmask)) {
870 rdp->rcu_iw_pending = true;
871 rdp->rcu_iw_gp_seq = rnp->gp_seq;
872 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
873 }
874
875 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
876 int cpu = rdp->cpu;
877 struct rcu_snap_record *rsrp;
878 struct kernel_cpustat *kcsp;
879
880 kcsp = &kcpustat_cpu(cpu);
881
882 rsrp = &rdp->snap_record;
883 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
884 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
885 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
886 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
887 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
888 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
889 rsrp->jiffies = jiffies;
890 rsrp->gp_seq = rdp->gp_seq;
891 }
892 }
893
894 return 0;
895 }
896
897 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)898 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
899 unsigned long gp_seq_req, const char *s)
900 {
901 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
902 gp_seq_req, rnp->level,
903 rnp->grplo, rnp->grphi, s);
904 }
905
906 /*
907 * rcu_start_this_gp - Request the start of a particular grace period
908 * @rnp_start: The leaf node of the CPU from which to start.
909 * @rdp: The rcu_data corresponding to the CPU from which to start.
910 * @gp_seq_req: The gp_seq of the grace period to start.
911 *
912 * Start the specified grace period, as needed to handle newly arrived
913 * callbacks. The required future grace periods are recorded in each
914 * rcu_node structure's ->gp_seq_needed field. Returns true if there
915 * is reason to awaken the grace-period kthread.
916 *
917 * The caller must hold the specified rcu_node structure's ->lock, which
918 * is why the caller is responsible for waking the grace-period kthread.
919 *
920 * Returns true if the GP thread needs to be awakened else false.
921 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)922 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
923 unsigned long gp_seq_req)
924 {
925 bool ret = false;
926 struct rcu_node *rnp;
927
928 /*
929 * Use funnel locking to either acquire the root rcu_node
930 * structure's lock or bail out if the need for this grace period
931 * has already been recorded -- or if that grace period has in
932 * fact already started. If there is already a grace period in
933 * progress in a non-leaf node, no recording is needed because the
934 * end of the grace period will scan the leaf rcu_node structures.
935 * Note that rnp_start->lock must not be released.
936 */
937 raw_lockdep_assert_held_rcu_node(rnp_start);
938 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
939 for (rnp = rnp_start; 1; rnp = rnp->parent) {
940 if (rnp != rnp_start)
941 raw_spin_lock_rcu_node(rnp);
942 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
943 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
944 (rnp != rnp_start &&
945 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
946 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
947 TPS("Prestarted"));
948 goto unlock_out;
949 }
950 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
951 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
952 /*
953 * We just marked the leaf or internal node, and a
954 * grace period is in progress, which means that
955 * rcu_gp_cleanup() will see the marking. Bail to
956 * reduce contention.
957 */
958 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
959 TPS("Startedleaf"));
960 goto unlock_out;
961 }
962 if (rnp != rnp_start && rnp->parent != NULL)
963 raw_spin_unlock_rcu_node(rnp);
964 if (!rnp->parent)
965 break; /* At root, and perhaps also leaf. */
966 }
967
968 /* If GP already in progress, just leave, otherwise start one. */
969 if (rcu_gp_in_progress()) {
970 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
971 goto unlock_out;
972 }
973 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
974 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
975 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
976 if (!READ_ONCE(rcu_state.gp_kthread)) {
977 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
978 goto unlock_out;
979 }
980 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
981 ret = true; /* Caller must wake GP kthread. */
982 unlock_out:
983 /* Push furthest requested GP to leaf node and rcu_data structure. */
984 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
985 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
986 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
987 }
988 if (rnp != rnp_start)
989 raw_spin_unlock_rcu_node(rnp);
990 return ret;
991 }
992
993 /*
994 * Clean up any old requests for the just-ended grace period. Also return
995 * whether any additional grace periods have been requested.
996 */
rcu_future_gp_cleanup(struct rcu_node * rnp)997 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
998 {
999 bool needmore;
1000 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1001
1002 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1003 if (!needmore)
1004 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1005 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1006 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1007 return needmore;
1008 }
1009
1010 /*
1011 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1012 * interrupt or softirq handler, in which case we just might immediately
1013 * sleep upon return, resulting in a grace-period hang), and don't bother
1014 * awakening when there is nothing for the grace-period kthread to do
1015 * (as in several CPUs raced to awaken, we lost), and finally don't try
1016 * to awaken a kthread that has not yet been created. If all those checks
1017 * are passed, track some debug information and awaken.
1018 *
1019 * So why do the self-wakeup when in an interrupt or softirq handler
1020 * in the grace-period kthread's context? Because the kthread might have
1021 * been interrupted just as it was going to sleep, and just after the final
1022 * pre-sleep check of the awaken condition. In this case, a wakeup really
1023 * is required, and is therefore supplied.
1024 */
rcu_gp_kthread_wake(void)1025 static void rcu_gp_kthread_wake(void)
1026 {
1027 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1028
1029 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1030 !READ_ONCE(rcu_state.gp_flags) || !t)
1031 return;
1032 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1033 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1034 swake_up_one(&rcu_state.gp_wq);
1035 }
1036
1037 /*
1038 * If there is room, assign a ->gp_seq number to any callbacks on this
1039 * CPU that have not already been assigned. Also accelerate any callbacks
1040 * that were previously assigned a ->gp_seq number that has since proven
1041 * to be too conservative, which can happen if callbacks get assigned a
1042 * ->gp_seq number while RCU is idle, but with reference to a non-root
1043 * rcu_node structure. This function is idempotent, so it does not hurt
1044 * to call it repeatedly. Returns an flag saying that we should awaken
1045 * the RCU grace-period kthread.
1046 *
1047 * The caller must hold rnp->lock with interrupts disabled.
1048 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1049 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1050 {
1051 unsigned long gp_seq_req;
1052 bool ret = false;
1053
1054 rcu_lockdep_assert_cblist_protected(rdp);
1055 raw_lockdep_assert_held_rcu_node(rnp);
1056
1057 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1058 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1059 return false;
1060
1061 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1062
1063 /*
1064 * Callbacks are often registered with incomplete grace-period
1065 * information. Something about the fact that getting exact
1066 * information requires acquiring a global lock... RCU therefore
1067 * makes a conservative estimate of the grace period number at which
1068 * a given callback will become ready to invoke. The following
1069 * code checks this estimate and improves it when possible, thus
1070 * accelerating callback invocation to an earlier grace-period
1071 * number.
1072 */
1073 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1074 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1075 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1076
1077 /* Trace depending on how much we were able to accelerate. */
1078 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1079 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1080 else
1081 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1082
1083 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1084
1085 return ret;
1086 }
1087
1088 /*
1089 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1090 * rcu_node structure's ->lock be held. It consults the cached value
1091 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1092 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1093 * while holding the leaf rcu_node structure's ->lock.
1094 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1095 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1096 struct rcu_data *rdp)
1097 {
1098 unsigned long c;
1099 bool needwake;
1100
1101 rcu_lockdep_assert_cblist_protected(rdp);
1102 c = rcu_seq_snap(&rcu_state.gp_seq);
1103 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1104 /* Old request still live, so mark recent callbacks. */
1105 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1106 return;
1107 }
1108 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1109 needwake = rcu_accelerate_cbs(rnp, rdp);
1110 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1111 if (needwake)
1112 rcu_gp_kthread_wake();
1113 }
1114
1115 /*
1116 * Move any callbacks whose grace period has completed to the
1117 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1118 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1119 * sublist. This function is idempotent, so it does not hurt to
1120 * invoke it repeatedly. As long as it is not invoked -too- often...
1121 * Returns true if the RCU grace-period kthread needs to be awakened.
1122 *
1123 * The caller must hold rnp->lock with interrupts disabled.
1124 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1125 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1126 {
1127 rcu_lockdep_assert_cblist_protected(rdp);
1128 raw_lockdep_assert_held_rcu_node(rnp);
1129
1130 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1131 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1132 return false;
1133
1134 /*
1135 * Find all callbacks whose ->gp_seq numbers indicate that they
1136 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1137 */
1138 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1139
1140 /* Classify any remaining callbacks. */
1141 return rcu_accelerate_cbs(rnp, rdp);
1142 }
1143
1144 /*
1145 * Move and classify callbacks, but only if doing so won't require
1146 * that the RCU grace-period kthread be awakened.
1147 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1148 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1149 struct rcu_data *rdp)
1150 {
1151 rcu_lockdep_assert_cblist_protected(rdp);
1152 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1153 return;
1154 // The grace period cannot end while we hold the rcu_node lock.
1155 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1156 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1157 raw_spin_unlock_rcu_node(rnp);
1158 }
1159
1160 /*
1161 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1162 * quiescent state. This is intended to be invoked when the CPU notices
1163 * a new grace period.
1164 */
rcu_strict_gp_check_qs(void)1165 static void rcu_strict_gp_check_qs(void)
1166 {
1167 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1168 rcu_read_lock();
1169 rcu_read_unlock();
1170 }
1171 }
1172
1173 /*
1174 * Update CPU-local rcu_data state to record the beginnings and ends of
1175 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1176 * structure corresponding to the current CPU, and must have irqs disabled.
1177 * Returns true if the grace-period kthread needs to be awakened.
1178 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1179 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1180 {
1181 bool ret = false;
1182 bool need_qs;
1183 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1184
1185 raw_lockdep_assert_held_rcu_node(rnp);
1186
1187 if (rdp->gp_seq == rnp->gp_seq)
1188 return false; /* Nothing to do. */
1189
1190 /* Handle the ends of any preceding grace periods first. */
1191 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1192 unlikely(READ_ONCE(rdp->gpwrap))) {
1193 if (!offloaded)
1194 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1195 rdp->core_needs_qs = false;
1196 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1197 } else {
1198 if (!offloaded)
1199 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1200 if (rdp->core_needs_qs)
1201 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1202 }
1203
1204 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1205 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1206 unlikely(READ_ONCE(rdp->gpwrap))) {
1207 /*
1208 * If the current grace period is waiting for this CPU,
1209 * set up to detect a quiescent state, otherwise don't
1210 * go looking for one.
1211 */
1212 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1213 need_qs = !!(rnp->qsmask & rdp->grpmask);
1214 rdp->cpu_no_qs.b.norm = need_qs;
1215 rdp->core_needs_qs = need_qs;
1216 zero_cpu_stall_ticks(rdp);
1217 }
1218 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1219 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1220 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1221 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1222 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1223 WRITE_ONCE(rdp->gpwrap, false);
1224 rcu_gpnum_ovf(rnp, rdp);
1225 return ret;
1226 }
1227
note_gp_changes(struct rcu_data * rdp)1228 static void note_gp_changes(struct rcu_data *rdp)
1229 {
1230 unsigned long flags;
1231 bool needwake;
1232 struct rcu_node *rnp;
1233
1234 local_irq_save(flags);
1235 rnp = rdp->mynode;
1236 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1237 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1238 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1239 local_irq_restore(flags);
1240 return;
1241 }
1242 needwake = __note_gp_changes(rnp, rdp);
1243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1244 rcu_strict_gp_check_qs();
1245 if (needwake)
1246 rcu_gp_kthread_wake();
1247 }
1248
1249 static atomic_t *rcu_gp_slow_suppress;
1250
1251 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1252 void rcu_gp_slow_register(atomic_t *rgssp)
1253 {
1254 WARN_ON_ONCE(rcu_gp_slow_suppress);
1255
1256 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1257 }
1258 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1259
1260 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1261 void rcu_gp_slow_unregister(atomic_t *rgssp)
1262 {
1263 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1264
1265 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1266 }
1267 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1268
rcu_gp_slow_is_suppressed(void)1269 static bool rcu_gp_slow_is_suppressed(void)
1270 {
1271 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1272
1273 return rgssp && atomic_read(rgssp);
1274 }
1275
rcu_gp_slow(int delay)1276 static void rcu_gp_slow(int delay)
1277 {
1278 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1279 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1280 schedule_timeout_idle(delay);
1281 }
1282
1283 static unsigned long sleep_duration;
1284
1285 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1286 void rcu_gp_set_torture_wait(int duration)
1287 {
1288 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1289 WRITE_ONCE(sleep_duration, duration);
1290 }
1291 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1292
1293 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1294 static void rcu_gp_torture_wait(void)
1295 {
1296 unsigned long duration;
1297
1298 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1299 return;
1300 duration = xchg(&sleep_duration, 0UL);
1301 if (duration > 0) {
1302 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1303 schedule_timeout_idle(duration);
1304 pr_alert("%s: Wait complete\n", __func__);
1305 }
1306 }
1307
1308 /*
1309 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1310 * processing.
1311 */
rcu_strict_gp_boundary(void * unused)1312 static void rcu_strict_gp_boundary(void *unused)
1313 {
1314 invoke_rcu_core();
1315 }
1316
1317 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1318 static void rcu_poll_gp_seq_start(unsigned long *snap)
1319 {
1320 struct rcu_node *rnp = rcu_get_root();
1321
1322 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1323 raw_lockdep_assert_held_rcu_node(rnp);
1324
1325 // If RCU was idle, note beginning of GP.
1326 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1327 rcu_seq_start(&rcu_state.gp_seq_polled);
1328
1329 // Either way, record current state.
1330 *snap = rcu_state.gp_seq_polled;
1331 }
1332
1333 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1334 static void rcu_poll_gp_seq_end(unsigned long *snap)
1335 {
1336 struct rcu_node *rnp = rcu_get_root();
1337
1338 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1339 raw_lockdep_assert_held_rcu_node(rnp);
1340
1341 // If the previously noted GP is still in effect, record the
1342 // end of that GP. Either way, zero counter to avoid counter-wrap
1343 // problems.
1344 if (*snap && *snap == rcu_state.gp_seq_polled) {
1345 rcu_seq_end(&rcu_state.gp_seq_polled);
1346 rcu_state.gp_seq_polled_snap = 0;
1347 rcu_state.gp_seq_polled_exp_snap = 0;
1348 } else {
1349 *snap = 0;
1350 }
1351 }
1352
1353 // Make the polled API aware of the beginning of a grace period, but
1354 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1355 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1356 {
1357 unsigned long flags;
1358 struct rcu_node *rnp = rcu_get_root();
1359
1360 if (rcu_init_invoked()) {
1361 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1362 lockdep_assert_irqs_enabled();
1363 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1364 }
1365 rcu_poll_gp_seq_start(snap);
1366 if (rcu_init_invoked())
1367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1368 }
1369
1370 // Make the polled API aware of the end of a grace period, but where
1371 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1372 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1373 {
1374 unsigned long flags;
1375 struct rcu_node *rnp = rcu_get_root();
1376
1377 if (rcu_init_invoked()) {
1378 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1379 lockdep_assert_irqs_enabled();
1380 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1381 }
1382 rcu_poll_gp_seq_end(snap);
1383 if (rcu_init_invoked())
1384 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1385 }
1386
1387 /*
1388 * Initialize a new grace period. Return false if no grace period required.
1389 */
rcu_gp_init(void)1390 static noinline_for_stack bool rcu_gp_init(void)
1391 {
1392 unsigned long flags;
1393 unsigned long oldmask;
1394 unsigned long mask;
1395 struct rcu_data *rdp;
1396 struct rcu_node *rnp = rcu_get_root();
1397
1398 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1399 raw_spin_lock_irq_rcu_node(rnp);
1400 if (!READ_ONCE(rcu_state.gp_flags)) {
1401 /* Spurious wakeup, tell caller to go back to sleep. */
1402 raw_spin_unlock_irq_rcu_node(rnp);
1403 return false;
1404 }
1405 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1406
1407 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1408 /*
1409 * Grace period already in progress, don't start another.
1410 * Not supposed to be able to happen.
1411 */
1412 raw_spin_unlock_irq_rcu_node(rnp);
1413 return false;
1414 }
1415
1416 /* Advance to a new grace period and initialize state. */
1417 record_gp_stall_check_time();
1418 /* Record GP times before starting GP, hence rcu_seq_start(). */
1419 rcu_seq_start(&rcu_state.gp_seq);
1420 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1421 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1422 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1423 raw_spin_unlock_irq_rcu_node(rnp);
1424
1425 /*
1426 * Apply per-leaf buffered online and offline operations to
1427 * the rcu_node tree. Note that this new grace period need not
1428 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1429 * offlining path, when combined with checks in this function,
1430 * will handle CPUs that are currently going offline or that will
1431 * go offline later. Please also refer to "Hotplug CPU" section
1432 * of RCU's Requirements documentation.
1433 */
1434 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1435 /* Exclude CPU hotplug operations. */
1436 rcu_for_each_leaf_node(rnp) {
1437 local_irq_save(flags);
1438 arch_spin_lock(&rcu_state.ofl_lock);
1439 raw_spin_lock_rcu_node(rnp);
1440 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1441 !rnp->wait_blkd_tasks) {
1442 /* Nothing to do on this leaf rcu_node structure. */
1443 raw_spin_unlock_rcu_node(rnp);
1444 arch_spin_unlock(&rcu_state.ofl_lock);
1445 local_irq_restore(flags);
1446 continue;
1447 }
1448
1449 /* Record old state, apply changes to ->qsmaskinit field. */
1450 oldmask = rnp->qsmaskinit;
1451 rnp->qsmaskinit = rnp->qsmaskinitnext;
1452
1453 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1454 if (!oldmask != !rnp->qsmaskinit) {
1455 if (!oldmask) { /* First online CPU for rcu_node. */
1456 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1457 rcu_init_new_rnp(rnp);
1458 } else if (rcu_preempt_has_tasks(rnp)) {
1459 rnp->wait_blkd_tasks = true; /* blocked tasks */
1460 } else { /* Last offline CPU and can propagate. */
1461 rcu_cleanup_dead_rnp(rnp);
1462 }
1463 }
1464
1465 /*
1466 * If all waited-on tasks from prior grace period are
1467 * done, and if all this rcu_node structure's CPUs are
1468 * still offline, propagate up the rcu_node tree and
1469 * clear ->wait_blkd_tasks. Otherwise, if one of this
1470 * rcu_node structure's CPUs has since come back online,
1471 * simply clear ->wait_blkd_tasks.
1472 */
1473 if (rnp->wait_blkd_tasks &&
1474 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1475 rnp->wait_blkd_tasks = false;
1476 if (!rnp->qsmaskinit)
1477 rcu_cleanup_dead_rnp(rnp);
1478 }
1479
1480 raw_spin_unlock_rcu_node(rnp);
1481 arch_spin_unlock(&rcu_state.ofl_lock);
1482 local_irq_restore(flags);
1483 }
1484 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1485
1486 /*
1487 * Set the quiescent-state-needed bits in all the rcu_node
1488 * structures for all currently online CPUs in breadth-first
1489 * order, starting from the root rcu_node structure, relying on the
1490 * layout of the tree within the rcu_state.node[] array. Note that
1491 * other CPUs will access only the leaves of the hierarchy, thus
1492 * seeing that no grace period is in progress, at least until the
1493 * corresponding leaf node has been initialized.
1494 *
1495 * The grace period cannot complete until the initialization
1496 * process finishes, because this kthread handles both.
1497 */
1498 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1499 rcu_for_each_node_breadth_first(rnp) {
1500 rcu_gp_slow(gp_init_delay);
1501 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1502 rdp = this_cpu_ptr(&rcu_data);
1503 rcu_preempt_check_blocked_tasks(rnp);
1504 rnp->qsmask = rnp->qsmaskinit;
1505 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1506 if (rnp == rdp->mynode)
1507 (void)__note_gp_changes(rnp, rdp);
1508 rcu_preempt_boost_start_gp(rnp);
1509 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1510 rnp->level, rnp->grplo,
1511 rnp->grphi, rnp->qsmask);
1512 /* Quiescent states for tasks on any now-offline CPUs. */
1513 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1514 rnp->rcu_gp_init_mask = mask;
1515 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1516 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1517 else
1518 raw_spin_unlock_irq_rcu_node(rnp);
1519 cond_resched_tasks_rcu_qs();
1520 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1521 }
1522
1523 // If strict, make all CPUs aware of new grace period.
1524 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1525 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1526
1527 return true;
1528 }
1529
1530 /*
1531 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1532 * time.
1533 */
rcu_gp_fqs_check_wake(int * gfp)1534 static bool rcu_gp_fqs_check_wake(int *gfp)
1535 {
1536 struct rcu_node *rnp = rcu_get_root();
1537
1538 // If under overload conditions, force an immediate FQS scan.
1539 if (*gfp & RCU_GP_FLAG_OVLD)
1540 return true;
1541
1542 // Someone like call_rcu() requested a force-quiescent-state scan.
1543 *gfp = READ_ONCE(rcu_state.gp_flags);
1544 if (*gfp & RCU_GP_FLAG_FQS)
1545 return true;
1546
1547 // The current grace period has completed.
1548 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1549 return true;
1550
1551 return false;
1552 }
1553
1554 /*
1555 * Do one round of quiescent-state forcing.
1556 */
rcu_gp_fqs(bool first_time)1557 static void rcu_gp_fqs(bool first_time)
1558 {
1559 struct rcu_node *rnp = rcu_get_root();
1560
1561 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1562 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1563 if (first_time) {
1564 /* Collect dyntick-idle snapshots. */
1565 force_qs_rnp(dyntick_save_progress_counter);
1566 } else {
1567 /* Handle dyntick-idle and offline CPUs. */
1568 force_qs_rnp(rcu_implicit_dynticks_qs);
1569 }
1570 /* Clear flag to prevent immediate re-entry. */
1571 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1572 raw_spin_lock_irq_rcu_node(rnp);
1573 WRITE_ONCE(rcu_state.gp_flags,
1574 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1575 raw_spin_unlock_irq_rcu_node(rnp);
1576 }
1577 }
1578
1579 /*
1580 * Loop doing repeated quiescent-state forcing until the grace period ends.
1581 */
rcu_gp_fqs_loop(void)1582 static noinline_for_stack void rcu_gp_fqs_loop(void)
1583 {
1584 bool first_gp_fqs = true;
1585 int gf = 0;
1586 unsigned long j;
1587 int ret;
1588 struct rcu_node *rnp = rcu_get_root();
1589
1590 j = READ_ONCE(jiffies_till_first_fqs);
1591 if (rcu_state.cbovld)
1592 gf = RCU_GP_FLAG_OVLD;
1593 ret = 0;
1594 for (;;) {
1595 if (rcu_state.cbovld) {
1596 j = (j + 2) / 3;
1597 if (j <= 0)
1598 j = 1;
1599 }
1600 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1601 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1602 /*
1603 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1604 * update; required for stall checks.
1605 */
1606 smp_wmb();
1607 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1608 jiffies + (j ? 3 * j : 2));
1609 }
1610 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1611 TPS("fqswait"));
1612 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1613 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1614 rcu_gp_fqs_check_wake(&gf), j);
1615 rcu_gp_torture_wait();
1616 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1617 /* Locking provides needed memory barriers. */
1618 /*
1619 * Exit the loop if the root rcu_node structure indicates that the grace period
1620 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1621 * is required only for single-node rcu_node trees because readers blocking
1622 * the current grace period are queued only on leaf rcu_node structures.
1623 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1624 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1625 * the corresponding leaf nodes have passed through their quiescent state.
1626 */
1627 if (!READ_ONCE(rnp->qsmask) &&
1628 !rcu_preempt_blocked_readers_cgp(rnp))
1629 break;
1630 /* If time for quiescent-state forcing, do it. */
1631 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1632 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1633 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1634 TPS("fqsstart"));
1635 rcu_gp_fqs(first_gp_fqs);
1636 gf = 0;
1637 if (first_gp_fqs) {
1638 first_gp_fqs = false;
1639 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1640 }
1641 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1642 TPS("fqsend"));
1643 cond_resched_tasks_rcu_qs();
1644 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1645 ret = 0; /* Force full wait till next FQS. */
1646 j = READ_ONCE(jiffies_till_next_fqs);
1647 } else {
1648 /* Deal with stray signal. */
1649 cond_resched_tasks_rcu_qs();
1650 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1651 WARN_ON(signal_pending(current));
1652 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1653 TPS("fqswaitsig"));
1654 ret = 1; /* Keep old FQS timing. */
1655 j = jiffies;
1656 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1657 j = 1;
1658 else
1659 j = rcu_state.jiffies_force_qs - j;
1660 gf = 0;
1661 }
1662 }
1663 }
1664
1665 /*
1666 * Clean up after the old grace period.
1667 */
rcu_gp_cleanup(void)1668 static noinline void rcu_gp_cleanup(void)
1669 {
1670 int cpu;
1671 bool needgp = false;
1672 unsigned long gp_duration;
1673 unsigned long new_gp_seq;
1674 bool offloaded;
1675 struct rcu_data *rdp;
1676 struct rcu_node *rnp = rcu_get_root();
1677 struct swait_queue_head *sq;
1678
1679 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1680 raw_spin_lock_irq_rcu_node(rnp);
1681 rcu_state.gp_end = jiffies;
1682 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1683 if (gp_duration > rcu_state.gp_max)
1684 rcu_state.gp_max = gp_duration;
1685
1686 /*
1687 * We know the grace period is complete, but to everyone else
1688 * it appears to still be ongoing. But it is also the case
1689 * that to everyone else it looks like there is nothing that
1690 * they can do to advance the grace period. It is therefore
1691 * safe for us to drop the lock in order to mark the grace
1692 * period as completed in all of the rcu_node structures.
1693 */
1694 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1695 raw_spin_unlock_irq_rcu_node(rnp);
1696
1697 /*
1698 * Propagate new ->gp_seq value to rcu_node structures so that
1699 * other CPUs don't have to wait until the start of the next grace
1700 * period to process their callbacks. This also avoids some nasty
1701 * RCU grace-period initialization races by forcing the end of
1702 * the current grace period to be completely recorded in all of
1703 * the rcu_node structures before the beginning of the next grace
1704 * period is recorded in any of the rcu_node structures.
1705 */
1706 new_gp_seq = rcu_state.gp_seq;
1707 rcu_seq_end(&new_gp_seq);
1708 rcu_for_each_node_breadth_first(rnp) {
1709 raw_spin_lock_irq_rcu_node(rnp);
1710 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1711 dump_blkd_tasks(rnp, 10);
1712 WARN_ON_ONCE(rnp->qsmask);
1713 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1714 if (!rnp->parent)
1715 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1716 rdp = this_cpu_ptr(&rcu_data);
1717 if (rnp == rdp->mynode)
1718 needgp = __note_gp_changes(rnp, rdp) || needgp;
1719 /* smp_mb() provided by prior unlock-lock pair. */
1720 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1721 // Reset overload indication for CPUs no longer overloaded
1722 if (rcu_is_leaf_node(rnp))
1723 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1724 rdp = per_cpu_ptr(&rcu_data, cpu);
1725 check_cb_ovld_locked(rdp, rnp);
1726 }
1727 sq = rcu_nocb_gp_get(rnp);
1728 raw_spin_unlock_irq_rcu_node(rnp);
1729 rcu_nocb_gp_cleanup(sq);
1730 cond_resched_tasks_rcu_qs();
1731 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1732 rcu_gp_slow(gp_cleanup_delay);
1733 }
1734 rnp = rcu_get_root();
1735 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1736
1737 /* Declare grace period done, trace first to use old GP number. */
1738 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1739 rcu_seq_end(&rcu_state.gp_seq);
1740 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1741 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1742 /* Check for GP requests since above loop. */
1743 rdp = this_cpu_ptr(&rcu_data);
1744 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1745 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1746 TPS("CleanupMore"));
1747 needgp = true;
1748 }
1749 /* Advance CBs to reduce false positives below. */
1750 offloaded = rcu_rdp_is_offloaded(rdp);
1751 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1752
1753 // We get here if a grace period was needed (“needgp”)
1754 // and the above call to rcu_accelerate_cbs() did not set
1755 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1756 // the need for another grace period). The purpose
1757 // of the “offloaded” check is to avoid invoking
1758 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1759 // hold the ->nocb_lock needed to safely access an offloaded
1760 // ->cblist. We do not want to acquire that lock because
1761 // it can be heavily contended during callback floods.
1762
1763 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1764 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1765 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1766 } else {
1767
1768 // We get here either if there is no need for an
1769 // additional grace period or if rcu_accelerate_cbs() has
1770 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
1771 // So all we need to do is to clear all of the other
1772 // ->gp_flags bits.
1773
1774 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1775 }
1776 raw_spin_unlock_irq_rcu_node(rnp);
1777
1778 // If strict, make all CPUs aware of the end of the old grace period.
1779 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1780 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1781 }
1782
1783 /*
1784 * Body of kthread that handles grace periods.
1785 */
rcu_gp_kthread(void * unused)1786 static int __noreturn rcu_gp_kthread(void *unused)
1787 {
1788 rcu_bind_gp_kthread();
1789 for (;;) {
1790
1791 /* Handle grace-period start. */
1792 for (;;) {
1793 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1794 TPS("reqwait"));
1795 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1796 swait_event_idle_exclusive(rcu_state.gp_wq,
1797 READ_ONCE(rcu_state.gp_flags) &
1798 RCU_GP_FLAG_INIT);
1799 rcu_gp_torture_wait();
1800 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1801 /* Locking provides needed memory barrier. */
1802 if (rcu_gp_init())
1803 break;
1804 cond_resched_tasks_rcu_qs();
1805 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1806 WARN_ON(signal_pending(current));
1807 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1808 TPS("reqwaitsig"));
1809 }
1810
1811 /* Handle quiescent-state forcing. */
1812 rcu_gp_fqs_loop();
1813
1814 /* Handle grace-period end. */
1815 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1816 rcu_gp_cleanup();
1817 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1818 }
1819 }
1820
1821 /*
1822 * Report a full set of quiescent states to the rcu_state data structure.
1823 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1824 * another grace period is required. Whether we wake the grace-period
1825 * kthread or it awakens itself for the next round of quiescent-state
1826 * forcing, that kthread will clean up after the just-completed grace
1827 * period. Note that the caller must hold rnp->lock, which is released
1828 * before return.
1829 */
rcu_report_qs_rsp(unsigned long flags)1830 static void rcu_report_qs_rsp(unsigned long flags)
1831 __releases(rcu_get_root()->lock)
1832 {
1833 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1834 WARN_ON_ONCE(!rcu_gp_in_progress());
1835 WRITE_ONCE(rcu_state.gp_flags,
1836 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1837 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1838 rcu_gp_kthread_wake();
1839 }
1840
1841 /*
1842 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1843 * Allows quiescent states for a group of CPUs to be reported at one go
1844 * to the specified rcu_node structure, though all the CPUs in the group
1845 * must be represented by the same rcu_node structure (which need not be a
1846 * leaf rcu_node structure, though it often will be). The gps parameter
1847 * is the grace-period snapshot, which means that the quiescent states
1848 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1849 * must be held upon entry, and it is released before return.
1850 *
1851 * As a special case, if mask is zero, the bit-already-cleared check is
1852 * disabled. This allows propagating quiescent state due to resumed tasks
1853 * during grace-period initialization.
1854 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1855 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1856 unsigned long gps, unsigned long flags)
1857 __releases(rnp->lock)
1858 {
1859 unsigned long oldmask = 0;
1860 struct rcu_node *rnp_c;
1861
1862 raw_lockdep_assert_held_rcu_node(rnp);
1863
1864 /* Walk up the rcu_node hierarchy. */
1865 for (;;) {
1866 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1867
1868 /*
1869 * Our bit has already been cleared, or the
1870 * relevant grace period is already over, so done.
1871 */
1872 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1873 return;
1874 }
1875 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1876 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1877 rcu_preempt_blocked_readers_cgp(rnp));
1878 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1879 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1880 mask, rnp->qsmask, rnp->level,
1881 rnp->grplo, rnp->grphi,
1882 !!rnp->gp_tasks);
1883 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1884
1885 /* Other bits still set at this level, so done. */
1886 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1887 return;
1888 }
1889 rnp->completedqs = rnp->gp_seq;
1890 mask = rnp->grpmask;
1891 if (rnp->parent == NULL) {
1892
1893 /* No more levels. Exit loop holding root lock. */
1894
1895 break;
1896 }
1897 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1898 rnp_c = rnp;
1899 rnp = rnp->parent;
1900 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1901 oldmask = READ_ONCE(rnp_c->qsmask);
1902 }
1903
1904 /*
1905 * Get here if we are the last CPU to pass through a quiescent
1906 * state for this grace period. Invoke rcu_report_qs_rsp()
1907 * to clean up and start the next grace period if one is needed.
1908 */
1909 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1910 }
1911
1912 /*
1913 * Record a quiescent state for all tasks that were previously queued
1914 * on the specified rcu_node structure and that were blocking the current
1915 * RCU grace period. The caller must hold the corresponding rnp->lock with
1916 * irqs disabled, and this lock is released upon return, but irqs remain
1917 * disabled.
1918 */
1919 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1920 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1921 __releases(rnp->lock)
1922 {
1923 unsigned long gps;
1924 unsigned long mask;
1925 struct rcu_node *rnp_p;
1926
1927 raw_lockdep_assert_held_rcu_node(rnp);
1928 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1929 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1930 rnp->qsmask != 0) {
1931 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1932 return; /* Still need more quiescent states! */
1933 }
1934
1935 rnp->completedqs = rnp->gp_seq;
1936 rnp_p = rnp->parent;
1937 if (rnp_p == NULL) {
1938 /*
1939 * Only one rcu_node structure in the tree, so don't
1940 * try to report up to its nonexistent parent!
1941 */
1942 rcu_report_qs_rsp(flags);
1943 return;
1944 }
1945
1946 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1947 gps = rnp->gp_seq;
1948 mask = rnp->grpmask;
1949 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1950 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1951 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1952 }
1953
1954 /*
1955 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1956 * structure. This must be called from the specified CPU.
1957 */
1958 static void
rcu_report_qs_rdp(struct rcu_data * rdp)1959 rcu_report_qs_rdp(struct rcu_data *rdp)
1960 {
1961 unsigned long flags;
1962 unsigned long mask;
1963 bool needacc = false;
1964 struct rcu_node *rnp;
1965
1966 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
1967 rnp = rdp->mynode;
1968 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1969 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1970 rdp->gpwrap) {
1971
1972 /*
1973 * The grace period in which this quiescent state was
1974 * recorded has ended, so don't report it upwards.
1975 * We will instead need a new quiescent state that lies
1976 * within the current grace period.
1977 */
1978 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
1979 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1980 return;
1981 }
1982 mask = rdp->grpmask;
1983 rdp->core_needs_qs = false;
1984 if ((rnp->qsmask & mask) == 0) {
1985 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1986 } else {
1987 /*
1988 * This GP can't end until cpu checks in, so all of our
1989 * callbacks can be processed during the next GP.
1990 *
1991 * NOCB kthreads have their own way to deal with that...
1992 */
1993 if (!rcu_rdp_is_offloaded(rdp)) {
1994 /*
1995 * The current GP has not yet ended, so it
1996 * should not be possible for rcu_accelerate_cbs()
1997 * to return true. So complain, but don't awaken.
1998 */
1999 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2000 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2001 /*
2002 * ...but NOCB kthreads may miss or delay callbacks acceleration
2003 * if in the middle of a (de-)offloading process.
2004 */
2005 needacc = true;
2006 }
2007
2008 rcu_disable_urgency_upon_qs(rdp);
2009 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2010 /* ^^^ Released rnp->lock */
2011
2012 if (needacc) {
2013 rcu_nocb_lock_irqsave(rdp, flags);
2014 rcu_accelerate_cbs_unlocked(rnp, rdp);
2015 rcu_nocb_unlock_irqrestore(rdp, flags);
2016 }
2017 }
2018 }
2019
2020 /*
2021 * Check to see if there is a new grace period of which this CPU
2022 * is not yet aware, and if so, set up local rcu_data state for it.
2023 * Otherwise, see if this CPU has just passed through its first
2024 * quiescent state for this grace period, and record that fact if so.
2025 */
2026 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2027 rcu_check_quiescent_state(struct rcu_data *rdp)
2028 {
2029 /* Check for grace-period ends and beginnings. */
2030 note_gp_changes(rdp);
2031
2032 /*
2033 * Does this CPU still need to do its part for current grace period?
2034 * If no, return and let the other CPUs do their part as well.
2035 */
2036 if (!rdp->core_needs_qs)
2037 return;
2038
2039 /*
2040 * Was there a quiescent state since the beginning of the grace
2041 * period? If no, then exit and wait for the next call.
2042 */
2043 if (rdp->cpu_no_qs.b.norm)
2044 return;
2045
2046 /*
2047 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2048 * judge of that).
2049 */
2050 rcu_report_qs_rdp(rdp);
2051 }
2052
2053 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2054 static bool rcu_do_batch_check_time(long count, long tlimit,
2055 bool jlimit_check, unsigned long jlimit)
2056 {
2057 // Invoke local_clock() only once per 32 consecutive callbacks.
2058 return unlikely(tlimit) &&
2059 (!likely(count & 31) ||
2060 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2061 jlimit_check && time_after(jiffies, jlimit))) &&
2062 local_clock() >= tlimit;
2063 }
2064
2065 /*
2066 * Invoke any RCU callbacks that have made it to the end of their grace
2067 * period. Throttle as specified by rdp->blimit.
2068 */
rcu_do_batch(struct rcu_data * rdp)2069 static void rcu_do_batch(struct rcu_data *rdp)
2070 {
2071 long bl;
2072 long count = 0;
2073 int div;
2074 bool __maybe_unused empty;
2075 unsigned long flags;
2076 unsigned long jlimit;
2077 bool jlimit_check = false;
2078 long pending;
2079 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2080 struct rcu_head *rhp;
2081 long tlimit = 0;
2082
2083 /* If no callbacks are ready, just return. */
2084 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2085 trace_rcu_batch_start(rcu_state.name,
2086 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2087 trace_rcu_batch_end(rcu_state.name, 0,
2088 !rcu_segcblist_empty(&rdp->cblist),
2089 need_resched(), is_idle_task(current),
2090 rcu_is_callbacks_kthread(rdp));
2091 return;
2092 }
2093
2094 /*
2095 * Extract the list of ready callbacks, disabling IRQs to prevent
2096 * races with call_rcu() from interrupt handlers. Leave the
2097 * callback counts, as rcu_barrier() needs to be conservative.
2098 */
2099 rcu_nocb_lock_irqsave(rdp, flags);
2100 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2101 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2102 div = READ_ONCE(rcu_divisor);
2103 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2104 bl = max(rdp->blimit, pending >> div);
2105 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2106 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2107 const long npj = NSEC_PER_SEC / HZ;
2108 long rrn = READ_ONCE(rcu_resched_ns);
2109
2110 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2111 tlimit = local_clock() + rrn;
2112 jlimit = jiffies + (rrn + npj + 1) / npj;
2113 jlimit_check = true;
2114 }
2115 trace_rcu_batch_start(rcu_state.name,
2116 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2117 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2118 if (rcu_rdp_is_offloaded(rdp))
2119 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2120
2121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2122 rcu_nocb_unlock_irqrestore(rdp, flags);
2123
2124 /* Invoke callbacks. */
2125 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2126 rhp = rcu_cblist_dequeue(&rcl);
2127
2128 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2129 rcu_callback_t f;
2130
2131 count++;
2132 debug_rcu_head_unqueue(rhp);
2133
2134 rcu_lock_acquire(&rcu_callback_map);
2135 trace_rcu_invoke_callback(rcu_state.name, rhp);
2136
2137 f = rhp->func;
2138 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2139 f(rhp);
2140
2141 rcu_lock_release(&rcu_callback_map);
2142
2143 /*
2144 * Stop only if limit reached and CPU has something to do.
2145 */
2146 if (in_serving_softirq()) {
2147 if (count >= bl && (need_resched() || !is_idle_task(current)))
2148 break;
2149 /*
2150 * Make sure we don't spend too much time here and deprive other
2151 * softirq vectors of CPU cycles.
2152 */
2153 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2154 break;
2155 } else {
2156 // In rcuc/rcuoc context, so no worries about
2157 // depriving other softirq vectors of CPU cycles.
2158 local_bh_enable();
2159 lockdep_assert_irqs_enabled();
2160 cond_resched_tasks_rcu_qs();
2161 lockdep_assert_irqs_enabled();
2162 local_bh_disable();
2163 // But rcuc kthreads can delay quiescent-state
2164 // reporting, so check time limits for them.
2165 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2166 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2167 rdp->rcu_cpu_has_work = 1;
2168 break;
2169 }
2170 }
2171 }
2172
2173 rcu_nocb_lock_irqsave(rdp, flags);
2174 rdp->n_cbs_invoked += count;
2175 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2176 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2177
2178 /* Update counts and requeue any remaining callbacks. */
2179 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2180 rcu_segcblist_add_len(&rdp->cblist, -count);
2181
2182 /* Reinstate batch limit if we have worked down the excess. */
2183 count = rcu_segcblist_n_cbs(&rdp->cblist);
2184 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2185 rdp->blimit = blimit;
2186
2187 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2188 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2189 rdp->qlen_last_fqs_check = 0;
2190 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2191 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2192 rdp->qlen_last_fqs_check = count;
2193
2194 /*
2195 * The following usually indicates a double call_rcu(). To track
2196 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2197 */
2198 empty = rcu_segcblist_empty(&rdp->cblist);
2199 WARN_ON_ONCE(count == 0 && !empty);
2200 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2201 count != 0 && empty);
2202 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2203 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2204
2205 rcu_nocb_unlock_irqrestore(rdp, flags);
2206
2207 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2208 }
2209
2210 /*
2211 * This function is invoked from each scheduling-clock interrupt,
2212 * and checks to see if this CPU is in a non-context-switch quiescent
2213 * state, for example, user mode or idle loop. It also schedules RCU
2214 * core processing. If the current grace period has gone on too long,
2215 * it will ask the scheduler to manufacture a context switch for the sole
2216 * purpose of providing the needed quiescent state.
2217 */
rcu_sched_clock_irq(int user)2218 void rcu_sched_clock_irq(int user)
2219 {
2220 unsigned long j;
2221
2222 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2223 j = jiffies;
2224 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2225 __this_cpu_write(rcu_data.last_sched_clock, j);
2226 }
2227 trace_rcu_utilization(TPS("Start scheduler-tick"));
2228 lockdep_assert_irqs_disabled();
2229 raw_cpu_inc(rcu_data.ticks_this_gp);
2230 /* The load-acquire pairs with the store-release setting to true. */
2231 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2232 /* Idle and userspace execution already are quiescent states. */
2233 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2234 set_tsk_need_resched(current);
2235 set_preempt_need_resched();
2236 }
2237 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2238 }
2239 rcu_flavor_sched_clock_irq(user);
2240 if (rcu_pending(user))
2241 invoke_rcu_core();
2242 if (user || rcu_is_cpu_rrupt_from_idle())
2243 rcu_note_voluntary_context_switch(current);
2244 lockdep_assert_irqs_disabled();
2245
2246 trace_rcu_utilization(TPS("End scheduler-tick"));
2247 }
2248
2249 /*
2250 * Scan the leaf rcu_node structures. For each structure on which all
2251 * CPUs have reported a quiescent state and on which there are tasks
2252 * blocking the current grace period, initiate RCU priority boosting.
2253 * Otherwise, invoke the specified function to check dyntick state for
2254 * each CPU that has not yet reported a quiescent state.
2255 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2256 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2257 {
2258 int cpu;
2259 unsigned long flags;
2260 unsigned long mask;
2261 struct rcu_data *rdp;
2262 struct rcu_node *rnp;
2263
2264 rcu_state.cbovld = rcu_state.cbovldnext;
2265 rcu_state.cbovldnext = false;
2266 rcu_for_each_leaf_node(rnp) {
2267 cond_resched_tasks_rcu_qs();
2268 mask = 0;
2269 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2270 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2271 if (rnp->qsmask == 0) {
2272 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2273 /*
2274 * No point in scanning bits because they
2275 * are all zero. But we might need to
2276 * priority-boost blocked readers.
2277 */
2278 rcu_initiate_boost(rnp, flags);
2279 /* rcu_initiate_boost() releases rnp->lock */
2280 continue;
2281 }
2282 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2283 continue;
2284 }
2285 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2286 rdp = per_cpu_ptr(&rcu_data, cpu);
2287 if (f(rdp)) {
2288 mask |= rdp->grpmask;
2289 rcu_disable_urgency_upon_qs(rdp);
2290 }
2291 }
2292 if (mask != 0) {
2293 /* Idle/offline CPUs, report (releases rnp->lock). */
2294 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2295 } else {
2296 /* Nothing to do here, so just drop the lock. */
2297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2298 }
2299 }
2300 }
2301
2302 /*
2303 * Force quiescent states on reluctant CPUs, and also detect which
2304 * CPUs are in dyntick-idle mode.
2305 */
rcu_force_quiescent_state(void)2306 void rcu_force_quiescent_state(void)
2307 {
2308 unsigned long flags;
2309 bool ret;
2310 struct rcu_node *rnp;
2311 struct rcu_node *rnp_old = NULL;
2312
2313 /* Funnel through hierarchy to reduce memory contention. */
2314 rnp = raw_cpu_read(rcu_data.mynode);
2315 for (; rnp != NULL; rnp = rnp->parent) {
2316 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2317 !raw_spin_trylock(&rnp->fqslock);
2318 if (rnp_old != NULL)
2319 raw_spin_unlock(&rnp_old->fqslock);
2320 if (ret)
2321 return;
2322 rnp_old = rnp;
2323 }
2324 /* rnp_old == rcu_get_root(), rnp == NULL. */
2325
2326 /* Reached the root of the rcu_node tree, acquire lock. */
2327 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2328 raw_spin_unlock(&rnp_old->fqslock);
2329 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2330 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2331 return; /* Someone beat us to it. */
2332 }
2333 WRITE_ONCE(rcu_state.gp_flags,
2334 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2335 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2336 rcu_gp_kthread_wake();
2337 }
2338 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2339
2340 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2341 // grace periods.
strict_work_handler(struct work_struct * work)2342 static void strict_work_handler(struct work_struct *work)
2343 {
2344 rcu_read_lock();
2345 rcu_read_unlock();
2346 }
2347
2348 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2349 static __latent_entropy void rcu_core(void)
2350 {
2351 unsigned long flags;
2352 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2353 struct rcu_node *rnp = rdp->mynode;
2354 /*
2355 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2356 * Therefore this function can race with concurrent NOCB (de-)offloading
2357 * on this CPU and the below condition must be considered volatile.
2358 * However if we race with:
2359 *
2360 * _ Offloading: In the worst case we accelerate or process callbacks
2361 * concurrently with NOCB kthreads. We are guaranteed to
2362 * call rcu_nocb_lock() if that happens.
2363 *
2364 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2365 * processing. This is fine because the early stage
2366 * of deoffloading invokes rcu_core() after setting
2367 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2368 * what could have been dismissed without the need to wait
2369 * for the next rcu_pending() check in the next jiffy.
2370 */
2371 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2372
2373 if (cpu_is_offline(smp_processor_id()))
2374 return;
2375 trace_rcu_utilization(TPS("Start RCU core"));
2376 WARN_ON_ONCE(!rdp->beenonline);
2377
2378 /* Report any deferred quiescent states if preemption enabled. */
2379 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2380 rcu_preempt_deferred_qs(current);
2381 } else if (rcu_preempt_need_deferred_qs(current)) {
2382 set_tsk_need_resched(current);
2383 set_preempt_need_resched();
2384 }
2385
2386 /* Update RCU state based on any recent quiescent states. */
2387 rcu_check_quiescent_state(rdp);
2388
2389 /* No grace period and unregistered callbacks? */
2390 if (!rcu_gp_in_progress() &&
2391 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2392 rcu_nocb_lock_irqsave(rdp, flags);
2393 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2394 rcu_accelerate_cbs_unlocked(rnp, rdp);
2395 rcu_nocb_unlock_irqrestore(rdp, flags);
2396 }
2397
2398 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2399
2400 /* If there are callbacks ready, invoke them. */
2401 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2402 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2403 rcu_do_batch(rdp);
2404 /* Re-invoke RCU core processing if there are callbacks remaining. */
2405 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2406 invoke_rcu_core();
2407 }
2408
2409 /* Do any needed deferred wakeups of rcuo kthreads. */
2410 do_nocb_deferred_wakeup(rdp);
2411 trace_rcu_utilization(TPS("End RCU core"));
2412
2413 // If strict GPs, schedule an RCU reader in a clean environment.
2414 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2415 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2416 }
2417
rcu_core_si(struct softirq_action * h)2418 static void rcu_core_si(struct softirq_action *h)
2419 {
2420 rcu_core();
2421 }
2422
rcu_wake_cond(struct task_struct * t,int status)2423 static void rcu_wake_cond(struct task_struct *t, int status)
2424 {
2425 /*
2426 * If the thread is yielding, only wake it when this
2427 * is invoked from idle
2428 */
2429 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2430 wake_up_process(t);
2431 }
2432
invoke_rcu_core_kthread(void)2433 static void invoke_rcu_core_kthread(void)
2434 {
2435 struct task_struct *t;
2436 unsigned long flags;
2437
2438 local_irq_save(flags);
2439 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2440 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2441 if (t != NULL && t != current)
2442 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2443 local_irq_restore(flags);
2444 }
2445
2446 /*
2447 * Wake up this CPU's rcuc kthread to do RCU core processing.
2448 */
invoke_rcu_core(void)2449 static void invoke_rcu_core(void)
2450 {
2451 if (!cpu_online(smp_processor_id()))
2452 return;
2453 if (use_softirq)
2454 raise_softirq(RCU_SOFTIRQ);
2455 else
2456 invoke_rcu_core_kthread();
2457 }
2458
rcu_cpu_kthread_park(unsigned int cpu)2459 static void rcu_cpu_kthread_park(unsigned int cpu)
2460 {
2461 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2462 }
2463
rcu_cpu_kthread_should_run(unsigned int cpu)2464 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2465 {
2466 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2467 }
2468
2469 /*
2470 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2471 * the RCU softirq used in configurations of RCU that do not support RCU
2472 * priority boosting.
2473 */
rcu_cpu_kthread(unsigned int cpu)2474 static void rcu_cpu_kthread(unsigned int cpu)
2475 {
2476 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2477 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2478 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2479 int spincnt;
2480
2481 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2482 for (spincnt = 0; spincnt < 10; spincnt++) {
2483 WRITE_ONCE(*j, jiffies);
2484 local_bh_disable();
2485 *statusp = RCU_KTHREAD_RUNNING;
2486 local_irq_disable();
2487 work = *workp;
2488 WRITE_ONCE(*workp, 0);
2489 local_irq_enable();
2490 if (work)
2491 rcu_core();
2492 local_bh_enable();
2493 if (!READ_ONCE(*workp)) {
2494 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2495 *statusp = RCU_KTHREAD_WAITING;
2496 return;
2497 }
2498 }
2499 *statusp = RCU_KTHREAD_YIELDING;
2500 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2501 schedule_timeout_idle(2);
2502 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2503 *statusp = RCU_KTHREAD_WAITING;
2504 WRITE_ONCE(*j, jiffies);
2505 }
2506
2507 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2508 .store = &rcu_data.rcu_cpu_kthread_task,
2509 .thread_should_run = rcu_cpu_kthread_should_run,
2510 .thread_fn = rcu_cpu_kthread,
2511 .thread_comm = "rcuc/%u",
2512 .setup = rcu_cpu_kthread_setup,
2513 .park = rcu_cpu_kthread_park,
2514 };
2515
2516 /*
2517 * Spawn per-CPU RCU core processing kthreads.
2518 */
rcu_spawn_core_kthreads(void)2519 static int __init rcu_spawn_core_kthreads(void)
2520 {
2521 int cpu;
2522
2523 for_each_possible_cpu(cpu)
2524 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2525 if (use_softirq)
2526 return 0;
2527 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2528 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2529 return 0;
2530 }
2531
2532 /*
2533 * Handle any core-RCU processing required by a call_rcu() invocation.
2534 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2535 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2536 unsigned long flags)
2537 {
2538 /*
2539 * If called from an extended quiescent state, invoke the RCU
2540 * core in order to force a re-evaluation of RCU's idleness.
2541 */
2542 if (!rcu_is_watching())
2543 invoke_rcu_core();
2544
2545 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2546 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2547 return;
2548
2549 /*
2550 * Force the grace period if too many callbacks or too long waiting.
2551 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2552 * if some other CPU has recently done so. Also, don't bother
2553 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2554 * is the only one waiting for a grace period to complete.
2555 */
2556 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2557 rdp->qlen_last_fqs_check + qhimark)) {
2558
2559 /* Are we ignoring a completed grace period? */
2560 note_gp_changes(rdp);
2561
2562 /* Start a new grace period if one not already started. */
2563 if (!rcu_gp_in_progress()) {
2564 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2565 } else {
2566 /* Give the grace period a kick. */
2567 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2568 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2569 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2570 rcu_force_quiescent_state();
2571 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2572 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2573 }
2574 }
2575 }
2576
2577 /*
2578 * RCU callback function to leak a callback.
2579 */
rcu_leak_callback(struct rcu_head * rhp)2580 static void rcu_leak_callback(struct rcu_head *rhp)
2581 {
2582 }
2583
2584 /*
2585 * Check and if necessary update the leaf rcu_node structure's
2586 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2587 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2588 * structure's ->lock.
2589 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2590 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2591 {
2592 raw_lockdep_assert_held_rcu_node(rnp);
2593 if (qovld_calc <= 0)
2594 return; // Early boot and wildcard value set.
2595 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2596 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2597 else
2598 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2599 }
2600
2601 /*
2602 * Check and if necessary update the leaf rcu_node structure's
2603 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2604 * number of queued RCU callbacks. No locks need be held, but the
2605 * caller must have disabled interrupts.
2606 *
2607 * Note that this function ignores the possibility that there are a lot
2608 * of callbacks all of which have already seen the end of their respective
2609 * grace periods. This omission is due to the need for no-CBs CPUs to
2610 * be holding ->nocb_lock to do this check, which is too heavy for a
2611 * common-case operation.
2612 */
check_cb_ovld(struct rcu_data * rdp)2613 static void check_cb_ovld(struct rcu_data *rdp)
2614 {
2615 struct rcu_node *const rnp = rdp->mynode;
2616
2617 if (qovld_calc <= 0 ||
2618 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2619 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2620 return; // Early boot wildcard value or already set correctly.
2621 raw_spin_lock_rcu_node(rnp);
2622 check_cb_ovld_locked(rdp, rnp);
2623 raw_spin_unlock_rcu_node(rnp);
2624 }
2625
2626 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)2627 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2628 {
2629 static atomic_t doublefrees;
2630 unsigned long flags;
2631 bool lazy;
2632 struct rcu_data *rdp;
2633 bool was_alldone;
2634
2635 /* Misaligned rcu_head! */
2636 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2637
2638 if (debug_rcu_head_queue(head)) {
2639 /*
2640 * Probable double call_rcu(), so leak the callback.
2641 * Use rcu:rcu_callback trace event to find the previous
2642 * time callback was passed to call_rcu().
2643 */
2644 if (atomic_inc_return(&doublefrees) < 4) {
2645 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2646 mem_dump_obj(head);
2647 }
2648 WRITE_ONCE(head->func, rcu_leak_callback);
2649 return;
2650 }
2651 head->func = func;
2652 head->next = NULL;
2653 kasan_record_aux_stack_noalloc(head);
2654 local_irq_save(flags);
2655 rdp = this_cpu_ptr(&rcu_data);
2656 lazy = lazy_in && !rcu_async_should_hurry();
2657
2658 /* Add the callback to our list. */
2659 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2660 // This can trigger due to call_rcu() from offline CPU:
2661 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2662 WARN_ON_ONCE(!rcu_is_watching());
2663 // Very early boot, before rcu_init(). Initialize if needed
2664 // and then drop through to queue the callback.
2665 if (rcu_segcblist_empty(&rdp->cblist))
2666 rcu_segcblist_init(&rdp->cblist);
2667 }
2668
2669 check_cb_ovld(rdp);
2670 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2671 return; // Enqueued onto ->nocb_bypass, so just leave.
2672 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2673 rcu_segcblist_enqueue(&rdp->cblist, head);
2674 if (__is_kvfree_rcu_offset((unsigned long)func))
2675 trace_rcu_kvfree_callback(rcu_state.name, head,
2676 (unsigned long)func,
2677 rcu_segcblist_n_cbs(&rdp->cblist));
2678 else
2679 trace_rcu_callback(rcu_state.name, head,
2680 rcu_segcblist_n_cbs(&rdp->cblist));
2681
2682 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2683
2684 /* Go handle any RCU core processing required. */
2685 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2686 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2687 } else {
2688 __call_rcu_core(rdp, head, flags);
2689 local_irq_restore(flags);
2690 }
2691 }
2692
2693 #ifdef CONFIG_RCU_LAZY
2694 /**
2695 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2696 * flush all lazy callbacks (including the new one) to the main ->cblist while
2697 * doing so.
2698 *
2699 * @head: structure to be used for queueing the RCU updates.
2700 * @func: actual callback function to be invoked after the grace period
2701 *
2702 * The callback function will be invoked some time after a full grace
2703 * period elapses, in other words after all pre-existing RCU read-side
2704 * critical sections have completed.
2705 *
2706 * Use this API instead of call_rcu() if you don't want the callback to be
2707 * invoked after very long periods of time, which can happen on systems without
2708 * memory pressure and on systems which are lightly loaded or mostly idle.
2709 * This function will cause callbacks to be invoked sooner than later at the
2710 * expense of extra power. Other than that, this function is identical to, and
2711 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2712 * ordering and other functionality.
2713 */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)2714 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2715 {
2716 return __call_rcu_common(head, func, false);
2717 }
2718 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2719 #endif
2720
2721 /**
2722 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2723 * By default the callbacks are 'lazy' and are kept hidden from the main
2724 * ->cblist to prevent starting of grace periods too soon.
2725 * If you desire grace periods to start very soon, use call_rcu_hurry().
2726 *
2727 * @head: structure to be used for queueing the RCU updates.
2728 * @func: actual callback function to be invoked after the grace period
2729 *
2730 * The callback function will be invoked some time after a full grace
2731 * period elapses, in other words after all pre-existing RCU read-side
2732 * critical sections have completed. However, the callback function
2733 * might well execute concurrently with RCU read-side critical sections
2734 * that started after call_rcu() was invoked.
2735 *
2736 * RCU read-side critical sections are delimited by rcu_read_lock()
2737 * and rcu_read_unlock(), and may be nested. In addition, but only in
2738 * v5.0 and later, regions of code across which interrupts, preemption,
2739 * or softirqs have been disabled also serve as RCU read-side critical
2740 * sections. This includes hardware interrupt handlers, softirq handlers,
2741 * and NMI handlers.
2742 *
2743 * Note that all CPUs must agree that the grace period extended beyond
2744 * all pre-existing RCU read-side critical section. On systems with more
2745 * than one CPU, this means that when "func()" is invoked, each CPU is
2746 * guaranteed to have executed a full memory barrier since the end of its
2747 * last RCU read-side critical section whose beginning preceded the call
2748 * to call_rcu(). It also means that each CPU executing an RCU read-side
2749 * critical section that continues beyond the start of "func()" must have
2750 * executed a memory barrier after the call_rcu() but before the beginning
2751 * of that RCU read-side critical section. Note that these guarantees
2752 * include CPUs that are offline, idle, or executing in user mode, as
2753 * well as CPUs that are executing in the kernel.
2754 *
2755 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2756 * resulting RCU callback function "func()", then both CPU A and CPU B are
2757 * guaranteed to execute a full memory barrier during the time interval
2758 * between the call to call_rcu() and the invocation of "func()" -- even
2759 * if CPU A and CPU B are the same CPU (but again only if the system has
2760 * more than one CPU).
2761 *
2762 * Implementation of these memory-ordering guarantees is described here:
2763 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2764 */
call_rcu(struct rcu_head * head,rcu_callback_t func)2765 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2766 {
2767 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2768 }
2769 EXPORT_SYMBOL_GPL(call_rcu);
2770
2771 /* Maximum number of jiffies to wait before draining a batch. */
2772 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2773 #define KFREE_N_BATCHES 2
2774 #define FREE_N_CHANNELS 2
2775
2776 /**
2777 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2778 * @list: List node. All blocks are linked between each other
2779 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2780 * @nr_records: Number of active pointers in the array
2781 * @records: Array of the kvfree_rcu() pointers
2782 */
2783 struct kvfree_rcu_bulk_data {
2784 struct list_head list;
2785 struct rcu_gp_oldstate gp_snap;
2786 unsigned long nr_records;
2787 void *records[];
2788 };
2789
2790 /*
2791 * This macro defines how many entries the "records" array
2792 * will contain. It is based on the fact that the size of
2793 * kvfree_rcu_bulk_data structure becomes exactly one page.
2794 */
2795 #define KVFREE_BULK_MAX_ENTR \
2796 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2797
2798 /**
2799 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2800 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2801 * @head_free: List of kfree_rcu() objects waiting for a grace period
2802 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2803 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2804 * @krcp: Pointer to @kfree_rcu_cpu structure
2805 */
2806
2807 struct kfree_rcu_cpu_work {
2808 struct rcu_work rcu_work;
2809 struct rcu_head *head_free;
2810 struct rcu_gp_oldstate head_free_gp_snap;
2811 struct list_head bulk_head_free[FREE_N_CHANNELS];
2812 struct kfree_rcu_cpu *krcp;
2813 };
2814
2815 /**
2816 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2817 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2818 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2819 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2820 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2821 * @lock: Synchronize access to this structure
2822 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2823 * @initialized: The @rcu_work fields have been initialized
2824 * @head_count: Number of objects in rcu_head singular list
2825 * @bulk_count: Number of objects in bulk-list
2826 * @bkvcache:
2827 * A simple cache list that contains objects for reuse purpose.
2828 * In order to save some per-cpu space the list is singular.
2829 * Even though it is lockless an access has to be protected by the
2830 * per-cpu lock.
2831 * @page_cache_work: A work to refill the cache when it is empty
2832 * @backoff_page_cache_fill: Delay cache refills
2833 * @work_in_progress: Indicates that page_cache_work is running
2834 * @hrtimer: A hrtimer for scheduling a page_cache_work
2835 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2836 *
2837 * This is a per-CPU structure. The reason that it is not included in
2838 * the rcu_data structure is to permit this code to be extracted from
2839 * the RCU files. Such extraction could allow further optimization of
2840 * the interactions with the slab allocators.
2841 */
2842 struct kfree_rcu_cpu {
2843 // Objects queued on a linked list
2844 // through their rcu_head structures.
2845 struct rcu_head *head;
2846 unsigned long head_gp_snap;
2847 atomic_t head_count;
2848
2849 // Objects queued on a bulk-list.
2850 struct list_head bulk_head[FREE_N_CHANNELS];
2851 atomic_t bulk_count[FREE_N_CHANNELS];
2852
2853 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2854 raw_spinlock_t lock;
2855 struct delayed_work monitor_work;
2856 bool initialized;
2857
2858 struct delayed_work page_cache_work;
2859 atomic_t backoff_page_cache_fill;
2860 atomic_t work_in_progress;
2861 struct hrtimer hrtimer;
2862
2863 struct llist_head bkvcache;
2864 int nr_bkv_objs;
2865 };
2866
2867 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2868 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2869 };
2870
2871 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)2872 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2873 {
2874 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2875 int i;
2876
2877 for (i = 0; i < bhead->nr_records; i++)
2878 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2879 #endif
2880 }
2881
2882 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)2883 krc_this_cpu_lock(unsigned long *flags)
2884 {
2885 struct kfree_rcu_cpu *krcp;
2886
2887 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2888 krcp = this_cpu_ptr(&krc);
2889 raw_spin_lock(&krcp->lock);
2890
2891 return krcp;
2892 }
2893
2894 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)2895 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2896 {
2897 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2898 }
2899
2900 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)2901 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2902 {
2903 if (!krcp->nr_bkv_objs)
2904 return NULL;
2905
2906 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2907 return (struct kvfree_rcu_bulk_data *)
2908 llist_del_first(&krcp->bkvcache);
2909 }
2910
2911 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)2912 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2913 struct kvfree_rcu_bulk_data *bnode)
2914 {
2915 // Check the limit.
2916 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2917 return false;
2918
2919 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2920 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2921 return true;
2922 }
2923
2924 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)2925 drain_page_cache(struct kfree_rcu_cpu *krcp)
2926 {
2927 unsigned long flags;
2928 struct llist_node *page_list, *pos, *n;
2929 int freed = 0;
2930
2931 if (!rcu_min_cached_objs)
2932 return 0;
2933
2934 raw_spin_lock_irqsave(&krcp->lock, flags);
2935 page_list = llist_del_all(&krcp->bkvcache);
2936 WRITE_ONCE(krcp->nr_bkv_objs, 0);
2937 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2938
2939 llist_for_each_safe(pos, n, page_list) {
2940 free_page((unsigned long)pos);
2941 freed++;
2942 }
2943
2944 return freed;
2945 }
2946
2947 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)2948 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
2949 struct kvfree_rcu_bulk_data *bnode, int idx)
2950 {
2951 unsigned long flags;
2952 int i;
2953
2954 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
2955 debug_rcu_bhead_unqueue(bnode);
2956 rcu_lock_acquire(&rcu_callback_map);
2957 if (idx == 0) { // kmalloc() / kfree().
2958 trace_rcu_invoke_kfree_bulk_callback(
2959 rcu_state.name, bnode->nr_records,
2960 bnode->records);
2961
2962 kfree_bulk(bnode->nr_records, bnode->records);
2963 } else { // vmalloc() / vfree().
2964 for (i = 0; i < bnode->nr_records; i++) {
2965 trace_rcu_invoke_kvfree_callback(
2966 rcu_state.name, bnode->records[i], 0);
2967
2968 vfree(bnode->records[i]);
2969 }
2970 }
2971 rcu_lock_release(&rcu_callback_map);
2972 }
2973
2974 raw_spin_lock_irqsave(&krcp->lock, flags);
2975 if (put_cached_bnode(krcp, bnode))
2976 bnode = NULL;
2977 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2978
2979 if (bnode)
2980 free_page((unsigned long) bnode);
2981
2982 cond_resched_tasks_rcu_qs();
2983 }
2984
2985 static void
kvfree_rcu_list(struct rcu_head * head)2986 kvfree_rcu_list(struct rcu_head *head)
2987 {
2988 struct rcu_head *next;
2989
2990 for (; head; head = next) {
2991 void *ptr = (void *) head->func;
2992 unsigned long offset = (void *) head - ptr;
2993
2994 next = head->next;
2995 debug_rcu_head_unqueue((struct rcu_head *)ptr);
2996 rcu_lock_acquire(&rcu_callback_map);
2997 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
2998
2999 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3000 kvfree(ptr);
3001
3002 rcu_lock_release(&rcu_callback_map);
3003 cond_resched_tasks_rcu_qs();
3004 }
3005 }
3006
3007 /*
3008 * This function is invoked in workqueue context after a grace period.
3009 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3010 */
kfree_rcu_work(struct work_struct * work)3011 static void kfree_rcu_work(struct work_struct *work)
3012 {
3013 unsigned long flags;
3014 struct kvfree_rcu_bulk_data *bnode, *n;
3015 struct list_head bulk_head[FREE_N_CHANNELS];
3016 struct rcu_head *head;
3017 struct kfree_rcu_cpu *krcp;
3018 struct kfree_rcu_cpu_work *krwp;
3019 struct rcu_gp_oldstate head_gp_snap;
3020 int i;
3021
3022 krwp = container_of(to_rcu_work(work),
3023 struct kfree_rcu_cpu_work, rcu_work);
3024 krcp = krwp->krcp;
3025
3026 raw_spin_lock_irqsave(&krcp->lock, flags);
3027 // Channels 1 and 2.
3028 for (i = 0; i < FREE_N_CHANNELS; i++)
3029 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3030
3031 // Channel 3.
3032 head = krwp->head_free;
3033 krwp->head_free = NULL;
3034 head_gp_snap = krwp->head_free_gp_snap;
3035 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3036
3037 // Handle the first two channels.
3038 for (i = 0; i < FREE_N_CHANNELS; i++) {
3039 // Start from the tail page, so a GP is likely passed for it.
3040 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3041 kvfree_rcu_bulk(krcp, bnode, i);
3042 }
3043
3044 /*
3045 * This is used when the "bulk" path can not be used for the
3046 * double-argument of kvfree_rcu(). This happens when the
3047 * page-cache is empty, which means that objects are instead
3048 * queued on a linked list through their rcu_head structures.
3049 * This list is named "Channel 3".
3050 */
3051 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3052 kvfree_rcu_list(head);
3053 }
3054
3055 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3056 need_offload_krc(struct kfree_rcu_cpu *krcp)
3057 {
3058 int i;
3059
3060 for (i = 0; i < FREE_N_CHANNELS; i++)
3061 if (!list_empty(&krcp->bulk_head[i]))
3062 return true;
3063
3064 return !!READ_ONCE(krcp->head);
3065 }
3066
3067 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3068 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3069 {
3070 int i;
3071
3072 for (i = 0; i < FREE_N_CHANNELS; i++)
3073 if (!list_empty(&krwp->bulk_head_free[i]))
3074 return true;
3075
3076 return !!krwp->head_free;
3077 }
3078
krc_count(struct kfree_rcu_cpu * krcp)3079 static int krc_count(struct kfree_rcu_cpu *krcp)
3080 {
3081 int sum = atomic_read(&krcp->head_count);
3082 int i;
3083
3084 for (i = 0; i < FREE_N_CHANNELS; i++)
3085 sum += atomic_read(&krcp->bulk_count[i]);
3086
3087 return sum;
3088 }
3089
3090 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3091 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3092 {
3093 long delay, delay_left;
3094
3095 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3096 if (delayed_work_pending(&krcp->monitor_work)) {
3097 delay_left = krcp->monitor_work.timer.expires - jiffies;
3098 if (delay < delay_left)
3099 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3100 return;
3101 }
3102 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3103 }
3104
3105 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3106 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3107 {
3108 struct list_head bulk_ready[FREE_N_CHANNELS];
3109 struct kvfree_rcu_bulk_data *bnode, *n;
3110 struct rcu_head *head_ready = NULL;
3111 unsigned long flags;
3112 int i;
3113
3114 raw_spin_lock_irqsave(&krcp->lock, flags);
3115 for (i = 0; i < FREE_N_CHANNELS; i++) {
3116 INIT_LIST_HEAD(&bulk_ready[i]);
3117
3118 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3119 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3120 break;
3121
3122 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3123 list_move(&bnode->list, &bulk_ready[i]);
3124 }
3125 }
3126
3127 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3128 head_ready = krcp->head;
3129 atomic_set(&krcp->head_count, 0);
3130 WRITE_ONCE(krcp->head, NULL);
3131 }
3132 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3133
3134 for (i = 0; i < FREE_N_CHANNELS; i++) {
3135 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3136 kvfree_rcu_bulk(krcp, bnode, i);
3137 }
3138
3139 if (head_ready)
3140 kvfree_rcu_list(head_ready);
3141 }
3142
3143 /*
3144 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3145 */
kfree_rcu_monitor(struct work_struct * work)3146 static void kfree_rcu_monitor(struct work_struct *work)
3147 {
3148 struct kfree_rcu_cpu *krcp = container_of(work,
3149 struct kfree_rcu_cpu, monitor_work.work);
3150 unsigned long flags;
3151 int i, j;
3152
3153 // Drain ready for reclaim.
3154 kvfree_rcu_drain_ready(krcp);
3155
3156 raw_spin_lock_irqsave(&krcp->lock, flags);
3157
3158 // Attempt to start a new batch.
3159 for (i = 0; i < KFREE_N_BATCHES; i++) {
3160 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3161
3162 // Try to detach bulk_head or head and attach it, only when
3163 // all channels are free. Any channel is not free means at krwp
3164 // there is on-going rcu work to handle krwp's free business.
3165 if (need_wait_for_krwp_work(krwp))
3166 continue;
3167
3168 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3169 if (need_offload_krc(krcp)) {
3170 // Channel 1 corresponds to the SLAB-pointer bulk path.
3171 // Channel 2 corresponds to vmalloc-pointer bulk path.
3172 for (j = 0; j < FREE_N_CHANNELS; j++) {
3173 if (list_empty(&krwp->bulk_head_free[j])) {
3174 atomic_set(&krcp->bulk_count[j], 0);
3175 list_replace_init(&krcp->bulk_head[j],
3176 &krwp->bulk_head_free[j]);
3177 }
3178 }
3179
3180 // Channel 3 corresponds to both SLAB and vmalloc
3181 // objects queued on the linked list.
3182 if (!krwp->head_free) {
3183 krwp->head_free = krcp->head;
3184 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3185 atomic_set(&krcp->head_count, 0);
3186 WRITE_ONCE(krcp->head, NULL);
3187 }
3188
3189 // One work is per one batch, so there are three
3190 // "free channels", the batch can handle. It can
3191 // be that the work is in the pending state when
3192 // channels have been detached following by each
3193 // other.
3194 queue_rcu_work(system_wq, &krwp->rcu_work);
3195 }
3196 }
3197
3198 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3199
3200 // If there is nothing to detach, it means that our job is
3201 // successfully done here. In case of having at least one
3202 // of the channels that is still busy we should rearm the
3203 // work to repeat an attempt. Because previous batches are
3204 // still in progress.
3205 if (need_offload_krc(krcp))
3206 schedule_delayed_monitor_work(krcp);
3207 }
3208
3209 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3210 schedule_page_work_fn(struct hrtimer *t)
3211 {
3212 struct kfree_rcu_cpu *krcp =
3213 container_of(t, struct kfree_rcu_cpu, hrtimer);
3214
3215 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3216 return HRTIMER_NORESTART;
3217 }
3218
fill_page_cache_func(struct work_struct * work)3219 static void fill_page_cache_func(struct work_struct *work)
3220 {
3221 struct kvfree_rcu_bulk_data *bnode;
3222 struct kfree_rcu_cpu *krcp =
3223 container_of(work, struct kfree_rcu_cpu,
3224 page_cache_work.work);
3225 unsigned long flags;
3226 int nr_pages;
3227 bool pushed;
3228 int i;
3229
3230 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3231 1 : rcu_min_cached_objs;
3232
3233 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3234 bnode = (struct kvfree_rcu_bulk_data *)
3235 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3236
3237 if (!bnode)
3238 break;
3239
3240 raw_spin_lock_irqsave(&krcp->lock, flags);
3241 pushed = put_cached_bnode(krcp, bnode);
3242 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3243
3244 if (!pushed) {
3245 free_page((unsigned long) bnode);
3246 break;
3247 }
3248 }
3249
3250 atomic_set(&krcp->work_in_progress, 0);
3251 atomic_set(&krcp->backoff_page_cache_fill, 0);
3252 }
3253
3254 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3255 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3256 {
3257 // If cache disabled, bail out.
3258 if (!rcu_min_cached_objs)
3259 return;
3260
3261 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3262 !atomic_xchg(&krcp->work_in_progress, 1)) {
3263 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3264 queue_delayed_work(system_wq,
3265 &krcp->page_cache_work,
3266 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3267 } else {
3268 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3269 krcp->hrtimer.function = schedule_page_work_fn;
3270 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3271 }
3272 }
3273 }
3274
3275 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3276 // state specified by flags. If can_alloc is true, the caller must
3277 // be schedulable and not be holding any locks or mutexes that might be
3278 // acquired by the memory allocator or anything that it might invoke.
3279 // Returns true if ptr was successfully recorded, else the caller must
3280 // use a fallback.
3281 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3282 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3283 unsigned long *flags, void *ptr, bool can_alloc)
3284 {
3285 struct kvfree_rcu_bulk_data *bnode;
3286 int idx;
3287
3288 *krcp = krc_this_cpu_lock(flags);
3289 if (unlikely(!(*krcp)->initialized))
3290 return false;
3291
3292 idx = !!is_vmalloc_addr(ptr);
3293 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3294 struct kvfree_rcu_bulk_data, list);
3295
3296 /* Check if a new block is required. */
3297 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3298 bnode = get_cached_bnode(*krcp);
3299 if (!bnode && can_alloc) {
3300 krc_this_cpu_unlock(*krcp, *flags);
3301
3302 // __GFP_NORETRY - allows a light-weight direct reclaim
3303 // what is OK from minimizing of fallback hitting point of
3304 // view. Apart of that it forbids any OOM invoking what is
3305 // also beneficial since we are about to release memory soon.
3306 //
3307 // __GFP_NOMEMALLOC - prevents from consuming of all the
3308 // memory reserves. Please note we have a fallback path.
3309 //
3310 // __GFP_NOWARN - it is supposed that an allocation can
3311 // be failed under low memory or high memory pressure
3312 // scenarios.
3313 bnode = (struct kvfree_rcu_bulk_data *)
3314 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3315 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3316 }
3317
3318 if (!bnode)
3319 return false;
3320
3321 // Initialize the new block and attach it.
3322 bnode->nr_records = 0;
3323 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3324 }
3325
3326 // Finally insert and update the GP for this page.
3327 bnode->records[bnode->nr_records++] = ptr;
3328 get_state_synchronize_rcu_full(&bnode->gp_snap);
3329 atomic_inc(&(*krcp)->bulk_count[idx]);
3330
3331 return true;
3332 }
3333
3334 /*
3335 * Queue a request for lazy invocation of the appropriate free routine
3336 * after a grace period. Please note that three paths are maintained,
3337 * two for the common case using arrays of pointers and a third one that
3338 * is used only when the main paths cannot be used, for example, due to
3339 * memory pressure.
3340 *
3341 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3342 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3343 * be free'd in workqueue context. This allows us to: batch requests together to
3344 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3345 */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3346 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3347 {
3348 unsigned long flags;
3349 struct kfree_rcu_cpu *krcp;
3350 bool success;
3351
3352 /*
3353 * Please note there is a limitation for the head-less
3354 * variant, that is why there is a clear rule for such
3355 * objects: it can be used from might_sleep() context
3356 * only. For other places please embed an rcu_head to
3357 * your data.
3358 */
3359 if (!head)
3360 might_sleep();
3361
3362 // Queue the object but don't yet schedule the batch.
3363 if (debug_rcu_head_queue(ptr)) {
3364 // Probable double kfree_rcu(), just leak.
3365 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3366 __func__, head);
3367
3368 // Mark as success and leave.
3369 return;
3370 }
3371
3372 kasan_record_aux_stack_noalloc(ptr);
3373 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3374 if (!success) {
3375 run_page_cache_worker(krcp);
3376
3377 if (head == NULL)
3378 // Inline if kvfree_rcu(one_arg) call.
3379 goto unlock_return;
3380
3381 head->func = ptr;
3382 head->next = krcp->head;
3383 WRITE_ONCE(krcp->head, head);
3384 atomic_inc(&krcp->head_count);
3385
3386 // Take a snapshot for this krcp.
3387 krcp->head_gp_snap = get_state_synchronize_rcu();
3388 success = true;
3389 }
3390
3391 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3392 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3393 schedule_delayed_monitor_work(krcp);
3394
3395 unlock_return:
3396 krc_this_cpu_unlock(krcp, flags);
3397
3398 /*
3399 * Inline kvfree() after synchronize_rcu(). We can do
3400 * it from might_sleep() context only, so the current
3401 * CPU can pass the QS state.
3402 */
3403 if (!success) {
3404 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3405 synchronize_rcu();
3406 kvfree(ptr);
3407 }
3408 }
3409 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3410
3411 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3412 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3413 {
3414 int cpu;
3415 unsigned long count = 0;
3416
3417 /* Snapshot count of all CPUs */
3418 for_each_possible_cpu(cpu) {
3419 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3420
3421 count += krc_count(krcp);
3422 count += READ_ONCE(krcp->nr_bkv_objs);
3423 atomic_set(&krcp->backoff_page_cache_fill, 1);
3424 }
3425
3426 return count == 0 ? SHRINK_EMPTY : count;
3427 }
3428
3429 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3430 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3431 {
3432 int cpu, freed = 0;
3433
3434 for_each_possible_cpu(cpu) {
3435 int count;
3436 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3437
3438 count = krc_count(krcp);
3439 count += drain_page_cache(krcp);
3440 kfree_rcu_monitor(&krcp->monitor_work.work);
3441
3442 sc->nr_to_scan -= count;
3443 freed += count;
3444
3445 if (sc->nr_to_scan <= 0)
3446 break;
3447 }
3448
3449 return freed == 0 ? SHRINK_STOP : freed;
3450 }
3451
3452 static struct shrinker kfree_rcu_shrinker = {
3453 .count_objects = kfree_rcu_shrink_count,
3454 .scan_objects = kfree_rcu_shrink_scan,
3455 .batch = 0,
3456 .seeks = DEFAULT_SEEKS,
3457 };
3458
kfree_rcu_scheduler_running(void)3459 void __init kfree_rcu_scheduler_running(void)
3460 {
3461 int cpu;
3462
3463 for_each_possible_cpu(cpu) {
3464 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3465
3466 if (need_offload_krc(krcp))
3467 schedule_delayed_monitor_work(krcp);
3468 }
3469 }
3470
3471 /*
3472 * During early boot, any blocking grace-period wait automatically
3473 * implies a grace period.
3474 *
3475 * Later on, this could in theory be the case for kernels built with
3476 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3477 * is not a common case. Furthermore, this optimization would cause
3478 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3479 * grace-period optimization is ignored once the scheduler is running.
3480 */
rcu_blocking_is_gp(void)3481 static int rcu_blocking_is_gp(void)
3482 {
3483 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3484 might_sleep();
3485 return false;
3486 }
3487 return true;
3488 }
3489
3490 /**
3491 * synchronize_rcu - wait until a grace period has elapsed.
3492 *
3493 * Control will return to the caller some time after a full grace
3494 * period has elapsed, in other words after all currently executing RCU
3495 * read-side critical sections have completed. Note, however, that
3496 * upon return from synchronize_rcu(), the caller might well be executing
3497 * concurrently with new RCU read-side critical sections that began while
3498 * synchronize_rcu() was waiting.
3499 *
3500 * RCU read-side critical sections are delimited by rcu_read_lock()
3501 * and rcu_read_unlock(), and may be nested. In addition, but only in
3502 * v5.0 and later, regions of code across which interrupts, preemption,
3503 * or softirqs have been disabled also serve as RCU read-side critical
3504 * sections. This includes hardware interrupt handlers, softirq handlers,
3505 * and NMI handlers.
3506 *
3507 * Note that this guarantee implies further memory-ordering guarantees.
3508 * On systems with more than one CPU, when synchronize_rcu() returns,
3509 * each CPU is guaranteed to have executed a full memory barrier since
3510 * the end of its last RCU read-side critical section whose beginning
3511 * preceded the call to synchronize_rcu(). In addition, each CPU having
3512 * an RCU read-side critical section that extends beyond the return from
3513 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3514 * after the beginning of synchronize_rcu() and before the beginning of
3515 * that RCU read-side critical section. Note that these guarantees include
3516 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3517 * that are executing in the kernel.
3518 *
3519 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3520 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3521 * to have executed a full memory barrier during the execution of
3522 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3523 * again only if the system has more than one CPU).
3524 *
3525 * Implementation of these memory-ordering guarantees is described here:
3526 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3527 */
synchronize_rcu(void)3528 void synchronize_rcu(void)
3529 {
3530 unsigned long flags;
3531 struct rcu_node *rnp;
3532
3533 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3534 lock_is_held(&rcu_lock_map) ||
3535 lock_is_held(&rcu_sched_lock_map),
3536 "Illegal synchronize_rcu() in RCU read-side critical section");
3537 if (!rcu_blocking_is_gp()) {
3538 if (rcu_gp_is_expedited())
3539 synchronize_rcu_expedited();
3540 else
3541 wait_rcu_gp(call_rcu_hurry);
3542 return;
3543 }
3544
3545 // Context allows vacuous grace periods.
3546 // Note well that this code runs with !PREEMPT && !SMP.
3547 // In addition, all code that advances grace periods runs at
3548 // process level. Therefore, this normal GP overlaps with other
3549 // normal GPs only by being fully nested within them, which allows
3550 // reuse of ->gp_seq_polled_snap.
3551 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3552 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3553
3554 // Update the normal grace-period counters to record
3555 // this grace period, but only those used by the boot CPU.
3556 // The rcu_scheduler_starting() will take care of the rest of
3557 // these counters.
3558 local_irq_save(flags);
3559 WARN_ON_ONCE(num_online_cpus() > 1);
3560 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3561 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3562 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3563 local_irq_restore(flags);
3564 }
3565 EXPORT_SYMBOL_GPL(synchronize_rcu);
3566
3567 /**
3568 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3569 * @rgosp: Place to put state cookie
3570 *
3571 * Stores into @rgosp a value that will always be treated by functions
3572 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3573 * has already completed.
3574 */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3575 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3576 {
3577 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3578 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3579 }
3580 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3581
3582 /**
3583 * get_state_synchronize_rcu - Snapshot current RCU state
3584 *
3585 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3586 * or poll_state_synchronize_rcu() to determine whether or not a full
3587 * grace period has elapsed in the meantime.
3588 */
get_state_synchronize_rcu(void)3589 unsigned long get_state_synchronize_rcu(void)
3590 {
3591 /*
3592 * Any prior manipulation of RCU-protected data must happen
3593 * before the load from ->gp_seq.
3594 */
3595 smp_mb(); /* ^^^ */
3596 return rcu_seq_snap(&rcu_state.gp_seq_polled);
3597 }
3598 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3599
3600 /**
3601 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3602 * @rgosp: location to place combined normal/expedited grace-period state
3603 *
3604 * Places the normal and expedited grace-period states in @rgosp. This
3605 * state value can be passed to a later call to cond_synchronize_rcu_full()
3606 * or poll_state_synchronize_rcu_full() to determine whether or not a
3607 * grace period (whether normal or expedited) has elapsed in the meantime.
3608 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3609 * long, but is guaranteed to see all grace periods. In contrast, the
3610 * combined state occupies less memory, but can sometimes fail to take
3611 * grace periods into account.
3612 *
3613 * This does not guarantee that the needed grace period will actually
3614 * start.
3615 */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3616 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3617 {
3618 struct rcu_node *rnp = rcu_get_root();
3619
3620 /*
3621 * Any prior manipulation of RCU-protected data must happen
3622 * before the loads from ->gp_seq and ->expedited_sequence.
3623 */
3624 smp_mb(); /* ^^^ */
3625 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3626 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3627 }
3628 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3629
3630 /*
3631 * Helper function for start_poll_synchronize_rcu() and
3632 * start_poll_synchronize_rcu_full().
3633 */
start_poll_synchronize_rcu_common(void)3634 static void start_poll_synchronize_rcu_common(void)
3635 {
3636 unsigned long flags;
3637 bool needwake;
3638 struct rcu_data *rdp;
3639 struct rcu_node *rnp;
3640
3641 lockdep_assert_irqs_enabled();
3642 local_irq_save(flags);
3643 rdp = this_cpu_ptr(&rcu_data);
3644 rnp = rdp->mynode;
3645 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3646 // Note it is possible for a grace period to have elapsed between
3647 // the above call to get_state_synchronize_rcu() and the below call
3648 // to rcu_seq_snap. This is OK, the worst that happens is that we
3649 // get a grace period that no one needed. These accesses are ordered
3650 // by smp_mb(), and we are accessing them in the opposite order
3651 // from which they are updated at grace-period start, as required.
3652 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3653 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3654 if (needwake)
3655 rcu_gp_kthread_wake();
3656 }
3657
3658 /**
3659 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3660 *
3661 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3662 * or poll_state_synchronize_rcu() to determine whether or not a full
3663 * grace period has elapsed in the meantime. If the needed grace period
3664 * is not already slated to start, notifies RCU core of the need for that
3665 * grace period.
3666 *
3667 * Interrupts must be enabled for the case where it is necessary to awaken
3668 * the grace-period kthread.
3669 */
start_poll_synchronize_rcu(void)3670 unsigned long start_poll_synchronize_rcu(void)
3671 {
3672 unsigned long gp_seq = get_state_synchronize_rcu();
3673
3674 start_poll_synchronize_rcu_common();
3675 return gp_seq;
3676 }
3677 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3678
3679 /**
3680 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3681 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3682 *
3683 * Places the normal and expedited grace-period states in *@rgos. This
3684 * state value can be passed to a later call to cond_synchronize_rcu_full()
3685 * or poll_state_synchronize_rcu_full() to determine whether or not a
3686 * grace period (whether normal or expedited) has elapsed in the meantime.
3687 * If the needed grace period is not already slated to start, notifies
3688 * RCU core of the need for that grace period.
3689 *
3690 * Interrupts must be enabled for the case where it is necessary to awaken
3691 * the grace-period kthread.
3692 */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3693 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3694 {
3695 get_state_synchronize_rcu_full(rgosp);
3696
3697 start_poll_synchronize_rcu_common();
3698 }
3699 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3700
3701 /**
3702 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3703 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3704 *
3705 * If a full RCU grace period has elapsed since the earlier call from
3706 * which @oldstate was obtained, return @true, otherwise return @false.
3707 * If @false is returned, it is the caller's responsibility to invoke this
3708 * function later on until it does return @true. Alternatively, the caller
3709 * can explicitly wait for a grace period, for example, by passing @oldstate
3710 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3711 * on the one hand or by directly invoking either synchronize_rcu() or
3712 * synchronize_rcu_expedited() on the other.
3713 *
3714 * Yes, this function does not take counter wrap into account.
3715 * But counter wrap is harmless. If the counter wraps, we have waited for
3716 * more than a billion grace periods (and way more on a 64-bit system!).
3717 * Those needing to keep old state values for very long time periods
3718 * (many hours even on 32-bit systems) should check them occasionally and
3719 * either refresh them or set a flag indicating that the grace period has
3720 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3721 * to get a guaranteed-completed grace-period state.
3722 *
3723 * In addition, because oldstate compresses the grace-period state for
3724 * both normal and expedited grace periods into a single unsigned long,
3725 * it can miss a grace period when synchronize_rcu() runs concurrently
3726 * with synchronize_rcu_expedited(). If this is unacceptable, please
3727 * instead use the _full() variant of these polling APIs.
3728 *
3729 * This function provides the same memory-ordering guarantees that
3730 * would be provided by a synchronize_rcu() that was invoked at the call
3731 * to the function that provided @oldstate, and that returned at the end
3732 * of this function.
3733 */
poll_state_synchronize_rcu(unsigned long oldstate)3734 bool poll_state_synchronize_rcu(unsigned long oldstate)
3735 {
3736 if (oldstate == RCU_GET_STATE_COMPLETED ||
3737 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3738 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3739 return true;
3740 }
3741 return false;
3742 }
3743 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3744
3745 /**
3746 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3747 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3748 *
3749 * If a full RCU grace period has elapsed since the earlier call from
3750 * which *rgosp was obtained, return @true, otherwise return @false.
3751 * If @false is returned, it is the caller's responsibility to invoke this
3752 * function later on until it does return @true. Alternatively, the caller
3753 * can explicitly wait for a grace period, for example, by passing @rgosp
3754 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3755 *
3756 * Yes, this function does not take counter wrap into account.
3757 * But counter wrap is harmless. If the counter wraps, we have waited
3758 * for more than a billion grace periods (and way more on a 64-bit
3759 * system!). Those needing to keep rcu_gp_oldstate values for very
3760 * long time periods (many hours even on 32-bit systems) should check
3761 * them occasionally and either refresh them or set a flag indicating
3762 * that the grace period has completed. Alternatively, they can use
3763 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3764 * grace-period state.
3765 *
3766 * This function provides the same memory-ordering guarantees that would
3767 * be provided by a synchronize_rcu() that was invoked at the call to
3768 * the function that provided @rgosp, and that returned at the end of this
3769 * function. And this guarantee requires that the root rcu_node structure's
3770 * ->gp_seq field be checked instead of that of the rcu_state structure.
3771 * The problem is that the just-ending grace-period's callbacks can be
3772 * invoked between the time that the root rcu_node structure's ->gp_seq
3773 * field is updated and the time that the rcu_state structure's ->gp_seq
3774 * field is updated. Therefore, if a single synchronize_rcu() is to
3775 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3776 * then the root rcu_node structure is the one that needs to be polled.
3777 */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3778 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3779 {
3780 struct rcu_node *rnp = rcu_get_root();
3781
3782 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3783 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3784 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3785 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3786 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3787 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3788 return true;
3789 }
3790 return false;
3791 }
3792 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3793
3794 /**
3795 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3796 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3797 *
3798 * If a full RCU grace period has elapsed since the earlier call to
3799 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3800 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3801 *
3802 * Yes, this function does not take counter wrap into account.
3803 * But counter wrap is harmless. If the counter wraps, we have waited for
3804 * more than 2 billion grace periods (and way more on a 64-bit system!),
3805 * so waiting for a couple of additional grace periods should be just fine.
3806 *
3807 * This function provides the same memory-ordering guarantees that
3808 * would be provided by a synchronize_rcu() that was invoked at the call
3809 * to the function that provided @oldstate and that returned at the end
3810 * of this function.
3811 */
cond_synchronize_rcu(unsigned long oldstate)3812 void cond_synchronize_rcu(unsigned long oldstate)
3813 {
3814 if (!poll_state_synchronize_rcu(oldstate))
3815 synchronize_rcu();
3816 }
3817 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3818
3819 /**
3820 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3821 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3822 *
3823 * If a full RCU grace period has elapsed since the call to
3824 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3825 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3826 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3827 * for a full grace period.
3828 *
3829 * Yes, this function does not take counter wrap into account.
3830 * But counter wrap is harmless. If the counter wraps, we have waited for
3831 * more than 2 billion grace periods (and way more on a 64-bit system!),
3832 * so waiting for a couple of additional grace periods should be just fine.
3833 *
3834 * This function provides the same memory-ordering guarantees that
3835 * would be provided by a synchronize_rcu() that was invoked at the call
3836 * to the function that provided @rgosp and that returned at the end of
3837 * this function.
3838 */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3839 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3840 {
3841 if (!poll_state_synchronize_rcu_full(rgosp))
3842 synchronize_rcu();
3843 }
3844 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3845
3846 /*
3847 * Check to see if there is any immediate RCU-related work to be done by
3848 * the current CPU, returning 1 if so and zero otherwise. The checks are
3849 * in order of increasing expense: checks that can be carried out against
3850 * CPU-local state are performed first. However, we must check for CPU
3851 * stalls first, else we might not get a chance.
3852 */
rcu_pending(int user)3853 static int rcu_pending(int user)
3854 {
3855 bool gp_in_progress;
3856 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3857 struct rcu_node *rnp = rdp->mynode;
3858
3859 lockdep_assert_irqs_disabled();
3860
3861 /* Check for CPU stalls, if enabled. */
3862 check_cpu_stall(rdp);
3863
3864 /* Does this CPU need a deferred NOCB wakeup? */
3865 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3866 return 1;
3867
3868 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3869 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3870 return 0;
3871
3872 /* Is the RCU core waiting for a quiescent state from this CPU? */
3873 gp_in_progress = rcu_gp_in_progress();
3874 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3875 return 1;
3876
3877 /* Does this CPU have callbacks ready to invoke? */
3878 if (!rcu_rdp_is_offloaded(rdp) &&
3879 rcu_segcblist_ready_cbs(&rdp->cblist))
3880 return 1;
3881
3882 /* Has RCU gone idle with this CPU needing another grace period? */
3883 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3884 !rcu_rdp_is_offloaded(rdp) &&
3885 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3886 return 1;
3887
3888 /* Have RCU grace period completed or started? */
3889 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3890 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3891 return 1;
3892
3893 /* nothing to do */
3894 return 0;
3895 }
3896
3897 /*
3898 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3899 * the compiler is expected to optimize this away.
3900 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3901 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3902 {
3903 trace_rcu_barrier(rcu_state.name, s, cpu,
3904 atomic_read(&rcu_state.barrier_cpu_count), done);
3905 }
3906
3907 /*
3908 * RCU callback function for rcu_barrier(). If we are last, wake
3909 * up the task executing rcu_barrier().
3910 *
3911 * Note that the value of rcu_state.barrier_sequence must be captured
3912 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3913 * other CPUs might count the value down to zero before this CPU gets
3914 * around to invoking rcu_barrier_trace(), which might result in bogus
3915 * data from the next instance of rcu_barrier().
3916 */
rcu_barrier_callback(struct rcu_head * rhp)3917 static void rcu_barrier_callback(struct rcu_head *rhp)
3918 {
3919 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3920
3921 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3922 rcu_barrier_trace(TPS("LastCB"), -1, s);
3923 complete(&rcu_state.barrier_completion);
3924 } else {
3925 rcu_barrier_trace(TPS("CB"), -1, s);
3926 }
3927 }
3928
3929 /*
3930 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3931 */
rcu_barrier_entrain(struct rcu_data * rdp)3932 static void rcu_barrier_entrain(struct rcu_data *rdp)
3933 {
3934 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3935 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3936 bool wake_nocb = false;
3937 bool was_alldone = false;
3938
3939 lockdep_assert_held(&rcu_state.barrier_lock);
3940 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3941 return;
3942 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3943 rdp->barrier_head.func = rcu_barrier_callback;
3944 debug_rcu_head_queue(&rdp->barrier_head);
3945 rcu_nocb_lock(rdp);
3946 /*
3947 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3948 * queue. This way we don't wait for bypass timer that can reach seconds
3949 * if it's fully lazy.
3950 */
3951 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3952 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3953 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3954 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3955 atomic_inc(&rcu_state.barrier_cpu_count);
3956 } else {
3957 debug_rcu_head_unqueue(&rdp->barrier_head);
3958 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3959 }
3960 rcu_nocb_unlock(rdp);
3961 if (wake_nocb)
3962 wake_nocb_gp(rdp, false);
3963 smp_store_release(&rdp->barrier_seq_snap, gseq);
3964 }
3965
3966 /*
3967 * Called with preemption disabled, and from cross-cpu IRQ context.
3968 */
rcu_barrier_handler(void * cpu_in)3969 static void rcu_barrier_handler(void *cpu_in)
3970 {
3971 uintptr_t cpu = (uintptr_t)cpu_in;
3972 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3973
3974 lockdep_assert_irqs_disabled();
3975 WARN_ON_ONCE(cpu != rdp->cpu);
3976 WARN_ON_ONCE(cpu != smp_processor_id());
3977 raw_spin_lock(&rcu_state.barrier_lock);
3978 rcu_barrier_entrain(rdp);
3979 raw_spin_unlock(&rcu_state.barrier_lock);
3980 }
3981
3982 /**
3983 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3984 *
3985 * Note that this primitive does not necessarily wait for an RCU grace period
3986 * to complete. For example, if there are no RCU callbacks queued anywhere
3987 * in the system, then rcu_barrier() is within its rights to return
3988 * immediately, without waiting for anything, much less an RCU grace period.
3989 */
rcu_barrier(void)3990 void rcu_barrier(void)
3991 {
3992 uintptr_t cpu;
3993 unsigned long flags;
3994 unsigned long gseq;
3995 struct rcu_data *rdp;
3996 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3997
3998 rcu_barrier_trace(TPS("Begin"), -1, s);
3999
4000 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4001 mutex_lock(&rcu_state.barrier_mutex);
4002
4003 /* Did someone else do our work for us? */
4004 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4005 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4006 smp_mb(); /* caller's subsequent code after above check. */
4007 mutex_unlock(&rcu_state.barrier_mutex);
4008 return;
4009 }
4010
4011 /* Mark the start of the barrier operation. */
4012 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4013 rcu_seq_start(&rcu_state.barrier_sequence);
4014 gseq = rcu_state.barrier_sequence;
4015 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4016
4017 /*
4018 * Initialize the count to two rather than to zero in order
4019 * to avoid a too-soon return to zero in case of an immediate
4020 * invocation of the just-enqueued callback (or preemption of
4021 * this task). Exclude CPU-hotplug operations to ensure that no
4022 * offline non-offloaded CPU has callbacks queued.
4023 */
4024 init_completion(&rcu_state.barrier_completion);
4025 atomic_set(&rcu_state.barrier_cpu_count, 2);
4026 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4027
4028 /*
4029 * Force each CPU with callbacks to register a new callback.
4030 * When that callback is invoked, we will know that all of the
4031 * corresponding CPU's preceding callbacks have been invoked.
4032 */
4033 for_each_possible_cpu(cpu) {
4034 rdp = per_cpu_ptr(&rcu_data, cpu);
4035 retry:
4036 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4037 continue;
4038 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4039 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4040 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4041 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4042 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4043 continue;
4044 }
4045 if (!rcu_rdp_cpu_online(rdp)) {
4046 rcu_barrier_entrain(rdp);
4047 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4048 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4049 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4050 continue;
4051 }
4052 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4053 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4054 schedule_timeout_uninterruptible(1);
4055 goto retry;
4056 }
4057 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4058 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4059 }
4060
4061 /*
4062 * Now that we have an rcu_barrier_callback() callback on each
4063 * CPU, and thus each counted, remove the initial count.
4064 */
4065 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4066 complete(&rcu_state.barrier_completion);
4067
4068 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4069 wait_for_completion(&rcu_state.barrier_completion);
4070
4071 /* Mark the end of the barrier operation. */
4072 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4073 rcu_seq_end(&rcu_state.barrier_sequence);
4074 gseq = rcu_state.barrier_sequence;
4075 for_each_possible_cpu(cpu) {
4076 rdp = per_cpu_ptr(&rcu_data, cpu);
4077
4078 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4079 }
4080
4081 /* Other rcu_barrier() invocations can now safely proceed. */
4082 mutex_unlock(&rcu_state.barrier_mutex);
4083 }
4084 EXPORT_SYMBOL_GPL(rcu_barrier);
4085
4086 /*
4087 * Compute the mask of online CPUs for the specified rcu_node structure.
4088 * This will not be stable unless the rcu_node structure's ->lock is
4089 * held, but the bit corresponding to the current CPU will be stable
4090 * in most contexts.
4091 */
rcu_rnp_online_cpus(struct rcu_node * rnp)4092 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4093 {
4094 return READ_ONCE(rnp->qsmaskinitnext);
4095 }
4096
4097 /*
4098 * Is the CPU corresponding to the specified rcu_data structure online
4099 * from RCU's perspective? This perspective is given by that structure's
4100 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4101 */
rcu_rdp_cpu_online(struct rcu_data * rdp)4102 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4103 {
4104 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4105 }
4106
4107 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4108
4109 /*
4110 * Is the current CPU online as far as RCU is concerned?
4111 *
4112 * Disable preemption to avoid false positives that could otherwise
4113 * happen due to the current CPU number being sampled, this task being
4114 * preempted, its old CPU being taken offline, resuming on some other CPU,
4115 * then determining that its old CPU is now offline.
4116 *
4117 * Disable checking if in an NMI handler because we cannot safely
4118 * report errors from NMI handlers anyway. In addition, it is OK to use
4119 * RCU on an offline processor during initial boot, hence the check for
4120 * rcu_scheduler_fully_active.
4121 */
rcu_lockdep_current_cpu_online(void)4122 bool rcu_lockdep_current_cpu_online(void)
4123 {
4124 struct rcu_data *rdp;
4125 bool ret = false;
4126
4127 if (in_nmi() || !rcu_scheduler_fully_active)
4128 return true;
4129 preempt_disable_notrace();
4130 rdp = this_cpu_ptr(&rcu_data);
4131 /*
4132 * Strictly, we care here about the case where the current CPU is
4133 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4134 * not being up to date. So arch_spin_is_locked() might have a
4135 * false positive if it's held by some *other* CPU, but that's
4136 * OK because that just means a false *negative* on the warning.
4137 */
4138 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4139 ret = true;
4140 preempt_enable_notrace();
4141 return ret;
4142 }
4143 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4144
4145 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4146
4147 // Has rcu_init() been invoked? This is used (for example) to determine
4148 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4149 static bool rcu_init_invoked(void)
4150 {
4151 return !!rcu_state.n_online_cpus;
4152 }
4153
4154 /*
4155 * Near the end of the offline process. Trace the fact that this CPU
4156 * is going offline.
4157 */
rcutree_dying_cpu(unsigned int cpu)4158 int rcutree_dying_cpu(unsigned int cpu)
4159 {
4160 bool blkd;
4161 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4162 struct rcu_node *rnp = rdp->mynode;
4163
4164 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4165 return 0;
4166
4167 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4168 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4169 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4170 return 0;
4171 }
4172
4173 /*
4174 * All CPUs for the specified rcu_node structure have gone offline,
4175 * and all tasks that were preempted within an RCU read-side critical
4176 * section while running on one of those CPUs have since exited their RCU
4177 * read-side critical section. Some other CPU is reporting this fact with
4178 * the specified rcu_node structure's ->lock held and interrupts disabled.
4179 * This function therefore goes up the tree of rcu_node structures,
4180 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4181 * the leaf rcu_node structure's ->qsmaskinit field has already been
4182 * updated.
4183 *
4184 * This function does check that the specified rcu_node structure has
4185 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4186 * prematurely. That said, invoking it after the fact will cost you
4187 * a needless lock acquisition. So once it has done its work, don't
4188 * invoke it again.
4189 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4190 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4191 {
4192 long mask;
4193 struct rcu_node *rnp = rnp_leaf;
4194
4195 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4196 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4197 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4198 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4199 return;
4200 for (;;) {
4201 mask = rnp->grpmask;
4202 rnp = rnp->parent;
4203 if (!rnp)
4204 break;
4205 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4206 rnp->qsmaskinit &= ~mask;
4207 /* Between grace periods, so better already be zero! */
4208 WARN_ON_ONCE(rnp->qsmask);
4209 if (rnp->qsmaskinit) {
4210 raw_spin_unlock_rcu_node(rnp);
4211 /* irqs remain disabled. */
4212 return;
4213 }
4214 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4215 }
4216 }
4217
4218 /*
4219 * The CPU has been completely removed, and some other CPU is reporting
4220 * this fact from process context. Do the remainder of the cleanup.
4221 * There can only be one CPU hotplug operation at a time, so no need for
4222 * explicit locking.
4223 */
rcutree_dead_cpu(unsigned int cpu)4224 int rcutree_dead_cpu(unsigned int cpu)
4225 {
4226 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4227 return 0;
4228
4229 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4230 // Stop-machine done, so allow nohz_full to disable tick.
4231 tick_dep_clear(TICK_DEP_BIT_RCU);
4232 return 0;
4233 }
4234
4235 /*
4236 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4237 * first CPU in a given leaf rcu_node structure coming online. The caller
4238 * must hold the corresponding leaf rcu_node ->lock with interrupts
4239 * disabled.
4240 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4241 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4242 {
4243 long mask;
4244 long oldmask;
4245 struct rcu_node *rnp = rnp_leaf;
4246
4247 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4248 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4249 for (;;) {
4250 mask = rnp->grpmask;
4251 rnp = rnp->parent;
4252 if (rnp == NULL)
4253 return;
4254 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4255 oldmask = rnp->qsmaskinit;
4256 rnp->qsmaskinit |= mask;
4257 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4258 if (oldmask)
4259 return;
4260 }
4261 }
4262
4263 /*
4264 * Do boot-time initialization of a CPU's per-CPU RCU data.
4265 */
4266 static void __init
rcu_boot_init_percpu_data(int cpu)4267 rcu_boot_init_percpu_data(int cpu)
4268 {
4269 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4270 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4271
4272 /* Set up local state, ensuring consistent view of global state. */
4273 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4274 INIT_WORK(&rdp->strict_work, strict_work_handler);
4275 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4276 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4277 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4278 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4279 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4280 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4281 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4282 rdp->last_sched_clock = jiffies;
4283 rdp->cpu = cpu;
4284 rcu_boot_init_nocb_percpu_data(rdp);
4285 }
4286
4287 /*
4288 * Invoked early in the CPU-online process, when pretty much all services
4289 * are available. The incoming CPU is not present.
4290 *
4291 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4292 * offline event can be happening at a given time. Note also that we can
4293 * accept some slop in the rsp->gp_seq access due to the fact that this
4294 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4295 * And any offloaded callbacks are being numbered elsewhere.
4296 */
rcutree_prepare_cpu(unsigned int cpu)4297 int rcutree_prepare_cpu(unsigned int cpu)
4298 {
4299 unsigned long flags;
4300 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4301 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4302 struct rcu_node *rnp = rcu_get_root();
4303
4304 /* Set up local state, ensuring consistent view of global state. */
4305 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4306 rdp->qlen_last_fqs_check = 0;
4307 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4308 rdp->blimit = blimit;
4309 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4310 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4311
4312 /*
4313 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4314 * (re-)initialized.
4315 */
4316 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4317 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4318
4319 /*
4320 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4321 * propagation up the rcu_node tree will happen at the beginning
4322 * of the next grace period.
4323 */
4324 rnp = rdp->mynode;
4325 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4326 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4327 rdp->gp_seq_needed = rdp->gp_seq;
4328 rdp->cpu_no_qs.b.norm = true;
4329 rdp->core_needs_qs = false;
4330 rdp->rcu_iw_pending = false;
4331 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4332 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4333 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4334 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4335 rcu_spawn_one_boost_kthread(rnp);
4336 rcu_spawn_cpu_nocb_kthread(cpu);
4337 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4338
4339 return 0;
4340 }
4341
4342 /*
4343 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4344 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4345 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4346 {
4347 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4348
4349 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4350 }
4351
4352 /*
4353 * Has the specified (known valid) CPU ever been fully online?
4354 */
rcu_cpu_beenfullyonline(int cpu)4355 bool rcu_cpu_beenfullyonline(int cpu)
4356 {
4357 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4358
4359 return smp_load_acquire(&rdp->beenonline);
4360 }
4361
4362 /*
4363 * Near the end of the CPU-online process. Pretty much all services
4364 * enabled, and the CPU is now very much alive.
4365 */
rcutree_online_cpu(unsigned int cpu)4366 int rcutree_online_cpu(unsigned int cpu)
4367 {
4368 unsigned long flags;
4369 struct rcu_data *rdp;
4370 struct rcu_node *rnp;
4371
4372 rdp = per_cpu_ptr(&rcu_data, cpu);
4373 rnp = rdp->mynode;
4374 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4375 rnp->ffmask |= rdp->grpmask;
4376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4377 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4378 return 0; /* Too early in boot for scheduler work. */
4379 sync_sched_exp_online_cleanup(cpu);
4380 rcutree_affinity_setting(cpu, -1);
4381
4382 // Stop-machine done, so allow nohz_full to disable tick.
4383 tick_dep_clear(TICK_DEP_BIT_RCU);
4384 return 0;
4385 }
4386
4387 /*
4388 * Near the beginning of the process. The CPU is still very much alive
4389 * with pretty much all services enabled.
4390 */
rcutree_offline_cpu(unsigned int cpu)4391 int rcutree_offline_cpu(unsigned int cpu)
4392 {
4393 unsigned long flags;
4394 struct rcu_data *rdp;
4395 struct rcu_node *rnp;
4396
4397 rdp = per_cpu_ptr(&rcu_data, cpu);
4398 rnp = rdp->mynode;
4399 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4400 rnp->ffmask &= ~rdp->grpmask;
4401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4402
4403 rcutree_affinity_setting(cpu, cpu);
4404
4405 // nohz_full CPUs need the tick for stop-machine to work quickly
4406 tick_dep_set(TICK_DEP_BIT_RCU);
4407 return 0;
4408 }
4409
4410 /*
4411 * Mark the specified CPU as being online so that subsequent grace periods
4412 * (both expedited and normal) will wait on it. Note that this means that
4413 * incoming CPUs are not allowed to use RCU read-side critical sections
4414 * until this function is called. Failing to observe this restriction
4415 * will result in lockdep splats.
4416 *
4417 * Note that this function is special in that it is invoked directly
4418 * from the incoming CPU rather than from the cpuhp_step mechanism.
4419 * This is because this function must be invoked at a precise location.
4420 * This incoming CPU must not have enabled interrupts yet.
4421 */
rcu_cpu_starting(unsigned int cpu)4422 void rcu_cpu_starting(unsigned int cpu)
4423 {
4424 unsigned long mask;
4425 struct rcu_data *rdp;
4426 struct rcu_node *rnp;
4427 bool newcpu;
4428
4429 lockdep_assert_irqs_disabled();
4430 rdp = per_cpu_ptr(&rcu_data, cpu);
4431 if (rdp->cpu_started)
4432 return;
4433 rdp->cpu_started = true;
4434
4435 rnp = rdp->mynode;
4436 mask = rdp->grpmask;
4437 arch_spin_lock(&rcu_state.ofl_lock);
4438 rcu_dynticks_eqs_online();
4439 raw_spin_lock(&rcu_state.barrier_lock);
4440 raw_spin_lock_rcu_node(rnp);
4441 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4442 raw_spin_unlock(&rcu_state.barrier_lock);
4443 newcpu = !(rnp->expmaskinitnext & mask);
4444 rnp->expmaskinitnext |= mask;
4445 /* Allow lockless access for expedited grace periods. */
4446 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4447 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4448 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4449 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4450 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4451
4452 /* An incoming CPU should never be blocking a grace period. */
4453 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4454 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4455 unsigned long flags;
4456
4457 local_irq_save(flags);
4458 rcu_disable_urgency_upon_qs(rdp);
4459 /* Report QS -after- changing ->qsmaskinitnext! */
4460 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4461 } else {
4462 raw_spin_unlock_rcu_node(rnp);
4463 }
4464 arch_spin_unlock(&rcu_state.ofl_lock);
4465 smp_store_release(&rdp->beenonline, true);
4466 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4467 }
4468
4469 /*
4470 * The outgoing function has no further need of RCU, so remove it from
4471 * the rcu_node tree's ->qsmaskinitnext bit masks.
4472 *
4473 * Note that this function is special in that it is invoked directly
4474 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4475 * This is because this function must be invoked at a precise location.
4476 */
rcu_report_dead(unsigned int cpu)4477 void rcu_report_dead(unsigned int cpu)
4478 {
4479 unsigned long flags, seq_flags;
4480 unsigned long mask;
4481 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4482 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4483
4484 // Do any dangling deferred wakeups.
4485 do_nocb_deferred_wakeup(rdp);
4486
4487 rcu_preempt_deferred_qs(current);
4488
4489 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4490 mask = rdp->grpmask;
4491 local_irq_save(seq_flags);
4492 arch_spin_lock(&rcu_state.ofl_lock);
4493 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4494 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4495 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4496 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4497 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4498 rcu_disable_urgency_upon_qs(rdp);
4499 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4500 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4501 }
4502 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4503 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4504 arch_spin_unlock(&rcu_state.ofl_lock);
4505 local_irq_restore(seq_flags);
4506
4507 rdp->cpu_started = false;
4508 }
4509
4510 #ifdef CONFIG_HOTPLUG_CPU
4511 /*
4512 * The outgoing CPU has just passed through the dying-idle state, and we
4513 * are being invoked from the CPU that was IPIed to continue the offline
4514 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4515 */
rcutree_migrate_callbacks(int cpu)4516 void rcutree_migrate_callbacks(int cpu)
4517 {
4518 unsigned long flags;
4519 struct rcu_data *my_rdp;
4520 struct rcu_node *my_rnp;
4521 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4522 bool needwake;
4523
4524 if (rcu_rdp_is_offloaded(rdp) ||
4525 rcu_segcblist_empty(&rdp->cblist))
4526 return; /* No callbacks to migrate. */
4527
4528 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4529 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4530 rcu_barrier_entrain(rdp);
4531 my_rdp = this_cpu_ptr(&rcu_data);
4532 my_rnp = my_rdp->mynode;
4533 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4534 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4535 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4536 /* Leverage recent GPs and set GP for new callbacks. */
4537 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4538 rcu_advance_cbs(my_rnp, my_rdp);
4539 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4540 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4541 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4542 rcu_segcblist_disable(&rdp->cblist);
4543 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4544 check_cb_ovld_locked(my_rdp, my_rnp);
4545 if (rcu_rdp_is_offloaded(my_rdp)) {
4546 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4547 __call_rcu_nocb_wake(my_rdp, true, flags);
4548 } else {
4549 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4550 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4551 }
4552 if (needwake)
4553 rcu_gp_kthread_wake();
4554 lockdep_assert_irqs_enabled();
4555 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4556 !rcu_segcblist_empty(&rdp->cblist),
4557 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4558 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4559 rcu_segcblist_first_cb(&rdp->cblist));
4560 }
4561 #endif
4562
4563 /*
4564 * On non-huge systems, use expedited RCU grace periods to make suspend
4565 * and hibernation run faster.
4566 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4567 static int rcu_pm_notify(struct notifier_block *self,
4568 unsigned long action, void *hcpu)
4569 {
4570 switch (action) {
4571 case PM_HIBERNATION_PREPARE:
4572 case PM_SUSPEND_PREPARE:
4573 rcu_async_hurry();
4574 rcu_expedite_gp();
4575 break;
4576 case PM_POST_HIBERNATION:
4577 case PM_POST_SUSPEND:
4578 rcu_unexpedite_gp();
4579 rcu_async_relax();
4580 break;
4581 default:
4582 break;
4583 }
4584 return NOTIFY_OK;
4585 }
4586
4587 #ifdef CONFIG_RCU_EXP_KTHREAD
4588 struct kthread_worker *rcu_exp_gp_kworker;
4589 struct kthread_worker *rcu_exp_par_gp_kworker;
4590
rcu_start_exp_gp_kworkers(void)4591 static void __init rcu_start_exp_gp_kworkers(void)
4592 {
4593 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4594 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4595 struct sched_param param = { .sched_priority = kthread_prio };
4596
4597 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4598 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4599 pr_err("Failed to create %s!\n", gp_kworker_name);
4600 return;
4601 }
4602
4603 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4604 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4605 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4606 kthread_destroy_worker(rcu_exp_gp_kworker);
4607 return;
4608 }
4609
4610 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4611 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4612 ¶m);
4613 }
4614
rcu_alloc_par_gp_wq(void)4615 static inline void rcu_alloc_par_gp_wq(void)
4616 {
4617 }
4618 #else /* !CONFIG_RCU_EXP_KTHREAD */
4619 struct workqueue_struct *rcu_par_gp_wq;
4620
rcu_start_exp_gp_kworkers(void)4621 static void __init rcu_start_exp_gp_kworkers(void)
4622 {
4623 }
4624
rcu_alloc_par_gp_wq(void)4625 static inline void rcu_alloc_par_gp_wq(void)
4626 {
4627 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4628 WARN_ON(!rcu_par_gp_wq);
4629 }
4630 #endif /* CONFIG_RCU_EXP_KTHREAD */
4631
4632 /*
4633 * Spawn the kthreads that handle RCU's grace periods.
4634 */
rcu_spawn_gp_kthread(void)4635 static int __init rcu_spawn_gp_kthread(void)
4636 {
4637 unsigned long flags;
4638 struct rcu_node *rnp;
4639 struct sched_param sp;
4640 struct task_struct *t;
4641 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4642
4643 rcu_scheduler_fully_active = 1;
4644 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4645 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4646 return 0;
4647 if (kthread_prio) {
4648 sp.sched_priority = kthread_prio;
4649 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4650 }
4651 rnp = rcu_get_root();
4652 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4653 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4654 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4655 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4656 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4657 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4658 wake_up_process(t);
4659 /* This is a pre-SMP initcall, we expect a single CPU */
4660 WARN_ON(num_online_cpus() > 1);
4661 /*
4662 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4663 * due to rcu_scheduler_fully_active.
4664 */
4665 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4666 rcu_spawn_one_boost_kthread(rdp->mynode);
4667 rcu_spawn_core_kthreads();
4668 /* Create kthread worker for expedited GPs */
4669 rcu_start_exp_gp_kworkers();
4670 return 0;
4671 }
4672 early_initcall(rcu_spawn_gp_kthread);
4673
4674 /*
4675 * This function is invoked towards the end of the scheduler's
4676 * initialization process. Before this is called, the idle task might
4677 * contain synchronous grace-period primitives (during which time, this idle
4678 * task is booting the system, and such primitives are no-ops). After this
4679 * function is called, any synchronous grace-period primitives are run as
4680 * expedited, with the requesting task driving the grace period forward.
4681 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4682 * runtime RCU functionality.
4683 */
rcu_scheduler_starting(void)4684 void rcu_scheduler_starting(void)
4685 {
4686 unsigned long flags;
4687 struct rcu_node *rnp;
4688
4689 WARN_ON(num_online_cpus() != 1);
4690 WARN_ON(nr_context_switches() > 0);
4691 rcu_test_sync_prims();
4692
4693 // Fix up the ->gp_seq counters.
4694 local_irq_save(flags);
4695 rcu_for_each_node_breadth_first(rnp)
4696 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4697 local_irq_restore(flags);
4698
4699 // Switch out of early boot mode.
4700 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4701 rcu_test_sync_prims();
4702 }
4703
4704 /*
4705 * Helper function for rcu_init() that initializes the rcu_state structure.
4706 */
rcu_init_one(void)4707 static void __init rcu_init_one(void)
4708 {
4709 static const char * const buf[] = RCU_NODE_NAME_INIT;
4710 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4711 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4712 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4713
4714 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4715 int cpustride = 1;
4716 int i;
4717 int j;
4718 struct rcu_node *rnp;
4719
4720 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4721
4722 /* Silence gcc 4.8 false positive about array index out of range. */
4723 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4724 panic("rcu_init_one: rcu_num_lvls out of range");
4725
4726 /* Initialize the level-tracking arrays. */
4727
4728 for (i = 1; i < rcu_num_lvls; i++)
4729 rcu_state.level[i] =
4730 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4731 rcu_init_levelspread(levelspread, num_rcu_lvl);
4732
4733 /* Initialize the elements themselves, starting from the leaves. */
4734
4735 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4736 cpustride *= levelspread[i];
4737 rnp = rcu_state.level[i];
4738 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4739 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4740 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4741 &rcu_node_class[i], buf[i]);
4742 raw_spin_lock_init(&rnp->fqslock);
4743 lockdep_set_class_and_name(&rnp->fqslock,
4744 &rcu_fqs_class[i], fqs[i]);
4745 rnp->gp_seq = rcu_state.gp_seq;
4746 rnp->gp_seq_needed = rcu_state.gp_seq;
4747 rnp->completedqs = rcu_state.gp_seq;
4748 rnp->qsmask = 0;
4749 rnp->qsmaskinit = 0;
4750 rnp->grplo = j * cpustride;
4751 rnp->grphi = (j + 1) * cpustride - 1;
4752 if (rnp->grphi >= nr_cpu_ids)
4753 rnp->grphi = nr_cpu_ids - 1;
4754 if (i == 0) {
4755 rnp->grpnum = 0;
4756 rnp->grpmask = 0;
4757 rnp->parent = NULL;
4758 } else {
4759 rnp->grpnum = j % levelspread[i - 1];
4760 rnp->grpmask = BIT(rnp->grpnum);
4761 rnp->parent = rcu_state.level[i - 1] +
4762 j / levelspread[i - 1];
4763 }
4764 rnp->level = i;
4765 INIT_LIST_HEAD(&rnp->blkd_tasks);
4766 rcu_init_one_nocb(rnp);
4767 init_waitqueue_head(&rnp->exp_wq[0]);
4768 init_waitqueue_head(&rnp->exp_wq[1]);
4769 init_waitqueue_head(&rnp->exp_wq[2]);
4770 init_waitqueue_head(&rnp->exp_wq[3]);
4771 spin_lock_init(&rnp->exp_lock);
4772 mutex_init(&rnp->boost_kthread_mutex);
4773 raw_spin_lock_init(&rnp->exp_poll_lock);
4774 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4775 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4776 }
4777 }
4778
4779 init_swait_queue_head(&rcu_state.gp_wq);
4780 init_swait_queue_head(&rcu_state.expedited_wq);
4781 rnp = rcu_first_leaf_node();
4782 for_each_possible_cpu(i) {
4783 while (i > rnp->grphi)
4784 rnp++;
4785 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4786 rcu_boot_init_percpu_data(i);
4787 }
4788 }
4789
4790 /*
4791 * Force priority from the kernel command-line into range.
4792 */
sanitize_kthread_prio(void)4793 static void __init sanitize_kthread_prio(void)
4794 {
4795 int kthread_prio_in = kthread_prio;
4796
4797 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4798 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4799 kthread_prio = 2;
4800 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4801 kthread_prio = 1;
4802 else if (kthread_prio < 0)
4803 kthread_prio = 0;
4804 else if (kthread_prio > 99)
4805 kthread_prio = 99;
4806
4807 if (kthread_prio != kthread_prio_in)
4808 pr_alert("%s: Limited prio to %d from %d\n",
4809 __func__, kthread_prio, kthread_prio_in);
4810 }
4811
4812 /*
4813 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4814 * replace the definitions in tree.h because those are needed to size
4815 * the ->node array in the rcu_state structure.
4816 */
rcu_init_geometry(void)4817 void rcu_init_geometry(void)
4818 {
4819 ulong d;
4820 int i;
4821 static unsigned long old_nr_cpu_ids;
4822 int rcu_capacity[RCU_NUM_LVLS];
4823 static bool initialized;
4824
4825 if (initialized) {
4826 /*
4827 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4828 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4829 */
4830 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4831 return;
4832 }
4833
4834 old_nr_cpu_ids = nr_cpu_ids;
4835 initialized = true;
4836
4837 /*
4838 * Initialize any unspecified boot parameters.
4839 * The default values of jiffies_till_first_fqs and
4840 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4841 * value, which is a function of HZ, then adding one for each
4842 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4843 */
4844 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4845 if (jiffies_till_first_fqs == ULONG_MAX)
4846 jiffies_till_first_fqs = d;
4847 if (jiffies_till_next_fqs == ULONG_MAX)
4848 jiffies_till_next_fqs = d;
4849 adjust_jiffies_till_sched_qs();
4850
4851 /* If the compile-time values are accurate, just leave. */
4852 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4853 nr_cpu_ids == NR_CPUS)
4854 return;
4855 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4856 rcu_fanout_leaf, nr_cpu_ids);
4857
4858 /*
4859 * The boot-time rcu_fanout_leaf parameter must be at least two
4860 * and cannot exceed the number of bits in the rcu_node masks.
4861 * Complain and fall back to the compile-time values if this
4862 * limit is exceeded.
4863 */
4864 if (rcu_fanout_leaf < 2 ||
4865 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4866 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4867 WARN_ON(1);
4868 return;
4869 }
4870
4871 /*
4872 * Compute number of nodes that can be handled an rcu_node tree
4873 * with the given number of levels.
4874 */
4875 rcu_capacity[0] = rcu_fanout_leaf;
4876 for (i = 1; i < RCU_NUM_LVLS; i++)
4877 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4878
4879 /*
4880 * The tree must be able to accommodate the configured number of CPUs.
4881 * If this limit is exceeded, fall back to the compile-time values.
4882 */
4883 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4884 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4885 WARN_ON(1);
4886 return;
4887 }
4888
4889 /* Calculate the number of levels in the tree. */
4890 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4891 }
4892 rcu_num_lvls = i + 1;
4893
4894 /* Calculate the number of rcu_nodes at each level of the tree. */
4895 for (i = 0; i < rcu_num_lvls; i++) {
4896 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4897 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4898 }
4899
4900 /* Calculate the total number of rcu_node structures. */
4901 rcu_num_nodes = 0;
4902 for (i = 0; i < rcu_num_lvls; i++)
4903 rcu_num_nodes += num_rcu_lvl[i];
4904 }
4905
4906 /*
4907 * Dump out the structure of the rcu_node combining tree associated
4908 * with the rcu_state structure.
4909 */
rcu_dump_rcu_node_tree(void)4910 static void __init rcu_dump_rcu_node_tree(void)
4911 {
4912 int level = 0;
4913 struct rcu_node *rnp;
4914
4915 pr_info("rcu_node tree layout dump\n");
4916 pr_info(" ");
4917 rcu_for_each_node_breadth_first(rnp) {
4918 if (rnp->level != level) {
4919 pr_cont("\n");
4920 pr_info(" ");
4921 level = rnp->level;
4922 }
4923 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4924 }
4925 pr_cont("\n");
4926 }
4927
4928 struct workqueue_struct *rcu_gp_wq;
4929
kfree_rcu_batch_init(void)4930 static void __init kfree_rcu_batch_init(void)
4931 {
4932 int cpu;
4933 int i, j;
4934
4935 /* Clamp it to [0:100] seconds interval. */
4936 if (rcu_delay_page_cache_fill_msec < 0 ||
4937 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4938
4939 rcu_delay_page_cache_fill_msec =
4940 clamp(rcu_delay_page_cache_fill_msec, 0,
4941 (int) (100 * MSEC_PER_SEC));
4942
4943 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4944 rcu_delay_page_cache_fill_msec);
4945 }
4946
4947 for_each_possible_cpu(cpu) {
4948 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4949
4950 for (i = 0; i < KFREE_N_BATCHES; i++) {
4951 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4952 krcp->krw_arr[i].krcp = krcp;
4953
4954 for (j = 0; j < FREE_N_CHANNELS; j++)
4955 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
4956 }
4957
4958 for (i = 0; i < FREE_N_CHANNELS; i++)
4959 INIT_LIST_HEAD(&krcp->bulk_head[i]);
4960
4961 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4962 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4963 krcp->initialized = true;
4964 }
4965 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4966 pr_err("Failed to register kfree_rcu() shrinker!\n");
4967 }
4968
rcu_init(void)4969 void __init rcu_init(void)
4970 {
4971 int cpu = smp_processor_id();
4972
4973 rcu_early_boot_tests();
4974
4975 kfree_rcu_batch_init();
4976 rcu_bootup_announce();
4977 sanitize_kthread_prio();
4978 rcu_init_geometry();
4979 rcu_init_one();
4980 if (dump_tree)
4981 rcu_dump_rcu_node_tree();
4982 if (use_softirq)
4983 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4984
4985 /*
4986 * We don't need protection against CPU-hotplug here because
4987 * this is called early in boot, before either interrupts
4988 * or the scheduler are operational.
4989 */
4990 pm_notifier(rcu_pm_notify, 0);
4991 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4992 rcutree_prepare_cpu(cpu);
4993 rcu_cpu_starting(cpu);
4994 rcutree_online_cpu(cpu);
4995
4996 /* Create workqueue for Tree SRCU and for expedited GPs. */
4997 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4998 WARN_ON(!rcu_gp_wq);
4999 rcu_alloc_par_gp_wq();
5000
5001 /* Fill in default value for rcutree.qovld boot parameter. */
5002 /* -After- the rcu_node ->lock fields are initialized! */
5003 if (qovld < 0)
5004 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5005 else
5006 qovld_calc = qovld;
5007
5008 // Kick-start in case any polled grace periods started early.
5009 (void)start_poll_synchronize_rcu_expedited();
5010
5011 rcu_test_sync_prims();
5012 }
5013
5014 #include "tree_stall.h"
5015 #include "tree_exp.h"
5016 #include "tree_nocb.h"
5017 #include "tree_plugin.h"
5018