1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
66
67 #include "tree.h"
68 #include "rcu.h"
69
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
72 #endif
73 #define MODULE_PARAM_PREFIX "rcutree."
74
75 /* Data structures. */
76
77 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
78 .dynticks_nesting = 1,
79 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
80 .dynticks = ATOMIC_INIT(1),
81 #ifdef CONFIG_RCU_NOCB_CPU
82 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 .level = { &rcu_state.node[0] },
87 .gp_state = RCU_GP_IDLE,
88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 .name = RCU_NAME,
91 .abbr = RCU_ABBR,
92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
95 };
96
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
155
156 /* rcuc/rcub kthread realtime priority */
157 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
158 module_param(kthread_prio, int, 0444);
159
160 /* Delay in jiffies for grace-period initialization delays, debug only. */
161
162 static int gp_preinit_delay;
163 module_param(gp_preinit_delay, int, 0444);
164 static int gp_init_delay;
165 module_param(gp_init_delay, int, 0444);
166 static int gp_cleanup_delay;
167 module_param(gp_cleanup_delay, int, 0444);
168
169 // Add delay to rcu_read_unlock() for strict grace periods.
170 static int rcu_unlock_delay;
171 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
172 module_param(rcu_unlock_delay, int, 0444);
173 #endif
174
175 /*
176 * This rcu parameter is runtime-read-only. It reflects
177 * a minimum allowed number of objects which can be cached
178 * per-CPU. Object size is equal to one page. This value
179 * can be changed at boot time.
180 */
181 static int rcu_min_cached_objs = 5;
182 module_param(rcu_min_cached_objs, int, 0444);
183
184 // A page shrinker can ask for pages to be freed to make them
185 // available for other parts of the system. This usually happens
186 // under low memory conditions, and in that case we should also
187 // defer page-cache filling for a short time period.
188 //
189 // The default value is 5 seconds, which is long enough to reduce
190 // interference with the shrinker while it asks other systems to
191 // drain their caches.
192 static int rcu_delay_page_cache_fill_msec = 5000;
193 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
194
195 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)196 int rcu_get_gp_kthreads_prio(void)
197 {
198 return kthread_prio;
199 }
200 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
201
202 /*
203 * Number of grace periods between delays, normalized by the duration of
204 * the delay. The longer the delay, the more the grace periods between
205 * each delay. The reason for this normalization is that it means that,
206 * for non-zero delays, the overall slowdown of grace periods is constant
207 * regardless of the duration of the delay. This arrangement balances
208 * the need for long delays to increase some race probabilities with the
209 * need for fast grace periods to increase other race probabilities.
210 */
211 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
212
213 /*
214 * Compute the mask of online CPUs for the specified rcu_node structure.
215 * This will not be stable unless the rcu_node structure's ->lock is
216 * held, but the bit corresponding to the current CPU will be stable
217 * in most contexts.
218 */
rcu_rnp_online_cpus(struct rcu_node * rnp)219 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
220 {
221 return READ_ONCE(rnp->qsmaskinitnext);
222 }
223
224 /*
225 * Return true if an RCU grace period is in progress. The READ_ONCE()s
226 * permit this function to be invoked without holding the root rcu_node
227 * structure's ->lock, but of course results can be subject to change.
228 */
rcu_gp_in_progress(void)229 static int rcu_gp_in_progress(void)
230 {
231 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
232 }
233
234 /*
235 * Return the number of callbacks queued on the specified CPU.
236 * Handles both the nocbs and normal cases.
237 */
rcu_get_n_cbs_cpu(int cpu)238 static long rcu_get_n_cbs_cpu(int cpu)
239 {
240 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
241
242 if (rcu_segcblist_is_enabled(&rdp->cblist))
243 return rcu_segcblist_n_cbs(&rdp->cblist);
244 return 0;
245 }
246
rcu_softirq_qs(void)247 void rcu_softirq_qs(void)
248 {
249 rcu_qs();
250 rcu_preempt_deferred_qs(current);
251 rcu_tasks_qs(current, false);
252 }
253
254 /*
255 * Increment the current CPU's rcu_data structure's ->dynticks field
256 * with ordering. Return the new value.
257 */
rcu_dynticks_inc(int incby)258 static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
259 {
260 return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
261 }
262
263 /*
264 * Record entry into an extended quiescent state. This is only to be
265 * called when not already in an extended quiescent state, that is,
266 * RCU is watching prior to the call to this function and is no longer
267 * watching upon return.
268 */
rcu_dynticks_eqs_enter(void)269 static noinstr void rcu_dynticks_eqs_enter(void)
270 {
271 int seq;
272
273 /*
274 * CPUs seeing atomic_add_return() must see prior RCU read-side
275 * critical sections, and we also must force ordering with the
276 * next idle sojourn.
277 */
278 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
279 seq = rcu_dynticks_inc(1);
280 // RCU is no longer watching. Better be in extended quiescent state!
281 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
282 }
283
284 /*
285 * Record exit from an extended quiescent state. This is only to be
286 * called from an extended quiescent state, that is, RCU is not watching
287 * prior to the call to this function and is watching upon return.
288 */
rcu_dynticks_eqs_exit(void)289 static noinstr void rcu_dynticks_eqs_exit(void)
290 {
291 int seq;
292
293 /*
294 * CPUs seeing atomic_add_return() must see prior idle sojourns,
295 * and we also must force ordering with the next RCU read-side
296 * critical section.
297 */
298 seq = rcu_dynticks_inc(1);
299 // RCU is now watching. Better not be in an extended quiescent state!
300 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
301 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
302 }
303
304 /*
305 * Reset the current CPU's ->dynticks counter to indicate that the
306 * newly onlined CPU is no longer in an extended quiescent state.
307 * This will either leave the counter unchanged, or increment it
308 * to the next non-quiescent value.
309 *
310 * The non-atomic test/increment sequence works because the upper bits
311 * of the ->dynticks counter are manipulated only by the corresponding CPU,
312 * or when the corresponding CPU is offline.
313 */
rcu_dynticks_eqs_online(void)314 static void rcu_dynticks_eqs_online(void)
315 {
316 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
317
318 if (atomic_read(&rdp->dynticks) & 0x1)
319 return;
320 rcu_dynticks_inc(1);
321 }
322
323 /*
324 * Is the current CPU in an extended quiescent state?
325 *
326 * No ordering, as we are sampling CPU-local information.
327 */
rcu_dynticks_curr_cpu_in_eqs(void)328 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
329 {
330 return !(atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
331 }
332
333 /*
334 * Snapshot the ->dynticks counter with full ordering so as to allow
335 * stable comparison of this counter with past and future snapshots.
336 */
rcu_dynticks_snap(struct rcu_data * rdp)337 static int rcu_dynticks_snap(struct rcu_data *rdp)
338 {
339 smp_mb(); // Fundamental RCU ordering guarantee.
340 return atomic_read_acquire(&rdp->dynticks);
341 }
342
343 /*
344 * Return true if the snapshot returned from rcu_dynticks_snap()
345 * indicates that RCU is in an extended quiescent state.
346 */
rcu_dynticks_in_eqs(int snap)347 static bool rcu_dynticks_in_eqs(int snap)
348 {
349 return !(snap & 0x1);
350 }
351
352 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */
rcu_is_idle_cpu(int cpu)353 bool rcu_is_idle_cpu(int cpu)
354 {
355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
356
357 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
358 }
359
360 /*
361 * Return true if the CPU corresponding to the specified rcu_data
362 * structure has spent some time in an extended quiescent state since
363 * rcu_dynticks_snap() returned the specified snapshot.
364 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)365 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
366 {
367 return snap != rcu_dynticks_snap(rdp);
368 }
369
370 /*
371 * Return true if the referenced integer is zero while the specified
372 * CPU remains within a single extended quiescent state.
373 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)374 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
375 {
376 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
377 int snap;
378
379 // If not quiescent, force back to earlier extended quiescent state.
380 snap = atomic_read(&rdp->dynticks) & ~0x1;
381
382 smp_rmb(); // Order ->dynticks and *vp reads.
383 if (READ_ONCE(*vp))
384 return false; // Non-zero, so report failure;
385 smp_rmb(); // Order *vp read and ->dynticks re-read.
386
387 // If still in the same extended quiescent state, we are good!
388 return snap == atomic_read(&rdp->dynticks);
389 }
390
391 /*
392 * Let the RCU core know that this CPU has gone through the scheduler,
393 * which is a quiescent state. This is called when the need for a
394 * quiescent state is urgent, so we burn an atomic operation and full
395 * memory barriers to let the RCU core know about it, regardless of what
396 * this CPU might (or might not) do in the near future.
397 *
398 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
399 *
400 * The caller must have disabled interrupts and must not be idle.
401 */
rcu_momentary_dyntick_idle(void)402 notrace void rcu_momentary_dyntick_idle(void)
403 {
404 int seq;
405
406 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
407 seq = rcu_dynticks_inc(2);
408 /* It is illegal to call this from idle state. */
409 WARN_ON_ONCE(!(seq & 0x1));
410 rcu_preempt_deferred_qs(current);
411 }
412 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
413
414 /**
415 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
416 *
417 * If the current CPU is idle and running at a first-level (not nested)
418 * interrupt, or directly, from idle, return true.
419 *
420 * The caller must have at least disabled IRQs.
421 */
rcu_is_cpu_rrupt_from_idle(void)422 static int rcu_is_cpu_rrupt_from_idle(void)
423 {
424 long nesting;
425
426 /*
427 * Usually called from the tick; but also used from smp_function_call()
428 * for expedited grace periods. This latter can result in running from
429 * the idle task, instead of an actual IPI.
430 */
431 lockdep_assert_irqs_disabled();
432
433 /* Check for counter underflows */
434 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
435 "RCU dynticks_nesting counter underflow!");
436 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
437 "RCU dynticks_nmi_nesting counter underflow/zero!");
438
439 /* Are we at first interrupt nesting level? */
440 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
441 if (nesting > 1)
442 return false;
443
444 /*
445 * If we're not in an interrupt, we must be in the idle task!
446 */
447 WARN_ON_ONCE(!nesting && !is_idle_task(current));
448
449 /* Does CPU appear to be idle from an RCU standpoint? */
450 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
451 }
452
453 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
454 // Maximum callbacks per rcu_do_batch ...
455 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
456 static long blimit = DEFAULT_RCU_BLIMIT;
457 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
458 static long qhimark = DEFAULT_RCU_QHIMARK;
459 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
460 static long qlowmark = DEFAULT_RCU_QLOMARK;
461 #define DEFAULT_RCU_QOVLD_MULT 2
462 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
463 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
464 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
465
466 module_param(blimit, long, 0444);
467 module_param(qhimark, long, 0444);
468 module_param(qlowmark, long, 0444);
469 module_param(qovld, long, 0444);
470
471 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
472 static ulong jiffies_till_next_fqs = ULONG_MAX;
473 static bool rcu_kick_kthreads;
474 static int rcu_divisor = 7;
475 module_param(rcu_divisor, int, 0644);
476
477 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
478 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
479 module_param(rcu_resched_ns, long, 0644);
480
481 /*
482 * How long the grace period must be before we start recruiting
483 * quiescent-state help from rcu_note_context_switch().
484 */
485 static ulong jiffies_till_sched_qs = ULONG_MAX;
486 module_param(jiffies_till_sched_qs, ulong, 0444);
487 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
488 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
489
490 /*
491 * Make sure that we give the grace-period kthread time to detect any
492 * idle CPUs before taking active measures to force quiescent states.
493 * However, don't go below 100 milliseconds, adjusted upwards for really
494 * large systems.
495 */
adjust_jiffies_till_sched_qs(void)496 static void adjust_jiffies_till_sched_qs(void)
497 {
498 unsigned long j;
499
500 /* If jiffies_till_sched_qs was specified, respect the request. */
501 if (jiffies_till_sched_qs != ULONG_MAX) {
502 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
503 return;
504 }
505 /* Otherwise, set to third fqs scan, but bound below on large system. */
506 j = READ_ONCE(jiffies_till_first_fqs) +
507 2 * READ_ONCE(jiffies_till_next_fqs);
508 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
509 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
510 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
511 WRITE_ONCE(jiffies_to_sched_qs, j);
512 }
513
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)514 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
515 {
516 ulong j;
517 int ret = kstrtoul(val, 0, &j);
518
519 if (!ret) {
520 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
521 adjust_jiffies_till_sched_qs();
522 }
523 return ret;
524 }
525
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)526 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
527 {
528 ulong j;
529 int ret = kstrtoul(val, 0, &j);
530
531 if (!ret) {
532 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
533 adjust_jiffies_till_sched_qs();
534 }
535 return ret;
536 }
537
538 static const struct kernel_param_ops first_fqs_jiffies_ops = {
539 .set = param_set_first_fqs_jiffies,
540 .get = param_get_ulong,
541 };
542
543 static const struct kernel_param_ops next_fqs_jiffies_ops = {
544 .set = param_set_next_fqs_jiffies,
545 .get = param_get_ulong,
546 };
547
548 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
549 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
550 module_param(rcu_kick_kthreads, bool, 0644);
551
552 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
553 static int rcu_pending(int user);
554
555 /*
556 * Return the number of RCU GPs completed thus far for debug & stats.
557 */
rcu_get_gp_seq(void)558 unsigned long rcu_get_gp_seq(void)
559 {
560 return READ_ONCE(rcu_state.gp_seq);
561 }
562 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
563
564 /*
565 * Return the number of RCU expedited batches completed thus far for
566 * debug & stats. Odd numbers mean that a batch is in progress, even
567 * numbers mean idle. The value returned will thus be roughly double
568 * the cumulative batches since boot.
569 */
rcu_exp_batches_completed(void)570 unsigned long rcu_exp_batches_completed(void)
571 {
572 return rcu_state.expedited_sequence;
573 }
574 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
575
576 /*
577 * Return the root node of the rcu_state structure.
578 */
rcu_get_root(void)579 static struct rcu_node *rcu_get_root(void)
580 {
581 return &rcu_state.node[0];
582 }
583
584 /*
585 * Send along grace-period-related data for rcutorture diagnostics.
586 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)587 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
588 unsigned long *gp_seq)
589 {
590 switch (test_type) {
591 case RCU_FLAVOR:
592 *flags = READ_ONCE(rcu_state.gp_flags);
593 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
594 break;
595 default:
596 break;
597 }
598 }
599 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
600
601 /*
602 * Enter an RCU extended quiescent state, which can be either the
603 * idle loop or adaptive-tickless usermode execution.
604 *
605 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
606 * the possibility of usermode upcalls having messed up our count
607 * of interrupt nesting level during the prior busy period.
608 */
rcu_eqs_enter(bool user)609 static noinstr void rcu_eqs_enter(bool user)
610 {
611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612
613 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
614 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
615 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
616 rdp->dynticks_nesting == 0);
617 if (rdp->dynticks_nesting != 1) {
618 // RCU will still be watching, so just do accounting and leave.
619 rdp->dynticks_nesting--;
620 return;
621 }
622
623 lockdep_assert_irqs_disabled();
624 instrumentation_begin();
625 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
627 rcu_prepare_for_idle();
628 rcu_preempt_deferred_qs(current);
629
630 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
631 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
632
633 instrumentation_end();
634 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
635 // RCU is watching here ...
636 rcu_dynticks_eqs_enter();
637 // ... but is no longer watching here.
638 rcu_dynticks_task_enter();
639 }
640
641 /**
642 * rcu_idle_enter - inform RCU that current CPU is entering idle
643 *
644 * Enter idle mode, in other words, -leave- the mode in which RCU
645 * read-side critical sections can occur. (Though RCU read-side
646 * critical sections can occur in irq handlers in idle, a possibility
647 * handled by irq_enter() and irq_exit().)
648 *
649 * If you add or remove a call to rcu_idle_enter(), be sure to test with
650 * CONFIG_RCU_EQS_DEBUG=y.
651 */
rcu_idle_enter(void)652 void rcu_idle_enter(void)
653 {
654 lockdep_assert_irqs_disabled();
655 rcu_eqs_enter(false);
656 }
657 EXPORT_SYMBOL_GPL(rcu_idle_enter);
658
659 #ifdef CONFIG_NO_HZ_FULL
660
661 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
662 /*
663 * An empty function that will trigger a reschedule on
664 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
665 */
late_wakeup_func(struct irq_work * work)666 static void late_wakeup_func(struct irq_work *work)
667 {
668 }
669
670 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
671 IRQ_WORK_INIT(late_wakeup_func);
672
673 /*
674 * If either:
675 *
676 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
677 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
678 *
679 * In these cases the late RCU wake ups aren't supported in the resched loops and our
680 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
681 * get re-enabled again.
682 */
rcu_irq_work_resched(void)683 noinstr static void rcu_irq_work_resched(void)
684 {
685 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
686
687 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
688 return;
689
690 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
691 return;
692
693 instrumentation_begin();
694 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
695 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
696 }
697 instrumentation_end();
698 }
699
700 #else
rcu_irq_work_resched(void)701 static inline void rcu_irq_work_resched(void) { }
702 #endif
703
704 /**
705 * rcu_user_enter - inform RCU that we are resuming userspace.
706 *
707 * Enter RCU idle mode right before resuming userspace. No use of RCU
708 * is permitted between this call and rcu_user_exit(). This way the
709 * CPU doesn't need to maintain the tick for RCU maintenance purposes
710 * when the CPU runs in userspace.
711 *
712 * If you add or remove a call to rcu_user_enter(), be sure to test with
713 * CONFIG_RCU_EQS_DEBUG=y.
714 */
rcu_user_enter(void)715 noinstr void rcu_user_enter(void)
716 {
717 lockdep_assert_irqs_disabled();
718
719 /*
720 * Other than generic entry implementation, we may be past the last
721 * rescheduling opportunity in the entry code. Trigger a self IPI
722 * that will fire and reschedule once we resume in user/guest mode.
723 */
724 rcu_irq_work_resched();
725 rcu_eqs_enter(true);
726 }
727
728 #endif /* CONFIG_NO_HZ_FULL */
729
730 /**
731 * rcu_nmi_exit - inform RCU of exit from NMI context
732 *
733 * If we are returning from the outermost NMI handler that interrupted an
734 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
735 * to let the RCU grace-period handling know that the CPU is back to
736 * being RCU-idle.
737 *
738 * If you add or remove a call to rcu_nmi_exit(), be sure to test
739 * with CONFIG_RCU_EQS_DEBUG=y.
740 */
rcu_nmi_exit(void)741 noinstr void rcu_nmi_exit(void)
742 {
743 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
744
745 instrumentation_begin();
746 /*
747 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
748 * (We are exiting an NMI handler, so RCU better be paying attention
749 * to us!)
750 */
751 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
752 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
753
754 /*
755 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
756 * leave it in non-RCU-idle state.
757 */
758 if (rdp->dynticks_nmi_nesting != 1) {
759 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
760 atomic_read(&rdp->dynticks));
761 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
762 rdp->dynticks_nmi_nesting - 2);
763 instrumentation_end();
764 return;
765 }
766
767 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
768 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
769 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
770
771 if (!in_nmi())
772 rcu_prepare_for_idle();
773
774 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
775 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
776 instrumentation_end();
777
778 // RCU is watching here ...
779 rcu_dynticks_eqs_enter();
780 // ... but is no longer watching here.
781
782 if (!in_nmi())
783 rcu_dynticks_task_enter();
784 }
785
786 /**
787 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
788 *
789 * Exit from an interrupt handler, which might possibly result in entering
790 * idle mode, in other words, leaving the mode in which read-side critical
791 * sections can occur. The caller must have disabled interrupts.
792 *
793 * This code assumes that the idle loop never does anything that might
794 * result in unbalanced calls to irq_enter() and irq_exit(). If your
795 * architecture's idle loop violates this assumption, RCU will give you what
796 * you deserve, good and hard. But very infrequently and irreproducibly.
797 *
798 * Use things like work queues to work around this limitation.
799 *
800 * You have been warned.
801 *
802 * If you add or remove a call to rcu_irq_exit(), be sure to test with
803 * CONFIG_RCU_EQS_DEBUG=y.
804 */
rcu_irq_exit(void)805 void noinstr rcu_irq_exit(void)
806 {
807 lockdep_assert_irqs_disabled();
808 rcu_nmi_exit();
809 }
810
811 #ifdef CONFIG_PROVE_RCU
812 /**
813 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
814 */
rcu_irq_exit_check_preempt(void)815 void rcu_irq_exit_check_preempt(void)
816 {
817 lockdep_assert_irqs_disabled();
818
819 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
820 "RCU dynticks_nesting counter underflow/zero!");
821 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
822 DYNTICK_IRQ_NONIDLE,
823 "Bad RCU dynticks_nmi_nesting counter\n");
824 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
825 "RCU in extended quiescent state!");
826 }
827 #endif /* #ifdef CONFIG_PROVE_RCU */
828
829 /*
830 * Wrapper for rcu_irq_exit() where interrupts are enabled.
831 *
832 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
833 * with CONFIG_RCU_EQS_DEBUG=y.
834 */
rcu_irq_exit_irqson(void)835 void rcu_irq_exit_irqson(void)
836 {
837 unsigned long flags;
838
839 local_irq_save(flags);
840 rcu_irq_exit();
841 local_irq_restore(flags);
842 }
843
844 /*
845 * Exit an RCU extended quiescent state, which can be either the
846 * idle loop or adaptive-tickless usermode execution.
847 *
848 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
849 * allow for the possibility of usermode upcalls messing up our count of
850 * interrupt nesting level during the busy period that is just now starting.
851 */
rcu_eqs_exit(bool user)852 static void noinstr rcu_eqs_exit(bool user)
853 {
854 struct rcu_data *rdp;
855 long oldval;
856
857 lockdep_assert_irqs_disabled();
858 rdp = this_cpu_ptr(&rcu_data);
859 oldval = rdp->dynticks_nesting;
860 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
861 if (oldval) {
862 // RCU was already watching, so just do accounting and leave.
863 rdp->dynticks_nesting++;
864 return;
865 }
866 rcu_dynticks_task_exit();
867 // RCU is not watching here ...
868 rcu_dynticks_eqs_exit();
869 // ... but is watching here.
870 instrumentation_begin();
871
872 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
873 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
874
875 rcu_cleanup_after_idle();
876 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
877 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
878 WRITE_ONCE(rdp->dynticks_nesting, 1);
879 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
880 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
881 instrumentation_end();
882 }
883
884 /**
885 * rcu_idle_exit - inform RCU that current CPU is leaving idle
886 *
887 * Exit idle mode, in other words, -enter- the mode in which RCU
888 * read-side critical sections can occur.
889 *
890 * If you add or remove a call to rcu_idle_exit(), be sure to test with
891 * CONFIG_RCU_EQS_DEBUG=y.
892 */
rcu_idle_exit(void)893 void rcu_idle_exit(void)
894 {
895 unsigned long flags;
896
897 local_irq_save(flags);
898 rcu_eqs_exit(false);
899 local_irq_restore(flags);
900 }
901 EXPORT_SYMBOL_GPL(rcu_idle_exit);
902
903 #ifdef CONFIG_NO_HZ_FULL
904 /**
905 * rcu_user_exit - inform RCU that we are exiting userspace.
906 *
907 * Exit RCU idle mode while entering the kernel because it can
908 * run a RCU read side critical section anytime.
909 *
910 * If you add or remove a call to rcu_user_exit(), be sure to test with
911 * CONFIG_RCU_EQS_DEBUG=y.
912 */
rcu_user_exit(void)913 void noinstr rcu_user_exit(void)
914 {
915 rcu_eqs_exit(true);
916 }
917
918 /**
919 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
920 *
921 * The scheduler tick is not normally enabled when CPUs enter the kernel
922 * from nohz_full userspace execution. After all, nohz_full userspace
923 * execution is an RCU quiescent state and the time executing in the kernel
924 * is quite short. Except of course when it isn't. And it is not hard to
925 * cause a large system to spend tens of seconds or even minutes looping
926 * in the kernel, which can cause a number of problems, include RCU CPU
927 * stall warnings.
928 *
929 * Therefore, if a nohz_full CPU fails to report a quiescent state
930 * in a timely manner, the RCU grace-period kthread sets that CPU's
931 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
932 * exception will invoke this function, which will turn on the scheduler
933 * tick, which will enable RCU to detect that CPU's quiescent states,
934 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
935 * The tick will be disabled once a quiescent state is reported for
936 * this CPU.
937 *
938 * Of course, in carefully tuned systems, there might never be an
939 * interrupt or exception. In that case, the RCU grace-period kthread
940 * will eventually cause one to happen. However, in less carefully
941 * controlled environments, this function allows RCU to get what it
942 * needs without creating otherwise useless interruptions.
943 */
__rcu_irq_enter_check_tick(void)944 void __rcu_irq_enter_check_tick(void)
945 {
946 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
947
948 // If we're here from NMI there's nothing to do.
949 if (in_nmi())
950 return;
951
952 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
953 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
954
955 if (!tick_nohz_full_cpu(rdp->cpu) ||
956 !READ_ONCE(rdp->rcu_urgent_qs) ||
957 READ_ONCE(rdp->rcu_forced_tick)) {
958 // RCU doesn't need nohz_full help from this CPU, or it is
959 // already getting that help.
960 return;
961 }
962
963 // We get here only when not in an extended quiescent state and
964 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
965 // already watching and (2) The fact that we are in an interrupt
966 // handler and that the rcu_node lock is an irq-disabled lock
967 // prevents self-deadlock. So we can safely recheck under the lock.
968 // Note that the nohz_full state currently cannot change.
969 raw_spin_lock_rcu_node(rdp->mynode);
970 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
971 // A nohz_full CPU is in the kernel and RCU needs a
972 // quiescent state. Turn on the tick!
973 WRITE_ONCE(rdp->rcu_forced_tick, true);
974 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
975 }
976 raw_spin_unlock_rcu_node(rdp->mynode);
977 }
978 #endif /* CONFIG_NO_HZ_FULL */
979
980 /**
981 * rcu_nmi_enter - inform RCU of entry to NMI context
982 *
983 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
984 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
985 * that the CPU is active. This implementation permits nested NMIs, as
986 * long as the nesting level does not overflow an int. (You will probably
987 * run out of stack space first.)
988 *
989 * If you add or remove a call to rcu_nmi_enter(), be sure to test
990 * with CONFIG_RCU_EQS_DEBUG=y.
991 */
rcu_nmi_enter(void)992 noinstr void rcu_nmi_enter(void)
993 {
994 long incby = 2;
995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
996
997 /* Complain about underflow. */
998 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
999
1000 /*
1001 * If idle from RCU viewpoint, atomically increment ->dynticks
1002 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1003 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1004 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1005 * to be in the outermost NMI handler that interrupted an RCU-idle
1006 * period (observation due to Andy Lutomirski).
1007 */
1008 if (rcu_dynticks_curr_cpu_in_eqs()) {
1009
1010 if (!in_nmi())
1011 rcu_dynticks_task_exit();
1012
1013 // RCU is not watching here ...
1014 rcu_dynticks_eqs_exit();
1015 // ... but is watching here.
1016
1017 if (!in_nmi()) {
1018 instrumentation_begin();
1019 rcu_cleanup_after_idle();
1020 instrumentation_end();
1021 }
1022
1023 instrumentation_begin();
1024 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1025 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1026 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1027 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1028
1029 incby = 1;
1030 } else if (!in_nmi()) {
1031 instrumentation_begin();
1032 rcu_irq_enter_check_tick();
1033 } else {
1034 instrumentation_begin();
1035 }
1036
1037 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1038 rdp->dynticks_nmi_nesting,
1039 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1040 instrumentation_end();
1041 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1042 rdp->dynticks_nmi_nesting + incby);
1043 barrier();
1044 }
1045
1046 /**
1047 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1048 *
1049 * Enter an interrupt handler, which might possibly result in exiting
1050 * idle mode, in other words, entering the mode in which read-side critical
1051 * sections can occur. The caller must have disabled interrupts.
1052 *
1053 * Note that the Linux kernel is fully capable of entering an interrupt
1054 * handler that it never exits, for example when doing upcalls to user mode!
1055 * This code assumes that the idle loop never does upcalls to user mode.
1056 * If your architecture's idle loop does do upcalls to user mode (or does
1057 * anything else that results in unbalanced calls to the irq_enter() and
1058 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1059 * But very infrequently and irreproducibly.
1060 *
1061 * Use things like work queues to work around this limitation.
1062 *
1063 * You have been warned.
1064 *
1065 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1066 * CONFIG_RCU_EQS_DEBUG=y.
1067 */
rcu_irq_enter(void)1068 noinstr void rcu_irq_enter(void)
1069 {
1070 lockdep_assert_irqs_disabled();
1071 rcu_nmi_enter();
1072 }
1073
1074 /*
1075 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1076 *
1077 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1078 * with CONFIG_RCU_EQS_DEBUG=y.
1079 */
rcu_irq_enter_irqson(void)1080 void rcu_irq_enter_irqson(void)
1081 {
1082 unsigned long flags;
1083
1084 local_irq_save(flags);
1085 rcu_irq_enter();
1086 local_irq_restore(flags);
1087 }
1088
1089 /*
1090 * If any sort of urgency was applied to the current CPU (for example,
1091 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1092 * to get to a quiescent state, disable it.
1093 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1094 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1095 {
1096 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1097 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1098 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1099 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1100 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1101 WRITE_ONCE(rdp->rcu_forced_tick, false);
1102 }
1103 }
1104
1105 /**
1106 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1107 *
1108 * Return true if RCU is watching the running CPU, which means that this
1109 * CPU can safely enter RCU read-side critical sections. In other words,
1110 * if the current CPU is not in its idle loop or is in an interrupt or
1111 * NMI handler, return true.
1112 *
1113 * Make notrace because it can be called by the internal functions of
1114 * ftrace, and making this notrace removes unnecessary recursion calls.
1115 */
rcu_is_watching(void)1116 notrace bool rcu_is_watching(void)
1117 {
1118 bool ret;
1119
1120 preempt_disable_notrace();
1121 ret = !rcu_dynticks_curr_cpu_in_eqs();
1122 preempt_enable_notrace();
1123 return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(rcu_is_watching);
1126
1127 /*
1128 * If a holdout task is actually running, request an urgent quiescent
1129 * state from its CPU. This is unsynchronized, so migrations can cause
1130 * the request to go to the wrong CPU. Which is OK, all that will happen
1131 * is that the CPU's next context switch will be a bit slower and next
1132 * time around this task will generate another request.
1133 */
rcu_request_urgent_qs_task(struct task_struct * t)1134 void rcu_request_urgent_qs_task(struct task_struct *t)
1135 {
1136 int cpu;
1137
1138 barrier();
1139 cpu = task_cpu(t);
1140 if (!task_curr(t))
1141 return; /* This task is not running on that CPU. */
1142 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1143 }
1144
1145 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1146
1147 /*
1148 * Is the current CPU online as far as RCU is concerned?
1149 *
1150 * Disable preemption to avoid false positives that could otherwise
1151 * happen due to the current CPU number being sampled, this task being
1152 * preempted, its old CPU being taken offline, resuming on some other CPU,
1153 * then determining that its old CPU is now offline.
1154 *
1155 * Disable checking if in an NMI handler because we cannot safely
1156 * report errors from NMI handlers anyway. In addition, it is OK to use
1157 * RCU on an offline processor during initial boot, hence the check for
1158 * rcu_scheduler_fully_active.
1159 */
rcu_lockdep_current_cpu_online(void)1160 bool rcu_lockdep_current_cpu_online(void)
1161 {
1162 struct rcu_data *rdp;
1163 struct rcu_node *rnp;
1164 bool ret = false;
1165
1166 if (in_nmi() || !rcu_scheduler_fully_active)
1167 return true;
1168 preempt_disable_notrace();
1169 rdp = this_cpu_ptr(&rcu_data);
1170 rnp = rdp->mynode;
1171 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1172 ret = true;
1173 preempt_enable_notrace();
1174 return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1177
1178 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1179
1180 /*
1181 * When trying to report a quiescent state on behalf of some other CPU,
1182 * it is our responsibility to check for and handle potential overflow
1183 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1184 * After all, the CPU might be in deep idle state, and thus executing no
1185 * code whatsoever.
1186 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1187 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1188 {
1189 raw_lockdep_assert_held_rcu_node(rnp);
1190 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1191 rnp->gp_seq))
1192 WRITE_ONCE(rdp->gpwrap, true);
1193 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1194 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1195 }
1196
1197 /*
1198 * Snapshot the specified CPU's dynticks counter so that we can later
1199 * credit them with an implicit quiescent state. Return 1 if this CPU
1200 * is in dynticks idle mode, which is an extended quiescent state.
1201 */
dyntick_save_progress_counter(struct rcu_data * rdp)1202 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1203 {
1204 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1205 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1206 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1207 rcu_gpnum_ovf(rdp->mynode, rdp);
1208 return 1;
1209 }
1210 return 0;
1211 }
1212
1213 /*
1214 * Return true if the specified CPU has passed through a quiescent
1215 * state by virtue of being in or having passed through an dynticks
1216 * idle state since the last call to dyntick_save_progress_counter()
1217 * for this same CPU, or by virtue of having been offline.
1218 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1219 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1220 {
1221 unsigned long jtsq;
1222 bool *rnhqp;
1223 bool *ruqp;
1224 struct rcu_node *rnp = rdp->mynode;
1225
1226 /*
1227 * If the CPU passed through or entered a dynticks idle phase with
1228 * no active irq/NMI handlers, then we can safely pretend that the CPU
1229 * already acknowledged the request to pass through a quiescent
1230 * state. Either way, that CPU cannot possibly be in an RCU
1231 * read-side critical section that started before the beginning
1232 * of the current RCU grace period.
1233 */
1234 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1235 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1236 rcu_gpnum_ovf(rnp, rdp);
1237 return 1;
1238 }
1239
1240 /*
1241 * Complain if a CPU that is considered to be offline from RCU's
1242 * perspective has not yet reported a quiescent state. After all,
1243 * the offline CPU should have reported a quiescent state during
1244 * the CPU-offline process, or, failing that, by rcu_gp_init()
1245 * if it ran concurrently with either the CPU going offline or the
1246 * last task on a leaf rcu_node structure exiting its RCU read-side
1247 * critical section while all CPUs corresponding to that structure
1248 * are offline. This added warning detects bugs in any of these
1249 * code paths.
1250 *
1251 * The rcu_node structure's ->lock is held here, which excludes
1252 * the relevant portions the CPU-hotplug code, the grace-period
1253 * initialization code, and the rcu_read_unlock() code paths.
1254 *
1255 * For more detail, please refer to the "Hotplug CPU" section
1256 * of RCU's Requirements documentation.
1257 */
1258 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1259 bool onl;
1260 struct rcu_node *rnp1;
1261
1262 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1263 __func__, rnp->grplo, rnp->grphi, rnp->level,
1264 (long)rnp->gp_seq, (long)rnp->completedqs);
1265 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1266 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1267 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1268 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1269 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1270 __func__, rdp->cpu, ".o"[onl],
1271 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1272 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1273 return 1; /* Break things loose after complaining. */
1274 }
1275
1276 /*
1277 * A CPU running for an extended time within the kernel can
1278 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1279 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1280 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1281 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1282 * variable are safe because the assignments are repeated if this
1283 * CPU failed to pass through a quiescent state. This code
1284 * also checks .jiffies_resched in case jiffies_to_sched_qs
1285 * is set way high.
1286 */
1287 jtsq = READ_ONCE(jiffies_to_sched_qs);
1288 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1289 rnhqp = per_cpu_ptr(&rcu_data.rcu_need_heavy_qs, rdp->cpu);
1290 if (!READ_ONCE(*rnhqp) &&
1291 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1292 time_after(jiffies, rcu_state.jiffies_resched) ||
1293 rcu_state.cbovld)) {
1294 WRITE_ONCE(*rnhqp, true);
1295 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1296 smp_store_release(ruqp, true);
1297 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1298 WRITE_ONCE(*ruqp, true);
1299 }
1300
1301 /*
1302 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1303 * The above code handles this, but only for straight cond_resched().
1304 * And some in-kernel loops check need_resched() before calling
1305 * cond_resched(), which defeats the above code for CPUs that are
1306 * running in-kernel with scheduling-clock interrupts disabled.
1307 * So hit them over the head with the resched_cpu() hammer!
1308 */
1309 if (tick_nohz_full_cpu(rdp->cpu) &&
1310 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1311 rcu_state.cbovld)) {
1312 WRITE_ONCE(*ruqp, true);
1313 resched_cpu(rdp->cpu);
1314 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1315 }
1316
1317 /*
1318 * If more than halfway to RCU CPU stall-warning time, invoke
1319 * resched_cpu() more frequently to try to loosen things up a bit.
1320 * Also check to see if the CPU is getting hammered with interrupts,
1321 * but only once per grace period, just to keep the IPIs down to
1322 * a dull roar.
1323 */
1324 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1325 if (time_after(jiffies,
1326 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1327 resched_cpu(rdp->cpu);
1328 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1329 }
1330 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1331 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1332 (rnp->ffmask & rdp->grpmask)) {
1333 rdp->rcu_iw_pending = true;
1334 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1335 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1336 }
1337 }
1338
1339 return 0;
1340 }
1341
1342 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1343 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1344 unsigned long gp_seq_req, const char *s)
1345 {
1346 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1347 gp_seq_req, rnp->level,
1348 rnp->grplo, rnp->grphi, s);
1349 }
1350
1351 /*
1352 * rcu_start_this_gp - Request the start of a particular grace period
1353 * @rnp_start: The leaf node of the CPU from which to start.
1354 * @rdp: The rcu_data corresponding to the CPU from which to start.
1355 * @gp_seq_req: The gp_seq of the grace period to start.
1356 *
1357 * Start the specified grace period, as needed to handle newly arrived
1358 * callbacks. The required future grace periods are recorded in each
1359 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1360 * is reason to awaken the grace-period kthread.
1361 *
1362 * The caller must hold the specified rcu_node structure's ->lock, which
1363 * is why the caller is responsible for waking the grace-period kthread.
1364 *
1365 * Returns true if the GP thread needs to be awakened else false.
1366 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1367 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1368 unsigned long gp_seq_req)
1369 {
1370 bool ret = false;
1371 struct rcu_node *rnp;
1372
1373 /*
1374 * Use funnel locking to either acquire the root rcu_node
1375 * structure's lock or bail out if the need for this grace period
1376 * has already been recorded -- or if that grace period has in
1377 * fact already started. If there is already a grace period in
1378 * progress in a non-leaf node, no recording is needed because the
1379 * end of the grace period will scan the leaf rcu_node structures.
1380 * Note that rnp_start->lock must not be released.
1381 */
1382 raw_lockdep_assert_held_rcu_node(rnp_start);
1383 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1384 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1385 if (rnp != rnp_start)
1386 raw_spin_lock_rcu_node(rnp);
1387 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1388 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1389 (rnp != rnp_start &&
1390 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1391 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1392 TPS("Prestarted"));
1393 goto unlock_out;
1394 }
1395 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1396 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1397 /*
1398 * We just marked the leaf or internal node, and a
1399 * grace period is in progress, which means that
1400 * rcu_gp_cleanup() will see the marking. Bail to
1401 * reduce contention.
1402 */
1403 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1404 TPS("Startedleaf"));
1405 goto unlock_out;
1406 }
1407 if (rnp != rnp_start && rnp->parent != NULL)
1408 raw_spin_unlock_rcu_node(rnp);
1409 if (!rnp->parent)
1410 break; /* At root, and perhaps also leaf. */
1411 }
1412
1413 /* If GP already in progress, just leave, otherwise start one. */
1414 if (rcu_gp_in_progress()) {
1415 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1416 goto unlock_out;
1417 }
1418 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1419 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1420 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1421 if (!READ_ONCE(rcu_state.gp_kthread)) {
1422 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1423 goto unlock_out;
1424 }
1425 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1426 ret = true; /* Caller must wake GP kthread. */
1427 unlock_out:
1428 /* Push furthest requested GP to leaf node and rcu_data structure. */
1429 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1430 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1431 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1432 }
1433 if (rnp != rnp_start)
1434 raw_spin_unlock_rcu_node(rnp);
1435 return ret;
1436 }
1437
1438 /*
1439 * Clean up any old requests for the just-ended grace period. Also return
1440 * whether any additional grace periods have been requested.
1441 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1442 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1443 {
1444 bool needmore;
1445 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1446
1447 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1448 if (!needmore)
1449 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1450 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1451 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1452 return needmore;
1453 }
1454
1455 /*
1456 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1457 * interrupt or softirq handler, in which case we just might immediately
1458 * sleep upon return, resulting in a grace-period hang), and don't bother
1459 * awakening when there is nothing for the grace-period kthread to do
1460 * (as in several CPUs raced to awaken, we lost), and finally don't try
1461 * to awaken a kthread that has not yet been created. If all those checks
1462 * are passed, track some debug information and awaken.
1463 *
1464 * So why do the self-wakeup when in an interrupt or softirq handler
1465 * in the grace-period kthread's context? Because the kthread might have
1466 * been interrupted just as it was going to sleep, and just after the final
1467 * pre-sleep check of the awaken condition. In this case, a wakeup really
1468 * is required, and is therefore supplied.
1469 */
rcu_gp_kthread_wake(void)1470 static void rcu_gp_kthread_wake(void)
1471 {
1472 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1473
1474 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1475 !READ_ONCE(rcu_state.gp_flags) || !t)
1476 return;
1477 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1478 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1479 swake_up_one(&rcu_state.gp_wq);
1480 }
1481
1482 /*
1483 * If there is room, assign a ->gp_seq number to any callbacks on this
1484 * CPU that have not already been assigned. Also accelerate any callbacks
1485 * that were previously assigned a ->gp_seq number that has since proven
1486 * to be too conservative, which can happen if callbacks get assigned a
1487 * ->gp_seq number while RCU is idle, but with reference to a non-root
1488 * rcu_node structure. This function is idempotent, so it does not hurt
1489 * to call it repeatedly. Returns an flag saying that we should awaken
1490 * the RCU grace-period kthread.
1491 *
1492 * The caller must hold rnp->lock with interrupts disabled.
1493 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1494 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1495 {
1496 unsigned long gp_seq_req;
1497 bool ret = false;
1498
1499 rcu_lockdep_assert_cblist_protected(rdp);
1500 raw_lockdep_assert_held_rcu_node(rnp);
1501
1502 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1503 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1504 return false;
1505
1506 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1507
1508 /*
1509 * Callbacks are often registered with incomplete grace-period
1510 * information. Something about the fact that getting exact
1511 * information requires acquiring a global lock... RCU therefore
1512 * makes a conservative estimate of the grace period number at which
1513 * a given callback will become ready to invoke. The following
1514 * code checks this estimate and improves it when possible, thus
1515 * accelerating callback invocation to an earlier grace-period
1516 * number.
1517 */
1518 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1519 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1520 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1521
1522 /* Trace depending on how much we were able to accelerate. */
1523 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1524 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1525 else
1526 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1527
1528 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1529
1530 return ret;
1531 }
1532
1533 /*
1534 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1535 * rcu_node structure's ->lock be held. It consults the cached value
1536 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1537 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1538 * while holding the leaf rcu_node structure's ->lock.
1539 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1540 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1541 struct rcu_data *rdp)
1542 {
1543 unsigned long c;
1544 bool needwake;
1545
1546 rcu_lockdep_assert_cblist_protected(rdp);
1547 c = rcu_seq_snap(&rcu_state.gp_seq);
1548 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1549 /* Old request still live, so mark recent callbacks. */
1550 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1551 return;
1552 }
1553 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1554 needwake = rcu_accelerate_cbs(rnp, rdp);
1555 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1556 if (needwake)
1557 rcu_gp_kthread_wake();
1558 }
1559
1560 /*
1561 * Move any callbacks whose grace period has completed to the
1562 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1563 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1564 * sublist. This function is idempotent, so it does not hurt to
1565 * invoke it repeatedly. As long as it is not invoked -too- often...
1566 * Returns true if the RCU grace-period kthread needs to be awakened.
1567 *
1568 * The caller must hold rnp->lock with interrupts disabled.
1569 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1570 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1571 {
1572 rcu_lockdep_assert_cblist_protected(rdp);
1573 raw_lockdep_assert_held_rcu_node(rnp);
1574
1575 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1576 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1577 return false;
1578
1579 /*
1580 * Find all callbacks whose ->gp_seq numbers indicate that they
1581 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1582 */
1583 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1584
1585 /* Classify any remaining callbacks. */
1586 return rcu_accelerate_cbs(rnp, rdp);
1587 }
1588
1589 /*
1590 * Move and classify callbacks, but only if doing so won't require
1591 * that the RCU grace-period kthread be awakened.
1592 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1593 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1594 struct rcu_data *rdp)
1595 {
1596 rcu_lockdep_assert_cblist_protected(rdp);
1597 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1598 !raw_spin_trylock_rcu_node(rnp))
1599 return;
1600 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1601 raw_spin_unlock_rcu_node(rnp);
1602 }
1603
1604 /*
1605 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1606 * quiescent state. This is intended to be invoked when the CPU notices
1607 * a new grace period.
1608 */
rcu_strict_gp_check_qs(void)1609 static void rcu_strict_gp_check_qs(void)
1610 {
1611 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1612 rcu_read_lock();
1613 rcu_read_unlock();
1614 }
1615 }
1616
1617 /*
1618 * Update CPU-local rcu_data state to record the beginnings and ends of
1619 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1620 * structure corresponding to the current CPU, and must have irqs disabled.
1621 * Returns true if the grace-period kthread needs to be awakened.
1622 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1623 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1624 {
1625 bool ret = false;
1626 bool need_qs;
1627 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1628
1629 raw_lockdep_assert_held_rcu_node(rnp);
1630
1631 if (rdp->gp_seq == rnp->gp_seq)
1632 return false; /* Nothing to do. */
1633
1634 /* Handle the ends of any preceding grace periods first. */
1635 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1636 unlikely(READ_ONCE(rdp->gpwrap))) {
1637 if (!offloaded)
1638 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1639 rdp->core_needs_qs = false;
1640 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1641 } else {
1642 if (!offloaded)
1643 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1644 if (rdp->core_needs_qs)
1645 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1646 }
1647
1648 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1649 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1650 unlikely(READ_ONCE(rdp->gpwrap))) {
1651 /*
1652 * If the current grace period is waiting for this CPU,
1653 * set up to detect a quiescent state, otherwise don't
1654 * go looking for one.
1655 */
1656 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1657 need_qs = !!(rnp->qsmask & rdp->grpmask);
1658 rdp->cpu_no_qs.b.norm = need_qs;
1659 rdp->core_needs_qs = need_qs;
1660 zero_cpu_stall_ticks(rdp);
1661 }
1662 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1663 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1664 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1665 WRITE_ONCE(rdp->gpwrap, false);
1666 rcu_gpnum_ovf(rnp, rdp);
1667 return ret;
1668 }
1669
note_gp_changes(struct rcu_data * rdp)1670 static void note_gp_changes(struct rcu_data *rdp)
1671 {
1672 unsigned long flags;
1673 bool needwake;
1674 struct rcu_node *rnp;
1675
1676 local_irq_save(flags);
1677 rnp = rdp->mynode;
1678 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1679 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1680 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1681 local_irq_restore(flags);
1682 return;
1683 }
1684 needwake = __note_gp_changes(rnp, rdp);
1685 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1686 rcu_strict_gp_check_qs();
1687 if (needwake)
1688 rcu_gp_kthread_wake();
1689 }
1690
rcu_gp_slow(int delay)1691 static void rcu_gp_slow(int delay)
1692 {
1693 if (delay > 0 &&
1694 !(rcu_seq_ctr(rcu_state.gp_seq) %
1695 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1696 schedule_timeout_idle(delay);
1697 }
1698
1699 static unsigned long sleep_duration;
1700
1701 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1702 void rcu_gp_set_torture_wait(int duration)
1703 {
1704 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1705 WRITE_ONCE(sleep_duration, duration);
1706 }
1707 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1708
1709 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1710 static void rcu_gp_torture_wait(void)
1711 {
1712 unsigned long duration;
1713
1714 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1715 return;
1716 duration = xchg(&sleep_duration, 0UL);
1717 if (duration > 0) {
1718 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1719 schedule_timeout_idle(duration);
1720 pr_alert("%s: Wait complete\n", __func__);
1721 }
1722 }
1723
1724 /*
1725 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1726 * processing.
1727 */
rcu_strict_gp_boundary(void * unused)1728 static void rcu_strict_gp_boundary(void *unused)
1729 {
1730 invoke_rcu_core();
1731 }
1732
1733 /*
1734 * Initialize a new grace period. Return false if no grace period required.
1735 */
rcu_gp_init(void)1736 static noinline_for_stack bool rcu_gp_init(void)
1737 {
1738 unsigned long firstseq;
1739 unsigned long flags;
1740 unsigned long oldmask;
1741 unsigned long mask;
1742 struct rcu_data *rdp;
1743 struct rcu_node *rnp = rcu_get_root();
1744
1745 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1746 raw_spin_lock_irq_rcu_node(rnp);
1747 if (!READ_ONCE(rcu_state.gp_flags)) {
1748 /* Spurious wakeup, tell caller to go back to sleep. */
1749 raw_spin_unlock_irq_rcu_node(rnp);
1750 return false;
1751 }
1752 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1753
1754 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1755 /*
1756 * Grace period already in progress, don't start another.
1757 * Not supposed to be able to happen.
1758 */
1759 raw_spin_unlock_irq_rcu_node(rnp);
1760 return false;
1761 }
1762
1763 /* Advance to a new grace period and initialize state. */
1764 record_gp_stall_check_time();
1765 /* Record GP times before starting GP, hence rcu_seq_start(). */
1766 rcu_seq_start(&rcu_state.gp_seq);
1767 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1768 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1769 raw_spin_unlock_irq_rcu_node(rnp);
1770
1771 /*
1772 * Apply per-leaf buffered online and offline operations to
1773 * the rcu_node tree. Note that this new grace period need not
1774 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1775 * offlining path, when combined with checks in this function,
1776 * will handle CPUs that are currently going offline or that will
1777 * go offline later. Please also refer to "Hotplug CPU" section
1778 * of RCU's Requirements documentation.
1779 */
1780 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1781 rcu_for_each_leaf_node(rnp) {
1782 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1783 firstseq = READ_ONCE(rnp->ofl_seq);
1784 if (firstseq & 0x1)
1785 while (firstseq == READ_ONCE(rnp->ofl_seq))
1786 schedule_timeout_idle(1); // Can't wake unless RCU is watching.
1787 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1788 raw_spin_lock(&rcu_state.ofl_lock);
1789 raw_spin_lock_irq_rcu_node(rnp);
1790 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1791 !rnp->wait_blkd_tasks) {
1792 /* Nothing to do on this leaf rcu_node structure. */
1793 raw_spin_unlock_irq_rcu_node(rnp);
1794 raw_spin_unlock(&rcu_state.ofl_lock);
1795 continue;
1796 }
1797
1798 /* Record old state, apply changes to ->qsmaskinit field. */
1799 oldmask = rnp->qsmaskinit;
1800 rnp->qsmaskinit = rnp->qsmaskinitnext;
1801
1802 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1803 if (!oldmask != !rnp->qsmaskinit) {
1804 if (!oldmask) { /* First online CPU for rcu_node. */
1805 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1806 rcu_init_new_rnp(rnp);
1807 } else if (rcu_preempt_has_tasks(rnp)) {
1808 rnp->wait_blkd_tasks = true; /* blocked tasks */
1809 } else { /* Last offline CPU and can propagate. */
1810 rcu_cleanup_dead_rnp(rnp);
1811 }
1812 }
1813
1814 /*
1815 * If all waited-on tasks from prior grace period are
1816 * done, and if all this rcu_node structure's CPUs are
1817 * still offline, propagate up the rcu_node tree and
1818 * clear ->wait_blkd_tasks. Otherwise, if one of this
1819 * rcu_node structure's CPUs has since come back online,
1820 * simply clear ->wait_blkd_tasks.
1821 */
1822 if (rnp->wait_blkd_tasks &&
1823 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1824 rnp->wait_blkd_tasks = false;
1825 if (!rnp->qsmaskinit)
1826 rcu_cleanup_dead_rnp(rnp);
1827 }
1828
1829 raw_spin_unlock_irq_rcu_node(rnp);
1830 raw_spin_unlock(&rcu_state.ofl_lock);
1831 }
1832 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1833
1834 /*
1835 * Set the quiescent-state-needed bits in all the rcu_node
1836 * structures for all currently online CPUs in breadth-first
1837 * order, starting from the root rcu_node structure, relying on the
1838 * layout of the tree within the rcu_state.node[] array. Note that
1839 * other CPUs will access only the leaves of the hierarchy, thus
1840 * seeing that no grace period is in progress, at least until the
1841 * corresponding leaf node has been initialized.
1842 *
1843 * The grace period cannot complete until the initialization
1844 * process finishes, because this kthread handles both.
1845 */
1846 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1847 rcu_for_each_node_breadth_first(rnp) {
1848 rcu_gp_slow(gp_init_delay);
1849 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1850 rdp = this_cpu_ptr(&rcu_data);
1851 rcu_preempt_check_blocked_tasks(rnp);
1852 rnp->qsmask = rnp->qsmaskinit;
1853 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1854 if (rnp == rdp->mynode)
1855 (void)__note_gp_changes(rnp, rdp);
1856 rcu_preempt_boost_start_gp(rnp);
1857 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1858 rnp->level, rnp->grplo,
1859 rnp->grphi, rnp->qsmask);
1860 /* Quiescent states for tasks on any now-offline CPUs. */
1861 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1862 rnp->rcu_gp_init_mask = mask;
1863 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1864 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1865 else
1866 raw_spin_unlock_irq_rcu_node(rnp);
1867 cond_resched_tasks_rcu_qs();
1868 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1869 }
1870
1871 // If strict, make all CPUs aware of new grace period.
1872 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1873 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1874
1875 return true;
1876 }
1877
1878 /*
1879 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1880 * time.
1881 */
rcu_gp_fqs_check_wake(int * gfp)1882 static bool rcu_gp_fqs_check_wake(int *gfp)
1883 {
1884 struct rcu_node *rnp = rcu_get_root();
1885
1886 // If under overload conditions, force an immediate FQS scan.
1887 if (*gfp & RCU_GP_FLAG_OVLD)
1888 return true;
1889
1890 // Someone like call_rcu() requested a force-quiescent-state scan.
1891 *gfp = READ_ONCE(rcu_state.gp_flags);
1892 if (*gfp & RCU_GP_FLAG_FQS)
1893 return true;
1894
1895 // The current grace period has completed.
1896 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1897 return true;
1898
1899 return false;
1900 }
1901
1902 /*
1903 * Do one round of quiescent-state forcing.
1904 */
rcu_gp_fqs(bool first_time)1905 static void rcu_gp_fqs(bool first_time)
1906 {
1907 struct rcu_node *rnp = rcu_get_root();
1908
1909 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1910 rcu_state.n_force_qs++;
1911 if (first_time) {
1912 /* Collect dyntick-idle snapshots. */
1913 force_qs_rnp(dyntick_save_progress_counter);
1914 } else {
1915 /* Handle dyntick-idle and offline CPUs. */
1916 force_qs_rnp(rcu_implicit_dynticks_qs);
1917 }
1918 /* Clear flag to prevent immediate re-entry. */
1919 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1920 raw_spin_lock_irq_rcu_node(rnp);
1921 WRITE_ONCE(rcu_state.gp_flags,
1922 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1923 raw_spin_unlock_irq_rcu_node(rnp);
1924 }
1925 }
1926
1927 /*
1928 * Loop doing repeated quiescent-state forcing until the grace period ends.
1929 */
rcu_gp_fqs_loop(void)1930 static noinline_for_stack void rcu_gp_fqs_loop(void)
1931 {
1932 bool first_gp_fqs;
1933 int gf = 0;
1934 unsigned long j;
1935 int ret;
1936 struct rcu_node *rnp = rcu_get_root();
1937
1938 first_gp_fqs = true;
1939 j = READ_ONCE(jiffies_till_first_fqs);
1940 if (rcu_state.cbovld)
1941 gf = RCU_GP_FLAG_OVLD;
1942 ret = 0;
1943 for (;;) {
1944 if (!ret) {
1945 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1946 /*
1947 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1948 * update; required for stall checks.
1949 */
1950 smp_wmb();
1951 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1952 jiffies + (j ? 3 * j : 2));
1953 }
1954 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1955 TPS("fqswait"));
1956 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1957 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1958 rcu_gp_fqs_check_wake(&gf), j);
1959 rcu_gp_torture_wait();
1960 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1961 /* Locking provides needed memory barriers. */
1962 /* If grace period done, leave loop. */
1963 if (!READ_ONCE(rnp->qsmask) &&
1964 !rcu_preempt_blocked_readers_cgp(rnp))
1965 break;
1966 /* If time for quiescent-state forcing, do it. */
1967 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1968 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1969 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1970 TPS("fqsstart"));
1971 rcu_gp_fqs(first_gp_fqs);
1972 gf = 0;
1973 if (first_gp_fqs) {
1974 first_gp_fqs = false;
1975 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1976 }
1977 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1978 TPS("fqsend"));
1979 cond_resched_tasks_rcu_qs();
1980 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1981 ret = 0; /* Force full wait till next FQS. */
1982 j = READ_ONCE(jiffies_till_next_fqs);
1983 } else {
1984 /* Deal with stray signal. */
1985 cond_resched_tasks_rcu_qs();
1986 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1987 WARN_ON(signal_pending(current));
1988 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1989 TPS("fqswaitsig"));
1990 ret = 1; /* Keep old FQS timing. */
1991 j = jiffies;
1992 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1993 j = 1;
1994 else
1995 j = rcu_state.jiffies_force_qs - j;
1996 gf = 0;
1997 }
1998 }
1999 }
2000
2001 /*
2002 * Clean up after the old grace period.
2003 */
rcu_gp_cleanup(void)2004 static noinline void rcu_gp_cleanup(void)
2005 {
2006 int cpu;
2007 bool needgp = false;
2008 unsigned long gp_duration;
2009 unsigned long new_gp_seq;
2010 bool offloaded;
2011 struct rcu_data *rdp;
2012 struct rcu_node *rnp = rcu_get_root();
2013 struct swait_queue_head *sq;
2014
2015 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2016 raw_spin_lock_irq_rcu_node(rnp);
2017 rcu_state.gp_end = jiffies;
2018 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2019 if (gp_duration > rcu_state.gp_max)
2020 rcu_state.gp_max = gp_duration;
2021
2022 /*
2023 * We know the grace period is complete, but to everyone else
2024 * it appears to still be ongoing. But it is also the case
2025 * that to everyone else it looks like there is nothing that
2026 * they can do to advance the grace period. It is therefore
2027 * safe for us to drop the lock in order to mark the grace
2028 * period as completed in all of the rcu_node structures.
2029 */
2030 raw_spin_unlock_irq_rcu_node(rnp);
2031
2032 /*
2033 * Propagate new ->gp_seq value to rcu_node structures so that
2034 * other CPUs don't have to wait until the start of the next grace
2035 * period to process their callbacks. This also avoids some nasty
2036 * RCU grace-period initialization races by forcing the end of
2037 * the current grace period to be completely recorded in all of
2038 * the rcu_node structures before the beginning of the next grace
2039 * period is recorded in any of the rcu_node structures.
2040 */
2041 new_gp_seq = rcu_state.gp_seq;
2042 rcu_seq_end(&new_gp_seq);
2043 rcu_for_each_node_breadth_first(rnp) {
2044 raw_spin_lock_irq_rcu_node(rnp);
2045 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2046 dump_blkd_tasks(rnp, 10);
2047 WARN_ON_ONCE(rnp->qsmask);
2048 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2049 rdp = this_cpu_ptr(&rcu_data);
2050 if (rnp == rdp->mynode)
2051 needgp = __note_gp_changes(rnp, rdp) || needgp;
2052 /* smp_mb() provided by prior unlock-lock pair. */
2053 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2054 // Reset overload indication for CPUs no longer overloaded
2055 if (rcu_is_leaf_node(rnp))
2056 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2057 rdp = per_cpu_ptr(&rcu_data, cpu);
2058 check_cb_ovld_locked(rdp, rnp);
2059 }
2060 sq = rcu_nocb_gp_get(rnp);
2061 raw_spin_unlock_irq_rcu_node(rnp);
2062 rcu_nocb_gp_cleanup(sq);
2063 cond_resched_tasks_rcu_qs();
2064 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2065 rcu_gp_slow(gp_cleanup_delay);
2066 }
2067 rnp = rcu_get_root();
2068 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2069
2070 /* Declare grace period done, trace first to use old GP number. */
2071 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2072 rcu_seq_end(&rcu_state.gp_seq);
2073 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2074 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2075 /* Check for GP requests since above loop. */
2076 rdp = this_cpu_ptr(&rcu_data);
2077 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2078 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2079 TPS("CleanupMore"));
2080 needgp = true;
2081 }
2082 /* Advance CBs to reduce false positives below. */
2083 offloaded = rcu_rdp_is_offloaded(rdp);
2084 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2085 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2086 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2087 trace_rcu_grace_period(rcu_state.name,
2088 rcu_state.gp_seq,
2089 TPS("newreq"));
2090 } else {
2091 WRITE_ONCE(rcu_state.gp_flags,
2092 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2093 }
2094 raw_spin_unlock_irq_rcu_node(rnp);
2095
2096 // If strict, make all CPUs aware of the end of the old grace period.
2097 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2098 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2099 }
2100
2101 /*
2102 * Body of kthread that handles grace periods.
2103 */
rcu_gp_kthread(void * unused)2104 static int __noreturn rcu_gp_kthread(void *unused)
2105 {
2106 rcu_bind_gp_kthread();
2107 for (;;) {
2108
2109 /* Handle grace-period start. */
2110 for (;;) {
2111 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2112 TPS("reqwait"));
2113 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2114 swait_event_idle_exclusive(rcu_state.gp_wq,
2115 READ_ONCE(rcu_state.gp_flags) &
2116 RCU_GP_FLAG_INIT);
2117 rcu_gp_torture_wait();
2118 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2119 /* Locking provides needed memory barrier. */
2120 if (rcu_gp_init())
2121 break;
2122 cond_resched_tasks_rcu_qs();
2123 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2124 WARN_ON(signal_pending(current));
2125 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2126 TPS("reqwaitsig"));
2127 }
2128
2129 /* Handle quiescent-state forcing. */
2130 rcu_gp_fqs_loop();
2131
2132 /* Handle grace-period end. */
2133 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2134 rcu_gp_cleanup();
2135 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2136 }
2137 }
2138
2139 /*
2140 * Report a full set of quiescent states to the rcu_state data structure.
2141 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2142 * another grace period is required. Whether we wake the grace-period
2143 * kthread or it awakens itself for the next round of quiescent-state
2144 * forcing, that kthread will clean up after the just-completed grace
2145 * period. Note that the caller must hold rnp->lock, which is released
2146 * before return.
2147 */
rcu_report_qs_rsp(unsigned long flags)2148 static void rcu_report_qs_rsp(unsigned long flags)
2149 __releases(rcu_get_root()->lock)
2150 {
2151 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2152 WARN_ON_ONCE(!rcu_gp_in_progress());
2153 WRITE_ONCE(rcu_state.gp_flags,
2154 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2155 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2156 rcu_gp_kthread_wake();
2157 }
2158
2159 /*
2160 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2161 * Allows quiescent states for a group of CPUs to be reported at one go
2162 * to the specified rcu_node structure, though all the CPUs in the group
2163 * must be represented by the same rcu_node structure (which need not be a
2164 * leaf rcu_node structure, though it often will be). The gps parameter
2165 * is the grace-period snapshot, which means that the quiescent states
2166 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2167 * must be held upon entry, and it is released before return.
2168 *
2169 * As a special case, if mask is zero, the bit-already-cleared check is
2170 * disabled. This allows propagating quiescent state due to resumed tasks
2171 * during grace-period initialization.
2172 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2173 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2174 unsigned long gps, unsigned long flags)
2175 __releases(rnp->lock)
2176 {
2177 unsigned long oldmask = 0;
2178 struct rcu_node *rnp_c;
2179
2180 raw_lockdep_assert_held_rcu_node(rnp);
2181
2182 /* Walk up the rcu_node hierarchy. */
2183 for (;;) {
2184 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2185
2186 /*
2187 * Our bit has already been cleared, or the
2188 * relevant grace period is already over, so done.
2189 */
2190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2191 return;
2192 }
2193 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2194 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2195 rcu_preempt_blocked_readers_cgp(rnp));
2196 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2197 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2198 mask, rnp->qsmask, rnp->level,
2199 rnp->grplo, rnp->grphi,
2200 !!rnp->gp_tasks);
2201 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2202
2203 /* Other bits still set at this level, so done. */
2204 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2205 return;
2206 }
2207 rnp->completedqs = rnp->gp_seq;
2208 mask = rnp->grpmask;
2209 if (rnp->parent == NULL) {
2210
2211 /* No more levels. Exit loop holding root lock. */
2212
2213 break;
2214 }
2215 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2216 rnp_c = rnp;
2217 rnp = rnp->parent;
2218 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2219 oldmask = READ_ONCE(rnp_c->qsmask);
2220 }
2221
2222 /*
2223 * Get here if we are the last CPU to pass through a quiescent
2224 * state for this grace period. Invoke rcu_report_qs_rsp()
2225 * to clean up and start the next grace period if one is needed.
2226 */
2227 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2228 }
2229
2230 /*
2231 * Record a quiescent state for all tasks that were previously queued
2232 * on the specified rcu_node structure and that were blocking the current
2233 * RCU grace period. The caller must hold the corresponding rnp->lock with
2234 * irqs disabled, and this lock is released upon return, but irqs remain
2235 * disabled.
2236 */
2237 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2238 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2239 __releases(rnp->lock)
2240 {
2241 unsigned long gps;
2242 unsigned long mask;
2243 struct rcu_node *rnp_p;
2244
2245 raw_lockdep_assert_held_rcu_node(rnp);
2246 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2247 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2248 rnp->qsmask != 0) {
2249 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2250 return; /* Still need more quiescent states! */
2251 }
2252
2253 rnp->completedqs = rnp->gp_seq;
2254 rnp_p = rnp->parent;
2255 if (rnp_p == NULL) {
2256 /*
2257 * Only one rcu_node structure in the tree, so don't
2258 * try to report up to its nonexistent parent!
2259 */
2260 rcu_report_qs_rsp(flags);
2261 return;
2262 }
2263
2264 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2265 gps = rnp->gp_seq;
2266 mask = rnp->grpmask;
2267 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2268 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2269 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2270 }
2271
2272 /*
2273 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2274 * structure. This must be called from the specified CPU.
2275 */
2276 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2277 rcu_report_qs_rdp(struct rcu_data *rdp)
2278 {
2279 unsigned long flags;
2280 unsigned long mask;
2281 bool needwake = false;
2282 const bool offloaded = rcu_rdp_is_offloaded(rdp);
2283 struct rcu_node *rnp;
2284
2285 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2286 rnp = rdp->mynode;
2287 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2288 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2289 rdp->gpwrap) {
2290
2291 /*
2292 * The grace period in which this quiescent state was
2293 * recorded has ended, so don't report it upwards.
2294 * We will instead need a new quiescent state that lies
2295 * within the current grace period.
2296 */
2297 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2299 return;
2300 }
2301 mask = rdp->grpmask;
2302 rdp->core_needs_qs = false;
2303 if ((rnp->qsmask & mask) == 0) {
2304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2305 } else {
2306 /*
2307 * This GP can't end until cpu checks in, so all of our
2308 * callbacks can be processed during the next GP.
2309 */
2310 if (!offloaded)
2311 needwake = rcu_accelerate_cbs(rnp, rdp);
2312
2313 rcu_disable_urgency_upon_qs(rdp);
2314 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2315 /* ^^^ Released rnp->lock */
2316 if (needwake)
2317 rcu_gp_kthread_wake();
2318 }
2319 }
2320
2321 /*
2322 * Check to see if there is a new grace period of which this CPU
2323 * is not yet aware, and if so, set up local rcu_data state for it.
2324 * Otherwise, see if this CPU has just passed through its first
2325 * quiescent state for this grace period, and record that fact if so.
2326 */
2327 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2328 rcu_check_quiescent_state(struct rcu_data *rdp)
2329 {
2330 /* Check for grace-period ends and beginnings. */
2331 note_gp_changes(rdp);
2332
2333 /*
2334 * Does this CPU still need to do its part for current grace period?
2335 * If no, return and let the other CPUs do their part as well.
2336 */
2337 if (!rdp->core_needs_qs)
2338 return;
2339
2340 /*
2341 * Was there a quiescent state since the beginning of the grace
2342 * period? If no, then exit and wait for the next call.
2343 */
2344 if (rdp->cpu_no_qs.b.norm)
2345 return;
2346
2347 /*
2348 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2349 * judge of that).
2350 */
2351 rcu_report_qs_rdp(rdp);
2352 }
2353
2354 /*
2355 * Near the end of the offline process. Trace the fact that this CPU
2356 * is going offline.
2357 */
rcutree_dying_cpu(unsigned int cpu)2358 int rcutree_dying_cpu(unsigned int cpu)
2359 {
2360 bool blkd;
2361 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2362 struct rcu_node *rnp = rdp->mynode;
2363
2364 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2365 return 0;
2366
2367 blkd = !!(rnp->qsmask & rdp->grpmask);
2368 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2369 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2370 return 0;
2371 }
2372
2373 /*
2374 * All CPUs for the specified rcu_node structure have gone offline,
2375 * and all tasks that were preempted within an RCU read-side critical
2376 * section while running on one of those CPUs have since exited their RCU
2377 * read-side critical section. Some other CPU is reporting this fact with
2378 * the specified rcu_node structure's ->lock held and interrupts disabled.
2379 * This function therefore goes up the tree of rcu_node structures,
2380 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2381 * the leaf rcu_node structure's ->qsmaskinit field has already been
2382 * updated.
2383 *
2384 * This function does check that the specified rcu_node structure has
2385 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2386 * prematurely. That said, invoking it after the fact will cost you
2387 * a needless lock acquisition. So once it has done its work, don't
2388 * invoke it again.
2389 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2390 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2391 {
2392 long mask;
2393 struct rcu_node *rnp = rnp_leaf;
2394
2395 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2396 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2397 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2398 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2399 return;
2400 for (;;) {
2401 mask = rnp->grpmask;
2402 rnp = rnp->parent;
2403 if (!rnp)
2404 break;
2405 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2406 rnp->qsmaskinit &= ~mask;
2407 /* Between grace periods, so better already be zero! */
2408 WARN_ON_ONCE(rnp->qsmask);
2409 if (rnp->qsmaskinit) {
2410 raw_spin_unlock_rcu_node(rnp);
2411 /* irqs remain disabled. */
2412 return;
2413 }
2414 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2415 }
2416 }
2417
2418 /*
2419 * The CPU has been completely removed, and some other CPU is reporting
2420 * this fact from process context. Do the remainder of the cleanup.
2421 * There can only be one CPU hotplug operation at a time, so no need for
2422 * explicit locking.
2423 */
rcutree_dead_cpu(unsigned int cpu)2424 int rcutree_dead_cpu(unsigned int cpu)
2425 {
2426 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2427 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2428
2429 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2430 return 0;
2431
2432 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2433 /* Adjust any no-longer-needed kthreads. */
2434 rcu_boost_kthread_setaffinity(rnp, -1);
2435 // Stop-machine done, so allow nohz_full to disable tick.
2436 tick_dep_clear(TICK_DEP_BIT_RCU);
2437 return 0;
2438 }
2439
2440 /*
2441 * Invoke any RCU callbacks that have made it to the end of their grace
2442 * period. Throttle as specified by rdp->blimit.
2443 */
rcu_do_batch(struct rcu_data * rdp)2444 static void rcu_do_batch(struct rcu_data *rdp)
2445 {
2446 int div;
2447 bool __maybe_unused empty;
2448 unsigned long flags;
2449 const bool offloaded = rcu_rdp_is_offloaded(rdp);
2450 struct rcu_head *rhp;
2451 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2452 long bl, count = 0;
2453 long pending, tlimit = 0;
2454
2455 /* If no callbacks are ready, just return. */
2456 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2457 trace_rcu_batch_start(rcu_state.name,
2458 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2459 trace_rcu_batch_end(rcu_state.name, 0,
2460 !rcu_segcblist_empty(&rdp->cblist),
2461 need_resched(), is_idle_task(current),
2462 rcu_is_callbacks_kthread());
2463 return;
2464 }
2465
2466 /*
2467 * Extract the list of ready callbacks, disabling to prevent
2468 * races with call_rcu() from interrupt handlers. Leave the
2469 * callback counts, as rcu_barrier() needs to be conservative.
2470 */
2471 local_irq_save(flags);
2472 rcu_nocb_lock(rdp);
2473 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2474 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2475 div = READ_ONCE(rcu_divisor);
2476 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2477 bl = max(rdp->blimit, pending >> div);
2478 if (unlikely(bl > 100)) {
2479 long rrn = READ_ONCE(rcu_resched_ns);
2480
2481 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2482 tlimit = local_clock() + rrn;
2483 }
2484 trace_rcu_batch_start(rcu_state.name,
2485 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2486 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2487 if (offloaded)
2488 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2489
2490 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2491 rcu_nocb_unlock_irqrestore(rdp, flags);
2492
2493 /* Invoke callbacks. */
2494 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2495 rhp = rcu_cblist_dequeue(&rcl);
2496
2497 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2498 rcu_callback_t f;
2499
2500 count++;
2501 debug_rcu_head_unqueue(rhp);
2502
2503 rcu_lock_acquire(&rcu_callback_map);
2504 trace_rcu_invoke_callback(rcu_state.name, rhp);
2505
2506 f = rhp->func;
2507 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2508 f(rhp);
2509
2510 rcu_lock_release(&rcu_callback_map);
2511
2512 /*
2513 * Stop only if limit reached and CPU has something to do.
2514 */
2515 if (count >= bl && !offloaded &&
2516 (need_resched() ||
2517 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2518 break;
2519 if (unlikely(tlimit)) {
2520 /* only call local_clock() every 32 callbacks */
2521 if (likely((count & 31) || local_clock() < tlimit))
2522 continue;
2523 /* Exceeded the time limit, so leave. */
2524 break;
2525 }
2526 if (!in_serving_softirq()) {
2527 local_bh_enable();
2528 lockdep_assert_irqs_enabled();
2529 cond_resched_tasks_rcu_qs();
2530 lockdep_assert_irqs_enabled();
2531 local_bh_disable();
2532 }
2533 }
2534
2535 local_irq_save(flags);
2536 rcu_nocb_lock(rdp);
2537 rdp->n_cbs_invoked += count;
2538 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2539 is_idle_task(current), rcu_is_callbacks_kthread());
2540
2541 /* Update counts and requeue any remaining callbacks. */
2542 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2543 rcu_segcblist_add_len(&rdp->cblist, -count);
2544
2545 /* Reinstate batch limit if we have worked down the excess. */
2546 count = rcu_segcblist_n_cbs(&rdp->cblist);
2547 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2548 rdp->blimit = blimit;
2549
2550 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2551 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2552 rdp->qlen_last_fqs_check = 0;
2553 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2554 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2555 rdp->qlen_last_fqs_check = count;
2556
2557 /*
2558 * The following usually indicates a double call_rcu(). To track
2559 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2560 */
2561 empty = rcu_segcblist_empty(&rdp->cblist);
2562 WARN_ON_ONCE(count == 0 && !empty);
2563 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2564 count != 0 && empty);
2565 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2566 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2567
2568 rcu_nocb_unlock_irqrestore(rdp, flags);
2569
2570 /* Re-invoke RCU core processing if there are callbacks remaining. */
2571 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2572 invoke_rcu_core();
2573 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2574 }
2575
2576 /*
2577 * This function is invoked from each scheduling-clock interrupt,
2578 * and checks to see if this CPU is in a non-context-switch quiescent
2579 * state, for example, user mode or idle loop. It also schedules RCU
2580 * core processing. If the current grace period has gone on too long,
2581 * it will ask the scheduler to manufacture a context switch for the sole
2582 * purpose of providing the needed quiescent state.
2583 */
rcu_sched_clock_irq(int user)2584 void rcu_sched_clock_irq(int user)
2585 {
2586 trace_rcu_utilization(TPS("Start scheduler-tick"));
2587 lockdep_assert_irqs_disabled();
2588 raw_cpu_inc(rcu_data.ticks_this_gp);
2589 /* The load-acquire pairs with the store-release setting to true. */
2590 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2591 /* Idle and userspace execution already are quiescent states. */
2592 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2593 set_tsk_need_resched(current);
2594 set_preempt_need_resched();
2595 }
2596 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2597 }
2598 rcu_flavor_sched_clock_irq(user);
2599 if (rcu_pending(user))
2600 invoke_rcu_core();
2601 lockdep_assert_irqs_disabled();
2602
2603 trace_rcu_utilization(TPS("End scheduler-tick"));
2604 }
2605
2606 /*
2607 * Scan the leaf rcu_node structures. For each structure on which all
2608 * CPUs have reported a quiescent state and on which there are tasks
2609 * blocking the current grace period, initiate RCU priority boosting.
2610 * Otherwise, invoke the specified function to check dyntick state for
2611 * each CPU that has not yet reported a quiescent state.
2612 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2613 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2614 {
2615 int cpu;
2616 unsigned long flags;
2617 unsigned long mask;
2618 struct rcu_data *rdp;
2619 struct rcu_node *rnp;
2620
2621 rcu_state.cbovld = rcu_state.cbovldnext;
2622 rcu_state.cbovldnext = false;
2623 rcu_for_each_leaf_node(rnp) {
2624 cond_resched_tasks_rcu_qs();
2625 mask = 0;
2626 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2627 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2628 if (rnp->qsmask == 0) {
2629 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2630 /*
2631 * No point in scanning bits because they
2632 * are all zero. But we might need to
2633 * priority-boost blocked readers.
2634 */
2635 rcu_initiate_boost(rnp, flags);
2636 /* rcu_initiate_boost() releases rnp->lock */
2637 continue;
2638 }
2639 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2640 continue;
2641 }
2642 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2643 rdp = per_cpu_ptr(&rcu_data, cpu);
2644 if (f(rdp)) {
2645 mask |= rdp->grpmask;
2646 rcu_disable_urgency_upon_qs(rdp);
2647 }
2648 }
2649 if (mask != 0) {
2650 /* Idle/offline CPUs, report (releases rnp->lock). */
2651 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2652 } else {
2653 /* Nothing to do here, so just drop the lock. */
2654 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2655 }
2656 }
2657 }
2658
2659 /*
2660 * Force quiescent states on reluctant CPUs, and also detect which
2661 * CPUs are in dyntick-idle mode.
2662 */
rcu_force_quiescent_state(void)2663 void rcu_force_quiescent_state(void)
2664 {
2665 unsigned long flags;
2666 bool ret;
2667 struct rcu_node *rnp;
2668 struct rcu_node *rnp_old = NULL;
2669
2670 /* Funnel through hierarchy to reduce memory contention. */
2671 rnp = __this_cpu_read(rcu_data.mynode);
2672 for (; rnp != NULL; rnp = rnp->parent) {
2673 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2674 !raw_spin_trylock(&rnp->fqslock);
2675 if (rnp_old != NULL)
2676 raw_spin_unlock(&rnp_old->fqslock);
2677 if (ret)
2678 return;
2679 rnp_old = rnp;
2680 }
2681 /* rnp_old == rcu_get_root(), rnp == NULL. */
2682
2683 /* Reached the root of the rcu_node tree, acquire lock. */
2684 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2685 raw_spin_unlock(&rnp_old->fqslock);
2686 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2687 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2688 return; /* Someone beat us to it. */
2689 }
2690 WRITE_ONCE(rcu_state.gp_flags,
2691 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2692 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2693 rcu_gp_kthread_wake();
2694 }
2695 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2696
2697 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2698 // grace periods.
strict_work_handler(struct work_struct * work)2699 static void strict_work_handler(struct work_struct *work)
2700 {
2701 rcu_read_lock();
2702 rcu_read_unlock();
2703 }
2704
2705 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2706 static __latent_entropy void rcu_core(void)
2707 {
2708 unsigned long flags;
2709 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2710 struct rcu_node *rnp = rdp->mynode;
2711 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2712
2713 if (cpu_is_offline(smp_processor_id()))
2714 return;
2715 trace_rcu_utilization(TPS("Start RCU core"));
2716 WARN_ON_ONCE(!rdp->beenonline);
2717
2718 /* Report any deferred quiescent states if preemption enabled. */
2719 if (!(preempt_count() & PREEMPT_MASK)) {
2720 rcu_preempt_deferred_qs(current);
2721 } else if (rcu_preempt_need_deferred_qs(current)) {
2722 set_tsk_need_resched(current);
2723 set_preempt_need_resched();
2724 }
2725
2726 /* Update RCU state based on any recent quiescent states. */
2727 rcu_check_quiescent_state(rdp);
2728
2729 /* No grace period and unregistered callbacks? */
2730 if (!rcu_gp_in_progress() &&
2731 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2732 rcu_nocb_lock_irqsave(rdp, flags);
2733 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2734 rcu_accelerate_cbs_unlocked(rnp, rdp);
2735 rcu_nocb_unlock_irqrestore(rdp, flags);
2736 }
2737
2738 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2739
2740 /* If there are callbacks ready, invoke them. */
2741 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2742 likely(READ_ONCE(rcu_scheduler_fully_active)))
2743 rcu_do_batch(rdp);
2744
2745 /* Do any needed deferred wakeups of rcuo kthreads. */
2746 do_nocb_deferred_wakeup(rdp);
2747 trace_rcu_utilization(TPS("End RCU core"));
2748
2749 // If strict GPs, schedule an RCU reader in a clean environment.
2750 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2751 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2752 }
2753
rcu_core_si(struct softirq_action * h)2754 static void rcu_core_si(struct softirq_action *h)
2755 {
2756 rcu_core();
2757 }
2758
rcu_wake_cond(struct task_struct * t,int status)2759 static void rcu_wake_cond(struct task_struct *t, int status)
2760 {
2761 /*
2762 * If the thread is yielding, only wake it when this
2763 * is invoked from idle
2764 */
2765 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2766 wake_up_process(t);
2767 }
2768
invoke_rcu_core_kthread(void)2769 static void invoke_rcu_core_kthread(void)
2770 {
2771 struct task_struct *t;
2772 unsigned long flags;
2773
2774 local_irq_save(flags);
2775 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2776 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2777 if (t != NULL && t != current)
2778 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2779 local_irq_restore(flags);
2780 }
2781
2782 /*
2783 * Wake up this CPU's rcuc kthread to do RCU core processing.
2784 */
invoke_rcu_core(void)2785 static void invoke_rcu_core(void)
2786 {
2787 if (!cpu_online(smp_processor_id()))
2788 return;
2789 if (use_softirq)
2790 raise_softirq(RCU_SOFTIRQ);
2791 else
2792 invoke_rcu_core_kthread();
2793 }
2794
rcu_cpu_kthread_park(unsigned int cpu)2795 static void rcu_cpu_kthread_park(unsigned int cpu)
2796 {
2797 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2798 }
2799
rcu_cpu_kthread_should_run(unsigned int cpu)2800 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2801 {
2802 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2803 }
2804
2805 /*
2806 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2807 * the RCU softirq used in configurations of RCU that do not support RCU
2808 * priority boosting.
2809 */
rcu_cpu_kthread(unsigned int cpu)2810 static void rcu_cpu_kthread(unsigned int cpu)
2811 {
2812 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2813 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2814 int spincnt;
2815
2816 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2817 for (spincnt = 0; spincnt < 10; spincnt++) {
2818 local_bh_disable();
2819 *statusp = RCU_KTHREAD_RUNNING;
2820 local_irq_disable();
2821 work = *workp;
2822 *workp = 0;
2823 local_irq_enable();
2824 if (work)
2825 rcu_core();
2826 local_bh_enable();
2827 if (*workp == 0) {
2828 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2829 *statusp = RCU_KTHREAD_WAITING;
2830 return;
2831 }
2832 }
2833 *statusp = RCU_KTHREAD_YIELDING;
2834 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2835 schedule_timeout_idle(2);
2836 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2837 *statusp = RCU_KTHREAD_WAITING;
2838 }
2839
2840 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2841 .store = &rcu_data.rcu_cpu_kthread_task,
2842 .thread_should_run = rcu_cpu_kthread_should_run,
2843 .thread_fn = rcu_cpu_kthread,
2844 .thread_comm = "rcuc/%u",
2845 .setup = rcu_cpu_kthread_setup,
2846 .park = rcu_cpu_kthread_park,
2847 };
2848
2849 /*
2850 * Spawn per-CPU RCU core processing kthreads.
2851 */
rcu_spawn_core_kthreads(void)2852 static int __init rcu_spawn_core_kthreads(void)
2853 {
2854 int cpu;
2855
2856 for_each_possible_cpu(cpu)
2857 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2858 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2859 return 0;
2860 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2861 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2862 return 0;
2863 }
2864
2865 /*
2866 * Handle any core-RCU processing required by a call_rcu() invocation.
2867 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2868 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2869 unsigned long flags)
2870 {
2871 /*
2872 * If called from an extended quiescent state, invoke the RCU
2873 * core in order to force a re-evaluation of RCU's idleness.
2874 */
2875 if (!rcu_is_watching())
2876 invoke_rcu_core();
2877
2878 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2879 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2880 return;
2881
2882 /*
2883 * Force the grace period if too many callbacks or too long waiting.
2884 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2885 * if some other CPU has recently done so. Also, don't bother
2886 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2887 * is the only one waiting for a grace period to complete.
2888 */
2889 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2890 rdp->qlen_last_fqs_check + qhimark)) {
2891
2892 /* Are we ignoring a completed grace period? */
2893 note_gp_changes(rdp);
2894
2895 /* Start a new grace period if one not already started. */
2896 if (!rcu_gp_in_progress()) {
2897 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2898 } else {
2899 /* Give the grace period a kick. */
2900 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2901 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2902 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2903 rcu_force_quiescent_state();
2904 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2905 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2906 }
2907 }
2908 }
2909
2910 /*
2911 * RCU callback function to leak a callback.
2912 */
rcu_leak_callback(struct rcu_head * rhp)2913 static void rcu_leak_callback(struct rcu_head *rhp)
2914 {
2915 }
2916
2917 /*
2918 * Check and if necessary update the leaf rcu_node structure's
2919 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2920 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2921 * structure's ->lock.
2922 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2923 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2924 {
2925 raw_lockdep_assert_held_rcu_node(rnp);
2926 if (qovld_calc <= 0)
2927 return; // Early boot and wildcard value set.
2928 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2929 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2930 else
2931 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2932 }
2933
2934 /*
2935 * Check and if necessary update the leaf rcu_node structure's
2936 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2937 * number of queued RCU callbacks. No locks need be held, but the
2938 * caller must have disabled interrupts.
2939 *
2940 * Note that this function ignores the possibility that there are a lot
2941 * of callbacks all of which have already seen the end of their respective
2942 * grace periods. This omission is due to the need for no-CBs CPUs to
2943 * be holding ->nocb_lock to do this check, which is too heavy for a
2944 * common-case operation.
2945 */
check_cb_ovld(struct rcu_data * rdp)2946 static void check_cb_ovld(struct rcu_data *rdp)
2947 {
2948 struct rcu_node *const rnp = rdp->mynode;
2949
2950 if (qovld_calc <= 0 ||
2951 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2952 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2953 return; // Early boot wildcard value or already set correctly.
2954 raw_spin_lock_rcu_node(rnp);
2955 check_cb_ovld_locked(rdp, rnp);
2956 raw_spin_unlock_rcu_node(rnp);
2957 }
2958
2959 /* Helper function for call_rcu() and friends. */
2960 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func)2961 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2962 {
2963 static atomic_t doublefrees;
2964 unsigned long flags;
2965 struct rcu_data *rdp;
2966 bool was_alldone;
2967
2968 /* Misaligned rcu_head! */
2969 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2970
2971 if (debug_rcu_head_queue(head)) {
2972 /*
2973 * Probable double call_rcu(), so leak the callback.
2974 * Use rcu:rcu_callback trace event to find the previous
2975 * time callback was passed to __call_rcu().
2976 */
2977 if (atomic_inc_return(&doublefrees) < 4) {
2978 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2979 mem_dump_obj(head);
2980 }
2981 WRITE_ONCE(head->func, rcu_leak_callback);
2982 return;
2983 }
2984 head->func = func;
2985 head->next = NULL;
2986 local_irq_save(flags);
2987 kasan_record_aux_stack(head);
2988 rdp = this_cpu_ptr(&rcu_data);
2989
2990 /* Add the callback to our list. */
2991 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2992 // This can trigger due to call_rcu() from offline CPU:
2993 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2994 WARN_ON_ONCE(!rcu_is_watching());
2995 // Very early boot, before rcu_init(). Initialize if needed
2996 // and then drop through to queue the callback.
2997 if (rcu_segcblist_empty(&rdp->cblist))
2998 rcu_segcblist_init(&rdp->cblist);
2999 }
3000
3001 check_cb_ovld(rdp);
3002 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3003 return; // Enqueued onto ->nocb_bypass, so just leave.
3004 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3005 rcu_segcblist_enqueue(&rdp->cblist, head);
3006 if (__is_kvfree_rcu_offset((unsigned long)func))
3007 trace_rcu_kvfree_callback(rcu_state.name, head,
3008 (unsigned long)func,
3009 rcu_segcblist_n_cbs(&rdp->cblist));
3010 else
3011 trace_rcu_callback(rcu_state.name, head,
3012 rcu_segcblist_n_cbs(&rdp->cblist));
3013
3014 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3015
3016 /* Go handle any RCU core processing required. */
3017 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3018 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3019 } else {
3020 __call_rcu_core(rdp, head, flags);
3021 local_irq_restore(flags);
3022 }
3023 }
3024
3025 /**
3026 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3027 * @head: structure to be used for queueing the RCU updates.
3028 * @func: actual callback function to be invoked after the grace period
3029 *
3030 * The callback function will be invoked some time after a full grace
3031 * period elapses, in other words after all pre-existing RCU read-side
3032 * critical sections have completed. However, the callback function
3033 * might well execute concurrently with RCU read-side critical sections
3034 * that started after call_rcu() was invoked.
3035 *
3036 * RCU read-side critical sections are delimited by rcu_read_lock()
3037 * and rcu_read_unlock(), and may be nested. In addition, but only in
3038 * v5.0 and later, regions of code across which interrupts, preemption,
3039 * or softirqs have been disabled also serve as RCU read-side critical
3040 * sections. This includes hardware interrupt handlers, softirq handlers,
3041 * and NMI handlers.
3042 *
3043 * Note that all CPUs must agree that the grace period extended beyond
3044 * all pre-existing RCU read-side critical section. On systems with more
3045 * than one CPU, this means that when "func()" is invoked, each CPU is
3046 * guaranteed to have executed a full memory barrier since the end of its
3047 * last RCU read-side critical section whose beginning preceded the call
3048 * to call_rcu(). It also means that each CPU executing an RCU read-side
3049 * critical section that continues beyond the start of "func()" must have
3050 * executed a memory barrier after the call_rcu() but before the beginning
3051 * of that RCU read-side critical section. Note that these guarantees
3052 * include CPUs that are offline, idle, or executing in user mode, as
3053 * well as CPUs that are executing in the kernel.
3054 *
3055 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3056 * resulting RCU callback function "func()", then both CPU A and CPU B are
3057 * guaranteed to execute a full memory barrier during the time interval
3058 * between the call to call_rcu() and the invocation of "func()" -- even
3059 * if CPU A and CPU B are the same CPU (but again only if the system has
3060 * more than one CPU).
3061 *
3062 * Implementation of these memory-ordering guarantees is described here:
3063 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3064 */
call_rcu(struct rcu_head * head,rcu_callback_t func)3065 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3066 {
3067 __call_rcu(head, func);
3068 }
3069 EXPORT_SYMBOL_GPL(call_rcu);
3070
3071
3072 /* Maximum number of jiffies to wait before draining a batch. */
3073 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3074 #define KFREE_N_BATCHES 2
3075 #define FREE_N_CHANNELS 2
3076
3077 /**
3078 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3079 * @nr_records: Number of active pointers in the array
3080 * @next: Next bulk object in the block chain
3081 * @records: Array of the kvfree_rcu() pointers
3082 */
3083 struct kvfree_rcu_bulk_data {
3084 unsigned long nr_records;
3085 struct kvfree_rcu_bulk_data *next;
3086 void *records[];
3087 };
3088
3089 /*
3090 * This macro defines how many entries the "records" array
3091 * will contain. It is based on the fact that the size of
3092 * kvfree_rcu_bulk_data structure becomes exactly one page.
3093 */
3094 #define KVFREE_BULK_MAX_ENTR \
3095 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3096
3097 /**
3098 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3099 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3100 * @head_free: List of kfree_rcu() objects waiting for a grace period
3101 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3102 * @krcp: Pointer to @kfree_rcu_cpu structure
3103 */
3104
3105 struct kfree_rcu_cpu_work {
3106 struct rcu_work rcu_work;
3107 struct rcu_head *head_free;
3108 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3109 struct kfree_rcu_cpu *krcp;
3110 };
3111
3112 /**
3113 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3114 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3115 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3116 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3117 * @lock: Synchronize access to this structure
3118 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3119 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3120 * @initialized: The @rcu_work fields have been initialized
3121 * @count: Number of objects for which GP not started
3122 * @bkvcache:
3123 * A simple cache list that contains objects for reuse purpose.
3124 * In order to save some per-cpu space the list is singular.
3125 * Even though it is lockless an access has to be protected by the
3126 * per-cpu lock.
3127 * @page_cache_work: A work to refill the cache when it is empty
3128 * @backoff_page_cache_fill: Delay cache refills
3129 * @work_in_progress: Indicates that page_cache_work is running
3130 * @hrtimer: A hrtimer for scheduling a page_cache_work
3131 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3132 *
3133 * This is a per-CPU structure. The reason that it is not included in
3134 * the rcu_data structure is to permit this code to be extracted from
3135 * the RCU files. Such extraction could allow further optimization of
3136 * the interactions with the slab allocators.
3137 */
3138 struct kfree_rcu_cpu {
3139 struct rcu_head *head;
3140 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3141 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3142 raw_spinlock_t lock;
3143 struct delayed_work monitor_work;
3144 bool monitor_todo;
3145 bool initialized;
3146 int count;
3147
3148 struct delayed_work page_cache_work;
3149 atomic_t backoff_page_cache_fill;
3150 atomic_t work_in_progress;
3151 struct hrtimer hrtimer;
3152
3153 struct llist_head bkvcache;
3154 int nr_bkv_objs;
3155 };
3156
3157 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3158 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3159 };
3160
3161 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3162 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3163 {
3164 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3165 int i;
3166
3167 for (i = 0; i < bhead->nr_records; i++)
3168 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3169 #endif
3170 }
3171
3172 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3173 krc_this_cpu_lock(unsigned long *flags)
3174 {
3175 struct kfree_rcu_cpu *krcp;
3176
3177 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3178 krcp = this_cpu_ptr(&krc);
3179 raw_spin_lock(&krcp->lock);
3180
3181 return krcp;
3182 }
3183
3184 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3185 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3186 {
3187 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3188 }
3189
3190 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3191 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3192 {
3193 if (!krcp->nr_bkv_objs)
3194 return NULL;
3195
3196 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3197 return (struct kvfree_rcu_bulk_data *)
3198 llist_del_first(&krcp->bkvcache);
3199 }
3200
3201 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3202 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3203 struct kvfree_rcu_bulk_data *bnode)
3204 {
3205 // Check the limit.
3206 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3207 return false;
3208
3209 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3210 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3211 return true;
3212 }
3213
3214 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)3215 drain_page_cache(struct kfree_rcu_cpu *krcp)
3216 {
3217 unsigned long flags;
3218 struct llist_node *page_list, *pos, *n;
3219 int freed = 0;
3220
3221 raw_spin_lock_irqsave(&krcp->lock, flags);
3222 page_list = llist_del_all(&krcp->bkvcache);
3223 WRITE_ONCE(krcp->nr_bkv_objs, 0);
3224 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3225
3226 llist_for_each_safe(pos, n, page_list) {
3227 free_page((unsigned long)pos);
3228 freed++;
3229 }
3230
3231 return freed;
3232 }
3233
3234 /*
3235 * This function is invoked in workqueue context after a grace period.
3236 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3237 */
kfree_rcu_work(struct work_struct * work)3238 static void kfree_rcu_work(struct work_struct *work)
3239 {
3240 unsigned long flags;
3241 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3242 struct rcu_head *head, *next;
3243 struct kfree_rcu_cpu *krcp;
3244 struct kfree_rcu_cpu_work *krwp;
3245 int i, j;
3246
3247 krwp = container_of(to_rcu_work(work),
3248 struct kfree_rcu_cpu_work, rcu_work);
3249 krcp = krwp->krcp;
3250
3251 raw_spin_lock_irqsave(&krcp->lock, flags);
3252 // Channels 1 and 2.
3253 for (i = 0; i < FREE_N_CHANNELS; i++) {
3254 bkvhead[i] = krwp->bkvhead_free[i];
3255 krwp->bkvhead_free[i] = NULL;
3256 }
3257
3258 // Channel 3.
3259 head = krwp->head_free;
3260 krwp->head_free = NULL;
3261 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3262
3263 // Handle the first two channels.
3264 for (i = 0; i < FREE_N_CHANNELS; i++) {
3265 for (; bkvhead[i]; bkvhead[i] = bnext) {
3266 bnext = bkvhead[i]->next;
3267 debug_rcu_bhead_unqueue(bkvhead[i]);
3268
3269 rcu_lock_acquire(&rcu_callback_map);
3270 if (i == 0) { // kmalloc() / kfree().
3271 trace_rcu_invoke_kfree_bulk_callback(
3272 rcu_state.name, bkvhead[i]->nr_records,
3273 bkvhead[i]->records);
3274
3275 kfree_bulk(bkvhead[i]->nr_records,
3276 bkvhead[i]->records);
3277 } else { // vmalloc() / vfree().
3278 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3279 trace_rcu_invoke_kvfree_callback(
3280 rcu_state.name,
3281 bkvhead[i]->records[j], 0);
3282
3283 vfree(bkvhead[i]->records[j]);
3284 }
3285 }
3286 rcu_lock_release(&rcu_callback_map);
3287
3288 raw_spin_lock_irqsave(&krcp->lock, flags);
3289 if (put_cached_bnode(krcp, bkvhead[i]))
3290 bkvhead[i] = NULL;
3291 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3292
3293 if (bkvhead[i])
3294 free_page((unsigned long) bkvhead[i]);
3295
3296 cond_resched_tasks_rcu_qs();
3297 }
3298 }
3299
3300 /*
3301 * This is used when the "bulk" path can not be used for the
3302 * double-argument of kvfree_rcu(). This happens when the
3303 * page-cache is empty, which means that objects are instead
3304 * queued on a linked list through their rcu_head structures.
3305 * This list is named "Channel 3".
3306 */
3307 for (; head; head = next) {
3308 unsigned long offset = (unsigned long)head->func;
3309 void *ptr = (void *)head - offset;
3310
3311 next = head->next;
3312 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3313 rcu_lock_acquire(&rcu_callback_map);
3314 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3315
3316 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3317 kvfree(ptr);
3318
3319 rcu_lock_release(&rcu_callback_map);
3320 cond_resched_tasks_rcu_qs();
3321 }
3322 }
3323
3324 /*
3325 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3326 */
kfree_rcu_monitor(struct work_struct * work)3327 static void kfree_rcu_monitor(struct work_struct *work)
3328 {
3329 struct kfree_rcu_cpu *krcp = container_of(work,
3330 struct kfree_rcu_cpu, monitor_work.work);
3331 unsigned long flags;
3332 int i, j;
3333
3334 raw_spin_lock_irqsave(&krcp->lock, flags);
3335
3336 // Attempt to start a new batch.
3337 for (i = 0; i < KFREE_N_BATCHES; i++) {
3338 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3339
3340 // Try to detach bkvhead or head and attach it over any
3341 // available corresponding free channel. It can be that
3342 // a previous RCU batch is in progress, it means that
3343 // immediately to queue another one is not possible so
3344 // in that case the monitor work is rearmed.
3345 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3346 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3347 (krcp->head && !krwp->head_free)) {
3348 // Channel 1 corresponds to the SLAB-pointer bulk path.
3349 // Channel 2 corresponds to vmalloc-pointer bulk path.
3350 for (j = 0; j < FREE_N_CHANNELS; j++) {
3351 if (!krwp->bkvhead_free[j]) {
3352 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3353 krcp->bkvhead[j] = NULL;
3354 }
3355 }
3356
3357 // Channel 3 corresponds to both SLAB and vmalloc
3358 // objects queued on the linked list.
3359 if (!krwp->head_free) {
3360 krwp->head_free = krcp->head;
3361 krcp->head = NULL;
3362 }
3363
3364 WRITE_ONCE(krcp->count, 0);
3365
3366 // One work is per one batch, so there are three
3367 // "free channels", the batch can handle. It can
3368 // be that the work is in the pending state when
3369 // channels have been detached following by each
3370 // other.
3371 queue_rcu_work(system_wq, &krwp->rcu_work);
3372 }
3373 }
3374
3375 // If there is nothing to detach, it means that our job is
3376 // successfully done here. In case of having at least one
3377 // of the channels that is still busy we should rearm the
3378 // work to repeat an attempt. Because previous batches are
3379 // still in progress.
3380 if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3381 krcp->monitor_todo = false;
3382 else
3383 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3384
3385 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3386 }
3387
3388 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3389 schedule_page_work_fn(struct hrtimer *t)
3390 {
3391 struct kfree_rcu_cpu *krcp =
3392 container_of(t, struct kfree_rcu_cpu, hrtimer);
3393
3394 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3395 return HRTIMER_NORESTART;
3396 }
3397
fill_page_cache_func(struct work_struct * work)3398 static void fill_page_cache_func(struct work_struct *work)
3399 {
3400 struct kvfree_rcu_bulk_data *bnode;
3401 struct kfree_rcu_cpu *krcp =
3402 container_of(work, struct kfree_rcu_cpu,
3403 page_cache_work.work);
3404 unsigned long flags;
3405 int nr_pages;
3406 bool pushed;
3407 int i;
3408
3409 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3410 1 : rcu_min_cached_objs;
3411
3412 for (i = 0; i < nr_pages; i++) {
3413 bnode = (struct kvfree_rcu_bulk_data *)
3414 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3415
3416 if (bnode) {
3417 raw_spin_lock_irqsave(&krcp->lock, flags);
3418 pushed = put_cached_bnode(krcp, bnode);
3419 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3420
3421 if (!pushed) {
3422 free_page((unsigned long) bnode);
3423 break;
3424 }
3425 }
3426 }
3427
3428 atomic_set(&krcp->work_in_progress, 0);
3429 atomic_set(&krcp->backoff_page_cache_fill, 0);
3430 }
3431
3432 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3433 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3434 {
3435 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3436 !atomic_xchg(&krcp->work_in_progress, 1)) {
3437 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3438 queue_delayed_work(system_wq,
3439 &krcp->page_cache_work,
3440 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3441 } else {
3442 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3443 krcp->hrtimer.function = schedule_page_work_fn;
3444 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3445 }
3446 }
3447 }
3448
3449 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3450 // state specified by flags. If can_alloc is true, the caller must
3451 // be schedulable and not be holding any locks or mutexes that might be
3452 // acquired by the memory allocator or anything that it might invoke.
3453 // Returns true if ptr was successfully recorded, else the caller must
3454 // use a fallback.
3455 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3456 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3457 unsigned long *flags, void *ptr, bool can_alloc)
3458 {
3459 struct kvfree_rcu_bulk_data *bnode;
3460 int idx;
3461
3462 *krcp = krc_this_cpu_lock(flags);
3463 if (unlikely(!(*krcp)->initialized))
3464 return false;
3465
3466 idx = !!is_vmalloc_addr(ptr);
3467
3468 /* Check if a new block is required. */
3469 if (!(*krcp)->bkvhead[idx] ||
3470 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3471 bnode = get_cached_bnode(*krcp);
3472 if (!bnode && can_alloc) {
3473 krc_this_cpu_unlock(*krcp, *flags);
3474
3475 // __GFP_NORETRY - allows a light-weight direct reclaim
3476 // what is OK from minimizing of fallback hitting point of
3477 // view. Apart of that it forbids any OOM invoking what is
3478 // also beneficial since we are about to release memory soon.
3479 //
3480 // __GFP_NOMEMALLOC - prevents from consuming of all the
3481 // memory reserves. Please note we have a fallback path.
3482 //
3483 // __GFP_NOWARN - it is supposed that an allocation can
3484 // be failed under low memory or high memory pressure
3485 // scenarios.
3486 bnode = (struct kvfree_rcu_bulk_data *)
3487 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3488 *krcp = krc_this_cpu_lock(flags);
3489 }
3490
3491 if (!bnode)
3492 return false;
3493
3494 /* Initialize the new block. */
3495 bnode->nr_records = 0;
3496 bnode->next = (*krcp)->bkvhead[idx];
3497
3498 /* Attach it to the head. */
3499 (*krcp)->bkvhead[idx] = bnode;
3500 }
3501
3502 /* Finally insert. */
3503 (*krcp)->bkvhead[idx]->records
3504 [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3505
3506 return true;
3507 }
3508
3509 /*
3510 * Queue a request for lazy invocation of the appropriate free routine
3511 * after a grace period. Please note that three paths are maintained,
3512 * two for the common case using arrays of pointers and a third one that
3513 * is used only when the main paths cannot be used, for example, due to
3514 * memory pressure.
3515 *
3516 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3517 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3518 * be free'd in workqueue context. This allows us to: batch requests together to
3519 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3520 */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3521 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3522 {
3523 unsigned long flags;
3524 struct kfree_rcu_cpu *krcp;
3525 bool success;
3526 void *ptr;
3527
3528 if (head) {
3529 ptr = (void *) head - (unsigned long) func;
3530 } else {
3531 /*
3532 * Please note there is a limitation for the head-less
3533 * variant, that is why there is a clear rule for such
3534 * objects: it can be used from might_sleep() context
3535 * only. For other places please embed an rcu_head to
3536 * your data.
3537 */
3538 might_sleep();
3539 ptr = (unsigned long *) func;
3540 }
3541
3542 // Queue the object but don't yet schedule the batch.
3543 if (debug_rcu_head_queue(ptr)) {
3544 // Probable double kfree_rcu(), just leak.
3545 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3546 __func__, head);
3547
3548 // Mark as success and leave.
3549 return;
3550 }
3551
3552 kasan_record_aux_stack(ptr);
3553 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3554 if (!success) {
3555 run_page_cache_worker(krcp);
3556
3557 if (head == NULL)
3558 // Inline if kvfree_rcu(one_arg) call.
3559 goto unlock_return;
3560
3561 head->func = func;
3562 head->next = krcp->head;
3563 krcp->head = head;
3564 success = true;
3565 }
3566
3567 WRITE_ONCE(krcp->count, krcp->count + 1);
3568
3569 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3570 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3571 !krcp->monitor_todo) {
3572 krcp->monitor_todo = true;
3573 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3574 }
3575
3576 unlock_return:
3577 krc_this_cpu_unlock(krcp, flags);
3578
3579 /*
3580 * Inline kvfree() after synchronize_rcu(). We can do
3581 * it from might_sleep() context only, so the current
3582 * CPU can pass the QS state.
3583 */
3584 if (!success) {
3585 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3586 synchronize_rcu();
3587 kvfree(ptr);
3588 }
3589 }
3590 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3591
3592 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3593 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3594 {
3595 int cpu;
3596 unsigned long count = 0;
3597
3598 /* Snapshot count of all CPUs */
3599 for_each_possible_cpu(cpu) {
3600 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3601
3602 count += READ_ONCE(krcp->count);
3603 count += READ_ONCE(krcp->nr_bkv_objs);
3604 atomic_set(&krcp->backoff_page_cache_fill, 1);
3605 }
3606
3607 return count;
3608 }
3609
3610 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3611 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3612 {
3613 int cpu, freed = 0;
3614
3615 for_each_possible_cpu(cpu) {
3616 int count;
3617 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3618
3619 count = krcp->count;
3620 count += drain_page_cache(krcp);
3621 kfree_rcu_monitor(&krcp->monitor_work.work);
3622
3623 sc->nr_to_scan -= count;
3624 freed += count;
3625
3626 if (sc->nr_to_scan <= 0)
3627 break;
3628 }
3629
3630 return freed == 0 ? SHRINK_STOP : freed;
3631 }
3632
3633 static struct shrinker kfree_rcu_shrinker = {
3634 .count_objects = kfree_rcu_shrink_count,
3635 .scan_objects = kfree_rcu_shrink_scan,
3636 .batch = 0,
3637 .seeks = DEFAULT_SEEKS,
3638 };
3639
kfree_rcu_scheduler_running(void)3640 void __init kfree_rcu_scheduler_running(void)
3641 {
3642 int cpu;
3643 unsigned long flags;
3644
3645 for_each_possible_cpu(cpu) {
3646 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3647
3648 raw_spin_lock_irqsave(&krcp->lock, flags);
3649 if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3650 krcp->monitor_todo) {
3651 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3652 continue;
3653 }
3654 krcp->monitor_todo = true;
3655 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3656 KFREE_DRAIN_JIFFIES);
3657 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3658 }
3659 }
3660
3661 /*
3662 * During early boot, any blocking grace-period wait automatically
3663 * implies a grace period. Later on, this is never the case for PREEMPTION.
3664 *
3665 * However, because a context switch is a grace period for !PREEMPTION, any
3666 * blocking grace-period wait automatically implies a grace period if
3667 * there is only one CPU online at any point time during execution of
3668 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3669 * occasionally incorrectly indicate that there are multiple CPUs online
3670 * when there was in fact only one the whole time, as this just adds some
3671 * overhead: RCU still operates correctly.
3672 */
rcu_blocking_is_gp(void)3673 static int rcu_blocking_is_gp(void)
3674 {
3675 int ret;
3676
3677 if (IS_ENABLED(CONFIG_PREEMPTION))
3678 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3679 might_sleep(); /* Check for RCU read-side critical section. */
3680 preempt_disable();
3681 /*
3682 * If the rcu_state.n_online_cpus counter is equal to one,
3683 * there is only one CPU, and that CPU sees all prior accesses
3684 * made by any CPU that was online at the time of its access.
3685 * Furthermore, if this counter is equal to one, its value cannot
3686 * change until after the preempt_enable() below.
3687 *
3688 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3689 * all later CPUs (both this one and any that come online later
3690 * on) are guaranteed to see all accesses prior to this point
3691 * in the code, without the need for additional memory barriers.
3692 * Those memory barriers are provided by CPU-hotplug code.
3693 */
3694 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3695 preempt_enable();
3696 return ret;
3697 }
3698
3699 /**
3700 * synchronize_rcu - wait until a grace period has elapsed.
3701 *
3702 * Control will return to the caller some time after a full grace
3703 * period has elapsed, in other words after all currently executing RCU
3704 * read-side critical sections have completed. Note, however, that
3705 * upon return from synchronize_rcu(), the caller might well be executing
3706 * concurrently with new RCU read-side critical sections that began while
3707 * synchronize_rcu() was waiting.
3708 *
3709 * RCU read-side critical sections are delimited by rcu_read_lock()
3710 * and rcu_read_unlock(), and may be nested. In addition, but only in
3711 * v5.0 and later, regions of code across which interrupts, preemption,
3712 * or softirqs have been disabled also serve as RCU read-side critical
3713 * sections. This includes hardware interrupt handlers, softirq handlers,
3714 * and NMI handlers.
3715 *
3716 * Note that this guarantee implies further memory-ordering guarantees.
3717 * On systems with more than one CPU, when synchronize_rcu() returns,
3718 * each CPU is guaranteed to have executed a full memory barrier since
3719 * the end of its last RCU read-side critical section whose beginning
3720 * preceded the call to synchronize_rcu(). In addition, each CPU having
3721 * an RCU read-side critical section that extends beyond the return from
3722 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3723 * after the beginning of synchronize_rcu() and before the beginning of
3724 * that RCU read-side critical section. Note that these guarantees include
3725 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3726 * that are executing in the kernel.
3727 *
3728 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3729 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3730 * to have executed a full memory barrier during the execution of
3731 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3732 * again only if the system has more than one CPU).
3733 *
3734 * Implementation of these memory-ordering guarantees is described here:
3735 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3736 */
synchronize_rcu(void)3737 void synchronize_rcu(void)
3738 {
3739 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3740 lock_is_held(&rcu_lock_map) ||
3741 lock_is_held(&rcu_sched_lock_map),
3742 "Illegal synchronize_rcu() in RCU read-side critical section");
3743 if (rcu_blocking_is_gp())
3744 return; // Context allows vacuous grace periods.
3745 if (rcu_gp_is_expedited())
3746 synchronize_rcu_expedited();
3747 else
3748 wait_rcu_gp(call_rcu);
3749 }
3750 EXPORT_SYMBOL_GPL(synchronize_rcu);
3751
3752 /**
3753 * get_state_synchronize_rcu - Snapshot current RCU state
3754 *
3755 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3756 * or poll_state_synchronize_rcu() to determine whether or not a full
3757 * grace period has elapsed in the meantime.
3758 */
get_state_synchronize_rcu(void)3759 unsigned long get_state_synchronize_rcu(void)
3760 {
3761 /*
3762 * Any prior manipulation of RCU-protected data must happen
3763 * before the load from ->gp_seq.
3764 */
3765 smp_mb(); /* ^^^ */
3766 return rcu_seq_snap(&rcu_state.gp_seq);
3767 }
3768 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3769
3770 /**
3771 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3772 *
3773 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3774 * or poll_state_synchronize_rcu() to determine whether or not a full
3775 * grace period has elapsed in the meantime. If the needed grace period
3776 * is not already slated to start, notifies RCU core of the need for that
3777 * grace period.
3778 *
3779 * Interrupts must be enabled for the case where it is necessary to awaken
3780 * the grace-period kthread.
3781 */
start_poll_synchronize_rcu(void)3782 unsigned long start_poll_synchronize_rcu(void)
3783 {
3784 unsigned long flags;
3785 unsigned long gp_seq = get_state_synchronize_rcu();
3786 bool needwake;
3787 struct rcu_data *rdp;
3788 struct rcu_node *rnp;
3789
3790 lockdep_assert_irqs_enabled();
3791 local_irq_save(flags);
3792 rdp = this_cpu_ptr(&rcu_data);
3793 rnp = rdp->mynode;
3794 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3795 needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3796 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3797 if (needwake)
3798 rcu_gp_kthread_wake();
3799 return gp_seq;
3800 }
3801 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3802
3803 /**
3804 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3805 *
3806 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3807 *
3808 * If a full RCU grace period has elapsed since the earlier call from
3809 * which oldstate was obtained, return @true, otherwise return @false.
3810 * If @false is returned, it is the caller's responsibility to invoke this
3811 * function later on until it does return @true. Alternatively, the caller
3812 * can explicitly wait for a grace period, for example, by passing @oldstate
3813 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3814 *
3815 * Yes, this function does not take counter wrap into account.
3816 * But counter wrap is harmless. If the counter wraps, we have waited for
3817 * more than 2 billion grace periods (and way more on a 64-bit system!).
3818 * Those needing to keep oldstate values for very long time periods
3819 * (many hours even on 32-bit systems) should check them occasionally
3820 * and either refresh them or set a flag indicating that the grace period
3821 * has completed.
3822 *
3823 * This function provides the same memory-ordering guarantees that
3824 * would be provided by a synchronize_rcu() that was invoked at the call
3825 * to the function that provided @oldstate, and that returned at the end
3826 * of this function.
3827 */
poll_state_synchronize_rcu(unsigned long oldstate)3828 bool poll_state_synchronize_rcu(unsigned long oldstate)
3829 {
3830 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3831 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3832 return true;
3833 }
3834 return false;
3835 }
3836 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3837
3838 /**
3839 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3840 *
3841 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3842 *
3843 * If a full RCU grace period has elapsed since the earlier call to
3844 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3845 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3846 *
3847 * Yes, this function does not take counter wrap into account. But
3848 * counter wrap is harmless. If the counter wraps, we have waited for
3849 * more than 2 billion grace periods (and way more on a 64-bit system!),
3850 * so waiting for one additional grace period should be just fine.
3851 *
3852 * This function provides the same memory-ordering guarantees that
3853 * would be provided by a synchronize_rcu() that was invoked at the call
3854 * to the function that provided @oldstate, and that returned at the end
3855 * of this function.
3856 */
cond_synchronize_rcu(unsigned long oldstate)3857 void cond_synchronize_rcu(unsigned long oldstate)
3858 {
3859 if (!poll_state_synchronize_rcu(oldstate))
3860 synchronize_rcu();
3861 }
3862 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3863
3864 /*
3865 * Check to see if there is any immediate RCU-related work to be done by
3866 * the current CPU, returning 1 if so and zero otherwise. The checks are
3867 * in order of increasing expense: checks that can be carried out against
3868 * CPU-local state are performed first. However, we must check for CPU
3869 * stalls first, else we might not get a chance.
3870 */
rcu_pending(int user)3871 static int rcu_pending(int user)
3872 {
3873 bool gp_in_progress;
3874 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3875 struct rcu_node *rnp = rdp->mynode;
3876
3877 lockdep_assert_irqs_disabled();
3878
3879 /* Check for CPU stalls, if enabled. */
3880 check_cpu_stall(rdp);
3881
3882 /* Does this CPU need a deferred NOCB wakeup? */
3883 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3884 return 1;
3885
3886 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3887 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3888 return 0;
3889
3890 /* Is the RCU core waiting for a quiescent state from this CPU? */
3891 gp_in_progress = rcu_gp_in_progress();
3892 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3893 return 1;
3894
3895 /* Does this CPU have callbacks ready to invoke? */
3896 if (!rcu_rdp_is_offloaded(rdp) &&
3897 rcu_segcblist_ready_cbs(&rdp->cblist))
3898 return 1;
3899
3900 /* Has RCU gone idle with this CPU needing another grace period? */
3901 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3902 !rcu_rdp_is_offloaded(rdp) &&
3903 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3904 return 1;
3905
3906 /* Have RCU grace period completed or started? */
3907 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3908 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3909 return 1;
3910
3911 /* nothing to do */
3912 return 0;
3913 }
3914
3915 /*
3916 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3917 * the compiler is expected to optimize this away.
3918 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3919 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3920 {
3921 trace_rcu_barrier(rcu_state.name, s, cpu,
3922 atomic_read(&rcu_state.barrier_cpu_count), done);
3923 }
3924
3925 /*
3926 * RCU callback function for rcu_barrier(). If we are last, wake
3927 * up the task executing rcu_barrier().
3928 *
3929 * Note that the value of rcu_state.barrier_sequence must be captured
3930 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3931 * other CPUs might count the value down to zero before this CPU gets
3932 * around to invoking rcu_barrier_trace(), which might result in bogus
3933 * data from the next instance of rcu_barrier().
3934 */
rcu_barrier_callback(struct rcu_head * rhp)3935 static void rcu_barrier_callback(struct rcu_head *rhp)
3936 {
3937 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3938
3939 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3940 rcu_barrier_trace(TPS("LastCB"), -1, s);
3941 complete(&rcu_state.barrier_completion);
3942 } else {
3943 rcu_barrier_trace(TPS("CB"), -1, s);
3944 }
3945 }
3946
3947 /*
3948 * Called with preemption disabled, and from cross-cpu IRQ context.
3949 */
rcu_barrier_func(void * cpu_in)3950 static void rcu_barrier_func(void *cpu_in)
3951 {
3952 uintptr_t cpu = (uintptr_t)cpu_in;
3953 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3954
3955 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3956 rdp->barrier_head.func = rcu_barrier_callback;
3957 debug_rcu_head_queue(&rdp->barrier_head);
3958 rcu_nocb_lock(rdp);
3959 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3960 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3961 atomic_inc(&rcu_state.barrier_cpu_count);
3962 } else {
3963 debug_rcu_head_unqueue(&rdp->barrier_head);
3964 rcu_barrier_trace(TPS("IRQNQ"), -1,
3965 rcu_state.barrier_sequence);
3966 }
3967 rcu_nocb_unlock(rdp);
3968 }
3969
3970 /**
3971 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3972 *
3973 * Note that this primitive does not necessarily wait for an RCU grace period
3974 * to complete. For example, if there are no RCU callbacks queued anywhere
3975 * in the system, then rcu_barrier() is within its rights to return
3976 * immediately, without waiting for anything, much less an RCU grace period.
3977 */
rcu_barrier(void)3978 void rcu_barrier(void)
3979 {
3980 uintptr_t cpu;
3981 struct rcu_data *rdp;
3982 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3983
3984 rcu_barrier_trace(TPS("Begin"), -1, s);
3985
3986 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3987 mutex_lock(&rcu_state.barrier_mutex);
3988
3989 /* Did someone else do our work for us? */
3990 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3991 rcu_barrier_trace(TPS("EarlyExit"), -1,
3992 rcu_state.barrier_sequence);
3993 smp_mb(); /* caller's subsequent code after above check. */
3994 mutex_unlock(&rcu_state.barrier_mutex);
3995 return;
3996 }
3997
3998 /* Mark the start of the barrier operation. */
3999 rcu_seq_start(&rcu_state.barrier_sequence);
4000 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4001
4002 /*
4003 * Initialize the count to two rather than to zero in order
4004 * to avoid a too-soon return to zero in case of an immediate
4005 * invocation of the just-enqueued callback (or preemption of
4006 * this task). Exclude CPU-hotplug operations to ensure that no
4007 * offline non-offloaded CPU has callbacks queued.
4008 */
4009 init_completion(&rcu_state.barrier_completion);
4010 atomic_set(&rcu_state.barrier_cpu_count, 2);
4011 cpus_read_lock();
4012
4013 /*
4014 * Force each CPU with callbacks to register a new callback.
4015 * When that callback is invoked, we will know that all of the
4016 * corresponding CPU's preceding callbacks have been invoked.
4017 */
4018 for_each_possible_cpu(cpu) {
4019 rdp = per_cpu_ptr(&rcu_data, cpu);
4020 if (cpu_is_offline(cpu) &&
4021 !rcu_rdp_is_offloaded(rdp))
4022 continue;
4023 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4024 rcu_barrier_trace(TPS("OnlineQ"), cpu,
4025 rcu_state.barrier_sequence);
4026 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4027 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4028 cpu_is_offline(cpu)) {
4029 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4030 rcu_state.barrier_sequence);
4031 local_irq_disable();
4032 rcu_barrier_func((void *)cpu);
4033 local_irq_enable();
4034 } else if (cpu_is_offline(cpu)) {
4035 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4036 rcu_state.barrier_sequence);
4037 } else {
4038 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4039 rcu_state.barrier_sequence);
4040 }
4041 }
4042 cpus_read_unlock();
4043
4044 /*
4045 * Now that we have an rcu_barrier_callback() callback on each
4046 * CPU, and thus each counted, remove the initial count.
4047 */
4048 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4049 complete(&rcu_state.barrier_completion);
4050
4051 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4052 wait_for_completion(&rcu_state.barrier_completion);
4053
4054 /* Mark the end of the barrier operation. */
4055 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4056 rcu_seq_end(&rcu_state.barrier_sequence);
4057
4058 /* Other rcu_barrier() invocations can now safely proceed. */
4059 mutex_unlock(&rcu_state.barrier_mutex);
4060 }
4061 EXPORT_SYMBOL_GPL(rcu_barrier);
4062
4063 /*
4064 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4065 * first CPU in a given leaf rcu_node structure coming online. The caller
4066 * must hold the corresponding leaf rcu_node ->lock with interrupts
4067 * disabled.
4068 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4069 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4070 {
4071 long mask;
4072 long oldmask;
4073 struct rcu_node *rnp = rnp_leaf;
4074
4075 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4076 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4077 for (;;) {
4078 mask = rnp->grpmask;
4079 rnp = rnp->parent;
4080 if (rnp == NULL)
4081 return;
4082 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4083 oldmask = rnp->qsmaskinit;
4084 rnp->qsmaskinit |= mask;
4085 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4086 if (oldmask)
4087 return;
4088 }
4089 }
4090
4091 /*
4092 * Do boot-time initialization of a CPU's per-CPU RCU data.
4093 */
4094 static void __init
rcu_boot_init_percpu_data(int cpu)4095 rcu_boot_init_percpu_data(int cpu)
4096 {
4097 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4098
4099 /* Set up local state, ensuring consistent view of global state. */
4100 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4101 INIT_WORK(&rdp->strict_work, strict_work_handler);
4102 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4103 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4104 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4105 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4106 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4107 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4108 rdp->cpu = cpu;
4109 rcu_boot_init_nocb_percpu_data(rdp);
4110 }
4111
4112 /*
4113 * Invoked early in the CPU-online process, when pretty much all services
4114 * are available. The incoming CPU is not present.
4115 *
4116 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4117 * offline event can be happening at a given time. Note also that we can
4118 * accept some slop in the rsp->gp_seq access due to the fact that this
4119 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4120 * And any offloaded callbacks are being numbered elsewhere.
4121 */
rcutree_prepare_cpu(unsigned int cpu)4122 int rcutree_prepare_cpu(unsigned int cpu)
4123 {
4124 unsigned long flags;
4125 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4126 struct rcu_node *rnp = rcu_get_root();
4127
4128 /* Set up local state, ensuring consistent view of global state. */
4129 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4130 rdp->qlen_last_fqs_check = 0;
4131 rdp->n_force_qs_snap = rcu_state.n_force_qs;
4132 rdp->blimit = blimit;
4133 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4134 rcu_dynticks_eqs_online();
4135 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4136
4137 /*
4138 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4139 * (re-)initialized.
4140 */
4141 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4142 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4143
4144 /*
4145 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4146 * propagation up the rcu_node tree will happen at the beginning
4147 * of the next grace period.
4148 */
4149 rnp = rdp->mynode;
4150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4151 rdp->beenonline = true; /* We have now been online. */
4152 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4153 rdp->gp_seq_needed = rdp->gp_seq;
4154 rdp->cpu_no_qs.b.norm = true;
4155 rdp->core_needs_qs = false;
4156 rdp->rcu_iw_pending = false;
4157 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4158 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4159 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4160 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4161 rcu_spawn_one_boost_kthread(rnp);
4162 rcu_spawn_cpu_nocb_kthread(cpu);
4163 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4164
4165 return 0;
4166 }
4167
4168 /*
4169 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4170 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4171 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4172 {
4173 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4174
4175 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4176 }
4177
4178 /*
4179 * Near the end of the CPU-online process. Pretty much all services
4180 * enabled, and the CPU is now very much alive.
4181 */
rcutree_online_cpu(unsigned int cpu)4182 int rcutree_online_cpu(unsigned int cpu)
4183 {
4184 unsigned long flags;
4185 struct rcu_data *rdp;
4186 struct rcu_node *rnp;
4187
4188 rdp = per_cpu_ptr(&rcu_data, cpu);
4189 rnp = rdp->mynode;
4190 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4191 rnp->ffmask |= rdp->grpmask;
4192 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4193 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4194 return 0; /* Too early in boot for scheduler work. */
4195 sync_sched_exp_online_cleanup(cpu);
4196 rcutree_affinity_setting(cpu, -1);
4197
4198 // Stop-machine done, so allow nohz_full to disable tick.
4199 tick_dep_clear(TICK_DEP_BIT_RCU);
4200 return 0;
4201 }
4202
4203 /*
4204 * Near the beginning of the process. The CPU is still very much alive
4205 * with pretty much all services enabled.
4206 */
rcutree_offline_cpu(unsigned int cpu)4207 int rcutree_offline_cpu(unsigned int cpu)
4208 {
4209 unsigned long flags;
4210 struct rcu_data *rdp;
4211 struct rcu_node *rnp;
4212
4213 rdp = per_cpu_ptr(&rcu_data, cpu);
4214 rnp = rdp->mynode;
4215 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4216 rnp->ffmask &= ~rdp->grpmask;
4217 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4218
4219 rcutree_affinity_setting(cpu, cpu);
4220
4221 // nohz_full CPUs need the tick for stop-machine to work quickly
4222 tick_dep_set(TICK_DEP_BIT_RCU);
4223 return 0;
4224 }
4225
4226 /*
4227 * Mark the specified CPU as being online so that subsequent grace periods
4228 * (both expedited and normal) will wait on it. Note that this means that
4229 * incoming CPUs are not allowed to use RCU read-side critical sections
4230 * until this function is called. Failing to observe this restriction
4231 * will result in lockdep splats.
4232 *
4233 * Note that this function is special in that it is invoked directly
4234 * from the incoming CPU rather than from the cpuhp_step mechanism.
4235 * This is because this function must be invoked at a precise location.
4236 */
rcu_cpu_starting(unsigned int cpu)4237 void rcu_cpu_starting(unsigned int cpu)
4238 {
4239 unsigned long flags;
4240 unsigned long mask;
4241 struct rcu_data *rdp;
4242 struct rcu_node *rnp;
4243 bool newcpu;
4244
4245 rdp = per_cpu_ptr(&rcu_data, cpu);
4246 if (rdp->cpu_started)
4247 return;
4248 rdp->cpu_started = true;
4249
4250 rnp = rdp->mynode;
4251 mask = rdp->grpmask;
4252 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4253 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4254 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4255 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4256 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4257 newcpu = !(rnp->expmaskinitnext & mask);
4258 rnp->expmaskinitnext |= mask;
4259 /* Allow lockless access for expedited grace periods. */
4260 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4261 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4262 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4263 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4264 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4265
4266 /* An incoming CPU should never be blocking a grace period. */
4267 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4268 rcu_disable_urgency_upon_qs(rdp);
4269 /* Report QS -after- changing ->qsmaskinitnext! */
4270 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4271 } else {
4272 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4273 }
4274 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4275 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4276 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4277 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4278 }
4279
4280 /*
4281 * The outgoing function has no further need of RCU, so remove it from
4282 * the rcu_node tree's ->qsmaskinitnext bit masks.
4283 *
4284 * Note that this function is special in that it is invoked directly
4285 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4286 * This is because this function must be invoked at a precise location.
4287 */
rcu_report_dead(unsigned int cpu)4288 void rcu_report_dead(unsigned int cpu)
4289 {
4290 unsigned long flags;
4291 unsigned long mask;
4292 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4293 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4294
4295 // Do any dangling deferred wakeups.
4296 do_nocb_deferred_wakeup(rdp);
4297
4298 /* QS for any half-done expedited grace period. */
4299 preempt_disable();
4300 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4301 preempt_enable();
4302 rcu_preempt_deferred_qs(current);
4303
4304 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4305 mask = rdp->grpmask;
4306 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4307 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4308 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4309 raw_spin_lock(&rcu_state.ofl_lock);
4310 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4311 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4312 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4313 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4314 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4315 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4316 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4317 }
4318 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4319 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4320 raw_spin_unlock(&rcu_state.ofl_lock);
4321 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4322 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4323 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4324
4325 rdp->cpu_started = false;
4326 }
4327
4328 #ifdef CONFIG_HOTPLUG_CPU
4329 /*
4330 * The outgoing CPU has just passed through the dying-idle state, and we
4331 * are being invoked from the CPU that was IPIed to continue the offline
4332 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4333 */
rcutree_migrate_callbacks(int cpu)4334 void rcutree_migrate_callbacks(int cpu)
4335 {
4336 unsigned long flags;
4337 struct rcu_data *my_rdp;
4338 struct rcu_node *my_rnp;
4339 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4340 bool needwake;
4341
4342 if (rcu_rdp_is_offloaded(rdp) ||
4343 rcu_segcblist_empty(&rdp->cblist))
4344 return; /* No callbacks to migrate. */
4345
4346 local_irq_save(flags);
4347 my_rdp = this_cpu_ptr(&rcu_data);
4348 my_rnp = my_rdp->mynode;
4349 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4350 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4351 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4352 /* Leverage recent GPs and set GP for new callbacks. */
4353 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4354 rcu_advance_cbs(my_rnp, my_rdp);
4355 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4356 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4357 rcu_segcblist_disable(&rdp->cblist);
4358 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4359 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4360 if (rcu_rdp_is_offloaded(my_rdp)) {
4361 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4362 __call_rcu_nocb_wake(my_rdp, true, flags);
4363 } else {
4364 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4365 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4366 }
4367 if (needwake)
4368 rcu_gp_kthread_wake();
4369 lockdep_assert_irqs_enabled();
4370 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4371 !rcu_segcblist_empty(&rdp->cblist),
4372 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4373 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4374 rcu_segcblist_first_cb(&rdp->cblist));
4375 }
4376 #endif
4377
4378 /*
4379 * On non-huge systems, use expedited RCU grace periods to make suspend
4380 * and hibernation run faster.
4381 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4382 static int rcu_pm_notify(struct notifier_block *self,
4383 unsigned long action, void *hcpu)
4384 {
4385 switch (action) {
4386 case PM_HIBERNATION_PREPARE:
4387 case PM_SUSPEND_PREPARE:
4388 rcu_expedite_gp();
4389 break;
4390 case PM_POST_HIBERNATION:
4391 case PM_POST_SUSPEND:
4392 rcu_unexpedite_gp();
4393 break;
4394 default:
4395 break;
4396 }
4397 return NOTIFY_OK;
4398 }
4399
4400 /*
4401 * Spawn the kthreads that handle RCU's grace periods.
4402 */
rcu_spawn_gp_kthread(void)4403 static int __init rcu_spawn_gp_kthread(void)
4404 {
4405 unsigned long flags;
4406 int kthread_prio_in = kthread_prio;
4407 struct rcu_node *rnp;
4408 struct sched_param sp;
4409 struct task_struct *t;
4410
4411 /* Force priority into range. */
4412 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4413 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4414 kthread_prio = 2;
4415 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4416 kthread_prio = 1;
4417 else if (kthread_prio < 0)
4418 kthread_prio = 0;
4419 else if (kthread_prio > 99)
4420 kthread_prio = 99;
4421
4422 if (kthread_prio != kthread_prio_in)
4423 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4424 kthread_prio, kthread_prio_in);
4425
4426 rcu_scheduler_fully_active = 1;
4427 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4428 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4429 return 0;
4430 if (kthread_prio) {
4431 sp.sched_priority = kthread_prio;
4432 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4433 }
4434 rnp = rcu_get_root();
4435 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4436 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4437 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4438 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4439 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4440 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4441 wake_up_process(t);
4442 rcu_spawn_nocb_kthreads();
4443 rcu_spawn_boost_kthreads();
4444 rcu_spawn_core_kthreads();
4445 return 0;
4446 }
4447 early_initcall(rcu_spawn_gp_kthread);
4448
4449 /*
4450 * This function is invoked towards the end of the scheduler's
4451 * initialization process. Before this is called, the idle task might
4452 * contain synchronous grace-period primitives (during which time, this idle
4453 * task is booting the system, and such primitives are no-ops). After this
4454 * function is called, any synchronous grace-period primitives are run as
4455 * expedited, with the requesting task driving the grace period forward.
4456 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4457 * runtime RCU functionality.
4458 */
rcu_scheduler_starting(void)4459 void rcu_scheduler_starting(void)
4460 {
4461 WARN_ON(num_online_cpus() != 1);
4462 WARN_ON(nr_context_switches() > 0);
4463 rcu_test_sync_prims();
4464 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4465 rcu_test_sync_prims();
4466 }
4467
4468 /*
4469 * Helper function for rcu_init() that initializes the rcu_state structure.
4470 */
rcu_init_one(void)4471 static void __init rcu_init_one(void)
4472 {
4473 static const char * const buf[] = RCU_NODE_NAME_INIT;
4474 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4475 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4476 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4477
4478 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4479 int cpustride = 1;
4480 int i;
4481 int j;
4482 struct rcu_node *rnp;
4483
4484 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4485
4486 /* Silence gcc 4.8 false positive about array index out of range. */
4487 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4488 panic("rcu_init_one: rcu_num_lvls out of range");
4489
4490 /* Initialize the level-tracking arrays. */
4491
4492 for (i = 1; i < rcu_num_lvls; i++)
4493 rcu_state.level[i] =
4494 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4495 rcu_init_levelspread(levelspread, num_rcu_lvl);
4496
4497 /* Initialize the elements themselves, starting from the leaves. */
4498
4499 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4500 cpustride *= levelspread[i];
4501 rnp = rcu_state.level[i];
4502 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4503 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4504 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4505 &rcu_node_class[i], buf[i]);
4506 raw_spin_lock_init(&rnp->fqslock);
4507 lockdep_set_class_and_name(&rnp->fqslock,
4508 &rcu_fqs_class[i], fqs[i]);
4509 rnp->gp_seq = rcu_state.gp_seq;
4510 rnp->gp_seq_needed = rcu_state.gp_seq;
4511 rnp->completedqs = rcu_state.gp_seq;
4512 rnp->qsmask = 0;
4513 rnp->qsmaskinit = 0;
4514 rnp->grplo = j * cpustride;
4515 rnp->grphi = (j + 1) * cpustride - 1;
4516 if (rnp->grphi >= nr_cpu_ids)
4517 rnp->grphi = nr_cpu_ids - 1;
4518 if (i == 0) {
4519 rnp->grpnum = 0;
4520 rnp->grpmask = 0;
4521 rnp->parent = NULL;
4522 } else {
4523 rnp->grpnum = j % levelspread[i - 1];
4524 rnp->grpmask = BIT(rnp->grpnum);
4525 rnp->parent = rcu_state.level[i - 1] +
4526 j / levelspread[i - 1];
4527 }
4528 rnp->level = i;
4529 INIT_LIST_HEAD(&rnp->blkd_tasks);
4530 rcu_init_one_nocb(rnp);
4531 init_waitqueue_head(&rnp->exp_wq[0]);
4532 init_waitqueue_head(&rnp->exp_wq[1]);
4533 init_waitqueue_head(&rnp->exp_wq[2]);
4534 init_waitqueue_head(&rnp->exp_wq[3]);
4535 spin_lock_init(&rnp->exp_lock);
4536 }
4537 }
4538
4539 init_swait_queue_head(&rcu_state.gp_wq);
4540 init_swait_queue_head(&rcu_state.expedited_wq);
4541 rnp = rcu_first_leaf_node();
4542 for_each_possible_cpu(i) {
4543 while (i > rnp->grphi)
4544 rnp++;
4545 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4546 rcu_boot_init_percpu_data(i);
4547 }
4548 }
4549
4550 /*
4551 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4552 * replace the definitions in tree.h because those are needed to size
4553 * the ->node array in the rcu_state structure.
4554 */
rcu_init_geometry(void)4555 void rcu_init_geometry(void)
4556 {
4557 ulong d;
4558 int i;
4559 static unsigned long old_nr_cpu_ids;
4560 int rcu_capacity[RCU_NUM_LVLS];
4561 static bool initialized;
4562
4563 if (initialized) {
4564 /*
4565 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4566 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4567 */
4568 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4569 return;
4570 }
4571
4572 old_nr_cpu_ids = nr_cpu_ids;
4573 initialized = true;
4574
4575 /*
4576 * Initialize any unspecified boot parameters.
4577 * The default values of jiffies_till_first_fqs and
4578 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4579 * value, which is a function of HZ, then adding one for each
4580 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4581 */
4582 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4583 if (jiffies_till_first_fqs == ULONG_MAX)
4584 jiffies_till_first_fqs = d;
4585 if (jiffies_till_next_fqs == ULONG_MAX)
4586 jiffies_till_next_fqs = d;
4587 adjust_jiffies_till_sched_qs();
4588
4589 /* If the compile-time values are accurate, just leave. */
4590 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4591 nr_cpu_ids == NR_CPUS)
4592 return;
4593 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4594 rcu_fanout_leaf, nr_cpu_ids);
4595
4596 /*
4597 * The boot-time rcu_fanout_leaf parameter must be at least two
4598 * and cannot exceed the number of bits in the rcu_node masks.
4599 * Complain and fall back to the compile-time values if this
4600 * limit is exceeded.
4601 */
4602 if (rcu_fanout_leaf < 2 ||
4603 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4604 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4605 WARN_ON(1);
4606 return;
4607 }
4608
4609 /*
4610 * Compute number of nodes that can be handled an rcu_node tree
4611 * with the given number of levels.
4612 */
4613 rcu_capacity[0] = rcu_fanout_leaf;
4614 for (i = 1; i < RCU_NUM_LVLS; i++)
4615 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4616
4617 /*
4618 * The tree must be able to accommodate the configured number of CPUs.
4619 * If this limit is exceeded, fall back to the compile-time values.
4620 */
4621 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4622 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4623 WARN_ON(1);
4624 return;
4625 }
4626
4627 /* Calculate the number of levels in the tree. */
4628 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4629 }
4630 rcu_num_lvls = i + 1;
4631
4632 /* Calculate the number of rcu_nodes at each level of the tree. */
4633 for (i = 0; i < rcu_num_lvls; i++) {
4634 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4635 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4636 }
4637
4638 /* Calculate the total number of rcu_node structures. */
4639 rcu_num_nodes = 0;
4640 for (i = 0; i < rcu_num_lvls; i++)
4641 rcu_num_nodes += num_rcu_lvl[i];
4642 }
4643
4644 /*
4645 * Dump out the structure of the rcu_node combining tree associated
4646 * with the rcu_state structure.
4647 */
rcu_dump_rcu_node_tree(void)4648 static void __init rcu_dump_rcu_node_tree(void)
4649 {
4650 int level = 0;
4651 struct rcu_node *rnp;
4652
4653 pr_info("rcu_node tree layout dump\n");
4654 pr_info(" ");
4655 rcu_for_each_node_breadth_first(rnp) {
4656 if (rnp->level != level) {
4657 pr_cont("\n");
4658 pr_info(" ");
4659 level = rnp->level;
4660 }
4661 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4662 }
4663 pr_cont("\n");
4664 }
4665
4666 struct workqueue_struct *rcu_gp_wq;
4667 struct workqueue_struct *rcu_par_gp_wq;
4668
kfree_rcu_batch_init(void)4669 static void __init kfree_rcu_batch_init(void)
4670 {
4671 int cpu;
4672 int i;
4673
4674 /* Clamp it to [0:100] seconds interval. */
4675 if (rcu_delay_page_cache_fill_msec < 0 ||
4676 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4677
4678 rcu_delay_page_cache_fill_msec =
4679 clamp(rcu_delay_page_cache_fill_msec, 0,
4680 (int) (100 * MSEC_PER_SEC));
4681
4682 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4683 rcu_delay_page_cache_fill_msec);
4684 }
4685
4686 for_each_possible_cpu(cpu) {
4687 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4688
4689 for (i = 0; i < KFREE_N_BATCHES; i++) {
4690 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4691 krcp->krw_arr[i].krcp = krcp;
4692 }
4693
4694 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4695 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4696 krcp->initialized = true;
4697 }
4698 if (register_shrinker(&kfree_rcu_shrinker))
4699 pr_err("Failed to register kfree_rcu() shrinker!\n");
4700 }
4701
rcu_init(void)4702 void __init rcu_init(void)
4703 {
4704 int cpu;
4705
4706 rcu_early_boot_tests();
4707
4708 kfree_rcu_batch_init();
4709 rcu_bootup_announce();
4710 rcu_init_geometry();
4711 rcu_init_one();
4712 if (dump_tree)
4713 rcu_dump_rcu_node_tree();
4714 if (use_softirq)
4715 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4716
4717 /*
4718 * We don't need protection against CPU-hotplug here because
4719 * this is called early in boot, before either interrupts
4720 * or the scheduler are operational.
4721 */
4722 pm_notifier(rcu_pm_notify, 0);
4723 for_each_online_cpu(cpu) {
4724 rcutree_prepare_cpu(cpu);
4725 rcu_cpu_starting(cpu);
4726 rcutree_online_cpu(cpu);
4727 }
4728
4729 /* Create workqueue for Tree SRCU and for expedited GPs. */
4730 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4731 WARN_ON(!rcu_gp_wq);
4732 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4733 WARN_ON(!rcu_par_gp_wq);
4734
4735 /* Fill in default value for rcutree.qovld boot parameter. */
4736 /* -After- the rcu_node ->lock fields are initialized! */
4737 if (qovld < 0)
4738 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4739 else
4740 qovld_calc = qovld;
4741 }
4742
4743 #include "tree_stall.h"
4744 #include "tree_exp.h"
4745 #include "tree_nocb.h"
4746 #include "tree_plugin.h"
4747