1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/pagemap.h>
43 
44 /* How many pages do we try to swap or page in/out together? */
45 int page_cluster;
46 
47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
50 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
51 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
52 #ifdef CONFIG_SMP
53 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
54 #endif
55 
56 /*
57  * This path almost never happens for VM activity - pages are normally
58  * freed via pagevecs.  But it gets used by networking.
59  */
__page_cache_release(struct page * page)60 static void __page_cache_release(struct page *page)
61 {
62 	if (PageLRU(page)) {
63 		pg_data_t *pgdat = page_pgdat(page);
64 		struct lruvec *lruvec;
65 		unsigned long flags;
66 
67 		spin_lock_irqsave(&pgdat->lru_lock, flags);
68 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
69 		VM_BUG_ON_PAGE(!PageLRU(page), page);
70 		__ClearPageLRU(page);
71 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
72 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
73 	}
74 	__ClearPageWaiters(page);
75 }
76 
__put_single_page(struct page * page)77 static void __put_single_page(struct page *page)
78 {
79 	__page_cache_release(page);
80 	mem_cgroup_uncharge(page);
81 	free_unref_page(page);
82 }
83 
__put_compound_page(struct page * page)84 static void __put_compound_page(struct page *page)
85 {
86 	compound_page_dtor *dtor;
87 
88 	/*
89 	 * __page_cache_release() is supposed to be called for thp, not for
90 	 * hugetlb. This is because hugetlb page does never have PageLRU set
91 	 * (it's never listed to any LRU lists) and no memcg routines should
92 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
93 	 */
94 	if (!PageHuge(page))
95 		__page_cache_release(page);
96 	dtor = get_compound_page_dtor(page);
97 	(*dtor)(page);
98 }
99 
__put_page(struct page * page)100 void __put_page(struct page *page)
101 {
102 	if (is_zone_device_page(page)) {
103 		put_dev_pagemap(page->pgmap);
104 
105 		/*
106 		 * The page belongs to the device that created pgmap. Do
107 		 * not return it to page allocator.
108 		 */
109 		return;
110 	}
111 
112 	if (unlikely(PageCompound(page)))
113 		__put_compound_page(page);
114 	else
115 		__put_single_page(page);
116 }
117 EXPORT_SYMBOL(__put_page);
118 
119 /**
120  * put_pages_list() - release a list of pages
121  * @pages: list of pages threaded on page->lru
122  *
123  * Release a list of pages which are strung together on page.lru.  Currently
124  * used by read_cache_pages() and related error recovery code.
125  */
put_pages_list(struct list_head * pages)126 void put_pages_list(struct list_head *pages)
127 {
128 	while (!list_empty(pages)) {
129 		struct page *victim;
130 
131 		victim = lru_to_page(pages);
132 		list_del(&victim->lru);
133 		put_page(victim);
134 	}
135 }
136 EXPORT_SYMBOL(put_pages_list);
137 
138 /*
139  * get_kernel_pages() - pin kernel pages in memory
140  * @kiov:	An array of struct kvec structures
141  * @nr_segs:	number of segments to pin
142  * @write:	pinning for read/write, currently ignored
143  * @pages:	array that receives pointers to the pages pinned.
144  *		Should be at least nr_segs long.
145  *
146  * Returns number of pages pinned. This may be fewer than the number
147  * requested. If nr_pages is 0 or negative, returns 0. If no pages
148  * were pinned, returns -errno. Each page returned must be released
149  * with a put_page() call when it is finished with.
150  */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)151 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
152 		struct page **pages)
153 {
154 	int seg;
155 
156 	for (seg = 0; seg < nr_segs; seg++) {
157 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
158 			return seg;
159 
160 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
161 		get_page(pages[seg]);
162 	}
163 
164 	return seg;
165 }
166 EXPORT_SYMBOL_GPL(get_kernel_pages);
167 
168 /*
169  * get_kernel_page() - pin a kernel page in memory
170  * @start:	starting kernel address
171  * @write:	pinning for read/write, currently ignored
172  * @pages:	array that receives pointer to the page pinned.
173  *		Must be at least nr_segs long.
174  *
175  * Returns 1 if page is pinned. If the page was not pinned, returns
176  * -errno. The page returned must be released with a put_page() call
177  * when it is finished with.
178  */
get_kernel_page(unsigned long start,int write,struct page ** pages)179 int get_kernel_page(unsigned long start, int write, struct page **pages)
180 {
181 	const struct kvec kiov = {
182 		.iov_base = (void *)start,
183 		.iov_len = PAGE_SIZE
184 	};
185 
186 	return get_kernel_pages(&kiov, 1, write, pages);
187 }
188 EXPORT_SYMBOL_GPL(get_kernel_page);
189 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)190 static void pagevec_lru_move_fn(struct pagevec *pvec,
191 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
192 	void *arg)
193 {
194 	int i;
195 	struct pglist_data *pgdat = NULL;
196 	struct lruvec *lruvec;
197 	unsigned long flags = 0;
198 
199 	for (i = 0; i < pagevec_count(pvec); i++) {
200 		struct page *page = pvec->pages[i];
201 		struct pglist_data *pagepgdat = page_pgdat(page);
202 
203 		if (pagepgdat != pgdat) {
204 			if (pgdat)
205 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
206 			pgdat = pagepgdat;
207 			spin_lock_irqsave(&pgdat->lru_lock, flags);
208 		}
209 
210 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
211 		(*move_fn)(page, lruvec, arg);
212 	}
213 	if (pgdat)
214 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
215 	release_pages(pvec->pages, pvec->nr);
216 	pagevec_reinit(pvec);
217 }
218 
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)219 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
220 				 void *arg)
221 {
222 	int *pgmoved = arg;
223 
224 	if (PageLRU(page) && !PageUnevictable(page)) {
225 		del_page_from_lru_list(page, lruvec, page_lru(page));
226 		ClearPageActive(page);
227 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
228 		(*pgmoved)++;
229 	}
230 }
231 
232 /*
233  * pagevec_move_tail() must be called with IRQ disabled.
234  * Otherwise this may cause nasty races.
235  */
pagevec_move_tail(struct pagevec * pvec)236 static void pagevec_move_tail(struct pagevec *pvec)
237 {
238 	int pgmoved = 0;
239 
240 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
241 	__count_vm_events(PGROTATED, pgmoved);
242 }
243 
244 /*
245  * Writeback is about to end against a page which has been marked for immediate
246  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
247  * inactive list.
248  */
rotate_reclaimable_page(struct page * page)249 void rotate_reclaimable_page(struct page *page)
250 {
251 	if (!PageLocked(page) && !PageDirty(page) &&
252 	    !PageUnevictable(page) && PageLRU(page)) {
253 		struct pagevec *pvec;
254 		unsigned long flags;
255 
256 		get_page(page);
257 		local_irq_save(flags);
258 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
259 		if (!pagevec_add(pvec, page) || PageCompound(page))
260 			pagevec_move_tail(pvec);
261 		local_irq_restore(flags);
262 	}
263 }
264 
update_page_reclaim_stat(struct lruvec * lruvec,int file,int rotated)265 static void update_page_reclaim_stat(struct lruvec *lruvec,
266 				     int file, int rotated)
267 {
268 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
269 
270 	reclaim_stat->recent_scanned[file]++;
271 	if (rotated)
272 		reclaim_stat->recent_rotated[file]++;
273 }
274 
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)275 static void __activate_page(struct page *page, struct lruvec *lruvec,
276 			    void *arg)
277 {
278 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
279 		int file = page_is_file_cache(page);
280 		int lru = page_lru_base_type(page);
281 
282 		del_page_from_lru_list(page, lruvec, lru);
283 		SetPageActive(page);
284 		lru += LRU_ACTIVE;
285 		add_page_to_lru_list(page, lruvec, lru);
286 		trace_mm_lru_activate(page);
287 
288 		__count_vm_event(PGACTIVATE);
289 		update_page_reclaim_stat(lruvec, file, 1);
290 	}
291 }
292 
293 #ifdef CONFIG_SMP
activate_page_drain(int cpu)294 static void activate_page_drain(int cpu)
295 {
296 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
297 
298 	if (pagevec_count(pvec))
299 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
300 }
301 
need_activate_page_drain(int cpu)302 static bool need_activate_page_drain(int cpu)
303 {
304 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
305 }
306 
activate_page(struct page * page)307 void activate_page(struct page *page)
308 {
309 	page = compound_head(page);
310 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
311 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
312 
313 		get_page(page);
314 		if (!pagevec_add(pvec, page) || PageCompound(page))
315 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
316 		put_cpu_var(activate_page_pvecs);
317 	}
318 }
319 
320 #else
activate_page_drain(int cpu)321 static inline void activate_page_drain(int cpu)
322 {
323 }
324 
activate_page(struct page * page)325 void activate_page(struct page *page)
326 {
327 	pg_data_t *pgdat = page_pgdat(page);
328 
329 	page = compound_head(page);
330 	spin_lock_irq(&pgdat->lru_lock);
331 	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
332 	spin_unlock_irq(&pgdat->lru_lock);
333 }
334 #endif
335 
__lru_cache_activate_page(struct page * page)336 static void __lru_cache_activate_page(struct page *page)
337 {
338 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
339 	int i;
340 
341 	/*
342 	 * Search backwards on the optimistic assumption that the page being
343 	 * activated has just been added to this pagevec. Note that only
344 	 * the local pagevec is examined as a !PageLRU page could be in the
345 	 * process of being released, reclaimed, migrated or on a remote
346 	 * pagevec that is currently being drained. Furthermore, marking
347 	 * a remote pagevec's page PageActive potentially hits a race where
348 	 * a page is marked PageActive just after it is added to the inactive
349 	 * list causing accounting errors and BUG_ON checks to trigger.
350 	 */
351 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
352 		struct page *pagevec_page = pvec->pages[i];
353 
354 		if (pagevec_page == page) {
355 			SetPageActive(page);
356 			break;
357 		}
358 	}
359 
360 	put_cpu_var(lru_add_pvec);
361 }
362 
363 /*
364  * Mark a page as having seen activity.
365  *
366  * inactive,unreferenced	->	inactive,referenced
367  * inactive,referenced		->	active,unreferenced
368  * active,unreferenced		->	active,referenced
369  *
370  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
371  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
372  */
mark_page_accessed(struct page * page)373 void mark_page_accessed(struct page *page)
374 {
375 	page = compound_head(page);
376 	if (!PageActive(page) && !PageUnevictable(page) &&
377 			PageReferenced(page)) {
378 
379 		/*
380 		 * If the page is on the LRU, queue it for activation via
381 		 * activate_page_pvecs. Otherwise, assume the page is on a
382 		 * pagevec, mark it active and it'll be moved to the active
383 		 * LRU on the next drain.
384 		 */
385 		if (PageLRU(page))
386 			activate_page(page);
387 		else
388 			__lru_cache_activate_page(page);
389 		ClearPageReferenced(page);
390 		if (page_is_file_cache(page))
391 			workingset_activation(page);
392 	} else if (!PageReferenced(page)) {
393 		SetPageReferenced(page);
394 	}
395 	if (page_is_idle(page))
396 		clear_page_idle(page);
397 }
398 EXPORT_SYMBOL(mark_page_accessed);
399 
__lru_cache_add(struct page * page)400 static void __lru_cache_add(struct page *page)
401 {
402 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
403 
404 	get_page(page);
405 	if (!pagevec_add(pvec, page) || PageCompound(page))
406 		__pagevec_lru_add(pvec);
407 	put_cpu_var(lru_add_pvec);
408 }
409 
410 /**
411  * lru_cache_add_anon - add a page to the page lists
412  * @page: the page to add
413  */
lru_cache_add_anon(struct page * page)414 void lru_cache_add_anon(struct page *page)
415 {
416 	if (PageActive(page))
417 		ClearPageActive(page);
418 	__lru_cache_add(page);
419 }
420 
lru_cache_add_file(struct page * page)421 void lru_cache_add_file(struct page *page)
422 {
423 	if (PageActive(page))
424 		ClearPageActive(page);
425 	__lru_cache_add(page);
426 }
427 EXPORT_SYMBOL(lru_cache_add_file);
428 
429 /**
430  * lru_cache_add - add a page to a page list
431  * @page: the page to be added to the LRU.
432  *
433  * Queue the page for addition to the LRU via pagevec. The decision on whether
434  * to add the page to the [in]active [file|anon] list is deferred until the
435  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
436  * have the page added to the active list using mark_page_accessed().
437  */
lru_cache_add(struct page * page)438 void lru_cache_add(struct page *page)
439 {
440 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
441 	VM_BUG_ON_PAGE(PageLRU(page), page);
442 	__lru_cache_add(page);
443 }
444 
445 /**
446  * lru_cache_add_active_or_unevictable
447  * @page:  the page to be added to LRU
448  * @vma:   vma in which page is mapped for determining reclaimability
449  *
450  * Place @page on the active or unevictable LRU list, depending on its
451  * evictability.  Note that if the page is not evictable, it goes
452  * directly back onto it's zone's unevictable list, it does NOT use a
453  * per cpu pagevec.
454  */
lru_cache_add_active_or_unevictable(struct page * page,struct vm_area_struct * vma)455 void lru_cache_add_active_or_unevictable(struct page *page,
456 					 struct vm_area_struct *vma)
457 {
458 	VM_BUG_ON_PAGE(PageLRU(page), page);
459 
460 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
461 		SetPageActive(page);
462 	else if (!TestSetPageMlocked(page)) {
463 		/*
464 		 * We use the irq-unsafe __mod_zone_page_stat because this
465 		 * counter is not modified from interrupt context, and the pte
466 		 * lock is held(spinlock), which implies preemption disabled.
467 		 */
468 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
469 				    hpage_nr_pages(page));
470 		count_vm_event(UNEVICTABLE_PGMLOCKED);
471 	}
472 	lru_cache_add(page);
473 }
474 
475 /*
476  * If the page can not be invalidated, it is moved to the
477  * inactive list to speed up its reclaim.  It is moved to the
478  * head of the list, rather than the tail, to give the flusher
479  * threads some time to write it out, as this is much more
480  * effective than the single-page writeout from reclaim.
481  *
482  * If the page isn't page_mapped and dirty/writeback, the page
483  * could reclaim asap using PG_reclaim.
484  *
485  * 1. active, mapped page -> none
486  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
487  * 3. inactive, mapped page -> none
488  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
489  * 5. inactive, clean -> inactive, tail
490  * 6. Others -> none
491  *
492  * In 4, why it moves inactive's head, the VM expects the page would
493  * be write it out by flusher threads as this is much more effective
494  * than the single-page writeout from reclaim.
495  */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)496 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
497 			      void *arg)
498 {
499 	int lru, file;
500 	bool active;
501 
502 	if (!PageLRU(page))
503 		return;
504 
505 	if (PageUnevictable(page))
506 		return;
507 
508 	/* Some processes are using the page */
509 	if (page_mapped(page))
510 		return;
511 
512 	active = PageActive(page);
513 	file = page_is_file_cache(page);
514 	lru = page_lru_base_type(page);
515 
516 	del_page_from_lru_list(page, lruvec, lru + active);
517 	ClearPageActive(page);
518 	ClearPageReferenced(page);
519 
520 	if (PageWriteback(page) || PageDirty(page)) {
521 		/*
522 		 * PG_reclaim could be raced with end_page_writeback
523 		 * It can make readahead confusing.  But race window
524 		 * is _really_ small and  it's non-critical problem.
525 		 */
526 		add_page_to_lru_list(page, lruvec, lru);
527 		SetPageReclaim(page);
528 	} else {
529 		/*
530 		 * The page's writeback ends up during pagevec
531 		 * We moves tha page into tail of inactive.
532 		 */
533 		add_page_to_lru_list_tail(page, lruvec, lru);
534 		__count_vm_event(PGROTATED);
535 	}
536 
537 	if (active)
538 		__count_vm_event(PGDEACTIVATE);
539 	update_page_reclaim_stat(lruvec, file, 0);
540 }
541 
lru_deactivate_fn(struct page * page,struct lruvec * lruvec,void * arg)542 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
543 			    void *arg)
544 {
545 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
546 		int file = page_is_file_cache(page);
547 		int lru = page_lru_base_type(page);
548 
549 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
550 		ClearPageActive(page);
551 		ClearPageReferenced(page);
552 		add_page_to_lru_list(page, lruvec, lru);
553 
554 		__count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
555 		update_page_reclaim_stat(lruvec, file, 0);
556 	}
557 }
558 
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)559 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
560 			    void *arg)
561 {
562 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
563 	    !PageSwapCache(page) && !PageUnevictable(page)) {
564 		bool active = PageActive(page);
565 
566 		del_page_from_lru_list(page, lruvec,
567 				       LRU_INACTIVE_ANON + active);
568 		ClearPageActive(page);
569 		ClearPageReferenced(page);
570 		/*
571 		 * lazyfree pages are clean anonymous pages. They have
572 		 * SwapBacked flag cleared to distinguish normal anonymous
573 		 * pages
574 		 */
575 		ClearPageSwapBacked(page);
576 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
577 
578 		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
579 		count_memcg_page_event(page, PGLAZYFREE);
580 		update_page_reclaim_stat(lruvec, 1, 0);
581 	}
582 }
583 
584 /*
585  * Drain pages out of the cpu's pagevecs.
586  * Either "cpu" is the current CPU, and preemption has already been
587  * disabled; or "cpu" is being hot-unplugged, and is already dead.
588  */
lru_add_drain_cpu(int cpu)589 void lru_add_drain_cpu(int cpu)
590 {
591 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
592 
593 	if (pagevec_count(pvec))
594 		__pagevec_lru_add(pvec);
595 
596 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
597 	if (pagevec_count(pvec)) {
598 		unsigned long flags;
599 
600 		/* No harm done if a racing interrupt already did this */
601 		local_irq_save(flags);
602 		pagevec_move_tail(pvec);
603 		local_irq_restore(flags);
604 	}
605 
606 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
607 	if (pagevec_count(pvec))
608 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
609 
610 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
611 	if (pagevec_count(pvec))
612 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
613 
614 	pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
615 	if (pagevec_count(pvec))
616 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
617 
618 	activate_page_drain(cpu);
619 }
620 
621 /**
622  * deactivate_file_page - forcefully deactivate a file page
623  * @page: page to deactivate
624  *
625  * This function hints the VM that @page is a good reclaim candidate,
626  * for example if its invalidation fails due to the page being dirty
627  * or under writeback.
628  */
deactivate_file_page(struct page * page)629 void deactivate_file_page(struct page *page)
630 {
631 	/*
632 	 * In a workload with many unevictable page such as mprotect,
633 	 * unevictable page deactivation for accelerating reclaim is pointless.
634 	 */
635 	if (PageUnevictable(page))
636 		return;
637 
638 	if (likely(get_page_unless_zero(page))) {
639 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
640 
641 		if (!pagevec_add(pvec, page) || PageCompound(page))
642 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
643 		put_cpu_var(lru_deactivate_file_pvecs);
644 	}
645 }
646 
647 /*
648  * deactivate_page - deactivate a page
649  * @page: page to deactivate
650  *
651  * deactivate_page() moves @page to the inactive list if @page was on the active
652  * list and was not an unevictable page.  This is done to accelerate the reclaim
653  * of @page.
654  */
deactivate_page(struct page * page)655 void deactivate_page(struct page *page)
656 {
657 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
658 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
659 
660 		get_page(page);
661 		if (!pagevec_add(pvec, page) || PageCompound(page))
662 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
663 		put_cpu_var(lru_deactivate_pvecs);
664 	}
665 }
666 
667 /**
668  * mark_page_lazyfree - make an anon page lazyfree
669  * @page: page to deactivate
670  *
671  * mark_page_lazyfree() moves @page to the inactive file list.
672  * This is done to accelerate the reclaim of @page.
673  */
mark_page_lazyfree(struct page * page)674 void mark_page_lazyfree(struct page *page)
675 {
676 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
677 	    !PageSwapCache(page) && !PageUnevictable(page)) {
678 		struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
679 
680 		get_page(page);
681 		if (!pagevec_add(pvec, page) || PageCompound(page))
682 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
683 		put_cpu_var(lru_lazyfree_pvecs);
684 	}
685 }
686 
lru_add_drain(void)687 void lru_add_drain(void)
688 {
689 	lru_add_drain_cpu(get_cpu());
690 	put_cpu();
691 }
692 
693 #ifdef CONFIG_SMP
694 
695 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
696 
lru_add_drain_per_cpu(struct work_struct * dummy)697 static void lru_add_drain_per_cpu(struct work_struct *dummy)
698 {
699 	lru_add_drain();
700 }
701 
702 /*
703  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
704  * kworkers being shut down before our page_alloc_cpu_dead callback is
705  * executed on the offlined cpu.
706  * Calling this function with cpu hotplug locks held can actually lead
707  * to obscure indirect dependencies via WQ context.
708  */
lru_add_drain_all(void)709 void lru_add_drain_all(void)
710 {
711 	static DEFINE_MUTEX(lock);
712 	static struct cpumask has_work;
713 	int cpu;
714 
715 	/*
716 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
717 	 * initialized.
718 	 */
719 	if (WARN_ON(!mm_percpu_wq))
720 		return;
721 
722 	mutex_lock(&lock);
723 	cpumask_clear(&has_work);
724 
725 	for_each_online_cpu(cpu) {
726 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
727 
728 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
729 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
730 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
731 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
732 		    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
733 		    need_activate_page_drain(cpu)) {
734 			INIT_WORK(work, lru_add_drain_per_cpu);
735 			queue_work_on(cpu, mm_percpu_wq, work);
736 			cpumask_set_cpu(cpu, &has_work);
737 		}
738 	}
739 
740 	for_each_cpu(cpu, &has_work)
741 		flush_work(&per_cpu(lru_add_drain_work, cpu));
742 
743 	mutex_unlock(&lock);
744 }
745 #else
lru_add_drain_all(void)746 void lru_add_drain_all(void)
747 {
748 	lru_add_drain();
749 }
750 #endif
751 
752 /**
753  * release_pages - batched put_page()
754  * @pages: array of pages to release
755  * @nr: number of pages
756  *
757  * Decrement the reference count on all the pages in @pages.  If it
758  * fell to zero, remove the page from the LRU and free it.
759  */
release_pages(struct page ** pages,int nr)760 void release_pages(struct page **pages, int nr)
761 {
762 	int i;
763 	LIST_HEAD(pages_to_free);
764 	struct pglist_data *locked_pgdat = NULL;
765 	struct lruvec *lruvec;
766 	unsigned long uninitialized_var(flags);
767 	unsigned int uninitialized_var(lock_batch);
768 
769 	for (i = 0; i < nr; i++) {
770 		struct page *page = pages[i];
771 
772 		/*
773 		 * Make sure the IRQ-safe lock-holding time does not get
774 		 * excessive with a continuous string of pages from the
775 		 * same pgdat. The lock is held only if pgdat != NULL.
776 		 */
777 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
778 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
779 			locked_pgdat = NULL;
780 		}
781 
782 		if (is_huge_zero_page(page))
783 			continue;
784 
785 		if (is_zone_device_page(page)) {
786 			if (locked_pgdat) {
787 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
788 						       flags);
789 				locked_pgdat = NULL;
790 			}
791 			/*
792 			 * ZONE_DEVICE pages that return 'false' from
793 			 * put_devmap_managed_page() do not require special
794 			 * processing, and instead, expect a call to
795 			 * put_page_testzero().
796 			 */
797 			if (put_devmap_managed_page(page))
798 				continue;
799 		}
800 
801 		page = compound_head(page);
802 		if (!put_page_testzero(page))
803 			continue;
804 
805 		if (PageCompound(page)) {
806 			if (locked_pgdat) {
807 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
808 				locked_pgdat = NULL;
809 			}
810 			__put_compound_page(page);
811 			continue;
812 		}
813 
814 		if (PageLRU(page)) {
815 			struct pglist_data *pgdat = page_pgdat(page);
816 
817 			if (pgdat != locked_pgdat) {
818 				if (locked_pgdat)
819 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
820 									flags);
821 				lock_batch = 0;
822 				locked_pgdat = pgdat;
823 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
824 			}
825 
826 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
827 			VM_BUG_ON_PAGE(!PageLRU(page), page);
828 			__ClearPageLRU(page);
829 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
830 		}
831 
832 		/* Clear Active bit in case of parallel mark_page_accessed */
833 		__ClearPageActive(page);
834 		__ClearPageWaiters(page);
835 
836 		list_add(&page->lru, &pages_to_free);
837 	}
838 	if (locked_pgdat)
839 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
840 
841 	mem_cgroup_uncharge_list(&pages_to_free);
842 	free_unref_page_list(&pages_to_free);
843 }
844 EXPORT_SYMBOL(release_pages);
845 
846 /*
847  * The pages which we're about to release may be in the deferred lru-addition
848  * queues.  That would prevent them from really being freed right now.  That's
849  * OK from a correctness point of view but is inefficient - those pages may be
850  * cache-warm and we want to give them back to the page allocator ASAP.
851  *
852  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
853  * and __pagevec_lru_add_active() call release_pages() directly to avoid
854  * mutual recursion.
855  */
__pagevec_release(struct pagevec * pvec)856 void __pagevec_release(struct pagevec *pvec)
857 {
858 	if (!pvec->percpu_pvec_drained) {
859 		lru_add_drain();
860 		pvec->percpu_pvec_drained = true;
861 	}
862 	release_pages(pvec->pages, pagevec_count(pvec));
863 	pagevec_reinit(pvec);
864 }
865 EXPORT_SYMBOL(__pagevec_release);
866 
867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
868 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)869 void lru_add_page_tail(struct page *page, struct page *page_tail,
870 		       struct lruvec *lruvec, struct list_head *list)
871 {
872 	const int file = 0;
873 
874 	VM_BUG_ON_PAGE(!PageHead(page), page);
875 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
876 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
877 	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
878 
879 	if (!list)
880 		SetPageLRU(page_tail);
881 
882 	if (likely(PageLRU(page)))
883 		list_add_tail(&page_tail->lru, &page->lru);
884 	else if (list) {
885 		/* page reclaim is reclaiming a huge page */
886 		get_page(page_tail);
887 		list_add_tail(&page_tail->lru, list);
888 	} else {
889 		/*
890 		 * Head page has not yet been counted, as an hpage,
891 		 * so we must account for each subpage individually.
892 		 *
893 		 * Put page_tail on the list at the correct position
894 		 * so they all end up in order.
895 		 */
896 		add_page_to_lru_list_tail(page_tail, lruvec,
897 					  page_lru(page_tail));
898 	}
899 
900 	if (!PageUnevictable(page))
901 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
902 }
903 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
904 
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)905 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
906 				 void *arg)
907 {
908 	enum lru_list lru;
909 	int was_unevictable = TestClearPageUnevictable(page);
910 
911 	VM_BUG_ON_PAGE(PageLRU(page), page);
912 
913 	SetPageLRU(page);
914 	/*
915 	 * Page becomes evictable in two ways:
916 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
917 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
918 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
919 	 *   b) do PageLRU check before lock [clear_page_mlock]
920 	 *
921 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
922 	 * following strict ordering:
923 	 *
924 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
925 	 *
926 	 * SetPageLRU()				TestClearPageMlocked()
927 	 * smp_mb() // explicit ordering	// above provides strict
928 	 *					// ordering
929 	 * PageMlocked()			PageLRU()
930 	 *
931 	 *
932 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
933 	 * isolation, the explicit barrier will make sure that page_evictable
934 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
935 	 * can be reordered after PageMlocked check and can make '#1' to fail
936 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
937 	 * looking at the same page) and the evictable page will be stranded
938 	 * in an unevictable LRU.
939 	 */
940 	smp_mb();
941 
942 	if (page_evictable(page)) {
943 		lru = page_lru(page);
944 		update_page_reclaim_stat(lruvec, page_is_file_cache(page),
945 					 PageActive(page));
946 		if (was_unevictable)
947 			count_vm_event(UNEVICTABLE_PGRESCUED);
948 	} else {
949 		lru = LRU_UNEVICTABLE;
950 		ClearPageActive(page);
951 		SetPageUnevictable(page);
952 		if (!was_unevictable)
953 			count_vm_event(UNEVICTABLE_PGCULLED);
954 	}
955 
956 	add_page_to_lru_list(page, lruvec, lru);
957 	trace_mm_lru_insertion(page, lru);
958 }
959 
960 /*
961  * Add the passed pages to the LRU, then drop the caller's refcount
962  * on them.  Reinitialises the caller's pagevec.
963  */
__pagevec_lru_add(struct pagevec * pvec)964 void __pagevec_lru_add(struct pagevec *pvec)
965 {
966 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
967 }
968 EXPORT_SYMBOL(__pagevec_lru_add);
969 
970 /**
971  * pagevec_lookup_entries - gang pagecache lookup
972  * @pvec:	Where the resulting entries are placed
973  * @mapping:	The address_space to search
974  * @start:	The starting entry index
975  * @nr_entries:	The maximum number of pages
976  * @indices:	The cache indices corresponding to the entries in @pvec
977  *
978  * pagevec_lookup_entries() will search for and return a group of up
979  * to @nr_pages pages and shadow entries in the mapping.  All
980  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
981  * reference against actual pages in @pvec.
982  *
983  * The search returns a group of mapping-contiguous entries with
984  * ascending indexes.  There may be holes in the indices due to
985  * not-present entries.
986  *
987  * pagevec_lookup_entries() returns the number of entries which were
988  * found.
989  */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)990 unsigned pagevec_lookup_entries(struct pagevec *pvec,
991 				struct address_space *mapping,
992 				pgoff_t start, unsigned nr_entries,
993 				pgoff_t *indices)
994 {
995 	pvec->nr = find_get_entries(mapping, start, nr_entries,
996 				    pvec->pages, indices);
997 	return pagevec_count(pvec);
998 }
999 
1000 /**
1001  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1002  * @pvec:	The pagevec to prune
1003  *
1004  * pagevec_lookup_entries() fills both pages and exceptional radix
1005  * tree entries into the pagevec.  This function prunes all
1006  * exceptionals from @pvec without leaving holes, so that it can be
1007  * passed on to page-only pagevec operations.
1008  */
pagevec_remove_exceptionals(struct pagevec * pvec)1009 void pagevec_remove_exceptionals(struct pagevec *pvec)
1010 {
1011 	int i, j;
1012 
1013 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1014 		struct page *page = pvec->pages[i];
1015 		if (!xa_is_value(page))
1016 			pvec->pages[j++] = page;
1017 	}
1018 	pvec->nr = j;
1019 }
1020 
1021 /**
1022  * pagevec_lookup_range - gang pagecache lookup
1023  * @pvec:	Where the resulting pages are placed
1024  * @mapping:	The address_space to search
1025  * @start:	The starting page index
1026  * @end:	The final page index
1027  *
1028  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1029  * pages in the mapping starting from index @start and upto index @end
1030  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1031  * reference against the pages in @pvec.
1032  *
1033  * The search returns a group of mapping-contiguous pages with ascending
1034  * indexes.  There may be holes in the indices due to not-present pages. We
1035  * also update @start to index the next page for the traversal.
1036  *
1037  * pagevec_lookup_range() returns the number of pages which were found. If this
1038  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1039  * reached.
1040  */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1041 unsigned pagevec_lookup_range(struct pagevec *pvec,
1042 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1043 {
1044 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1045 					pvec->pages);
1046 	return pagevec_count(pvec);
1047 }
1048 EXPORT_SYMBOL(pagevec_lookup_range);
1049 
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1050 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1051 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1052 		xa_mark_t tag)
1053 {
1054 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1055 					PAGEVEC_SIZE, pvec->pages);
1056 	return pagevec_count(pvec);
1057 }
1058 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1059 
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned max_pages)1060 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1061 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1062 		xa_mark_t tag, unsigned max_pages)
1063 {
1064 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1065 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1066 	return pagevec_count(pvec);
1067 }
1068 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1069 /*
1070  * Perform any setup for the swap system
1071  */
swap_setup(void)1072 void __init swap_setup(void)
1073 {
1074 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1075 
1076 	/* Use a smaller cluster for small-memory machines */
1077 	if (megs < 16)
1078 		page_cluster = 2;
1079 	else
1080 		page_cluster = 3;
1081 	/*
1082 	 * Right now other parts of the system means that we
1083 	 * _really_ don't want to cluster much more
1084 	 */
1085 }
1086