1 // SPDX-License-Identifier: GPL-2.0
2 #define _GNU_SOURCE
3
4 #include <linux/limits.h>
5 #include <fcntl.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <sys/stat.h>
10 #include <sys/types.h>
11 #include <unistd.h>
12 #include <sys/wait.h>
13 #include <errno.h>
14 #include <sys/sysinfo.h>
15 #include <pthread.h>
16
17 #include "../kselftest.h"
18 #include "cgroup_util.h"
19
20
21 /*
22 * Memory cgroup charging is performed using percpu batches 64 pages
23 * big (look at MEMCG_CHARGE_BATCH), whereas memory.stat is exact. So
24 * the maximum discrepancy between charge and vmstat entries is number
25 * of cpus multiplied by 64 pages.
26 */
27 #define MAX_VMSTAT_ERROR (4096 * 64 * get_nprocs())
28
29
alloc_dcache(const char * cgroup,void * arg)30 static int alloc_dcache(const char *cgroup, void *arg)
31 {
32 unsigned long i;
33 struct stat st;
34 char buf[128];
35
36 for (i = 0; i < (unsigned long)arg; i++) {
37 snprintf(buf, sizeof(buf),
38 "/something-non-existent-with-a-long-name-%64lu-%d",
39 i, getpid());
40 stat(buf, &st);
41 }
42
43 return 0;
44 }
45
46 /*
47 * This test allocates 100000 of negative dentries with long names.
48 * Then it checks that "slab" in memory.stat is larger than 1M.
49 * Then it sets memory.high to 1M and checks that at least 1/2
50 * of slab memory has been reclaimed.
51 */
test_kmem_basic(const char * root)52 static int test_kmem_basic(const char *root)
53 {
54 int ret = KSFT_FAIL;
55 char *cg = NULL;
56 long slab0, slab1, current;
57
58 cg = cg_name(root, "kmem_basic_test");
59 if (!cg)
60 goto cleanup;
61
62 if (cg_create(cg))
63 goto cleanup;
64
65 if (cg_run(cg, alloc_dcache, (void *)100000))
66 goto cleanup;
67
68 slab0 = cg_read_key_long(cg, "memory.stat", "slab ");
69 if (slab0 < (1 << 20))
70 goto cleanup;
71
72 cg_write(cg, "memory.high", "1M");
73 slab1 = cg_read_key_long(cg, "memory.stat", "slab ");
74 if (slab1 <= 0)
75 goto cleanup;
76
77 current = cg_read_long(cg, "memory.current");
78 if (current <= 0)
79 goto cleanup;
80
81 if (slab1 < slab0 / 2 && current < slab0 / 2)
82 ret = KSFT_PASS;
83 cleanup:
84 cg_destroy(cg);
85 free(cg);
86
87 return ret;
88 }
89
alloc_kmem_fn(void * arg)90 static void *alloc_kmem_fn(void *arg)
91 {
92 alloc_dcache(NULL, (void *)100);
93 return NULL;
94 }
95
alloc_kmem_smp(const char * cgroup,void * arg)96 static int alloc_kmem_smp(const char *cgroup, void *arg)
97 {
98 int nr_threads = 2 * get_nprocs();
99 pthread_t *tinfo;
100 unsigned long i;
101 int ret = -1;
102
103 tinfo = calloc(nr_threads, sizeof(pthread_t));
104 if (tinfo == NULL)
105 return -1;
106
107 for (i = 0; i < nr_threads; i++) {
108 if (pthread_create(&tinfo[i], NULL, &alloc_kmem_fn,
109 (void *)i)) {
110 free(tinfo);
111 return -1;
112 }
113 }
114
115 for (i = 0; i < nr_threads; i++) {
116 ret = pthread_join(tinfo[i], NULL);
117 if (ret)
118 break;
119 }
120
121 free(tinfo);
122 return ret;
123 }
124
cg_run_in_subcgroups(const char * parent,int (* fn)(const char * cgroup,void * arg),void * arg,int times)125 static int cg_run_in_subcgroups(const char *parent,
126 int (*fn)(const char *cgroup, void *arg),
127 void *arg, int times)
128 {
129 char *child;
130 int i;
131
132 for (i = 0; i < times; i++) {
133 child = cg_name_indexed(parent, "child", i);
134 if (!child)
135 return -1;
136
137 if (cg_create(child)) {
138 cg_destroy(child);
139 free(child);
140 return -1;
141 }
142
143 if (cg_run(child, fn, NULL)) {
144 cg_destroy(child);
145 free(child);
146 return -1;
147 }
148
149 cg_destroy(child);
150 free(child);
151 }
152
153 return 0;
154 }
155
156 /*
157 * The test creates and destroys a large number of cgroups. In each cgroup it
158 * allocates some slab memory (mostly negative dentries) using 2 * NR_CPUS
159 * threads. Then it checks the sanity of numbers on the parent level:
160 * the total size of the cgroups should be roughly equal to
161 * anon + file + slab + kernel_stack.
162 */
test_kmem_memcg_deletion(const char * root)163 static int test_kmem_memcg_deletion(const char *root)
164 {
165 long current, slab, anon, file, kernel_stack, pagetables, percpu, sock, sum;
166 int ret = KSFT_FAIL;
167 char *parent;
168
169 parent = cg_name(root, "kmem_memcg_deletion_test");
170 if (!parent)
171 goto cleanup;
172
173 if (cg_create(parent))
174 goto cleanup;
175
176 if (cg_write(parent, "cgroup.subtree_control", "+memory"))
177 goto cleanup;
178
179 if (cg_run_in_subcgroups(parent, alloc_kmem_smp, NULL, 100))
180 goto cleanup;
181
182 current = cg_read_long(parent, "memory.current");
183 slab = cg_read_key_long(parent, "memory.stat", "slab ");
184 anon = cg_read_key_long(parent, "memory.stat", "anon ");
185 file = cg_read_key_long(parent, "memory.stat", "file ");
186 kernel_stack = cg_read_key_long(parent, "memory.stat", "kernel_stack ");
187 pagetables = cg_read_key_long(parent, "memory.stat", "pagetables ");
188 percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
189 sock = cg_read_key_long(parent, "memory.stat", "sock ");
190 if (current < 0 || slab < 0 || anon < 0 || file < 0 ||
191 kernel_stack < 0 || pagetables < 0 || percpu < 0 || sock < 0)
192 goto cleanup;
193
194 sum = slab + anon + file + kernel_stack + pagetables + percpu + sock;
195 if (abs(sum - current) < MAX_VMSTAT_ERROR) {
196 ret = KSFT_PASS;
197 } else {
198 printf("memory.current = %ld\n", current);
199 printf("slab + anon + file + kernel_stack = %ld\n", sum);
200 printf("slab = %ld\n", slab);
201 printf("anon = %ld\n", anon);
202 printf("file = %ld\n", file);
203 printf("kernel_stack = %ld\n", kernel_stack);
204 printf("pagetables = %ld\n", pagetables);
205 printf("percpu = %ld\n", percpu);
206 printf("sock = %ld\n", sock);
207 }
208
209 cleanup:
210 cg_destroy(parent);
211 free(parent);
212
213 return ret;
214 }
215
216 /*
217 * The test reads the entire /proc/kpagecgroup. If the operation went
218 * successfully (and the kernel didn't panic), the test is treated as passed.
219 */
test_kmem_proc_kpagecgroup(const char * root)220 static int test_kmem_proc_kpagecgroup(const char *root)
221 {
222 unsigned long buf[128];
223 int ret = KSFT_FAIL;
224 ssize_t len;
225 int fd;
226
227 fd = open("/proc/kpagecgroup", O_RDONLY);
228 if (fd < 0)
229 return ret;
230
231 do {
232 len = read(fd, buf, sizeof(buf));
233 } while (len > 0);
234
235 if (len == 0)
236 ret = KSFT_PASS;
237
238 close(fd);
239 return ret;
240 }
241
pthread_wait_fn(void * arg)242 static void *pthread_wait_fn(void *arg)
243 {
244 sleep(100);
245 return NULL;
246 }
247
spawn_1000_threads(const char * cgroup,void * arg)248 static int spawn_1000_threads(const char *cgroup, void *arg)
249 {
250 int nr_threads = 1000;
251 pthread_t *tinfo;
252 unsigned long i;
253 long stack;
254 int ret = -1;
255
256 tinfo = calloc(nr_threads, sizeof(pthread_t));
257 if (tinfo == NULL)
258 return -1;
259
260 for (i = 0; i < nr_threads; i++) {
261 if (pthread_create(&tinfo[i], NULL, &pthread_wait_fn,
262 (void *)i)) {
263 free(tinfo);
264 return(-1);
265 }
266 }
267
268 stack = cg_read_key_long(cgroup, "memory.stat", "kernel_stack ");
269 if (stack >= 4096 * 1000)
270 ret = 0;
271
272 free(tinfo);
273 return ret;
274 }
275
276 /*
277 * The test spawns a process, which spawns 1000 threads. Then it checks
278 * that memory.stat's kernel_stack is at least 1000 pages large.
279 */
test_kmem_kernel_stacks(const char * root)280 static int test_kmem_kernel_stacks(const char *root)
281 {
282 int ret = KSFT_FAIL;
283 char *cg = NULL;
284
285 cg = cg_name(root, "kmem_kernel_stacks_test");
286 if (!cg)
287 goto cleanup;
288
289 if (cg_create(cg))
290 goto cleanup;
291
292 if (cg_run(cg, spawn_1000_threads, NULL))
293 goto cleanup;
294
295 ret = KSFT_PASS;
296 cleanup:
297 cg_destroy(cg);
298 free(cg);
299
300 return ret;
301 }
302
303 /*
304 * This test sequentionally creates 30 child cgroups, allocates some
305 * kernel memory in each of them, and deletes them. Then it checks
306 * that the number of dying cgroups on the parent level is 0.
307 */
test_kmem_dead_cgroups(const char * root)308 static int test_kmem_dead_cgroups(const char *root)
309 {
310 int ret = KSFT_FAIL;
311 char *parent;
312 long dead;
313 int i;
314
315 parent = cg_name(root, "kmem_dead_cgroups_test");
316 if (!parent)
317 goto cleanup;
318
319 if (cg_create(parent))
320 goto cleanup;
321
322 if (cg_write(parent, "cgroup.subtree_control", "+memory"))
323 goto cleanup;
324
325 if (cg_run_in_subcgroups(parent, alloc_dcache, (void *)100, 30))
326 goto cleanup;
327
328 for (i = 0; i < 5; i++) {
329 dead = cg_read_key_long(parent, "cgroup.stat",
330 "nr_dying_descendants ");
331 if (dead == 0) {
332 ret = KSFT_PASS;
333 break;
334 }
335 /*
336 * Reclaiming cgroups might take some time,
337 * let's wait a bit and repeat.
338 */
339 sleep(1);
340 }
341
342 cleanup:
343 cg_destroy(parent);
344 free(parent);
345
346 return ret;
347 }
348
349 /*
350 * This test creates a sub-tree with 1000 memory cgroups.
351 * Then it checks that the memory.current on the parent level
352 * is greater than 0 and approximates matches the percpu value
353 * from memory.stat.
354 */
test_percpu_basic(const char * root)355 static int test_percpu_basic(const char *root)
356 {
357 int ret = KSFT_FAIL;
358 char *parent, *child;
359 long current, percpu;
360 int i;
361
362 parent = cg_name(root, "percpu_basic_test");
363 if (!parent)
364 goto cleanup;
365
366 if (cg_create(parent))
367 goto cleanup;
368
369 if (cg_write(parent, "cgroup.subtree_control", "+memory"))
370 goto cleanup;
371
372 for (i = 0; i < 1000; i++) {
373 child = cg_name_indexed(parent, "child", i);
374 if (!child)
375 return -1;
376
377 if (cg_create(child))
378 goto cleanup_children;
379
380 free(child);
381 }
382
383 current = cg_read_long(parent, "memory.current");
384 percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
385
386 if (current > 0 && percpu > 0 && abs(current - percpu) <
387 MAX_VMSTAT_ERROR)
388 ret = KSFT_PASS;
389 else
390 printf("memory.current %ld\npercpu %ld\n",
391 current, percpu);
392
393 cleanup_children:
394 for (i = 0; i < 1000; i++) {
395 child = cg_name_indexed(parent, "child", i);
396 cg_destroy(child);
397 free(child);
398 }
399
400 cleanup:
401 cg_destroy(parent);
402 free(parent);
403
404 return ret;
405 }
406
407 #define T(x) { x, #x }
408 struct kmem_test {
409 int (*fn)(const char *root);
410 const char *name;
411 } tests[] = {
412 T(test_kmem_basic),
413 T(test_kmem_memcg_deletion),
414 T(test_kmem_proc_kpagecgroup),
415 T(test_kmem_kernel_stacks),
416 T(test_kmem_dead_cgroups),
417 T(test_percpu_basic),
418 };
419 #undef T
420
main(int argc,char ** argv)421 int main(int argc, char **argv)
422 {
423 char root[PATH_MAX];
424 int i, ret = EXIT_SUCCESS;
425
426 if (cg_find_unified_root(root, sizeof(root)))
427 ksft_exit_skip("cgroup v2 isn't mounted\n");
428
429 /*
430 * Check that memory controller is available:
431 * memory is listed in cgroup.controllers
432 */
433 if (cg_read_strstr(root, "cgroup.controllers", "memory"))
434 ksft_exit_skip("memory controller isn't available\n");
435
436 if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
437 if (cg_write(root, "cgroup.subtree_control", "+memory"))
438 ksft_exit_skip("Failed to set memory controller\n");
439
440 for (i = 0; i < ARRAY_SIZE(tests); i++) {
441 switch (tests[i].fn(root)) {
442 case KSFT_PASS:
443 ksft_test_result_pass("%s\n", tests[i].name);
444 break;
445 case KSFT_SKIP:
446 ksft_test_result_skip("%s\n", tests[i].name);
447 break;
448 default:
449 ret = EXIT_FAILURE;
450 ksft_test_result_fail("%s\n", tests[i].name);
451 break;
452 }
453 }
454
455 return ret;
456 }
457