1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memremap.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/pagemap.h>
43
44 /* How many pages do we try to swap or page in/out together? */
45 int page_cluster;
46
47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
50 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
51 #ifdef CONFIG_SMP
52 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
53 #endif
54
55 /*
56 * This path almost never happens for VM activity - pages are normally
57 * freed via pagevecs. But it gets used by networking.
58 */
__page_cache_release(struct page * page)59 static void __page_cache_release(struct page *page)
60 {
61 if (PageLRU(page)) {
62 struct zone *zone = page_zone(page);
63 struct lruvec *lruvec;
64 unsigned long flags;
65
66 spin_lock_irqsave(zone_lru_lock(zone), flags);
67 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
68 VM_BUG_ON_PAGE(!PageLRU(page), page);
69 __ClearPageLRU(page);
70 del_page_from_lru_list(page, lruvec, page_off_lru(page));
71 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
72 }
73 __ClearPageWaiters(page);
74 mem_cgroup_uncharge(page);
75 }
76
__put_single_page(struct page * page)77 static void __put_single_page(struct page *page)
78 {
79 __page_cache_release(page);
80 free_unref_page(page);
81 }
82
__put_compound_page(struct page * page)83 static void __put_compound_page(struct page *page)
84 {
85 compound_page_dtor *dtor;
86
87 /*
88 * __page_cache_release() is supposed to be called for thp, not for
89 * hugetlb. This is because hugetlb page does never have PageLRU set
90 * (it's never listed to any LRU lists) and no memcg routines should
91 * be called for hugetlb (it has a separate hugetlb_cgroup.)
92 */
93 if (!PageHuge(page))
94 __page_cache_release(page);
95 dtor = get_compound_page_dtor(page);
96 (*dtor)(page);
97 }
98
__put_page(struct page * page)99 void __put_page(struct page *page)
100 {
101 if (is_zone_device_page(page)) {
102 put_dev_pagemap(page->pgmap);
103
104 /*
105 * The page belongs to the device that created pgmap. Do
106 * not return it to page allocator.
107 */
108 return;
109 }
110
111 if (unlikely(PageCompound(page)))
112 __put_compound_page(page);
113 else
114 __put_single_page(page);
115 }
116 EXPORT_SYMBOL(__put_page);
117
118 /**
119 * put_pages_list() - release a list of pages
120 * @pages: list of pages threaded on page->lru
121 *
122 * Release a list of pages which are strung together on page.lru. Currently
123 * used by read_cache_pages() and related error recovery code.
124 */
put_pages_list(struct list_head * pages)125 void put_pages_list(struct list_head *pages)
126 {
127 while (!list_empty(pages)) {
128 struct page *victim;
129
130 victim = list_entry(pages->prev, struct page, lru);
131 list_del(&victim->lru);
132 put_page(victim);
133 }
134 }
135 EXPORT_SYMBOL(put_pages_list);
136
137 /*
138 * get_kernel_pages() - pin kernel pages in memory
139 * @kiov: An array of struct kvec structures
140 * @nr_segs: number of segments to pin
141 * @write: pinning for read/write, currently ignored
142 * @pages: array that receives pointers to the pages pinned.
143 * Should be at least nr_segs long.
144 *
145 * Returns number of pages pinned. This may be fewer than the number
146 * requested. If nr_pages is 0 or negative, returns 0. If no pages
147 * were pinned, returns -errno. Each page returned must be released
148 * with a put_page() call when it is finished with.
149 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)150 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
151 struct page **pages)
152 {
153 int seg;
154
155 for (seg = 0; seg < nr_segs; seg++) {
156 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
157 return seg;
158
159 pages[seg] = kmap_to_page(kiov[seg].iov_base);
160 get_page(pages[seg]);
161 }
162
163 return seg;
164 }
165 EXPORT_SYMBOL_GPL(get_kernel_pages);
166
167 /*
168 * get_kernel_page() - pin a kernel page in memory
169 * @start: starting kernel address
170 * @write: pinning for read/write, currently ignored
171 * @pages: array that receives pointer to the page pinned.
172 * Must be at least nr_segs long.
173 *
174 * Returns 1 if page is pinned. If the page was not pinned, returns
175 * -errno. The page returned must be released with a put_page() call
176 * when it is finished with.
177 */
get_kernel_page(unsigned long start,int write,struct page ** pages)178 int get_kernel_page(unsigned long start, int write, struct page **pages)
179 {
180 const struct kvec kiov = {
181 .iov_base = (void *)start,
182 .iov_len = PAGE_SIZE
183 };
184
185 return get_kernel_pages(&kiov, 1, write, pages);
186 }
187 EXPORT_SYMBOL_GPL(get_kernel_page);
188
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)189 static void pagevec_lru_move_fn(struct pagevec *pvec,
190 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
191 void *arg)
192 {
193 int i;
194 struct pglist_data *pgdat = NULL;
195 struct lruvec *lruvec;
196 unsigned long flags = 0;
197
198 for (i = 0; i < pagevec_count(pvec); i++) {
199 struct page *page = pvec->pages[i];
200 struct pglist_data *pagepgdat = page_pgdat(page);
201
202 if (pagepgdat != pgdat) {
203 if (pgdat)
204 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
205 pgdat = pagepgdat;
206 spin_lock_irqsave(&pgdat->lru_lock, flags);
207 }
208
209 lruvec = mem_cgroup_page_lruvec(page, pgdat);
210 (*move_fn)(page, lruvec, arg);
211 }
212 if (pgdat)
213 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
214 release_pages(pvec->pages, pvec->nr);
215 pagevec_reinit(pvec);
216 }
217
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
219 void *arg)
220 {
221 int *pgmoved = arg;
222
223 if (PageLRU(page) && !PageUnevictable(page)) {
224 del_page_from_lru_list(page, lruvec, page_lru(page));
225 ClearPageActive(page);
226 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
227 (*pgmoved)++;
228 }
229 }
230
231 /*
232 * pagevec_move_tail() must be called with IRQ disabled.
233 * Otherwise this may cause nasty races.
234 */
pagevec_move_tail(struct pagevec * pvec)235 static void pagevec_move_tail(struct pagevec *pvec)
236 {
237 int pgmoved = 0;
238
239 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
240 __count_vm_events(PGROTATED, pgmoved);
241 }
242
243 /*
244 * Writeback is about to end against a page which has been marked for immediate
245 * reclaim. If it still appears to be reclaimable, move it to the tail of the
246 * inactive list.
247 */
rotate_reclaimable_page(struct page * page)248 void rotate_reclaimable_page(struct page *page)
249 {
250 if (!PageLocked(page) && !PageDirty(page) &&
251 !PageUnevictable(page) && PageLRU(page)) {
252 struct pagevec *pvec;
253 unsigned long flags;
254
255 get_page(page);
256 local_irq_save(flags);
257 pvec = this_cpu_ptr(&lru_rotate_pvecs);
258 if (!pagevec_add(pvec, page) || PageCompound(page))
259 pagevec_move_tail(pvec);
260 local_irq_restore(flags);
261 }
262 }
263
update_page_reclaim_stat(struct lruvec * lruvec,int file,int rotated)264 static void update_page_reclaim_stat(struct lruvec *lruvec,
265 int file, int rotated)
266 {
267 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
268
269 reclaim_stat->recent_scanned[file]++;
270 if (rotated)
271 reclaim_stat->recent_rotated[file]++;
272 }
273
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)274 static void __activate_page(struct page *page, struct lruvec *lruvec,
275 void *arg)
276 {
277 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
278 int file = page_is_file_cache(page);
279 int lru = page_lru_base_type(page);
280
281 del_page_from_lru_list(page, lruvec, lru);
282 SetPageActive(page);
283 lru += LRU_ACTIVE;
284 add_page_to_lru_list(page, lruvec, lru);
285 trace_mm_lru_activate(page);
286
287 __count_vm_event(PGACTIVATE);
288 update_page_reclaim_stat(lruvec, file, 1);
289 }
290 }
291
292 #ifdef CONFIG_SMP
activate_page_drain(int cpu)293 static void activate_page_drain(int cpu)
294 {
295 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
296
297 if (pagevec_count(pvec))
298 pagevec_lru_move_fn(pvec, __activate_page, NULL);
299 }
300
need_activate_page_drain(int cpu)301 static bool need_activate_page_drain(int cpu)
302 {
303 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
304 }
305
activate_page(struct page * page)306 void activate_page(struct page *page)
307 {
308 page = compound_head(page);
309 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
310 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
311
312 get_page(page);
313 if (!pagevec_add(pvec, page) || PageCompound(page))
314 pagevec_lru_move_fn(pvec, __activate_page, NULL);
315 put_cpu_var(activate_page_pvecs);
316 }
317 }
318
319 #else
activate_page_drain(int cpu)320 static inline void activate_page_drain(int cpu)
321 {
322 }
323
need_activate_page_drain(int cpu)324 static bool need_activate_page_drain(int cpu)
325 {
326 return false;
327 }
328
activate_page(struct page * page)329 void activate_page(struct page *page)
330 {
331 struct zone *zone = page_zone(page);
332
333 page = compound_head(page);
334 spin_lock_irq(zone_lru_lock(zone));
335 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
336 spin_unlock_irq(zone_lru_lock(zone));
337 }
338 #endif
339
__lru_cache_activate_page(struct page * page)340 static void __lru_cache_activate_page(struct page *page)
341 {
342 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
343 int i;
344
345 /*
346 * Search backwards on the optimistic assumption that the page being
347 * activated has just been added to this pagevec. Note that only
348 * the local pagevec is examined as a !PageLRU page could be in the
349 * process of being released, reclaimed, migrated or on a remote
350 * pagevec that is currently being drained. Furthermore, marking
351 * a remote pagevec's page PageActive potentially hits a race where
352 * a page is marked PageActive just after it is added to the inactive
353 * list causing accounting errors and BUG_ON checks to trigger.
354 */
355 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
356 struct page *pagevec_page = pvec->pages[i];
357
358 if (pagevec_page == page) {
359 SetPageActive(page);
360 break;
361 }
362 }
363
364 put_cpu_var(lru_add_pvec);
365 }
366
367 /*
368 * Mark a page as having seen activity.
369 *
370 * inactive,unreferenced -> inactive,referenced
371 * inactive,referenced -> active,unreferenced
372 * active,unreferenced -> active,referenced
373 *
374 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
375 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
376 */
mark_page_accessed(struct page * page)377 void mark_page_accessed(struct page *page)
378 {
379 page = compound_head(page);
380 if (!PageActive(page) && !PageUnevictable(page) &&
381 PageReferenced(page)) {
382
383 /*
384 * If the page is on the LRU, queue it for activation via
385 * activate_page_pvecs. Otherwise, assume the page is on a
386 * pagevec, mark it active and it'll be moved to the active
387 * LRU on the next drain.
388 */
389 if (PageLRU(page))
390 activate_page(page);
391 else
392 __lru_cache_activate_page(page);
393 ClearPageReferenced(page);
394 if (page_is_file_cache(page))
395 workingset_activation(page);
396 } else if (!PageReferenced(page)) {
397 SetPageReferenced(page);
398 }
399 if (page_is_idle(page))
400 clear_page_idle(page);
401 }
402 EXPORT_SYMBOL(mark_page_accessed);
403
__lru_cache_add(struct page * page)404 static void __lru_cache_add(struct page *page)
405 {
406 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
407
408 get_page(page);
409 if (!pagevec_add(pvec, page) || PageCompound(page))
410 __pagevec_lru_add(pvec);
411 put_cpu_var(lru_add_pvec);
412 }
413
414 /**
415 * lru_cache_add_anon - add a page to the page lists
416 * @page: the page to add
417 */
lru_cache_add_anon(struct page * page)418 void lru_cache_add_anon(struct page *page)
419 {
420 if (PageActive(page))
421 ClearPageActive(page);
422 __lru_cache_add(page);
423 }
424
lru_cache_add_file(struct page * page)425 void lru_cache_add_file(struct page *page)
426 {
427 if (PageActive(page))
428 ClearPageActive(page);
429 __lru_cache_add(page);
430 }
431 EXPORT_SYMBOL(lru_cache_add_file);
432
433 /**
434 * lru_cache_add - add a page to a page list
435 * @page: the page to be added to the LRU.
436 *
437 * Queue the page for addition to the LRU via pagevec. The decision on whether
438 * to add the page to the [in]active [file|anon] list is deferred until the
439 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
440 * have the page added to the active list using mark_page_accessed().
441 */
lru_cache_add(struct page * page)442 void lru_cache_add(struct page *page)
443 {
444 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
445 VM_BUG_ON_PAGE(PageLRU(page), page);
446 __lru_cache_add(page);
447 }
448
449 /**
450 * lru_cache_add_active_or_unevictable
451 * @page: the page to be added to LRU
452 * @vma: vma in which page is mapped for determining reclaimability
453 *
454 * Place @page on the active or unevictable LRU list, depending on its
455 * evictability. Note that if the page is not evictable, it goes
456 * directly back onto it's zone's unevictable list, it does NOT use a
457 * per cpu pagevec.
458 */
lru_cache_add_active_or_unevictable(struct page * page,struct vm_area_struct * vma)459 void lru_cache_add_active_or_unevictable(struct page *page,
460 struct vm_area_struct *vma)
461 {
462 VM_BUG_ON_PAGE(PageLRU(page), page);
463
464 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
465 SetPageActive(page);
466 else if (!TestSetPageMlocked(page)) {
467 /*
468 * We use the irq-unsafe __mod_zone_page_stat because this
469 * counter is not modified from interrupt context, and the pte
470 * lock is held(spinlock), which implies preemption disabled.
471 */
472 __mod_zone_page_state(page_zone(page), NR_MLOCK,
473 hpage_nr_pages(page));
474 count_vm_event(UNEVICTABLE_PGMLOCKED);
475 }
476 lru_cache_add(page);
477 }
478
479 /*
480 * If the page can not be invalidated, it is moved to the
481 * inactive list to speed up its reclaim. It is moved to the
482 * head of the list, rather than the tail, to give the flusher
483 * threads some time to write it out, as this is much more
484 * effective than the single-page writeout from reclaim.
485 *
486 * If the page isn't page_mapped and dirty/writeback, the page
487 * could reclaim asap using PG_reclaim.
488 *
489 * 1. active, mapped page -> none
490 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
491 * 3. inactive, mapped page -> none
492 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
493 * 5. inactive, clean -> inactive, tail
494 * 6. Others -> none
495 *
496 * In 4, why it moves inactive's head, the VM expects the page would
497 * be write it out by flusher threads as this is much more effective
498 * than the single-page writeout from reclaim.
499 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)500 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
501 void *arg)
502 {
503 int lru, file;
504 bool active;
505
506 if (!PageLRU(page))
507 return;
508
509 if (PageUnevictable(page))
510 return;
511
512 /* Some processes are using the page */
513 if (page_mapped(page))
514 return;
515
516 active = PageActive(page);
517 file = page_is_file_cache(page);
518 lru = page_lru_base_type(page);
519
520 del_page_from_lru_list(page, lruvec, lru + active);
521 ClearPageActive(page);
522 ClearPageReferenced(page);
523 add_page_to_lru_list(page, lruvec, lru);
524
525 if (PageWriteback(page) || PageDirty(page)) {
526 /*
527 * PG_reclaim could be raced with end_page_writeback
528 * It can make readahead confusing. But race window
529 * is _really_ small and it's non-critical problem.
530 */
531 SetPageReclaim(page);
532 } else {
533 /*
534 * The page's writeback ends up during pagevec
535 * We moves tha page into tail of inactive.
536 */
537 list_move_tail(&page->lru, &lruvec->lists[lru]);
538 __count_vm_event(PGROTATED);
539 }
540
541 if (active)
542 __count_vm_event(PGDEACTIVATE);
543 update_page_reclaim_stat(lruvec, file, 0);
544 }
545
546
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)547 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
548 void *arg)
549 {
550 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
551 !PageSwapCache(page) && !PageUnevictable(page)) {
552 bool active = PageActive(page);
553
554 del_page_from_lru_list(page, lruvec,
555 LRU_INACTIVE_ANON + active);
556 ClearPageActive(page);
557 ClearPageReferenced(page);
558 /*
559 * lazyfree pages are clean anonymous pages. They have
560 * SwapBacked flag cleared to distinguish normal anonymous
561 * pages
562 */
563 ClearPageSwapBacked(page);
564 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
565
566 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
567 count_memcg_page_event(page, PGLAZYFREE);
568 update_page_reclaim_stat(lruvec, 1, 0);
569 }
570 }
571
572 /*
573 * Drain pages out of the cpu's pagevecs.
574 * Either "cpu" is the current CPU, and preemption has already been
575 * disabled; or "cpu" is being hot-unplugged, and is already dead.
576 */
lru_add_drain_cpu(int cpu)577 void lru_add_drain_cpu(int cpu)
578 {
579 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
580
581 if (pagevec_count(pvec))
582 __pagevec_lru_add(pvec);
583
584 pvec = &per_cpu(lru_rotate_pvecs, cpu);
585 if (pagevec_count(pvec)) {
586 unsigned long flags;
587
588 /* No harm done if a racing interrupt already did this */
589 local_irq_save(flags);
590 pagevec_move_tail(pvec);
591 local_irq_restore(flags);
592 }
593
594 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
595 if (pagevec_count(pvec))
596 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
597
598 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
599 if (pagevec_count(pvec))
600 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
601
602 activate_page_drain(cpu);
603 }
604
605 /**
606 * deactivate_file_page - forcefully deactivate a file page
607 * @page: page to deactivate
608 *
609 * This function hints the VM that @page is a good reclaim candidate,
610 * for example if its invalidation fails due to the page being dirty
611 * or under writeback.
612 */
deactivate_file_page(struct page * page)613 void deactivate_file_page(struct page *page)
614 {
615 /*
616 * In a workload with many unevictable page such as mprotect,
617 * unevictable page deactivation for accelerating reclaim is pointless.
618 */
619 if (PageUnevictable(page))
620 return;
621
622 if (likely(get_page_unless_zero(page))) {
623 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
624
625 if (!pagevec_add(pvec, page) || PageCompound(page))
626 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
627 put_cpu_var(lru_deactivate_file_pvecs);
628 }
629 }
630
631 /**
632 * mark_page_lazyfree - make an anon page lazyfree
633 * @page: page to deactivate
634 *
635 * mark_page_lazyfree() moves @page to the inactive file list.
636 * This is done to accelerate the reclaim of @page.
637 */
mark_page_lazyfree(struct page * page)638 void mark_page_lazyfree(struct page *page)
639 {
640 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
641 !PageSwapCache(page) && !PageUnevictable(page)) {
642 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
643
644 get_page(page);
645 if (!pagevec_add(pvec, page) || PageCompound(page))
646 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
647 put_cpu_var(lru_lazyfree_pvecs);
648 }
649 }
650
lru_add_drain(void)651 void lru_add_drain(void)
652 {
653 lru_add_drain_cpu(get_cpu());
654 put_cpu();
655 }
656
lru_add_drain_per_cpu(struct work_struct * dummy)657 static void lru_add_drain_per_cpu(struct work_struct *dummy)
658 {
659 lru_add_drain();
660 }
661
662 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
663
664 /*
665 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
666 * kworkers being shut down before our page_alloc_cpu_dead callback is
667 * executed on the offlined cpu.
668 * Calling this function with cpu hotplug locks held can actually lead
669 * to obscure indirect dependencies via WQ context.
670 */
lru_add_drain_all(void)671 void lru_add_drain_all(void)
672 {
673 static DEFINE_MUTEX(lock);
674 static struct cpumask has_work;
675 int cpu;
676
677 /*
678 * Make sure nobody triggers this path before mm_percpu_wq is fully
679 * initialized.
680 */
681 if (WARN_ON(!mm_percpu_wq))
682 return;
683
684 mutex_lock(&lock);
685 cpumask_clear(&has_work);
686
687 for_each_online_cpu(cpu) {
688 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
689
690 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
691 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
692 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
693 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
694 need_activate_page_drain(cpu)) {
695 INIT_WORK(work, lru_add_drain_per_cpu);
696 queue_work_on(cpu, mm_percpu_wq, work);
697 cpumask_set_cpu(cpu, &has_work);
698 }
699 }
700
701 for_each_cpu(cpu, &has_work)
702 flush_work(&per_cpu(lru_add_drain_work, cpu));
703
704 mutex_unlock(&lock);
705 }
706
707 /**
708 * release_pages - batched put_page()
709 * @pages: array of pages to release
710 * @nr: number of pages
711 *
712 * Decrement the reference count on all the pages in @pages. If it
713 * fell to zero, remove the page from the LRU and free it.
714 */
release_pages(struct page ** pages,int nr)715 void release_pages(struct page **pages, int nr)
716 {
717 int i;
718 LIST_HEAD(pages_to_free);
719 struct pglist_data *locked_pgdat = NULL;
720 struct lruvec *lruvec;
721 unsigned long uninitialized_var(flags);
722 unsigned int uninitialized_var(lock_batch);
723
724 for (i = 0; i < nr; i++) {
725 struct page *page = pages[i];
726
727 /*
728 * Make sure the IRQ-safe lock-holding time does not get
729 * excessive with a continuous string of pages from the
730 * same pgdat. The lock is held only if pgdat != NULL.
731 */
732 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
733 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
734 locked_pgdat = NULL;
735 }
736
737 if (is_huge_zero_page(page))
738 continue;
739
740 /* Device public page can not be huge page */
741 if (is_device_public_page(page)) {
742 if (locked_pgdat) {
743 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
744 flags);
745 locked_pgdat = NULL;
746 }
747 put_devmap_managed_page(page);
748 continue;
749 }
750
751 page = compound_head(page);
752 if (!put_page_testzero(page))
753 continue;
754
755 if (PageCompound(page)) {
756 if (locked_pgdat) {
757 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
758 locked_pgdat = NULL;
759 }
760 __put_compound_page(page);
761 continue;
762 }
763
764 if (PageLRU(page)) {
765 struct pglist_data *pgdat = page_pgdat(page);
766
767 if (pgdat != locked_pgdat) {
768 if (locked_pgdat)
769 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
770 flags);
771 lock_batch = 0;
772 locked_pgdat = pgdat;
773 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
774 }
775
776 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
777 VM_BUG_ON_PAGE(!PageLRU(page), page);
778 __ClearPageLRU(page);
779 del_page_from_lru_list(page, lruvec, page_off_lru(page));
780 }
781
782 /* Clear Active bit in case of parallel mark_page_accessed */
783 __ClearPageActive(page);
784 __ClearPageWaiters(page);
785
786 list_add(&page->lru, &pages_to_free);
787 }
788 if (locked_pgdat)
789 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
790
791 mem_cgroup_uncharge_list(&pages_to_free);
792 free_unref_page_list(&pages_to_free);
793 }
794 EXPORT_SYMBOL(release_pages);
795
796 /*
797 * The pages which we're about to release may be in the deferred lru-addition
798 * queues. That would prevent them from really being freed right now. That's
799 * OK from a correctness point of view but is inefficient - those pages may be
800 * cache-warm and we want to give them back to the page allocator ASAP.
801 *
802 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
803 * and __pagevec_lru_add_active() call release_pages() directly to avoid
804 * mutual recursion.
805 */
__pagevec_release(struct pagevec * pvec)806 void __pagevec_release(struct pagevec *pvec)
807 {
808 if (!pvec->percpu_pvec_drained) {
809 lru_add_drain();
810 pvec->percpu_pvec_drained = true;
811 }
812 release_pages(pvec->pages, pagevec_count(pvec));
813 pagevec_reinit(pvec);
814 }
815 EXPORT_SYMBOL(__pagevec_release);
816
817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
818 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)819 void lru_add_page_tail(struct page *page, struct page *page_tail,
820 struct lruvec *lruvec, struct list_head *list)
821 {
822 const int file = 0;
823
824 VM_BUG_ON_PAGE(!PageHead(page), page);
825 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
826 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
827 VM_BUG_ON(NR_CPUS != 1 &&
828 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
829
830 if (!list)
831 SetPageLRU(page_tail);
832
833 if (likely(PageLRU(page)))
834 list_add_tail(&page_tail->lru, &page->lru);
835 else if (list) {
836 /* page reclaim is reclaiming a huge page */
837 get_page(page_tail);
838 list_add_tail(&page_tail->lru, list);
839 } else {
840 struct list_head *list_head;
841 /*
842 * Head page has not yet been counted, as an hpage,
843 * so we must account for each subpage individually.
844 *
845 * Use the standard add function to put page_tail on the list,
846 * but then correct its position so they all end up in order.
847 */
848 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
849 list_head = page_tail->lru.prev;
850 list_move_tail(&page_tail->lru, list_head);
851 }
852
853 if (!PageUnevictable(page))
854 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
855 }
856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
857
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)858 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
859 void *arg)
860 {
861 enum lru_list lru;
862 int was_unevictable = TestClearPageUnevictable(page);
863
864 VM_BUG_ON_PAGE(PageLRU(page), page);
865
866 SetPageLRU(page);
867 /*
868 * Page becomes evictable in two ways:
869 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
870 * 2) Before acquiring LRU lock to put the page to correct LRU and then
871 * a) do PageLRU check with lock [check_move_unevictable_pages]
872 * b) do PageLRU check before lock [clear_page_mlock]
873 *
874 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
875 * following strict ordering:
876 *
877 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
878 *
879 * SetPageLRU() TestClearPageMlocked()
880 * smp_mb() // explicit ordering // above provides strict
881 * // ordering
882 * PageMlocked() PageLRU()
883 *
884 *
885 * if '#1' does not observe setting of PG_lru by '#0' and fails
886 * isolation, the explicit barrier will make sure that page_evictable
887 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
888 * can be reordered after PageMlocked check and can make '#1' to fail
889 * the isolation of the page whose Mlocked bit is cleared (#0 is also
890 * looking at the same page) and the evictable page will be stranded
891 * in an unevictable LRU.
892 */
893 smp_mb();
894
895 if (page_evictable(page)) {
896 lru = page_lru(page);
897 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
898 PageActive(page));
899 if (was_unevictable)
900 count_vm_event(UNEVICTABLE_PGRESCUED);
901 } else {
902 lru = LRU_UNEVICTABLE;
903 ClearPageActive(page);
904 SetPageUnevictable(page);
905 if (!was_unevictable)
906 count_vm_event(UNEVICTABLE_PGCULLED);
907 }
908
909 add_page_to_lru_list(page, lruvec, lru);
910 trace_mm_lru_insertion(page, lru);
911 }
912
913 /*
914 * Add the passed pages to the LRU, then drop the caller's refcount
915 * on them. Reinitialises the caller's pagevec.
916 */
__pagevec_lru_add(struct pagevec * pvec)917 void __pagevec_lru_add(struct pagevec *pvec)
918 {
919 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
920 }
921 EXPORT_SYMBOL(__pagevec_lru_add);
922
923 /**
924 * pagevec_lookup_entries - gang pagecache lookup
925 * @pvec: Where the resulting entries are placed
926 * @mapping: The address_space to search
927 * @start: The starting entry index
928 * @nr_entries: The maximum number of pages
929 * @indices: The cache indices corresponding to the entries in @pvec
930 *
931 * pagevec_lookup_entries() will search for and return a group of up
932 * to @nr_pages pages and shadow entries in the mapping. All
933 * entries are placed in @pvec. pagevec_lookup_entries() takes a
934 * reference against actual pages in @pvec.
935 *
936 * The search returns a group of mapping-contiguous entries with
937 * ascending indexes. There may be holes in the indices due to
938 * not-present entries.
939 *
940 * pagevec_lookup_entries() returns the number of entries which were
941 * found.
942 */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)943 unsigned pagevec_lookup_entries(struct pagevec *pvec,
944 struct address_space *mapping,
945 pgoff_t start, unsigned nr_entries,
946 pgoff_t *indices)
947 {
948 pvec->nr = find_get_entries(mapping, start, nr_entries,
949 pvec->pages, indices);
950 return pagevec_count(pvec);
951 }
952
953 /**
954 * pagevec_remove_exceptionals - pagevec exceptionals pruning
955 * @pvec: The pagevec to prune
956 *
957 * pagevec_lookup_entries() fills both pages and exceptional radix
958 * tree entries into the pagevec. This function prunes all
959 * exceptionals from @pvec without leaving holes, so that it can be
960 * passed on to page-only pagevec operations.
961 */
pagevec_remove_exceptionals(struct pagevec * pvec)962 void pagevec_remove_exceptionals(struct pagevec *pvec)
963 {
964 int i, j;
965
966 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
967 struct page *page = pvec->pages[i];
968 if (!radix_tree_exceptional_entry(page))
969 pvec->pages[j++] = page;
970 }
971 pvec->nr = j;
972 }
973
974 /**
975 * pagevec_lookup_range - gang pagecache lookup
976 * @pvec: Where the resulting pages are placed
977 * @mapping: The address_space to search
978 * @start: The starting page index
979 * @end: The final page index
980 *
981 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
982 * pages in the mapping starting from index @start and upto index @end
983 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
984 * reference against the pages in @pvec.
985 *
986 * The search returns a group of mapping-contiguous pages with ascending
987 * indexes. There may be holes in the indices due to not-present pages. We
988 * also update @start to index the next page for the traversal.
989 *
990 * pagevec_lookup_range() returns the number of pages which were found. If this
991 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
992 * reached.
993 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)994 unsigned pagevec_lookup_range(struct pagevec *pvec,
995 struct address_space *mapping, pgoff_t *start, pgoff_t end)
996 {
997 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
998 pvec->pages);
999 return pagevec_count(pvec);
1000 }
1001 EXPORT_SYMBOL(pagevec_lookup_range);
1002
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag)1003 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1004 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1005 int tag)
1006 {
1007 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1008 PAGEVEC_SIZE, pvec->pages);
1009 return pagevec_count(pvec);
1010 }
1011 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1012
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned max_pages)1013 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1014 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1015 int tag, unsigned max_pages)
1016 {
1017 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1018 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1019 return pagevec_count(pvec);
1020 }
1021 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1022 /*
1023 * Perform any setup for the swap system
1024 */
swap_setup(void)1025 void __init swap_setup(void)
1026 {
1027 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1028
1029 /* Use a smaller cluster for small-memory machines */
1030 if (megs < 16)
1031 page_cluster = 2;
1032 else
1033 page_cluster = 3;
1034 /*
1035 * Right now other parts of the system means that we
1036 * _really_ don't want to cluster much more
1037 */
1038 }
1039