1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memremap.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/pagemap.h>
43 
44 /* How many pages do we try to swap or page in/out together? */
45 int page_cluster;
46 
47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
50 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
51 #ifdef CONFIG_SMP
52 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
53 #endif
54 
55 /*
56  * This path almost never happens for VM activity - pages are normally
57  * freed via pagevecs.  But it gets used by networking.
58  */
__page_cache_release(struct page * page)59 static void __page_cache_release(struct page *page)
60 {
61 	if (PageLRU(page)) {
62 		struct zone *zone = page_zone(page);
63 		struct lruvec *lruvec;
64 		unsigned long flags;
65 
66 		spin_lock_irqsave(zone_lru_lock(zone), flags);
67 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
68 		VM_BUG_ON_PAGE(!PageLRU(page), page);
69 		__ClearPageLRU(page);
70 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
71 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
72 	}
73 	__ClearPageWaiters(page);
74 	mem_cgroup_uncharge(page);
75 }
76 
__put_single_page(struct page * page)77 static void __put_single_page(struct page *page)
78 {
79 	__page_cache_release(page);
80 	free_unref_page(page);
81 }
82 
__put_compound_page(struct page * page)83 static void __put_compound_page(struct page *page)
84 {
85 	compound_page_dtor *dtor;
86 
87 	/*
88 	 * __page_cache_release() is supposed to be called for thp, not for
89 	 * hugetlb. This is because hugetlb page does never have PageLRU set
90 	 * (it's never listed to any LRU lists) and no memcg routines should
91 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
92 	 */
93 	if (!PageHuge(page))
94 		__page_cache_release(page);
95 	dtor = get_compound_page_dtor(page);
96 	(*dtor)(page);
97 }
98 
__put_page(struct page * page)99 void __put_page(struct page *page)
100 {
101 	if (is_zone_device_page(page)) {
102 		put_dev_pagemap(page->pgmap);
103 
104 		/*
105 		 * The page belongs to the device that created pgmap. Do
106 		 * not return it to page allocator.
107 		 */
108 		return;
109 	}
110 
111 	if (unlikely(PageCompound(page)))
112 		__put_compound_page(page);
113 	else
114 		__put_single_page(page);
115 }
116 EXPORT_SYMBOL(__put_page);
117 
118 /**
119  * put_pages_list() - release a list of pages
120  * @pages: list of pages threaded on page->lru
121  *
122  * Release a list of pages which are strung together on page.lru.  Currently
123  * used by read_cache_pages() and related error recovery code.
124  */
put_pages_list(struct list_head * pages)125 void put_pages_list(struct list_head *pages)
126 {
127 	while (!list_empty(pages)) {
128 		struct page *victim;
129 
130 		victim = list_entry(pages->prev, struct page, lru);
131 		list_del(&victim->lru);
132 		put_page(victim);
133 	}
134 }
135 EXPORT_SYMBOL(put_pages_list);
136 
137 /*
138  * get_kernel_pages() - pin kernel pages in memory
139  * @kiov:	An array of struct kvec structures
140  * @nr_segs:	number of segments to pin
141  * @write:	pinning for read/write, currently ignored
142  * @pages:	array that receives pointers to the pages pinned.
143  *		Should be at least nr_segs long.
144  *
145  * Returns number of pages pinned. This may be fewer than the number
146  * requested. If nr_pages is 0 or negative, returns 0. If no pages
147  * were pinned, returns -errno. Each page returned must be released
148  * with a put_page() call when it is finished with.
149  */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)150 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
151 		struct page **pages)
152 {
153 	int seg;
154 
155 	for (seg = 0; seg < nr_segs; seg++) {
156 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
157 			return seg;
158 
159 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
160 		get_page(pages[seg]);
161 	}
162 
163 	return seg;
164 }
165 EXPORT_SYMBOL_GPL(get_kernel_pages);
166 
167 /*
168  * get_kernel_page() - pin a kernel page in memory
169  * @start:	starting kernel address
170  * @write:	pinning for read/write, currently ignored
171  * @pages:	array that receives pointer to the page pinned.
172  *		Must be at least nr_segs long.
173  *
174  * Returns 1 if page is pinned. If the page was not pinned, returns
175  * -errno. The page returned must be released with a put_page() call
176  * when it is finished with.
177  */
get_kernel_page(unsigned long start,int write,struct page ** pages)178 int get_kernel_page(unsigned long start, int write, struct page **pages)
179 {
180 	const struct kvec kiov = {
181 		.iov_base = (void *)start,
182 		.iov_len = PAGE_SIZE
183 	};
184 
185 	return get_kernel_pages(&kiov, 1, write, pages);
186 }
187 EXPORT_SYMBOL_GPL(get_kernel_page);
188 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)189 static void pagevec_lru_move_fn(struct pagevec *pvec,
190 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
191 	void *arg)
192 {
193 	int i;
194 	struct pglist_data *pgdat = NULL;
195 	struct lruvec *lruvec;
196 	unsigned long flags = 0;
197 
198 	for (i = 0; i < pagevec_count(pvec); i++) {
199 		struct page *page = pvec->pages[i];
200 		struct pglist_data *pagepgdat = page_pgdat(page);
201 
202 		if (pagepgdat != pgdat) {
203 			if (pgdat)
204 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
205 			pgdat = pagepgdat;
206 			spin_lock_irqsave(&pgdat->lru_lock, flags);
207 		}
208 
209 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
210 		(*move_fn)(page, lruvec, arg);
211 	}
212 	if (pgdat)
213 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
214 	release_pages(pvec->pages, pvec->nr);
215 	pagevec_reinit(pvec);
216 }
217 
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
219 				 void *arg)
220 {
221 	int *pgmoved = arg;
222 
223 	if (PageLRU(page) && !PageUnevictable(page)) {
224 		del_page_from_lru_list(page, lruvec, page_lru(page));
225 		ClearPageActive(page);
226 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
227 		(*pgmoved)++;
228 	}
229 }
230 
231 /*
232  * pagevec_move_tail() must be called with IRQ disabled.
233  * Otherwise this may cause nasty races.
234  */
pagevec_move_tail(struct pagevec * pvec)235 static void pagevec_move_tail(struct pagevec *pvec)
236 {
237 	int pgmoved = 0;
238 
239 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
240 	__count_vm_events(PGROTATED, pgmoved);
241 }
242 
243 /*
244  * Writeback is about to end against a page which has been marked for immediate
245  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
246  * inactive list.
247  */
rotate_reclaimable_page(struct page * page)248 void rotate_reclaimable_page(struct page *page)
249 {
250 	if (!PageLocked(page) && !PageDirty(page) &&
251 	    !PageUnevictable(page) && PageLRU(page)) {
252 		struct pagevec *pvec;
253 		unsigned long flags;
254 
255 		get_page(page);
256 		local_irq_save(flags);
257 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
258 		if (!pagevec_add(pvec, page) || PageCompound(page))
259 			pagevec_move_tail(pvec);
260 		local_irq_restore(flags);
261 	}
262 }
263 
update_page_reclaim_stat(struct lruvec * lruvec,int file,int rotated)264 static void update_page_reclaim_stat(struct lruvec *lruvec,
265 				     int file, int rotated)
266 {
267 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
268 
269 	reclaim_stat->recent_scanned[file]++;
270 	if (rotated)
271 		reclaim_stat->recent_rotated[file]++;
272 }
273 
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)274 static void __activate_page(struct page *page, struct lruvec *lruvec,
275 			    void *arg)
276 {
277 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
278 		int file = page_is_file_cache(page);
279 		int lru = page_lru_base_type(page);
280 
281 		del_page_from_lru_list(page, lruvec, lru);
282 		SetPageActive(page);
283 		lru += LRU_ACTIVE;
284 		add_page_to_lru_list(page, lruvec, lru);
285 		trace_mm_lru_activate(page);
286 
287 		__count_vm_event(PGACTIVATE);
288 		update_page_reclaim_stat(lruvec, file, 1);
289 	}
290 }
291 
292 #ifdef CONFIG_SMP
activate_page_drain(int cpu)293 static void activate_page_drain(int cpu)
294 {
295 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
296 
297 	if (pagevec_count(pvec))
298 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
299 }
300 
need_activate_page_drain(int cpu)301 static bool need_activate_page_drain(int cpu)
302 {
303 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
304 }
305 
activate_page(struct page * page)306 void activate_page(struct page *page)
307 {
308 	page = compound_head(page);
309 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
310 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
311 
312 		get_page(page);
313 		if (!pagevec_add(pvec, page) || PageCompound(page))
314 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
315 		put_cpu_var(activate_page_pvecs);
316 	}
317 }
318 
319 #else
activate_page_drain(int cpu)320 static inline void activate_page_drain(int cpu)
321 {
322 }
323 
need_activate_page_drain(int cpu)324 static bool need_activate_page_drain(int cpu)
325 {
326 	return false;
327 }
328 
activate_page(struct page * page)329 void activate_page(struct page *page)
330 {
331 	struct zone *zone = page_zone(page);
332 
333 	page = compound_head(page);
334 	spin_lock_irq(zone_lru_lock(zone));
335 	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
336 	spin_unlock_irq(zone_lru_lock(zone));
337 }
338 #endif
339 
__lru_cache_activate_page(struct page * page)340 static void __lru_cache_activate_page(struct page *page)
341 {
342 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
343 	int i;
344 
345 	/*
346 	 * Search backwards on the optimistic assumption that the page being
347 	 * activated has just been added to this pagevec. Note that only
348 	 * the local pagevec is examined as a !PageLRU page could be in the
349 	 * process of being released, reclaimed, migrated or on a remote
350 	 * pagevec that is currently being drained. Furthermore, marking
351 	 * a remote pagevec's page PageActive potentially hits a race where
352 	 * a page is marked PageActive just after it is added to the inactive
353 	 * list causing accounting errors and BUG_ON checks to trigger.
354 	 */
355 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
356 		struct page *pagevec_page = pvec->pages[i];
357 
358 		if (pagevec_page == page) {
359 			SetPageActive(page);
360 			break;
361 		}
362 	}
363 
364 	put_cpu_var(lru_add_pvec);
365 }
366 
367 /*
368  * Mark a page as having seen activity.
369  *
370  * inactive,unreferenced	->	inactive,referenced
371  * inactive,referenced		->	active,unreferenced
372  * active,unreferenced		->	active,referenced
373  *
374  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
375  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
376  */
mark_page_accessed(struct page * page)377 void mark_page_accessed(struct page *page)
378 {
379 	page = compound_head(page);
380 	if (!PageActive(page) && !PageUnevictable(page) &&
381 			PageReferenced(page)) {
382 
383 		/*
384 		 * If the page is on the LRU, queue it for activation via
385 		 * activate_page_pvecs. Otherwise, assume the page is on a
386 		 * pagevec, mark it active and it'll be moved to the active
387 		 * LRU on the next drain.
388 		 */
389 		if (PageLRU(page))
390 			activate_page(page);
391 		else
392 			__lru_cache_activate_page(page);
393 		ClearPageReferenced(page);
394 		if (page_is_file_cache(page))
395 			workingset_activation(page);
396 	} else if (!PageReferenced(page)) {
397 		SetPageReferenced(page);
398 	}
399 	if (page_is_idle(page))
400 		clear_page_idle(page);
401 }
402 EXPORT_SYMBOL(mark_page_accessed);
403 
__lru_cache_add(struct page * page)404 static void __lru_cache_add(struct page *page)
405 {
406 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
407 
408 	get_page(page);
409 	if (!pagevec_add(pvec, page) || PageCompound(page))
410 		__pagevec_lru_add(pvec);
411 	put_cpu_var(lru_add_pvec);
412 }
413 
414 /**
415  * lru_cache_add_anon - add a page to the page lists
416  * @page: the page to add
417  */
lru_cache_add_anon(struct page * page)418 void lru_cache_add_anon(struct page *page)
419 {
420 	if (PageActive(page))
421 		ClearPageActive(page);
422 	__lru_cache_add(page);
423 }
424 
lru_cache_add_file(struct page * page)425 void lru_cache_add_file(struct page *page)
426 {
427 	if (PageActive(page))
428 		ClearPageActive(page);
429 	__lru_cache_add(page);
430 }
431 EXPORT_SYMBOL(lru_cache_add_file);
432 
433 /**
434  * lru_cache_add - add a page to a page list
435  * @page: the page to be added to the LRU.
436  *
437  * Queue the page for addition to the LRU via pagevec. The decision on whether
438  * to add the page to the [in]active [file|anon] list is deferred until the
439  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
440  * have the page added to the active list using mark_page_accessed().
441  */
lru_cache_add(struct page * page)442 void lru_cache_add(struct page *page)
443 {
444 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
445 	VM_BUG_ON_PAGE(PageLRU(page), page);
446 	__lru_cache_add(page);
447 }
448 
449 /**
450  * lru_cache_add_active_or_unevictable
451  * @page:  the page to be added to LRU
452  * @vma:   vma in which page is mapped for determining reclaimability
453  *
454  * Place @page on the active or unevictable LRU list, depending on its
455  * evictability.  Note that if the page is not evictable, it goes
456  * directly back onto it's zone's unevictable list, it does NOT use a
457  * per cpu pagevec.
458  */
lru_cache_add_active_or_unevictable(struct page * page,struct vm_area_struct * vma)459 void lru_cache_add_active_or_unevictable(struct page *page,
460 					 struct vm_area_struct *vma)
461 {
462 	VM_BUG_ON_PAGE(PageLRU(page), page);
463 
464 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
465 		SetPageActive(page);
466 	else if (!TestSetPageMlocked(page)) {
467 		/*
468 		 * We use the irq-unsafe __mod_zone_page_stat because this
469 		 * counter is not modified from interrupt context, and the pte
470 		 * lock is held(spinlock), which implies preemption disabled.
471 		 */
472 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
473 				    hpage_nr_pages(page));
474 		count_vm_event(UNEVICTABLE_PGMLOCKED);
475 	}
476 	lru_cache_add(page);
477 }
478 
479 /*
480  * If the page can not be invalidated, it is moved to the
481  * inactive list to speed up its reclaim.  It is moved to the
482  * head of the list, rather than the tail, to give the flusher
483  * threads some time to write it out, as this is much more
484  * effective than the single-page writeout from reclaim.
485  *
486  * If the page isn't page_mapped and dirty/writeback, the page
487  * could reclaim asap using PG_reclaim.
488  *
489  * 1. active, mapped page -> none
490  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
491  * 3. inactive, mapped page -> none
492  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
493  * 5. inactive, clean -> inactive, tail
494  * 6. Others -> none
495  *
496  * In 4, why it moves inactive's head, the VM expects the page would
497  * be write it out by flusher threads as this is much more effective
498  * than the single-page writeout from reclaim.
499  */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)500 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
501 			      void *arg)
502 {
503 	int lru, file;
504 	bool active;
505 
506 	if (!PageLRU(page))
507 		return;
508 
509 	if (PageUnevictable(page))
510 		return;
511 
512 	/* Some processes are using the page */
513 	if (page_mapped(page))
514 		return;
515 
516 	active = PageActive(page);
517 	file = page_is_file_cache(page);
518 	lru = page_lru_base_type(page);
519 
520 	del_page_from_lru_list(page, lruvec, lru + active);
521 	ClearPageActive(page);
522 	ClearPageReferenced(page);
523 	add_page_to_lru_list(page, lruvec, lru);
524 
525 	if (PageWriteback(page) || PageDirty(page)) {
526 		/*
527 		 * PG_reclaim could be raced with end_page_writeback
528 		 * It can make readahead confusing.  But race window
529 		 * is _really_ small and  it's non-critical problem.
530 		 */
531 		SetPageReclaim(page);
532 	} else {
533 		/*
534 		 * The page's writeback ends up during pagevec
535 		 * We moves tha page into tail of inactive.
536 		 */
537 		list_move_tail(&page->lru, &lruvec->lists[lru]);
538 		__count_vm_event(PGROTATED);
539 	}
540 
541 	if (active)
542 		__count_vm_event(PGDEACTIVATE);
543 	update_page_reclaim_stat(lruvec, file, 0);
544 }
545 
546 
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)547 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
548 			    void *arg)
549 {
550 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
551 	    !PageSwapCache(page) && !PageUnevictable(page)) {
552 		bool active = PageActive(page);
553 
554 		del_page_from_lru_list(page, lruvec,
555 				       LRU_INACTIVE_ANON + active);
556 		ClearPageActive(page);
557 		ClearPageReferenced(page);
558 		/*
559 		 * lazyfree pages are clean anonymous pages. They have
560 		 * SwapBacked flag cleared to distinguish normal anonymous
561 		 * pages
562 		 */
563 		ClearPageSwapBacked(page);
564 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
565 
566 		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
567 		count_memcg_page_event(page, PGLAZYFREE);
568 		update_page_reclaim_stat(lruvec, 1, 0);
569 	}
570 }
571 
572 /*
573  * Drain pages out of the cpu's pagevecs.
574  * Either "cpu" is the current CPU, and preemption has already been
575  * disabled; or "cpu" is being hot-unplugged, and is already dead.
576  */
lru_add_drain_cpu(int cpu)577 void lru_add_drain_cpu(int cpu)
578 {
579 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
580 
581 	if (pagevec_count(pvec))
582 		__pagevec_lru_add(pvec);
583 
584 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
585 	if (pagevec_count(pvec)) {
586 		unsigned long flags;
587 
588 		/* No harm done if a racing interrupt already did this */
589 		local_irq_save(flags);
590 		pagevec_move_tail(pvec);
591 		local_irq_restore(flags);
592 	}
593 
594 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
595 	if (pagevec_count(pvec))
596 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
597 
598 	pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
599 	if (pagevec_count(pvec))
600 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
601 
602 	activate_page_drain(cpu);
603 }
604 
605 /**
606  * deactivate_file_page - forcefully deactivate a file page
607  * @page: page to deactivate
608  *
609  * This function hints the VM that @page is a good reclaim candidate,
610  * for example if its invalidation fails due to the page being dirty
611  * or under writeback.
612  */
deactivate_file_page(struct page * page)613 void deactivate_file_page(struct page *page)
614 {
615 	/*
616 	 * In a workload with many unevictable page such as mprotect,
617 	 * unevictable page deactivation for accelerating reclaim is pointless.
618 	 */
619 	if (PageUnevictable(page))
620 		return;
621 
622 	if (likely(get_page_unless_zero(page))) {
623 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
624 
625 		if (!pagevec_add(pvec, page) || PageCompound(page))
626 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
627 		put_cpu_var(lru_deactivate_file_pvecs);
628 	}
629 }
630 
631 /**
632  * mark_page_lazyfree - make an anon page lazyfree
633  * @page: page to deactivate
634  *
635  * mark_page_lazyfree() moves @page to the inactive file list.
636  * This is done to accelerate the reclaim of @page.
637  */
mark_page_lazyfree(struct page * page)638 void mark_page_lazyfree(struct page *page)
639 {
640 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
641 	    !PageSwapCache(page) && !PageUnevictable(page)) {
642 		struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
643 
644 		get_page(page);
645 		if (!pagevec_add(pvec, page) || PageCompound(page))
646 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
647 		put_cpu_var(lru_lazyfree_pvecs);
648 	}
649 }
650 
lru_add_drain(void)651 void lru_add_drain(void)
652 {
653 	lru_add_drain_cpu(get_cpu());
654 	put_cpu();
655 }
656 
lru_add_drain_per_cpu(struct work_struct * dummy)657 static void lru_add_drain_per_cpu(struct work_struct *dummy)
658 {
659 	lru_add_drain();
660 }
661 
662 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
663 
664 /*
665  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
666  * kworkers being shut down before our page_alloc_cpu_dead callback is
667  * executed on the offlined cpu.
668  * Calling this function with cpu hotplug locks held can actually lead
669  * to obscure indirect dependencies via WQ context.
670  */
lru_add_drain_all(void)671 void lru_add_drain_all(void)
672 {
673 	static DEFINE_MUTEX(lock);
674 	static struct cpumask has_work;
675 	int cpu;
676 
677 	/*
678 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
679 	 * initialized.
680 	 */
681 	if (WARN_ON(!mm_percpu_wq))
682 		return;
683 
684 	mutex_lock(&lock);
685 	cpumask_clear(&has_work);
686 
687 	for_each_online_cpu(cpu) {
688 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
689 
690 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
691 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
692 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
693 		    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
694 		    need_activate_page_drain(cpu)) {
695 			INIT_WORK(work, lru_add_drain_per_cpu);
696 			queue_work_on(cpu, mm_percpu_wq, work);
697 			cpumask_set_cpu(cpu, &has_work);
698 		}
699 	}
700 
701 	for_each_cpu(cpu, &has_work)
702 		flush_work(&per_cpu(lru_add_drain_work, cpu));
703 
704 	mutex_unlock(&lock);
705 }
706 
707 /**
708  * release_pages - batched put_page()
709  * @pages: array of pages to release
710  * @nr: number of pages
711  *
712  * Decrement the reference count on all the pages in @pages.  If it
713  * fell to zero, remove the page from the LRU and free it.
714  */
release_pages(struct page ** pages,int nr)715 void release_pages(struct page **pages, int nr)
716 {
717 	int i;
718 	LIST_HEAD(pages_to_free);
719 	struct pglist_data *locked_pgdat = NULL;
720 	struct lruvec *lruvec;
721 	unsigned long uninitialized_var(flags);
722 	unsigned int uninitialized_var(lock_batch);
723 
724 	for (i = 0; i < nr; i++) {
725 		struct page *page = pages[i];
726 
727 		/*
728 		 * Make sure the IRQ-safe lock-holding time does not get
729 		 * excessive with a continuous string of pages from the
730 		 * same pgdat. The lock is held only if pgdat != NULL.
731 		 */
732 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
733 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
734 			locked_pgdat = NULL;
735 		}
736 
737 		if (is_huge_zero_page(page))
738 			continue;
739 
740 		/* Device public page can not be huge page */
741 		if (is_device_public_page(page)) {
742 			if (locked_pgdat) {
743 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
744 						       flags);
745 				locked_pgdat = NULL;
746 			}
747 			put_devmap_managed_page(page);
748 			continue;
749 		}
750 
751 		page = compound_head(page);
752 		if (!put_page_testzero(page))
753 			continue;
754 
755 		if (PageCompound(page)) {
756 			if (locked_pgdat) {
757 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
758 				locked_pgdat = NULL;
759 			}
760 			__put_compound_page(page);
761 			continue;
762 		}
763 
764 		if (PageLRU(page)) {
765 			struct pglist_data *pgdat = page_pgdat(page);
766 
767 			if (pgdat != locked_pgdat) {
768 				if (locked_pgdat)
769 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
770 									flags);
771 				lock_batch = 0;
772 				locked_pgdat = pgdat;
773 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
774 			}
775 
776 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
777 			VM_BUG_ON_PAGE(!PageLRU(page), page);
778 			__ClearPageLRU(page);
779 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
780 		}
781 
782 		/* Clear Active bit in case of parallel mark_page_accessed */
783 		__ClearPageActive(page);
784 		__ClearPageWaiters(page);
785 
786 		list_add(&page->lru, &pages_to_free);
787 	}
788 	if (locked_pgdat)
789 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
790 
791 	mem_cgroup_uncharge_list(&pages_to_free);
792 	free_unref_page_list(&pages_to_free);
793 }
794 EXPORT_SYMBOL(release_pages);
795 
796 /*
797  * The pages which we're about to release may be in the deferred lru-addition
798  * queues.  That would prevent them from really being freed right now.  That's
799  * OK from a correctness point of view but is inefficient - those pages may be
800  * cache-warm and we want to give them back to the page allocator ASAP.
801  *
802  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
803  * and __pagevec_lru_add_active() call release_pages() directly to avoid
804  * mutual recursion.
805  */
__pagevec_release(struct pagevec * pvec)806 void __pagevec_release(struct pagevec *pvec)
807 {
808 	if (!pvec->percpu_pvec_drained) {
809 		lru_add_drain();
810 		pvec->percpu_pvec_drained = true;
811 	}
812 	release_pages(pvec->pages, pagevec_count(pvec));
813 	pagevec_reinit(pvec);
814 }
815 EXPORT_SYMBOL(__pagevec_release);
816 
817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
818 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)819 void lru_add_page_tail(struct page *page, struct page *page_tail,
820 		       struct lruvec *lruvec, struct list_head *list)
821 {
822 	const int file = 0;
823 
824 	VM_BUG_ON_PAGE(!PageHead(page), page);
825 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
826 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
827 	VM_BUG_ON(NR_CPUS != 1 &&
828 		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
829 
830 	if (!list)
831 		SetPageLRU(page_tail);
832 
833 	if (likely(PageLRU(page)))
834 		list_add_tail(&page_tail->lru, &page->lru);
835 	else if (list) {
836 		/* page reclaim is reclaiming a huge page */
837 		get_page(page_tail);
838 		list_add_tail(&page_tail->lru, list);
839 	} else {
840 		struct list_head *list_head;
841 		/*
842 		 * Head page has not yet been counted, as an hpage,
843 		 * so we must account for each subpage individually.
844 		 *
845 		 * Use the standard add function to put page_tail on the list,
846 		 * but then correct its position so they all end up in order.
847 		 */
848 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
849 		list_head = page_tail->lru.prev;
850 		list_move_tail(&page_tail->lru, list_head);
851 	}
852 
853 	if (!PageUnevictable(page))
854 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
855 }
856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
857 
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)858 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
859 				 void *arg)
860 {
861 	enum lru_list lru;
862 	int was_unevictable = TestClearPageUnevictable(page);
863 
864 	VM_BUG_ON_PAGE(PageLRU(page), page);
865 
866 	SetPageLRU(page);
867 	/*
868 	 * Page becomes evictable in two ways:
869 	 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
870 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
871 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
872 	 *   b) do PageLRU check before lock [clear_page_mlock]
873 	 *
874 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
875 	 * following strict ordering:
876 	 *
877 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
878 	 *
879 	 * SetPageLRU()				TestClearPageMlocked()
880 	 * smp_mb() // explicit ordering	// above provides strict
881 	 *					// ordering
882 	 * PageMlocked()			PageLRU()
883 	 *
884 	 *
885 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
886 	 * isolation, the explicit barrier will make sure that page_evictable
887 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
888 	 * can be reordered after PageMlocked check and can make '#1' to fail
889 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
890 	 * looking at the same page) and the evictable page will be stranded
891 	 * in an unevictable LRU.
892 	 */
893 	smp_mb();
894 
895 	if (page_evictable(page)) {
896 		lru = page_lru(page);
897 		update_page_reclaim_stat(lruvec, page_is_file_cache(page),
898 					 PageActive(page));
899 		if (was_unevictable)
900 			count_vm_event(UNEVICTABLE_PGRESCUED);
901 	} else {
902 		lru = LRU_UNEVICTABLE;
903 		ClearPageActive(page);
904 		SetPageUnevictable(page);
905 		if (!was_unevictable)
906 			count_vm_event(UNEVICTABLE_PGCULLED);
907 	}
908 
909 	add_page_to_lru_list(page, lruvec, lru);
910 	trace_mm_lru_insertion(page, lru);
911 }
912 
913 /*
914  * Add the passed pages to the LRU, then drop the caller's refcount
915  * on them.  Reinitialises the caller's pagevec.
916  */
__pagevec_lru_add(struct pagevec * pvec)917 void __pagevec_lru_add(struct pagevec *pvec)
918 {
919 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
920 }
921 EXPORT_SYMBOL(__pagevec_lru_add);
922 
923 /**
924  * pagevec_lookup_entries - gang pagecache lookup
925  * @pvec:	Where the resulting entries are placed
926  * @mapping:	The address_space to search
927  * @start:	The starting entry index
928  * @nr_entries:	The maximum number of pages
929  * @indices:	The cache indices corresponding to the entries in @pvec
930  *
931  * pagevec_lookup_entries() will search for and return a group of up
932  * to @nr_pages pages and shadow entries in the mapping.  All
933  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
934  * reference against actual pages in @pvec.
935  *
936  * The search returns a group of mapping-contiguous entries with
937  * ascending indexes.  There may be holes in the indices due to
938  * not-present entries.
939  *
940  * pagevec_lookup_entries() returns the number of entries which were
941  * found.
942  */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)943 unsigned pagevec_lookup_entries(struct pagevec *pvec,
944 				struct address_space *mapping,
945 				pgoff_t start, unsigned nr_entries,
946 				pgoff_t *indices)
947 {
948 	pvec->nr = find_get_entries(mapping, start, nr_entries,
949 				    pvec->pages, indices);
950 	return pagevec_count(pvec);
951 }
952 
953 /**
954  * pagevec_remove_exceptionals - pagevec exceptionals pruning
955  * @pvec:	The pagevec to prune
956  *
957  * pagevec_lookup_entries() fills both pages and exceptional radix
958  * tree entries into the pagevec.  This function prunes all
959  * exceptionals from @pvec without leaving holes, so that it can be
960  * passed on to page-only pagevec operations.
961  */
pagevec_remove_exceptionals(struct pagevec * pvec)962 void pagevec_remove_exceptionals(struct pagevec *pvec)
963 {
964 	int i, j;
965 
966 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
967 		struct page *page = pvec->pages[i];
968 		if (!radix_tree_exceptional_entry(page))
969 			pvec->pages[j++] = page;
970 	}
971 	pvec->nr = j;
972 }
973 
974 /**
975  * pagevec_lookup_range - gang pagecache lookup
976  * @pvec:	Where the resulting pages are placed
977  * @mapping:	The address_space to search
978  * @start:	The starting page index
979  * @end:	The final page index
980  *
981  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
982  * pages in the mapping starting from index @start and upto index @end
983  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
984  * reference against the pages in @pvec.
985  *
986  * The search returns a group of mapping-contiguous pages with ascending
987  * indexes.  There may be holes in the indices due to not-present pages. We
988  * also update @start to index the next page for the traversal.
989  *
990  * pagevec_lookup_range() returns the number of pages which were found. If this
991  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
992  * reached.
993  */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)994 unsigned pagevec_lookup_range(struct pagevec *pvec,
995 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
996 {
997 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
998 					pvec->pages);
999 	return pagevec_count(pvec);
1000 }
1001 EXPORT_SYMBOL(pagevec_lookup_range);
1002 
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag)1003 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1004 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1005 		int tag)
1006 {
1007 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1008 					PAGEVEC_SIZE, pvec->pages);
1009 	return pagevec_count(pvec);
1010 }
1011 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1012 
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned max_pages)1013 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1014 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1015 		int tag, unsigned max_pages)
1016 {
1017 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1018 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1019 	return pagevec_count(pvec);
1020 }
1021 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1022 /*
1023  * Perform any setup for the swap system
1024  */
swap_setup(void)1025 void __init swap_setup(void)
1026 {
1027 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1028 
1029 	/* Use a smaller cluster for small-memory machines */
1030 	if (megs < 16)
1031 		page_cluster = 2;
1032 	else
1033 		page_cluster = 3;
1034 	/*
1035 	 * Right now other parts of the system means that we
1036 	 * _really_ don't want to cluster much more
1037 	 */
1038 }
1039