1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI Bandgap temperature sensor driver
4  *
5  * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
6  * Author: J Keerthy <j-keerthy@ti.com>
7  * Author: Moiz Sonasath <m-sonasath@ti.com>
8  * Couple of fixes, DT and MFD adaptation:
9  *   Eduardo Valentin <eduardo.valentin@ti.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/clk.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/platform_device.h>
20 #include <linux/err.h>
21 #include <linux/types.h>
22 #include <linux/spinlock.h>
23 #include <linux/sys_soc.h>
24 #include <linux/reboot.h>
25 #include <linux/of_device.h>
26 #include <linux/of_platform.h>
27 #include <linux/of_irq.h>
28 #include <linux/io.h>
29 #include <linux/cpu_pm.h>
30 #include <linux/device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/pm.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 
36 #include "ti-bandgap.h"
37 
38 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
39 #ifdef CONFIG_PM_SLEEP
40 static int bandgap_omap_cpu_notifier(struct notifier_block *nb,
41 				  unsigned long cmd, void *v);
42 #endif
43 
44 /***   Helper functions to access registers and their bitfields   ***/
45 
46 /**
47  * ti_bandgap_readl() - simple read helper function
48  * @bgp: pointer to ti_bandgap structure
49  * @reg: desired register (offset) to be read
50  *
51  * Helper function to read bandgap registers. It uses the io remapped area.
52  * Return: the register value.
53  */
ti_bandgap_readl(struct ti_bandgap * bgp,u32 reg)54 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
55 {
56 	return readl(bgp->base + reg);
57 }
58 
59 /**
60  * ti_bandgap_writel() - simple write helper function
61  * @bgp: pointer to ti_bandgap structure
62  * @val: desired register value to be written
63  * @reg: desired register (offset) to be written
64  *
65  * Helper function to write bandgap registers. It uses the io remapped area.
66  */
ti_bandgap_writel(struct ti_bandgap * bgp,u32 val,u32 reg)67 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
68 {
69 	writel(val, bgp->base + reg);
70 }
71 
72 /**
73  * DOC: macro to update bits.
74  *
75  * RMW_BITS() - used to read, modify and update bandgap bitfields.
76  *            The value passed will be shifted.
77  */
78 #define RMW_BITS(bgp, id, reg, mask, val)			\
79 do {								\
80 	struct temp_sensor_registers *t;			\
81 	u32 r;							\
82 								\
83 	t = bgp->conf->sensors[(id)].registers;		\
84 	r = ti_bandgap_readl(bgp, t->reg);			\
85 	r &= ~t->mask;						\
86 	r |= (val) << __ffs(t->mask);				\
87 	ti_bandgap_writel(bgp, r, t->reg);			\
88 } while (0)
89 
90 /***   Basic helper functions   ***/
91 
92 /**
93  * ti_bandgap_power() - controls the power state of a bandgap device
94  * @bgp: pointer to ti_bandgap structure
95  * @on: desired power state (1 - on, 0 - off)
96  *
97  * Used to power on/off a bandgap device instance. Only used on those
98  * that features tempsoff bit.
99  *
100  * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
101  */
ti_bandgap_power(struct ti_bandgap * bgp,bool on)102 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
103 {
104 	int i;
105 
106 	if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
107 		return -ENOTSUPP;
108 
109 	for (i = 0; i < bgp->conf->sensor_count; i++)
110 		/* active on 0 */
111 		RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
112 	return 0;
113 }
114 
115 /**
116  * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
117  * @bgp: pointer to ti_bandgap structure
118  * @reg: desired register (offset) to be read
119  *
120  * Function to read dra7 bandgap sensor temperature. This is done separately
121  * so as to workaround the errata "Bandgap Temperature read Dtemp can be
122  * corrupted" - Errata ID: i814".
123  * Read accesses to registers listed below can be corrupted due to incorrect
124  * resynchronization between clock domains.
125  * Read access to registers below can be corrupted :
126  * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
127  * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
128  *
129  * Return: the register value.
130  */
ti_errata814_bandgap_read_temp(struct ti_bandgap * bgp,u32 reg)131 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp,  u32 reg)
132 {
133 	u32 val1, val2;
134 
135 	val1 = ti_bandgap_readl(bgp, reg);
136 	val2 = ti_bandgap_readl(bgp, reg);
137 
138 	/* If both times we read the same value then that is right */
139 	if (val1 == val2)
140 		return val1;
141 
142 	/* if val1 and val2 are different read it third time */
143 	return ti_bandgap_readl(bgp, reg);
144 }
145 
146 /**
147  * ti_bandgap_read_temp() - helper function to read sensor temperature
148  * @bgp: pointer to ti_bandgap structure
149  * @id: bandgap sensor id
150  *
151  * Function to concentrate the steps to read sensor temperature register.
152  * This function is desired because, depending on bandgap device version,
153  * it might be needed to freeze the bandgap state machine, before fetching
154  * the register value.
155  *
156  * Return: temperature in ADC values.
157  */
ti_bandgap_read_temp(struct ti_bandgap * bgp,int id)158 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
159 {
160 	struct temp_sensor_registers *tsr;
161 	u32 temp, reg;
162 
163 	tsr = bgp->conf->sensors[id].registers;
164 	reg = tsr->temp_sensor_ctrl;
165 
166 	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
167 		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
168 		/*
169 		 * In case we cannot read from cur_dtemp / dtemp_0,
170 		 * then we read from the last valid temp read
171 		 */
172 		reg = tsr->ctrl_dtemp_1;
173 	}
174 
175 	/* read temperature */
176 	if (TI_BANDGAP_HAS(bgp, ERRATA_814))
177 		temp = ti_errata814_bandgap_read_temp(bgp, reg);
178 	else
179 		temp = ti_bandgap_readl(bgp, reg);
180 
181 	temp &= tsr->bgap_dtemp_mask;
182 
183 	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
184 		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
185 
186 	return temp;
187 }
188 
189 /***   IRQ handlers   ***/
190 
191 /**
192  * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
193  * @irq: IRQ number
194  * @data: private data (struct ti_bandgap *)
195  *
196  * This is the Talert handler. Use it only if bandgap device features
197  * HAS(TALERT). This handler goes over all sensors and checks their
198  * conditions and acts accordingly. In case there are events pending,
199  * it will reset the event mask to wait for the opposite event (next event).
200  * Every time there is a new event, it will be reported to thermal layer.
201  *
202  * Return: IRQ_HANDLED
203  */
ti_bandgap_talert_irq_handler(int irq,void * data)204 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
205 {
206 	struct ti_bandgap *bgp = data;
207 	struct temp_sensor_registers *tsr;
208 	u32 t_hot = 0, t_cold = 0, ctrl;
209 	int i;
210 
211 	spin_lock(&bgp->lock);
212 	for (i = 0; i < bgp->conf->sensor_count; i++) {
213 		tsr = bgp->conf->sensors[i].registers;
214 		ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
215 
216 		/* Read the status of t_hot */
217 		t_hot = ctrl & tsr->status_hot_mask;
218 
219 		/* Read the status of t_cold */
220 		t_cold = ctrl & tsr->status_cold_mask;
221 
222 		if (!t_cold && !t_hot)
223 			continue;
224 
225 		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
226 		/*
227 		 * One TALERT interrupt: Two sources
228 		 * If the interrupt is due to t_hot then mask t_hot and
229 		 * and unmask t_cold else mask t_cold and unmask t_hot
230 		 */
231 		if (t_hot) {
232 			ctrl &= ~tsr->mask_hot_mask;
233 			ctrl |= tsr->mask_cold_mask;
234 		} else if (t_cold) {
235 			ctrl &= ~tsr->mask_cold_mask;
236 			ctrl |= tsr->mask_hot_mask;
237 		}
238 
239 		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
240 
241 		dev_dbg(bgp->dev,
242 			"%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
243 			__func__, bgp->conf->sensors[i].domain,
244 			t_hot, t_cold);
245 
246 		/* report temperature to whom may concern */
247 		if (bgp->conf->report_temperature)
248 			bgp->conf->report_temperature(bgp, i);
249 	}
250 	spin_unlock(&bgp->lock);
251 
252 	return IRQ_HANDLED;
253 }
254 
255 /**
256  * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
257  * @irq: IRQ number
258  * @data: private data (unused)
259  *
260  * This is the Tshut handler. Use it only if bandgap device features
261  * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
262  * the system.
263  *
264  * Return: IRQ_HANDLED
265  */
ti_bandgap_tshut_irq_handler(int irq,void * data)266 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
267 {
268 	pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
269 		 __func__);
270 
271 	orderly_poweroff(true);
272 
273 	return IRQ_HANDLED;
274 }
275 
276 /***   Helper functions which manipulate conversion ADC <-> mi Celsius   ***/
277 
278 /**
279  * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
280  * @bgp: struct ti_bandgap pointer
281  * @adc_val: value in ADC representation
282  * @t: address where to write the resulting temperature in mCelsius
283  *
284  * Simple conversion from ADC representation to mCelsius. In case the ADC value
285  * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
286  * The conversion table is indexed by the ADC values.
287  *
288  * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
289  * argument is out of the ADC conv table range.
290  */
291 static
ti_bandgap_adc_to_mcelsius(struct ti_bandgap * bgp,int adc_val,int * t)292 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
293 {
294 	const struct ti_bandgap_data *conf = bgp->conf;
295 
296 	/* look up for temperature in the table and return the temperature */
297 	if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
298 		return -ERANGE;
299 
300 	*t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
301 	return 0;
302 }
303 
304 /**
305  * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
306  * @bgp: struct ti_bandgap pointer
307  * @id: bandgap sensor id
308  *
309  * Checks if the bandgap pointer is valid and if the sensor id is also
310  * applicable.
311  *
312  * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
313  * @id cannot index @bgp sensors.
314  */
ti_bandgap_validate(struct ti_bandgap * bgp,int id)315 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
316 {
317 	if (!bgp || IS_ERR(bgp)) {
318 		pr_err("%s: invalid bandgap pointer\n", __func__);
319 		return -EINVAL;
320 	}
321 
322 	if ((id < 0) || (id >= bgp->conf->sensor_count)) {
323 		dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
324 			__func__, id);
325 		return -ERANGE;
326 	}
327 
328 	return 0;
329 }
330 
331 /**
332  * ti_bandgap_read_counter() - read the sensor counter
333  * @bgp: pointer to bandgap instance
334  * @id: sensor id
335  * @interval: resulting update interval in miliseconds
336  */
ti_bandgap_read_counter(struct ti_bandgap * bgp,int id,int * interval)337 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
338 				    int *interval)
339 {
340 	struct temp_sensor_registers *tsr;
341 	int time;
342 
343 	tsr = bgp->conf->sensors[id].registers;
344 	time = ti_bandgap_readl(bgp, tsr->bgap_counter);
345 	time = (time & tsr->counter_mask) >>
346 					__ffs(tsr->counter_mask);
347 	time = time * 1000 / bgp->clk_rate;
348 	*interval = time;
349 }
350 
351 /**
352  * ti_bandgap_read_counter_delay() - read the sensor counter delay
353  * @bgp: pointer to bandgap instance
354  * @id: sensor id
355  * @interval: resulting update interval in miliseconds
356  */
ti_bandgap_read_counter_delay(struct ti_bandgap * bgp,int id,int * interval)357 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
358 					  int *interval)
359 {
360 	struct temp_sensor_registers *tsr;
361 	int reg_val;
362 
363 	tsr = bgp->conf->sensors[id].registers;
364 
365 	reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
366 	reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
367 				__ffs(tsr->mask_counter_delay_mask);
368 	switch (reg_val) {
369 	case 0:
370 		*interval = 0;
371 		break;
372 	case 1:
373 		*interval = 1;
374 		break;
375 	case 2:
376 		*interval = 10;
377 		break;
378 	case 3:
379 		*interval = 100;
380 		break;
381 	case 4:
382 		*interval = 250;
383 		break;
384 	case 5:
385 		*interval = 500;
386 		break;
387 	default:
388 		dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
389 			 reg_val);
390 	}
391 }
392 
393 /**
394  * ti_bandgap_read_update_interval() - read the sensor update interval
395  * @bgp: pointer to bandgap instance
396  * @id: sensor id
397  * @interval: resulting update interval in miliseconds
398  *
399  * Return: 0 on success or the proper error code
400  */
ti_bandgap_read_update_interval(struct ti_bandgap * bgp,int id,int * interval)401 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
402 				    int *interval)
403 {
404 	int ret = 0;
405 
406 	ret = ti_bandgap_validate(bgp, id);
407 	if (ret)
408 		goto exit;
409 
410 	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
411 	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
412 		ret = -ENOTSUPP;
413 		goto exit;
414 	}
415 
416 	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
417 		ti_bandgap_read_counter(bgp, id, interval);
418 		goto exit;
419 	}
420 
421 	ti_bandgap_read_counter_delay(bgp, id, interval);
422 exit:
423 	return ret;
424 }
425 
426 /**
427  * ti_bandgap_write_counter_delay() - set the counter_delay
428  * @bgp: pointer to bandgap instance
429  * @id: sensor id
430  * @interval: desired update interval in miliseconds
431  *
432  * Return: 0 on success or the proper error code
433  */
ti_bandgap_write_counter_delay(struct ti_bandgap * bgp,int id,u32 interval)434 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
435 					  u32 interval)
436 {
437 	int rval;
438 
439 	switch (interval) {
440 	case 0: /* Immediate conversion */
441 		rval = 0x0;
442 		break;
443 	case 1: /* Conversion after ever 1ms */
444 		rval = 0x1;
445 		break;
446 	case 10: /* Conversion after ever 10ms */
447 		rval = 0x2;
448 		break;
449 	case 100: /* Conversion after ever 100ms */
450 		rval = 0x3;
451 		break;
452 	case 250: /* Conversion after ever 250ms */
453 		rval = 0x4;
454 		break;
455 	case 500: /* Conversion after ever 500ms */
456 		rval = 0x5;
457 		break;
458 	default:
459 		dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
460 		return -EINVAL;
461 	}
462 
463 	spin_lock(&bgp->lock);
464 	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
465 	spin_unlock(&bgp->lock);
466 
467 	return 0;
468 }
469 
470 /**
471  * ti_bandgap_write_counter() - set the bandgap sensor counter
472  * @bgp: pointer to bandgap instance
473  * @id: sensor id
474  * @interval: desired update interval in miliseconds
475  */
ti_bandgap_write_counter(struct ti_bandgap * bgp,int id,u32 interval)476 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
477 				     u32 interval)
478 {
479 	interval = interval * bgp->clk_rate / 1000;
480 	spin_lock(&bgp->lock);
481 	RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
482 	spin_unlock(&bgp->lock);
483 }
484 
485 /**
486  * ti_bandgap_write_update_interval() - set the update interval
487  * @bgp: pointer to bandgap instance
488  * @id: sensor id
489  * @interval: desired update interval in miliseconds
490  *
491  * Return: 0 on success or the proper error code
492  */
ti_bandgap_write_update_interval(struct ti_bandgap * bgp,int id,u32 interval)493 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
494 				     int id, u32 interval)
495 {
496 	int ret = ti_bandgap_validate(bgp, id);
497 	if (ret)
498 		goto exit;
499 
500 	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
501 	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
502 		ret = -ENOTSUPP;
503 		goto exit;
504 	}
505 
506 	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
507 		ti_bandgap_write_counter(bgp, id, interval);
508 		goto exit;
509 	}
510 
511 	ret = ti_bandgap_write_counter_delay(bgp, id, interval);
512 exit:
513 	return ret;
514 }
515 
516 /**
517  * ti_bandgap_read_temperature() - report current temperature
518  * @bgp: pointer to bandgap instance
519  * @id: sensor id
520  * @temperature: resulting temperature
521  *
522  * Return: 0 on success or the proper error code
523  */
ti_bandgap_read_temperature(struct ti_bandgap * bgp,int id,int * temperature)524 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
525 				int *temperature)
526 {
527 	u32 temp;
528 	int ret;
529 
530 	ret = ti_bandgap_validate(bgp, id);
531 	if (ret)
532 		return ret;
533 
534 	if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
535 		ret = ti_bandgap_force_single_read(bgp, id);
536 		if (ret)
537 			return ret;
538 	}
539 
540 	spin_lock(&bgp->lock);
541 	temp = ti_bandgap_read_temp(bgp, id);
542 	spin_unlock(&bgp->lock);
543 
544 	ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
545 	if (ret)
546 		return -EIO;
547 
548 	*temperature = temp;
549 
550 	return 0;
551 }
552 
553 /**
554  * ti_bandgap_set_sensor_data() - helper function to store thermal
555  * framework related data.
556  * @bgp: pointer to bandgap instance
557  * @id: sensor id
558  * @data: thermal framework related data to be stored
559  *
560  * Return: 0 on success or the proper error code
561  */
ti_bandgap_set_sensor_data(struct ti_bandgap * bgp,int id,void * data)562 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
563 {
564 	int ret = ti_bandgap_validate(bgp, id);
565 	if (ret)
566 		return ret;
567 
568 	bgp->regval[id].data = data;
569 
570 	return 0;
571 }
572 
573 /**
574  * ti_bandgap_get_sensor_data() - helper function to get thermal
575  * framework related data.
576  * @bgp: pointer to bandgap instance
577  * @id: sensor id
578  *
579  * Return: data stored by set function with sensor id on success or NULL
580  */
ti_bandgap_get_sensor_data(struct ti_bandgap * bgp,int id)581 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
582 {
583 	int ret = ti_bandgap_validate(bgp, id);
584 	if (ret)
585 		return ERR_PTR(ret);
586 
587 	return bgp->regval[id].data;
588 }
589 
590 /***   Helper functions used during device initialization   ***/
591 
592 /**
593  * ti_bandgap_force_single_read() - executes 1 single ADC conversion
594  * @bgp: pointer to struct ti_bandgap
595  * @id: sensor id which it is desired to read 1 temperature
596  *
597  * Used to initialize the conversion state machine and set it to a valid
598  * state. Called during device initialization and context restore events.
599  *
600  * Return: 0
601  */
602 static int
ti_bandgap_force_single_read(struct ti_bandgap * bgp,int id)603 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
604 {
605 	u32 counter = 1000;
606 	struct temp_sensor_registers *tsr;
607 
608 	/* Select single conversion mode */
609 	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
610 		RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
611 
612 	/* Start of Conversion = 1 */
613 	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
614 
615 	/* Wait for EOCZ going up */
616 	tsr = bgp->conf->sensors[id].registers;
617 
618 	while (--counter) {
619 		if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
620 		    tsr->bgap_eocz_mask)
621 			break;
622 	}
623 
624 	/* Start of Conversion = 0 */
625 	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
626 
627 	/* Wait for EOCZ going down */
628 	counter = 1000;
629 	while (--counter) {
630 		if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
631 		      tsr->bgap_eocz_mask))
632 			break;
633 	}
634 
635 	return 0;
636 }
637 
638 /**
639  * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
640  * @bgp: pointer to struct ti_bandgap
641  *
642  * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
643  * be used for junction temperature monitoring, it is desirable that the
644  * sensors are operational all the time, so that alerts are generated
645  * properly.
646  *
647  * Return: 0
648  */
ti_bandgap_set_continuous_mode(struct ti_bandgap * bgp)649 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
650 {
651 	int i;
652 
653 	for (i = 0; i < bgp->conf->sensor_count; i++) {
654 		/* Perform a single read just before enabling continuous */
655 		ti_bandgap_force_single_read(bgp, i);
656 		RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
657 	}
658 
659 	return 0;
660 }
661 
662 /**
663  * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
664  * @bgp: pointer to struct ti_bandgap
665  * @id: id of the individual sensor
666  * @trend: Pointer to trend.
667  *
668  * This function needs to be called to fetch the temperature trend of a
669  * Particular sensor. The function computes the difference in temperature
670  * w.r.t time. For the bandgaps with built in history buffer the temperatures
671  * are read from the buffer and for those without the Buffer -ENOTSUPP is
672  * returned.
673  *
674  * Return: 0 if no error, else return corresponding error. If no
675  *		error then the trend value is passed on to trend parameter
676  */
ti_bandgap_get_trend(struct ti_bandgap * bgp,int id,int * trend)677 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
678 {
679 	struct temp_sensor_registers *tsr;
680 	u32 temp1, temp2, reg1, reg2;
681 	int t1, t2, interval, ret = 0;
682 
683 	ret = ti_bandgap_validate(bgp, id);
684 	if (ret)
685 		goto exit;
686 
687 	if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
688 	    !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
689 		ret = -ENOTSUPP;
690 		goto exit;
691 	}
692 
693 	spin_lock(&bgp->lock);
694 
695 	tsr = bgp->conf->sensors[id].registers;
696 
697 	/* Freeze and read the last 2 valid readings */
698 	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
699 	reg1 = tsr->ctrl_dtemp_1;
700 	reg2 = tsr->ctrl_dtemp_2;
701 
702 	/* read temperature from history buffer */
703 	temp1 = ti_bandgap_readl(bgp, reg1);
704 	temp1 &= tsr->bgap_dtemp_mask;
705 
706 	temp2 = ti_bandgap_readl(bgp, reg2);
707 	temp2 &= tsr->bgap_dtemp_mask;
708 
709 	/* Convert from adc values to mCelsius temperature */
710 	ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
711 	if (ret)
712 		goto unfreeze;
713 
714 	ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
715 	if (ret)
716 		goto unfreeze;
717 
718 	/* Fetch the update interval */
719 	ret = ti_bandgap_read_update_interval(bgp, id, &interval);
720 	if (ret)
721 		goto unfreeze;
722 
723 	/* Set the interval to 1 ms if bandgap counter delay is not set */
724 	if (interval == 0)
725 		interval = 1;
726 
727 	*trend = (t1 - t2) / interval;
728 
729 	dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
730 		t1, t2, *trend);
731 
732 unfreeze:
733 	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
734 	spin_unlock(&bgp->lock);
735 exit:
736 	return ret;
737 }
738 
739 /**
740  * ti_bandgap_tshut_init() - setup and initialize tshut handling
741  * @bgp: pointer to struct ti_bandgap
742  * @pdev: pointer to device struct platform_device
743  *
744  * Call this function only in case the bandgap features HAS(TSHUT).
745  * In this case, the driver needs to handle the TSHUT signal as an IRQ.
746  * The IRQ is wired as a GPIO, and for this purpose, it is required
747  * to specify which GPIO line is used. TSHUT IRQ is fired anytime
748  * one of the bandgap sensors violates the TSHUT high/hot threshold.
749  * And in that case, the system must go off.
750  *
751  * Return: 0 if no error, else error status
752  */
ti_bandgap_tshut_init(struct ti_bandgap * bgp,struct platform_device * pdev)753 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
754 				 struct platform_device *pdev)
755 {
756 	int status;
757 
758 	status = request_irq(gpiod_to_irq(bgp->tshut_gpiod),
759 			     ti_bandgap_tshut_irq_handler,
760 			     IRQF_TRIGGER_RISING, "tshut", NULL);
761 	if (status)
762 		dev_err(bgp->dev, "request irq failed for TSHUT");
763 
764 	return 0;
765 }
766 
767 /**
768  * ti_bandgap_alert_init() - setup and initialize talert handling
769  * @bgp: pointer to struct ti_bandgap
770  * @pdev: pointer to device struct platform_device
771  *
772  * Call this function only in case the bandgap features HAS(TALERT).
773  * In this case, the driver needs to handle the TALERT signals as an IRQs.
774  * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
775  * are violated. In these situation, the driver must reprogram the thresholds,
776  * accordingly to specified policy.
777  *
778  * Return: 0 if no error, else return corresponding error.
779  */
ti_bandgap_talert_init(struct ti_bandgap * bgp,struct platform_device * pdev)780 static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
781 				  struct platform_device *pdev)
782 {
783 	int ret;
784 
785 	bgp->irq = platform_get_irq(pdev, 0);
786 	if (bgp->irq < 0)
787 		return bgp->irq;
788 
789 	ret = request_threaded_irq(bgp->irq, NULL,
790 				   ti_bandgap_talert_irq_handler,
791 				   IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
792 				   "talert", bgp);
793 	if (ret) {
794 		dev_err(&pdev->dev, "Request threaded irq failed.\n");
795 		return ret;
796 	}
797 
798 	return 0;
799 }
800 
801 static const struct of_device_id of_ti_bandgap_match[];
802 /**
803  * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
804  * @pdev: pointer to device struct platform_device
805  *
806  * Used to read the device tree properties accordingly to the bandgap
807  * matching version. Based on bandgap version and its capabilities it
808  * will build a struct ti_bandgap out of the required DT entries.
809  *
810  * Return: valid bandgap structure if successful, else returns ERR_PTR
811  * return value must be verified with IS_ERR.
812  */
ti_bandgap_build(struct platform_device * pdev)813 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
814 {
815 	struct device_node *node = pdev->dev.of_node;
816 	const struct of_device_id *of_id;
817 	struct ti_bandgap *bgp;
818 	struct resource *res;
819 	int i;
820 
821 	/* just for the sake */
822 	if (!node) {
823 		dev_err(&pdev->dev, "no platform information available\n");
824 		return ERR_PTR(-EINVAL);
825 	}
826 
827 	bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
828 	if (!bgp)
829 		return ERR_PTR(-ENOMEM);
830 
831 	of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
832 	if (of_id)
833 		bgp->conf = of_id->data;
834 
835 	/* register shadow for context save and restore */
836 	bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
837 				   sizeof(*bgp->regval), GFP_KERNEL);
838 	if (!bgp->regval)
839 		return ERR_PTR(-ENOMEM);
840 
841 	i = 0;
842 	do {
843 		void __iomem *chunk;
844 
845 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
846 		if (!res)
847 			break;
848 		chunk = devm_ioremap_resource(&pdev->dev, res);
849 		if (i == 0)
850 			bgp->base = chunk;
851 		if (IS_ERR(chunk))
852 			return ERR_CAST(chunk);
853 
854 		i++;
855 	} while (res);
856 
857 	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
858 		bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN);
859 		if (IS_ERR(bgp->tshut_gpiod)) {
860 			dev_err(&pdev->dev, "invalid gpio for tshut\n");
861 			return ERR_CAST(bgp->tshut_gpiod);
862 		}
863 	}
864 
865 	return bgp;
866 }
867 
868 /*
869  * List of SoCs on which the CPU PM notifier can cause erros on the DTEMP
870  * readout.
871  * Enabled notifier on these machines results in erroneous, random values which
872  * could trigger unexpected thermal shutdown.
873  */
874 static const struct soc_device_attribute soc_no_cpu_notifier[] = {
875 	{ .machine = "OMAP4430" },
876 	{ /* sentinel */ },
877 };
878 
879 /***   Device driver call backs   ***/
880 
881 static
ti_bandgap_probe(struct platform_device * pdev)882 int ti_bandgap_probe(struct platform_device *pdev)
883 {
884 	struct ti_bandgap *bgp;
885 	int clk_rate, ret, i;
886 
887 	bgp = ti_bandgap_build(pdev);
888 	if (IS_ERR(bgp)) {
889 		dev_err(&pdev->dev, "failed to fetch platform data\n");
890 		return PTR_ERR(bgp);
891 	}
892 	bgp->dev = &pdev->dev;
893 
894 	if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
895 		dev_warn(&pdev->dev,
896 			 "This OMAP thermal sensor is unreliable. You've been warned\n");
897 
898 	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
899 		ret = ti_bandgap_tshut_init(bgp, pdev);
900 		if (ret) {
901 			dev_err(&pdev->dev,
902 				"failed to initialize system tshut IRQ\n");
903 			return ret;
904 		}
905 	}
906 
907 	bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
908 	if (IS_ERR(bgp->fclock)) {
909 		dev_err(&pdev->dev, "failed to request fclock reference\n");
910 		ret = PTR_ERR(bgp->fclock);
911 		goto free_irqs;
912 	}
913 
914 	bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
915 	if (IS_ERR(bgp->div_clk)) {
916 		dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
917 		ret = PTR_ERR(bgp->div_clk);
918 		goto put_fclock;
919 	}
920 
921 	for (i = 0; i < bgp->conf->sensor_count; i++) {
922 		struct temp_sensor_registers *tsr;
923 		u32 val;
924 
925 		tsr = bgp->conf->sensors[i].registers;
926 		/*
927 		 * check if the efuse has a non-zero value if not
928 		 * it is an untrimmed sample and the temperatures
929 		 * may not be accurate
930 		 */
931 		val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
932 		if (!val)
933 			dev_info(&pdev->dev,
934 				 "Non-trimmed BGAP, Temp not accurate\n");
935 	}
936 
937 	clk_rate = clk_round_rate(bgp->div_clk,
938 				  bgp->conf->sensors[0].ts_data->max_freq);
939 	if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
940 	    clk_rate <= 0) {
941 		ret = -ENODEV;
942 		dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
943 		goto put_clks;
944 	}
945 
946 	ret = clk_set_rate(bgp->div_clk, clk_rate);
947 	if (ret)
948 		dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
949 
950 	bgp->clk_rate = clk_rate;
951 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
952 		clk_prepare_enable(bgp->fclock);
953 
954 
955 	spin_lock_init(&bgp->lock);
956 	bgp->dev = &pdev->dev;
957 	platform_set_drvdata(pdev, bgp);
958 
959 	ti_bandgap_power(bgp, true);
960 
961 	/* Set default counter to 1 for now */
962 	if (TI_BANDGAP_HAS(bgp, COUNTER))
963 		for (i = 0; i < bgp->conf->sensor_count; i++)
964 			RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
965 
966 	/* Set default thresholds for alert and shutdown */
967 	for (i = 0; i < bgp->conf->sensor_count; i++) {
968 		struct temp_sensor_data *ts_data;
969 
970 		ts_data = bgp->conf->sensors[i].ts_data;
971 
972 		if (TI_BANDGAP_HAS(bgp, TALERT)) {
973 			/* Set initial Talert thresholds */
974 			RMW_BITS(bgp, i, bgap_threshold,
975 				 threshold_tcold_mask, ts_data->t_cold);
976 			RMW_BITS(bgp, i, bgap_threshold,
977 				 threshold_thot_mask, ts_data->t_hot);
978 			/* Enable the alert events */
979 			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
980 			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
981 		}
982 
983 		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
984 			/* Set initial Tshut thresholds */
985 			RMW_BITS(bgp, i, tshut_threshold,
986 				 tshut_hot_mask, ts_data->tshut_hot);
987 			RMW_BITS(bgp, i, tshut_threshold,
988 				 tshut_cold_mask, ts_data->tshut_cold);
989 		}
990 	}
991 
992 	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
993 		ti_bandgap_set_continuous_mode(bgp);
994 
995 	/* Set .250 seconds time as default counter */
996 	if (TI_BANDGAP_HAS(bgp, COUNTER))
997 		for (i = 0; i < bgp->conf->sensor_count; i++)
998 			RMW_BITS(bgp, i, bgap_counter, counter_mask,
999 				 bgp->clk_rate / 4);
1000 
1001 	/* Every thing is good? Then expose the sensors */
1002 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1003 		char *domain;
1004 
1005 		if (bgp->conf->sensors[i].register_cooling) {
1006 			ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1007 			if (ret)
1008 				goto remove_sensors;
1009 		}
1010 
1011 		if (bgp->conf->expose_sensor) {
1012 			domain = bgp->conf->sensors[i].domain;
1013 			ret = bgp->conf->expose_sensor(bgp, i, domain);
1014 			if (ret)
1015 				goto remove_last_cooling;
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * Enable the Interrupts once everything is set. Otherwise irq handler
1021 	 * might be called as soon as it is enabled where as rest of framework
1022 	 * is still getting initialised.
1023 	 */
1024 	if (TI_BANDGAP_HAS(bgp, TALERT)) {
1025 		ret = ti_bandgap_talert_init(bgp, pdev);
1026 		if (ret) {
1027 			dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1028 			i = bgp->conf->sensor_count;
1029 			goto disable_clk;
1030 		}
1031 	}
1032 
1033 #ifdef CONFIG_PM_SLEEP
1034 	bgp->nb.notifier_call = bandgap_omap_cpu_notifier;
1035 	if (!soc_device_match(soc_no_cpu_notifier))
1036 		cpu_pm_register_notifier(&bgp->nb);
1037 #endif
1038 
1039 	return 0;
1040 
1041 remove_last_cooling:
1042 	if (bgp->conf->sensors[i].unregister_cooling)
1043 		bgp->conf->sensors[i].unregister_cooling(bgp, i);
1044 remove_sensors:
1045 	for (i--; i >= 0; i--) {
1046 		if (bgp->conf->sensors[i].unregister_cooling)
1047 			bgp->conf->sensors[i].unregister_cooling(bgp, i);
1048 		if (bgp->conf->remove_sensor)
1049 			bgp->conf->remove_sensor(bgp, i);
1050 	}
1051 	ti_bandgap_power(bgp, false);
1052 disable_clk:
1053 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1054 		clk_disable_unprepare(bgp->fclock);
1055 put_clks:
1056 	clk_put(bgp->div_clk);
1057 put_fclock:
1058 	clk_put(bgp->fclock);
1059 free_irqs:
1060 	if (TI_BANDGAP_HAS(bgp, TSHUT))
1061 		free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
1062 
1063 	return ret;
1064 }
1065 
1066 static
ti_bandgap_remove(struct platform_device * pdev)1067 int ti_bandgap_remove(struct platform_device *pdev)
1068 {
1069 	struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1070 	int i;
1071 
1072 	if (!soc_device_match(soc_no_cpu_notifier))
1073 		cpu_pm_unregister_notifier(&bgp->nb);
1074 
1075 	/* Remove sensor interfaces */
1076 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1077 		if (bgp->conf->sensors[i].unregister_cooling)
1078 			bgp->conf->sensors[i].unregister_cooling(bgp, i);
1079 
1080 		if (bgp->conf->remove_sensor)
1081 			bgp->conf->remove_sensor(bgp, i);
1082 	}
1083 
1084 	ti_bandgap_power(bgp, false);
1085 
1086 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1087 		clk_disable_unprepare(bgp->fclock);
1088 	clk_put(bgp->fclock);
1089 	clk_put(bgp->div_clk);
1090 
1091 	if (TI_BANDGAP_HAS(bgp, TALERT))
1092 		free_irq(bgp->irq, bgp);
1093 
1094 	if (TI_BANDGAP_HAS(bgp, TSHUT))
1095 		free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
1096 
1097 	return 0;
1098 }
1099 
1100 #ifdef CONFIG_PM_SLEEP
ti_bandgap_save_ctxt(struct ti_bandgap * bgp)1101 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1102 {
1103 	int i;
1104 
1105 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1106 		struct temp_sensor_registers *tsr;
1107 		struct temp_sensor_regval *rval;
1108 
1109 		rval = &bgp->regval[i];
1110 		tsr = bgp->conf->sensors[i].registers;
1111 
1112 		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1113 			rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1114 							tsr->bgap_mode_ctrl);
1115 		if (TI_BANDGAP_HAS(bgp, COUNTER))
1116 			rval->bg_counter = ti_bandgap_readl(bgp,
1117 							tsr->bgap_counter);
1118 		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1119 			rval->bg_threshold = ti_bandgap_readl(bgp,
1120 							tsr->bgap_threshold);
1121 			rval->bg_ctrl = ti_bandgap_readl(bgp,
1122 						   tsr->bgap_mask_ctrl);
1123 		}
1124 
1125 		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1126 			rval->tshut_threshold = ti_bandgap_readl(bgp,
1127 						   tsr->tshut_threshold);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
ti_bandgap_restore_ctxt(struct ti_bandgap * bgp)1133 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1134 {
1135 	int i;
1136 
1137 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1138 		struct temp_sensor_registers *tsr;
1139 		struct temp_sensor_regval *rval;
1140 		u32 val = 0;
1141 
1142 		rval = &bgp->regval[i];
1143 		tsr = bgp->conf->sensors[i].registers;
1144 
1145 		if (TI_BANDGAP_HAS(bgp, COUNTER))
1146 			val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1147 
1148 		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1149 			ti_bandgap_writel(bgp, rval->tshut_threshold,
1150 					  tsr->tshut_threshold);
1151 		/* Force immediate temperature measurement and update
1152 		 * of the DTEMP field
1153 		 */
1154 		ti_bandgap_force_single_read(bgp, i);
1155 
1156 		if (TI_BANDGAP_HAS(bgp, COUNTER))
1157 			ti_bandgap_writel(bgp, rval->bg_counter,
1158 					  tsr->bgap_counter);
1159 		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1160 			ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1161 					  tsr->bgap_mode_ctrl);
1162 		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1163 			ti_bandgap_writel(bgp, rval->bg_threshold,
1164 					  tsr->bgap_threshold);
1165 			ti_bandgap_writel(bgp, rval->bg_ctrl,
1166 					  tsr->bgap_mask_ctrl);
1167 		}
1168 	}
1169 
1170 	return 0;
1171 }
1172 
ti_bandgap_suspend(struct device * dev)1173 static int ti_bandgap_suspend(struct device *dev)
1174 {
1175 	struct ti_bandgap *bgp = dev_get_drvdata(dev);
1176 	int err;
1177 
1178 	err = ti_bandgap_save_ctxt(bgp);
1179 	ti_bandgap_power(bgp, false);
1180 
1181 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1182 		clk_disable_unprepare(bgp->fclock);
1183 
1184 	bgp->is_suspended = true;
1185 
1186 	return err;
1187 }
1188 
bandgap_omap_cpu_notifier(struct notifier_block * nb,unsigned long cmd,void * v)1189 static int bandgap_omap_cpu_notifier(struct notifier_block *nb,
1190 				  unsigned long cmd, void *v)
1191 {
1192 	struct ti_bandgap *bgp;
1193 
1194 	bgp = container_of(nb, struct ti_bandgap, nb);
1195 
1196 	spin_lock(&bgp->lock);
1197 	switch (cmd) {
1198 	case CPU_CLUSTER_PM_ENTER:
1199 		if (bgp->is_suspended)
1200 			break;
1201 		ti_bandgap_save_ctxt(bgp);
1202 		ti_bandgap_power(bgp, false);
1203 		if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1204 			clk_disable(bgp->fclock);
1205 		break;
1206 	case CPU_CLUSTER_PM_ENTER_FAILED:
1207 	case CPU_CLUSTER_PM_EXIT:
1208 		if (bgp->is_suspended)
1209 			break;
1210 		if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1211 			clk_enable(bgp->fclock);
1212 		ti_bandgap_power(bgp, true);
1213 		ti_bandgap_restore_ctxt(bgp);
1214 		break;
1215 	}
1216 	spin_unlock(&bgp->lock);
1217 
1218 	return NOTIFY_OK;
1219 }
1220 
ti_bandgap_resume(struct device * dev)1221 static int ti_bandgap_resume(struct device *dev)
1222 {
1223 	struct ti_bandgap *bgp = dev_get_drvdata(dev);
1224 
1225 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1226 		clk_prepare_enable(bgp->fclock);
1227 
1228 	ti_bandgap_power(bgp, true);
1229 	bgp->is_suspended = false;
1230 
1231 	return ti_bandgap_restore_ctxt(bgp);
1232 }
1233 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1234 			 ti_bandgap_resume);
1235 
1236 #define DEV_PM_OPS	(&ti_bandgap_dev_pm_ops)
1237 #else
1238 #define DEV_PM_OPS	NULL
1239 #endif
1240 
1241 static const struct of_device_id of_ti_bandgap_match[] = {
1242 #ifdef CONFIG_OMAP3_THERMAL
1243 	{
1244 		.compatible = "ti,omap34xx-bandgap",
1245 		.data = (void *)&omap34xx_data,
1246 	},
1247 	{
1248 		.compatible = "ti,omap36xx-bandgap",
1249 		.data = (void *)&omap36xx_data,
1250 	},
1251 #endif
1252 #ifdef CONFIG_OMAP4_THERMAL
1253 	{
1254 		.compatible = "ti,omap4430-bandgap",
1255 		.data = (void *)&omap4430_data,
1256 	},
1257 	{
1258 		.compatible = "ti,omap4460-bandgap",
1259 		.data = (void *)&omap4460_data,
1260 	},
1261 	{
1262 		.compatible = "ti,omap4470-bandgap",
1263 		.data = (void *)&omap4470_data,
1264 	},
1265 #endif
1266 #ifdef CONFIG_OMAP5_THERMAL
1267 	{
1268 		.compatible = "ti,omap5430-bandgap",
1269 		.data = (void *)&omap5430_data,
1270 	},
1271 #endif
1272 #ifdef CONFIG_DRA752_THERMAL
1273 	{
1274 		.compatible = "ti,dra752-bandgap",
1275 		.data = (void *)&dra752_data,
1276 	},
1277 #endif
1278 	/* Sentinel */
1279 	{ },
1280 };
1281 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1282 
1283 static struct platform_driver ti_bandgap_sensor_driver = {
1284 	.probe = ti_bandgap_probe,
1285 	.remove = ti_bandgap_remove,
1286 	.driver = {
1287 			.name = "ti-soc-thermal",
1288 			.pm = DEV_PM_OPS,
1289 			.of_match_table	= of_ti_bandgap_match,
1290 	},
1291 };
1292 
1293 module_platform_driver(ti_bandgap_sensor_driver);
1294 
1295 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1296 MODULE_LICENSE("GPL v2");
1297 MODULE_ALIAS("platform:ti-soc-thermal");
1298 MODULE_AUTHOR("Texas Instrument Inc.");
1299