1 /*
2  * slcan.c - serial line CAN interface driver (using tty line discipline)
3  *
4  * This file is derived from linux/drivers/net/slip/slip.c
5  *
6  * slip.c Authors  : Laurence Culhane <loz@holmes.demon.co.uk>
7  *                   Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
8  * slcan.c Author  : Oliver Hartkopp <socketcan@hartkopp.net>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see http://www.gnu.org/licenses/gpl.html
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
29  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34  * DAMAGE.
35  *
36  */
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 
41 #include <linux/uaccess.h>
42 #include <linux/bitops.h>
43 #include <linux/string.h>
44 #include <linux/tty.h>
45 #include <linux/errno.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/if_arp.h>
50 #include <linux/if_ether.h>
51 #include <linux/sched.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/workqueue.h>
56 #include <linux/can.h>
57 #include <linux/can/skb.h>
58 #include <linux/can/can-ml.h>
59 
60 MODULE_ALIAS_LDISC(N_SLCAN);
61 MODULE_DESCRIPTION("serial line CAN interface");
62 MODULE_LICENSE("GPL");
63 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
64 
65 #define SLCAN_MAGIC 0x53CA
66 
67 static int maxdev = 10;		/* MAX number of SLCAN channels;
68 				   This can be overridden with
69 				   insmod slcan.ko maxdev=nnn	*/
70 module_param(maxdev, int, 0);
71 MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
72 
73 /* maximum rx buffer len: extended CAN frame with timestamp */
74 #define SLC_MTU (sizeof("T1111222281122334455667788EA5F\r")+1)
75 
76 #define SLC_CMD_LEN 1
77 #define SLC_SFF_ID_LEN 3
78 #define SLC_EFF_ID_LEN 8
79 
80 struct slcan {
81 	int			magic;
82 
83 	/* Various fields. */
84 	struct tty_struct	*tty;		/* ptr to TTY structure	     */
85 	struct net_device	*dev;		/* easy for intr handling    */
86 	spinlock_t		lock;
87 	struct work_struct	tx_work;	/* Flushes transmit buffer   */
88 
89 	/* These are pointers to the malloc()ed frame buffers. */
90 	unsigned char		rbuff[SLC_MTU];	/* receiver buffer	     */
91 	int			rcount;         /* received chars counter    */
92 	unsigned char		xbuff[SLC_MTU];	/* transmitter buffer	     */
93 	unsigned char		*xhead;         /* pointer to next XMIT byte */
94 	int			xleft;          /* bytes left in XMIT queue  */
95 
96 	unsigned long		flags;		/* Flag values/ mode etc     */
97 #define SLF_INUSE		0		/* Channel in use            */
98 #define SLF_ERROR		1               /* Parity, etc. error        */
99 };
100 
101 static struct net_device **slcan_devs;
102 
103  /************************************************************************
104   *			SLCAN ENCAPSULATION FORMAT			 *
105   ************************************************************************/
106 
107 /*
108  * A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
109  * frame format) a data length code (can_dlc) which can be from 0 to 8
110  * and up to <can_dlc> data bytes as payload.
111  * Additionally a CAN frame may become a remote transmission frame if the
112  * RTR-bit is set. This causes another ECU to send a CAN frame with the
113  * given can_id.
114  *
115  * The SLCAN ASCII representation of these different frame types is:
116  * <type> <id> <dlc> <data>*
117  *
118  * Extended frames (29 bit) are defined by capital characters in the type.
119  * RTR frames are defined as 'r' types - normal frames have 't' type:
120  * t => 11 bit data frame
121  * r => 11 bit RTR frame
122  * T => 29 bit data frame
123  * R => 29 bit RTR frame
124  *
125  * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
126  * The <dlc> is a one byte ASCII number ('0' - '8')
127  * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
128  *
129  * Examples:
130  *
131  * t1230 : can_id 0x123, can_dlc 0, no data
132  * t4563112233 : can_id 0x456, can_dlc 3, data 0x11 0x22 0x33
133  * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, can_dlc 2, data 0xAA 0x55
134  * r1230 : can_id 0x123, can_dlc 0, no data, remote transmission request
135  *
136  */
137 
138  /************************************************************************
139   *			STANDARD SLCAN DECAPSULATION			 *
140   ************************************************************************/
141 
142 /* Send one completely decapsulated can_frame to the network layer */
slc_bump(struct slcan * sl)143 static void slc_bump(struct slcan *sl)
144 {
145 	struct sk_buff *skb;
146 	struct can_frame cf;
147 	int i, tmp;
148 	u32 tmpid;
149 	char *cmd = sl->rbuff;
150 
151 	cf.can_id = 0;
152 
153 	switch (*cmd) {
154 	case 'r':
155 		cf.can_id = CAN_RTR_FLAG;
156 		/* fallthrough */
157 	case 't':
158 		/* store dlc ASCII value and terminate SFF CAN ID string */
159 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
160 		sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
161 		/* point to payload data behind the dlc */
162 		cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
163 		break;
164 	case 'R':
165 		cf.can_id = CAN_RTR_FLAG;
166 		/* fallthrough */
167 	case 'T':
168 		cf.can_id |= CAN_EFF_FLAG;
169 		/* store dlc ASCII value and terminate EFF CAN ID string */
170 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
171 		sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
172 		/* point to payload data behind the dlc */
173 		cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
174 		break;
175 	default:
176 		return;
177 	}
178 
179 	if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
180 		return;
181 
182 	cf.can_id |= tmpid;
183 
184 	/* get can_dlc from sanitized ASCII value */
185 	if (cf.can_dlc >= '0' && cf.can_dlc < '9')
186 		cf.can_dlc -= '0';
187 	else
188 		return;
189 
190 	*(u64 *) (&cf.data) = 0; /* clear payload */
191 
192 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
193 	if (!(cf.can_id & CAN_RTR_FLAG)) {
194 		for (i = 0; i < cf.can_dlc; i++) {
195 			tmp = hex_to_bin(*cmd++);
196 			if (tmp < 0)
197 				return;
198 			cf.data[i] = (tmp << 4);
199 			tmp = hex_to_bin(*cmd++);
200 			if (tmp < 0)
201 				return;
202 			cf.data[i] |= tmp;
203 		}
204 	}
205 
206 	skb = dev_alloc_skb(sizeof(struct can_frame) +
207 			    sizeof(struct can_skb_priv));
208 	if (!skb)
209 		return;
210 
211 	skb->dev = sl->dev;
212 	skb->protocol = htons(ETH_P_CAN);
213 	skb->pkt_type = PACKET_BROADCAST;
214 	skb->ip_summed = CHECKSUM_UNNECESSARY;
215 
216 	can_skb_reserve(skb);
217 	can_skb_prv(skb)->ifindex = sl->dev->ifindex;
218 	can_skb_prv(skb)->skbcnt = 0;
219 
220 	skb_put_data(skb, &cf, sizeof(struct can_frame));
221 
222 	sl->dev->stats.rx_packets++;
223 	sl->dev->stats.rx_bytes += cf.can_dlc;
224 	netif_rx_ni(skb);
225 }
226 
227 /* parse tty input stream */
slcan_unesc(struct slcan * sl,unsigned char s)228 static void slcan_unesc(struct slcan *sl, unsigned char s)
229 {
230 	if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
231 		if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
232 		    (sl->rcount > 4))  {
233 			slc_bump(sl);
234 		}
235 		sl->rcount = 0;
236 	} else {
237 		if (!test_bit(SLF_ERROR, &sl->flags))  {
238 			if (sl->rcount < SLC_MTU)  {
239 				sl->rbuff[sl->rcount++] = s;
240 				return;
241 			} else {
242 				sl->dev->stats.rx_over_errors++;
243 				set_bit(SLF_ERROR, &sl->flags);
244 			}
245 		}
246 	}
247 }
248 
249  /************************************************************************
250   *			STANDARD SLCAN ENCAPSULATION			 *
251   ************************************************************************/
252 
253 /* Encapsulate one can_frame and stuff into a TTY queue. */
slc_encaps(struct slcan * sl,struct can_frame * cf)254 static void slc_encaps(struct slcan *sl, struct can_frame *cf)
255 {
256 	int actual, i;
257 	unsigned char *pos;
258 	unsigned char *endpos;
259 	canid_t id = cf->can_id;
260 
261 	pos = sl->xbuff;
262 
263 	if (cf->can_id & CAN_RTR_FLAG)
264 		*pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
265 	else
266 		*pos = 'T'; /* becomes 't' in standard frame format (SSF) */
267 
268 	/* determine number of chars for the CAN-identifier */
269 	if (cf->can_id & CAN_EFF_FLAG) {
270 		id &= CAN_EFF_MASK;
271 		endpos = pos + SLC_EFF_ID_LEN;
272 	} else {
273 		*pos |= 0x20; /* convert R/T to lower case for SFF */
274 		id &= CAN_SFF_MASK;
275 		endpos = pos + SLC_SFF_ID_LEN;
276 	}
277 
278 	/* build 3 (SFF) or 8 (EFF) digit CAN identifier */
279 	pos++;
280 	while (endpos >= pos) {
281 		*endpos-- = hex_asc_upper[id & 0xf];
282 		id >>= 4;
283 	}
284 
285 	pos += (cf->can_id & CAN_EFF_FLAG) ? SLC_EFF_ID_LEN : SLC_SFF_ID_LEN;
286 
287 	*pos++ = cf->can_dlc + '0';
288 
289 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
290 	if (!(cf->can_id & CAN_RTR_FLAG)) {
291 		for (i = 0; i < cf->can_dlc; i++)
292 			pos = hex_byte_pack_upper(pos, cf->data[i]);
293 	}
294 
295 	*pos++ = '\r';
296 
297 	/* Order of next two lines is *very* important.
298 	 * When we are sending a little amount of data,
299 	 * the transfer may be completed inside the ops->write()
300 	 * routine, because it's running with interrupts enabled.
301 	 * In this case we *never* got WRITE_WAKEUP event,
302 	 * if we did not request it before write operation.
303 	 *       14 Oct 1994  Dmitry Gorodchanin.
304 	 */
305 	set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
306 	actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
307 	sl->xleft = (pos - sl->xbuff) - actual;
308 	sl->xhead = sl->xbuff + actual;
309 	sl->dev->stats.tx_bytes += cf->can_dlc;
310 }
311 
312 /* Write out any remaining transmit buffer. Scheduled when tty is writable */
slcan_transmit(struct work_struct * work)313 static void slcan_transmit(struct work_struct *work)
314 {
315 	struct slcan *sl = container_of(work, struct slcan, tx_work);
316 	int actual;
317 
318 	spin_lock_bh(&sl->lock);
319 	/* First make sure we're connected. */
320 	if (!sl->tty || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev)) {
321 		spin_unlock_bh(&sl->lock);
322 		return;
323 	}
324 
325 	if (sl->xleft <= 0)  {
326 		/* Now serial buffer is almost free & we can start
327 		 * transmission of another packet */
328 		sl->dev->stats.tx_packets++;
329 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
330 		spin_unlock_bh(&sl->lock);
331 		netif_wake_queue(sl->dev);
332 		return;
333 	}
334 
335 	actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft);
336 	sl->xleft -= actual;
337 	sl->xhead += actual;
338 	spin_unlock_bh(&sl->lock);
339 }
340 
341 /*
342  * Called by the driver when there's room for more data.
343  * Schedule the transmit.
344  */
slcan_write_wakeup(struct tty_struct * tty)345 static void slcan_write_wakeup(struct tty_struct *tty)
346 {
347 	struct slcan *sl = tty->disc_data;
348 
349 	schedule_work(&sl->tx_work);
350 }
351 
352 /* Send a can_frame to a TTY queue. */
slc_xmit(struct sk_buff * skb,struct net_device * dev)353 static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
354 {
355 	struct slcan *sl = netdev_priv(dev);
356 
357 	if (skb->len != CAN_MTU)
358 		goto out;
359 
360 	spin_lock(&sl->lock);
361 	if (!netif_running(dev))  {
362 		spin_unlock(&sl->lock);
363 		printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
364 		goto out;
365 	}
366 	if (sl->tty == NULL) {
367 		spin_unlock(&sl->lock);
368 		goto out;
369 	}
370 
371 	netif_stop_queue(sl->dev);
372 	slc_encaps(sl, (struct can_frame *) skb->data); /* encaps & send */
373 	spin_unlock(&sl->lock);
374 
375 out:
376 	kfree_skb(skb);
377 	return NETDEV_TX_OK;
378 }
379 
380 
381 /******************************************
382  *   Routines looking at netdevice side.
383  ******************************************/
384 
385 /* Netdevice UP -> DOWN routine */
slc_close(struct net_device * dev)386 static int slc_close(struct net_device *dev)
387 {
388 	struct slcan *sl = netdev_priv(dev);
389 
390 	spin_lock_bh(&sl->lock);
391 	if (sl->tty) {
392 		/* TTY discipline is running. */
393 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
394 	}
395 	netif_stop_queue(dev);
396 	sl->rcount   = 0;
397 	sl->xleft    = 0;
398 	spin_unlock_bh(&sl->lock);
399 
400 	return 0;
401 }
402 
403 /* Netdevice DOWN -> UP routine */
slc_open(struct net_device * dev)404 static int slc_open(struct net_device *dev)
405 {
406 	struct slcan *sl = netdev_priv(dev);
407 
408 	if (sl->tty == NULL)
409 		return -ENODEV;
410 
411 	sl->flags &= (1 << SLF_INUSE);
412 	netif_start_queue(dev);
413 	return 0;
414 }
415 
416 /* Hook the destructor so we can free slcan devs at the right point in time */
slc_free_netdev(struct net_device * dev)417 static void slc_free_netdev(struct net_device *dev)
418 {
419 	int i = dev->base_addr;
420 
421 	slcan_devs[i] = NULL;
422 }
423 
slcan_change_mtu(struct net_device * dev,int new_mtu)424 static int slcan_change_mtu(struct net_device *dev, int new_mtu)
425 {
426 	return -EINVAL;
427 }
428 
429 static const struct net_device_ops slc_netdev_ops = {
430 	.ndo_open               = slc_open,
431 	.ndo_stop               = slc_close,
432 	.ndo_start_xmit         = slc_xmit,
433 	.ndo_change_mtu         = slcan_change_mtu,
434 };
435 
slc_setup(struct net_device * dev)436 static void slc_setup(struct net_device *dev)
437 {
438 	dev->netdev_ops		= &slc_netdev_ops;
439 	dev->needs_free_netdev	= true;
440 	dev->priv_destructor	= slc_free_netdev;
441 
442 	dev->hard_header_len	= 0;
443 	dev->addr_len		= 0;
444 	dev->tx_queue_len	= 10;
445 
446 	dev->mtu		= CAN_MTU;
447 	dev->type		= ARPHRD_CAN;
448 
449 	/* New-style flags. */
450 	dev->flags		= IFF_NOARP;
451 	dev->features           = NETIF_F_HW_CSUM;
452 }
453 
454 /******************************************
455   Routines looking at TTY side.
456  ******************************************/
457 
458 /*
459  * Handle the 'receiver data ready' interrupt.
460  * This function is called by the 'tty_io' module in the kernel when
461  * a block of SLCAN data has been received, which can now be decapsulated
462  * and sent on to some IP layer for further processing. This will not
463  * be re-entered while running but other ldisc functions may be called
464  * in parallel
465  */
466 
slcan_receive_buf(struct tty_struct * tty,const unsigned char * cp,char * fp,int count)467 static void slcan_receive_buf(struct tty_struct *tty,
468 			      const unsigned char *cp, char *fp, int count)
469 {
470 	struct slcan *sl = (struct slcan *) tty->disc_data;
471 
472 	if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
473 		return;
474 
475 	/* Read the characters out of the buffer */
476 	while (count--) {
477 		if (fp && *fp++) {
478 			if (!test_and_set_bit(SLF_ERROR, &sl->flags))
479 				sl->dev->stats.rx_errors++;
480 			cp++;
481 			continue;
482 		}
483 		slcan_unesc(sl, *cp++);
484 	}
485 }
486 
487 /************************************
488  *  slcan_open helper routines.
489  ************************************/
490 
491 /* Collect hanged up channels */
slc_sync(void)492 static void slc_sync(void)
493 {
494 	int i;
495 	struct net_device *dev;
496 	struct slcan	  *sl;
497 
498 	for (i = 0; i < maxdev; i++) {
499 		dev = slcan_devs[i];
500 		if (dev == NULL)
501 			break;
502 
503 		sl = netdev_priv(dev);
504 		if (sl->tty)
505 			continue;
506 		if (dev->flags & IFF_UP)
507 			dev_close(dev);
508 	}
509 }
510 
511 /* Find a free SLCAN channel, and link in this `tty' line. */
slc_alloc(void)512 static struct slcan *slc_alloc(void)
513 {
514 	int i;
515 	char name[IFNAMSIZ];
516 	struct net_device *dev = NULL;
517 	struct slcan       *sl;
518 	int size;
519 
520 	for (i = 0; i < maxdev; i++) {
521 		dev = slcan_devs[i];
522 		if (dev == NULL)
523 			break;
524 
525 	}
526 
527 	/* Sorry, too many, all slots in use */
528 	if (i >= maxdev)
529 		return NULL;
530 
531 	sprintf(name, "slcan%d", i);
532 	size = ALIGN(sizeof(*sl), NETDEV_ALIGN) + sizeof(struct can_ml_priv);
533 	dev = alloc_netdev(size, name, NET_NAME_UNKNOWN, slc_setup);
534 	if (!dev)
535 		return NULL;
536 
537 	dev->base_addr  = i;
538 	sl = netdev_priv(dev);
539 	dev->ml_priv = (void *)sl + ALIGN(sizeof(*sl), NETDEV_ALIGN);
540 
541 	/* Initialize channel control data */
542 	sl->magic = SLCAN_MAGIC;
543 	sl->dev	= dev;
544 	spin_lock_init(&sl->lock);
545 	INIT_WORK(&sl->tx_work, slcan_transmit);
546 	slcan_devs[i] = dev;
547 
548 	return sl;
549 }
550 
551 /*
552  * Open the high-level part of the SLCAN channel.
553  * This function is called by the TTY module when the
554  * SLCAN line discipline is called for.  Because we are
555  * sure the tty line exists, we only have to link it to
556  * a free SLCAN channel...
557  *
558  * Called in process context serialized from other ldisc calls.
559  */
560 
slcan_open(struct tty_struct * tty)561 static int slcan_open(struct tty_struct *tty)
562 {
563 	struct slcan *sl;
564 	int err;
565 
566 	if (!capable(CAP_NET_ADMIN))
567 		return -EPERM;
568 
569 	if (tty->ops->write == NULL)
570 		return -EOPNOTSUPP;
571 
572 	/* RTnetlink lock is misused here to serialize concurrent
573 	   opens of slcan channels. There are better ways, but it is
574 	   the simplest one.
575 	 */
576 	rtnl_lock();
577 
578 	/* Collect hanged up channels. */
579 	slc_sync();
580 
581 	sl = tty->disc_data;
582 
583 	err = -EEXIST;
584 	/* First make sure we're not already connected. */
585 	if (sl && sl->magic == SLCAN_MAGIC)
586 		goto err_exit;
587 
588 	/* OK.  Find a free SLCAN channel to use. */
589 	err = -ENFILE;
590 	sl = slc_alloc();
591 	if (sl == NULL)
592 		goto err_exit;
593 
594 	sl->tty = tty;
595 	tty->disc_data = sl;
596 
597 	if (!test_bit(SLF_INUSE, &sl->flags)) {
598 		/* Perform the low-level SLCAN initialization. */
599 		sl->rcount   = 0;
600 		sl->xleft    = 0;
601 
602 		set_bit(SLF_INUSE, &sl->flags);
603 
604 		err = register_netdevice(sl->dev);
605 		if (err)
606 			goto err_free_chan;
607 	}
608 
609 	/* Done.  We have linked the TTY line to a channel. */
610 	rtnl_unlock();
611 	tty->receive_room = 65536;	/* We don't flow control */
612 
613 	/* TTY layer expects 0 on success */
614 	return 0;
615 
616 err_free_chan:
617 	sl->tty = NULL;
618 	tty->disc_data = NULL;
619 	clear_bit(SLF_INUSE, &sl->flags);
620 	free_netdev(sl->dev);
621 
622 err_exit:
623 	rtnl_unlock();
624 
625 	/* Count references from TTY module */
626 	return err;
627 }
628 
629 /*
630  * Close down a SLCAN channel.
631  * This means flushing out any pending queues, and then returning. This
632  * call is serialized against other ldisc functions.
633  *
634  * We also use this method for a hangup event.
635  */
636 
slcan_close(struct tty_struct * tty)637 static void slcan_close(struct tty_struct *tty)
638 {
639 	struct slcan *sl = (struct slcan *) tty->disc_data;
640 
641 	/* First make sure we're connected. */
642 	if (!sl || sl->magic != SLCAN_MAGIC || sl->tty != tty)
643 		return;
644 
645 	spin_lock_bh(&sl->lock);
646 	tty->disc_data = NULL;
647 	sl->tty = NULL;
648 	spin_unlock_bh(&sl->lock);
649 
650 	flush_work(&sl->tx_work);
651 
652 	/* Flush network side */
653 	unregister_netdev(sl->dev);
654 	/* This will complete via sl_free_netdev */
655 }
656 
slcan_hangup(struct tty_struct * tty)657 static int slcan_hangup(struct tty_struct *tty)
658 {
659 	slcan_close(tty);
660 	return 0;
661 }
662 
663 /* Perform I/O control on an active SLCAN channel. */
slcan_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)664 static int slcan_ioctl(struct tty_struct *tty, struct file *file,
665 		       unsigned int cmd, unsigned long arg)
666 {
667 	struct slcan *sl = (struct slcan *) tty->disc_data;
668 	unsigned int tmp;
669 
670 	/* First make sure we're connected. */
671 	if (!sl || sl->magic != SLCAN_MAGIC)
672 		return -EINVAL;
673 
674 	switch (cmd) {
675 	case SIOCGIFNAME:
676 		tmp = strlen(sl->dev->name) + 1;
677 		if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
678 			return -EFAULT;
679 		return 0;
680 
681 	case SIOCSIFHWADDR:
682 		return -EINVAL;
683 
684 	default:
685 		return tty_mode_ioctl(tty, file, cmd, arg);
686 	}
687 }
688 
689 static struct tty_ldisc_ops slc_ldisc = {
690 	.owner		= THIS_MODULE,
691 	.magic		= TTY_LDISC_MAGIC,
692 	.name		= "slcan",
693 	.open		= slcan_open,
694 	.close		= slcan_close,
695 	.hangup		= slcan_hangup,
696 	.ioctl		= slcan_ioctl,
697 	.receive_buf	= slcan_receive_buf,
698 	.write_wakeup	= slcan_write_wakeup,
699 };
700 
slcan_init(void)701 static int __init slcan_init(void)
702 {
703 	int status;
704 
705 	if (maxdev < 4)
706 		maxdev = 4; /* Sanity */
707 
708 	pr_info("slcan: serial line CAN interface driver\n");
709 	pr_info("slcan: %d dynamic interface channels.\n", maxdev);
710 
711 	slcan_devs = kcalloc(maxdev, sizeof(struct net_device *), GFP_KERNEL);
712 	if (!slcan_devs)
713 		return -ENOMEM;
714 
715 	/* Fill in our line protocol discipline, and register it */
716 	status = tty_register_ldisc(N_SLCAN, &slc_ldisc);
717 	if (status)  {
718 		printk(KERN_ERR "slcan: can't register line discipline\n");
719 		kfree(slcan_devs);
720 	}
721 	return status;
722 }
723 
slcan_exit(void)724 static void __exit slcan_exit(void)
725 {
726 	int i;
727 	struct net_device *dev;
728 	struct slcan *sl;
729 	unsigned long timeout = jiffies + HZ;
730 	int busy = 0;
731 
732 	if (slcan_devs == NULL)
733 		return;
734 
735 	/* First of all: check for active disciplines and hangup them.
736 	 */
737 	do {
738 		if (busy)
739 			msleep_interruptible(100);
740 
741 		busy = 0;
742 		for (i = 0; i < maxdev; i++) {
743 			dev = slcan_devs[i];
744 			if (!dev)
745 				continue;
746 			sl = netdev_priv(dev);
747 			spin_lock_bh(&sl->lock);
748 			if (sl->tty) {
749 				busy++;
750 				tty_hangup(sl->tty);
751 			}
752 			spin_unlock_bh(&sl->lock);
753 		}
754 	} while (busy && time_before(jiffies, timeout));
755 
756 	/* FIXME: hangup is async so we should wait when doing this second
757 	   phase */
758 
759 	for (i = 0; i < maxdev; i++) {
760 		dev = slcan_devs[i];
761 		if (!dev)
762 			continue;
763 		slcan_devs[i] = NULL;
764 
765 		sl = netdev_priv(dev);
766 		if (sl->tty) {
767 			printk(KERN_ERR "%s: tty discipline still running\n",
768 			       dev->name);
769 		}
770 
771 		unregister_netdev(dev);
772 	}
773 
774 	kfree(slcan_devs);
775 	slcan_devs = NULL;
776 
777 	i = tty_unregister_ldisc(N_SLCAN);
778 	if (i)
779 		printk(KERN_ERR "slcan: can't unregister ldisc (err %d)\n", i);
780 }
781 
782 module_init(slcan_init);
783 module_exit(slcan_exit);
784