1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include "sched.h"
9
10 #include <linux/nospec.h>
11
12 #include <linux/kcov.h>
13
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19
20 #include "pelt.h"
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
28 /*
29 * Debugging: various feature bits
30 *
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
34 */
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 0;
40 #undef SCHED_FEAT
41 #endif
42
43 /*
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
46 */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48
49 /*
50 * period over which we measure -rt task CPU usage in us.
51 * default: 1s
52 */
53 unsigned int sysctl_sched_rt_period = 1000000;
54
55 __read_mostly int scheduler_running;
56
57 /*
58 * part of the period that we allow rt tasks to run in us.
59 * default: 0.95s
60 */
61 int sysctl_sched_rt_runtime = 950000;
62
63 /*
64 * __task_rq_lock - lock the rq @p resides on.
65 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 __acquires(rq->lock)
68 {
69 struct rq *rq;
70
71 lockdep_assert_held(&p->pi_lock);
72
73 for (;;) {
74 rq = task_rq(p);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 rq_pin_lock(rq, rf);
78 return rq;
79 }
80 raw_spin_unlock(&rq->lock);
81
82 while (unlikely(task_on_rq_migrating(p)))
83 cpu_relax();
84 }
85 }
86
87 /*
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 __acquires(p->pi_lock)
92 __acquires(rq->lock)
93 {
94 struct rq *rq;
95
96 for (;;) {
97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 rq = task_rq(p);
99 raw_spin_lock(&rq->lock);
100 /*
101 * move_queued_task() task_rq_lock()
102 *
103 * ACQUIRE (rq->lock)
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
107 * [L] ->on_rq
108 * RELEASE (rq->lock)
109 *
110 * If we observe the old CPU in task_rq_lock, the acquire of
111 * the old rq->lock will fully serialize against the stores.
112 *
113 * If we observe the new CPU in task_rq_lock, the acquire will
114 * pair with the WMB to ensure we must then also see migrating.
115 */
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 rq_pin_lock(rq, rf);
118 return rq;
119 }
120 raw_spin_unlock(&rq->lock);
121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
122
123 while (unlikely(task_on_rq_migrating(p)))
124 cpu_relax();
125 }
126 }
127
128 /*
129 * RQ-clock updating methods:
130 */
131
update_rq_clock_task(struct rq * rq,s64 delta)132 static void update_rq_clock_task(struct rq *rq, s64 delta)
133 {
134 /*
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
137 */
138 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
139 s64 steal = 0, irq_delta = 0;
140 #endif
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
143
144 /*
145 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 * this case when a previous update_rq_clock() happened inside a
147 * {soft,}irq region.
148 *
149 * When this happens, we stop ->clock_task and only update the
150 * prev_irq_time stamp to account for the part that fit, so that a next
151 * update will consume the rest. This ensures ->clock_task is
152 * monotonic.
153 *
154 * It does however cause some slight miss-attribution of {soft,}irq
155 * time, a more accurate solution would be to update the irq_time using
156 * the current rq->clock timestamp, except that would require using
157 * atomic ops.
158 */
159 if (irq_delta > delta)
160 irq_delta = delta;
161
162 rq->prev_irq_time += irq_delta;
163 delta -= irq_delta;
164 #endif
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 if (static_key_false((¶virt_steal_rq_enabled))) {
167 steal = paravirt_steal_clock(cpu_of(rq));
168 steal -= rq->prev_steal_time_rq;
169
170 if (unlikely(steal > delta))
171 steal = delta;
172
173 rq->prev_steal_time_rq += steal;
174 delta -= steal;
175 }
176 #endif
177
178 rq->clock_task += delta;
179
180 #ifdef HAVE_SCHED_AVG_IRQ
181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 update_irq_load_avg(rq, irq_delta + steal);
183 #endif
184 }
185
update_rq_clock(struct rq * rq)186 void update_rq_clock(struct rq *rq)
187 {
188 s64 delta;
189
190 lockdep_assert_held(&rq->lock);
191
192 if (rq->clock_update_flags & RQCF_ACT_SKIP)
193 return;
194
195 #ifdef CONFIG_SCHED_DEBUG
196 if (sched_feat(WARN_DOUBLE_CLOCK))
197 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
198 rq->clock_update_flags |= RQCF_UPDATED;
199 #endif
200
201 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
202 if (delta < 0)
203 return;
204 rq->clock += delta;
205 update_rq_clock_task(rq, delta);
206 }
207
208
209 #ifdef CONFIG_SCHED_HRTICK
210 /*
211 * Use HR-timers to deliver accurate preemption points.
212 */
213
hrtick_clear(struct rq * rq)214 static void hrtick_clear(struct rq *rq)
215 {
216 if (hrtimer_active(&rq->hrtick_timer))
217 hrtimer_cancel(&rq->hrtick_timer);
218 }
219
220 /*
221 * High-resolution timer tick.
222 * Runs from hardirq context with interrupts disabled.
223 */
hrtick(struct hrtimer * timer)224 static enum hrtimer_restart hrtick(struct hrtimer *timer)
225 {
226 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
227 struct rq_flags rf;
228
229 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
230
231 rq_lock(rq, &rf);
232 update_rq_clock(rq);
233 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
234 rq_unlock(rq, &rf);
235
236 return HRTIMER_NORESTART;
237 }
238
239 #ifdef CONFIG_SMP
240
__hrtick_restart(struct rq * rq)241 static void __hrtick_restart(struct rq *rq)
242 {
243 struct hrtimer *timer = &rq->hrtick_timer;
244
245 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
246 }
247
248 /*
249 * called from hardirq (IPI) context
250 */
__hrtick_start(void * arg)251 static void __hrtick_start(void *arg)
252 {
253 struct rq *rq = arg;
254 struct rq_flags rf;
255
256 rq_lock(rq, &rf);
257 __hrtick_restart(rq);
258 rq->hrtick_csd_pending = 0;
259 rq_unlock(rq, &rf);
260 }
261
262 /*
263 * Called to set the hrtick timer state.
264 *
265 * called with rq->lock held and irqs disabled
266 */
hrtick_start(struct rq * rq,u64 delay)267 void hrtick_start(struct rq *rq, u64 delay)
268 {
269 struct hrtimer *timer = &rq->hrtick_timer;
270 ktime_t time;
271 s64 delta;
272
273 /*
274 * Don't schedule slices shorter than 10000ns, that just
275 * doesn't make sense and can cause timer DoS.
276 */
277 delta = max_t(s64, delay, 10000LL);
278 time = ktime_add_ns(timer->base->get_time(), delta);
279
280 hrtimer_set_expires(timer, time);
281
282 if (rq == this_rq()) {
283 __hrtick_restart(rq);
284 } else if (!rq->hrtick_csd_pending) {
285 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
286 rq->hrtick_csd_pending = 1;
287 }
288 }
289
290 #else
291 /*
292 * Called to set the hrtick timer state.
293 *
294 * called with rq->lock held and irqs disabled
295 */
hrtick_start(struct rq * rq,u64 delay)296 void hrtick_start(struct rq *rq, u64 delay)
297 {
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense. Rely on vruntime for fairness.
301 */
302 delay = max_t(u64, delay, 10000LL);
303 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
304 HRTIMER_MODE_REL_PINNED);
305 }
306 #endif /* CONFIG_SMP */
307
hrtick_rq_init(struct rq * rq)308 static void hrtick_rq_init(struct rq *rq)
309 {
310 #ifdef CONFIG_SMP
311 rq->hrtick_csd_pending = 0;
312
313 rq->hrtick_csd.flags = 0;
314 rq->hrtick_csd.func = __hrtick_start;
315 rq->hrtick_csd.info = rq;
316 #endif
317
318 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
319 rq->hrtick_timer.function = hrtick;
320 }
321 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)322 static inline void hrtick_clear(struct rq *rq)
323 {
324 }
325
hrtick_rq_init(struct rq * rq)326 static inline void hrtick_rq_init(struct rq *rq)
327 {
328 }
329 #endif /* CONFIG_SCHED_HRTICK */
330
331 /*
332 * cmpxchg based fetch_or, macro so it works for different integer types
333 */
334 #define fetch_or(ptr, mask) \
335 ({ \
336 typeof(ptr) _ptr = (ptr); \
337 typeof(mask) _mask = (mask); \
338 typeof(*_ptr) _old, _val = *_ptr; \
339 \
340 for (;;) { \
341 _old = cmpxchg(_ptr, _val, _val | _mask); \
342 if (_old == _val) \
343 break; \
344 _val = _old; \
345 } \
346 _old; \
347 })
348
349 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
350 /*
351 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
352 * this avoids any races wrt polling state changes and thereby avoids
353 * spurious IPIs.
354 */
set_nr_and_not_polling(struct task_struct * p)355 static bool set_nr_and_not_polling(struct task_struct *p)
356 {
357 struct thread_info *ti = task_thread_info(p);
358 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
359 }
360
361 /*
362 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
363 *
364 * If this returns true, then the idle task promises to call
365 * sched_ttwu_pending() and reschedule soon.
366 */
set_nr_if_polling(struct task_struct * p)367 static bool set_nr_if_polling(struct task_struct *p)
368 {
369 struct thread_info *ti = task_thread_info(p);
370 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
371
372 for (;;) {
373 if (!(val & _TIF_POLLING_NRFLAG))
374 return false;
375 if (val & _TIF_NEED_RESCHED)
376 return true;
377 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
378 if (old == val)
379 break;
380 val = old;
381 }
382 return true;
383 }
384
385 #else
set_nr_and_not_polling(struct task_struct * p)386 static bool set_nr_and_not_polling(struct task_struct *p)
387 {
388 set_tsk_need_resched(p);
389 return true;
390 }
391
392 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)393 static bool set_nr_if_polling(struct task_struct *p)
394 {
395 return false;
396 }
397 #endif
398 #endif
399
wake_q_add(struct wake_q_head * head,struct task_struct * task)400 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
401 {
402 struct wake_q_node *node = &task->wake_q;
403
404 /*
405 * Atomically grab the task, if ->wake_q is !nil already it means
406 * its already queued (either by us or someone else) and will get the
407 * wakeup due to that.
408 *
409 * This cmpxchg() executes a full barrier, which pairs with the full
410 * barrier executed by the wakeup in wake_up_q().
411 */
412 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
413 return;
414
415 get_task_struct(task);
416
417 /*
418 * The head is context local, there can be no concurrency.
419 */
420 *head->lastp = node;
421 head->lastp = &node->next;
422 }
423
wake_up_q(struct wake_q_head * head)424 void wake_up_q(struct wake_q_head *head)
425 {
426 struct wake_q_node *node = head->first;
427
428 while (node != WAKE_Q_TAIL) {
429 struct task_struct *task;
430
431 task = container_of(node, struct task_struct, wake_q);
432 BUG_ON(!task);
433 /* Task can safely be re-inserted now: */
434 node = node->next;
435 task->wake_q.next = NULL;
436
437 /*
438 * wake_up_process() executes a full barrier, which pairs with
439 * the queueing in wake_q_add() so as not to miss wakeups.
440 */
441 wake_up_process(task);
442 put_task_struct(task);
443 }
444 }
445
446 /*
447 * resched_curr - mark rq's current task 'to be rescheduled now'.
448 *
449 * On UP this means the setting of the need_resched flag, on SMP it
450 * might also involve a cross-CPU call to trigger the scheduler on
451 * the target CPU.
452 */
resched_curr(struct rq * rq)453 void resched_curr(struct rq *rq)
454 {
455 struct task_struct *curr = rq->curr;
456 int cpu;
457
458 lockdep_assert_held(&rq->lock);
459
460 if (test_tsk_need_resched(curr))
461 return;
462
463 cpu = cpu_of(rq);
464
465 if (cpu == smp_processor_id()) {
466 set_tsk_need_resched(curr);
467 set_preempt_need_resched();
468 return;
469 }
470
471 if (set_nr_and_not_polling(curr))
472 smp_send_reschedule(cpu);
473 else
474 trace_sched_wake_idle_without_ipi(cpu);
475 }
476
resched_cpu(int cpu)477 void resched_cpu(int cpu)
478 {
479 struct rq *rq = cpu_rq(cpu);
480 unsigned long flags;
481
482 raw_spin_lock_irqsave(&rq->lock, flags);
483 if (cpu_online(cpu) || cpu == smp_processor_id())
484 resched_curr(rq);
485 raw_spin_unlock_irqrestore(&rq->lock, flags);
486 }
487
488 #ifdef CONFIG_SMP
489 #ifdef CONFIG_NO_HZ_COMMON
490 /*
491 * In the semi idle case, use the nearest busy CPU for migrating timers
492 * from an idle CPU. This is good for power-savings.
493 *
494 * We don't do similar optimization for completely idle system, as
495 * selecting an idle CPU will add more delays to the timers than intended
496 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
497 */
get_nohz_timer_target(void)498 int get_nohz_timer_target(void)
499 {
500 int i, cpu = smp_processor_id();
501 struct sched_domain *sd;
502
503 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
504 return cpu;
505
506 rcu_read_lock();
507 for_each_domain(cpu, sd) {
508 for_each_cpu(i, sched_domain_span(sd)) {
509 if (cpu == i)
510 continue;
511
512 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
513 cpu = i;
514 goto unlock;
515 }
516 }
517 }
518
519 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
520 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
521 unlock:
522 rcu_read_unlock();
523 return cpu;
524 }
525
526 /*
527 * When add_timer_on() enqueues a timer into the timer wheel of an
528 * idle CPU then this timer might expire before the next timer event
529 * which is scheduled to wake up that CPU. In case of a completely
530 * idle system the next event might even be infinite time into the
531 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
532 * leaves the inner idle loop so the newly added timer is taken into
533 * account when the CPU goes back to idle and evaluates the timer
534 * wheel for the next timer event.
535 */
wake_up_idle_cpu(int cpu)536 static void wake_up_idle_cpu(int cpu)
537 {
538 struct rq *rq = cpu_rq(cpu);
539
540 if (cpu == smp_processor_id())
541 return;
542
543 if (set_nr_and_not_polling(rq->idle))
544 smp_send_reschedule(cpu);
545 else
546 trace_sched_wake_idle_without_ipi(cpu);
547 }
548
wake_up_full_nohz_cpu(int cpu)549 static bool wake_up_full_nohz_cpu(int cpu)
550 {
551 /*
552 * We just need the target to call irq_exit() and re-evaluate
553 * the next tick. The nohz full kick at least implies that.
554 * If needed we can still optimize that later with an
555 * empty IRQ.
556 */
557 if (cpu_is_offline(cpu))
558 return true; /* Don't try to wake offline CPUs. */
559 if (tick_nohz_full_cpu(cpu)) {
560 if (cpu != smp_processor_id() ||
561 tick_nohz_tick_stopped())
562 tick_nohz_full_kick_cpu(cpu);
563 return true;
564 }
565
566 return false;
567 }
568
569 /*
570 * Wake up the specified CPU. If the CPU is going offline, it is the
571 * caller's responsibility to deal with the lost wakeup, for example,
572 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
573 */
wake_up_nohz_cpu(int cpu)574 void wake_up_nohz_cpu(int cpu)
575 {
576 if (!wake_up_full_nohz_cpu(cpu))
577 wake_up_idle_cpu(cpu);
578 }
579
got_nohz_idle_kick(void)580 static inline bool got_nohz_idle_kick(void)
581 {
582 int cpu = smp_processor_id();
583
584 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
585 return false;
586
587 if (idle_cpu(cpu) && !need_resched())
588 return true;
589
590 /*
591 * We can't run Idle Load Balance on this CPU for this time so we
592 * cancel it and clear NOHZ_BALANCE_KICK
593 */
594 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
595 return false;
596 }
597
598 #else /* CONFIG_NO_HZ_COMMON */
599
got_nohz_idle_kick(void)600 static inline bool got_nohz_idle_kick(void)
601 {
602 return false;
603 }
604
605 #endif /* CONFIG_NO_HZ_COMMON */
606
607 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)608 bool sched_can_stop_tick(struct rq *rq)
609 {
610 int fifo_nr_running;
611
612 /* Deadline tasks, even if single, need the tick */
613 if (rq->dl.dl_nr_running)
614 return false;
615
616 /*
617 * If there are more than one RR tasks, we need the tick to effect the
618 * actual RR behaviour.
619 */
620 if (rq->rt.rr_nr_running) {
621 if (rq->rt.rr_nr_running == 1)
622 return true;
623 else
624 return false;
625 }
626
627 /*
628 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
629 * forced preemption between FIFO tasks.
630 */
631 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
632 if (fifo_nr_running)
633 return true;
634
635 /*
636 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
637 * if there's more than one we need the tick for involuntary
638 * preemption.
639 */
640 if (rq->nr_running > 1)
641 return false;
642
643 return true;
644 }
645 #endif /* CONFIG_NO_HZ_FULL */
646 #endif /* CONFIG_SMP */
647
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 /*
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
655 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)656 int walk_tg_tree_from(struct task_group *from,
657 tg_visitor down, tg_visitor up, void *data)
658 {
659 struct task_group *parent, *child;
660 int ret;
661
662 parent = from;
663
664 down:
665 ret = (*down)(parent, data);
666 if (ret)
667 goto out;
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672 up:
673 continue;
674 }
675 ret = (*up)(parent, data);
676 if (ret || parent == from)
677 goto out;
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
683 out:
684 return ret;
685 }
686
tg_nop(struct task_group * tg,void * data)687 int tg_nop(struct task_group *tg, void *data)
688 {
689 return 0;
690 }
691 #endif
692
set_load_weight(struct task_struct * p,bool update_load)693 static void set_load_weight(struct task_struct *p, bool update_load)
694 {
695 int prio = p->static_prio - MAX_RT_PRIO;
696 struct load_weight *load = &p->se.load;
697
698 /*
699 * SCHED_IDLE tasks get minimal weight:
700 */
701 if (idle_policy(p->policy)) {
702 load->weight = scale_load(WEIGHT_IDLEPRIO);
703 load->inv_weight = WMULT_IDLEPRIO;
704 return;
705 }
706
707 /*
708 * SCHED_OTHER tasks have to update their load when changing their
709 * weight
710 */
711 if (update_load && p->sched_class == &fair_sched_class) {
712 reweight_task(p, prio);
713 } else {
714 load->weight = scale_load(sched_prio_to_weight[prio]);
715 load->inv_weight = sched_prio_to_wmult[prio];
716 }
717 }
718
enqueue_task(struct rq * rq,struct task_struct * p,int flags)719 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
720 {
721 if (!(flags & ENQUEUE_NOCLOCK))
722 update_rq_clock(rq);
723
724 if (!(flags & ENQUEUE_RESTORE))
725 sched_info_queued(rq, p);
726
727 p->sched_class->enqueue_task(rq, p, flags);
728 }
729
dequeue_task(struct rq * rq,struct task_struct * p,int flags)730 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
731 {
732 if (!(flags & DEQUEUE_NOCLOCK))
733 update_rq_clock(rq);
734
735 if (!(flags & DEQUEUE_SAVE))
736 sched_info_dequeued(rq, p);
737
738 p->sched_class->dequeue_task(rq, p, flags);
739 }
740
activate_task(struct rq * rq,struct task_struct * p,int flags)741 void activate_task(struct rq *rq, struct task_struct *p, int flags)
742 {
743 if (task_contributes_to_load(p))
744 rq->nr_uninterruptible--;
745
746 enqueue_task(rq, p, flags);
747 }
748
deactivate_task(struct rq * rq,struct task_struct * p,int flags)749 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
750 {
751 if (task_contributes_to_load(p))
752 rq->nr_uninterruptible++;
753
754 dequeue_task(rq, p, flags);
755 }
756
757 /*
758 * __normal_prio - return the priority that is based on the static prio
759 */
__normal_prio(struct task_struct * p)760 static inline int __normal_prio(struct task_struct *p)
761 {
762 return p->static_prio;
763 }
764
765 /*
766 * Calculate the expected normal priority: i.e. priority
767 * without taking RT-inheritance into account. Might be
768 * boosted by interactivity modifiers. Changes upon fork,
769 * setprio syscalls, and whenever the interactivity
770 * estimator recalculates.
771 */
normal_prio(struct task_struct * p)772 static inline int normal_prio(struct task_struct *p)
773 {
774 int prio;
775
776 if (task_has_dl_policy(p))
777 prio = MAX_DL_PRIO-1;
778 else if (task_has_rt_policy(p))
779 prio = MAX_RT_PRIO-1 - p->rt_priority;
780 else
781 prio = __normal_prio(p);
782 return prio;
783 }
784
785 /*
786 * Calculate the current priority, i.e. the priority
787 * taken into account by the scheduler. This value might
788 * be boosted by RT tasks, or might be boosted by
789 * interactivity modifiers. Will be RT if the task got
790 * RT-boosted. If not then it returns p->normal_prio.
791 */
effective_prio(struct task_struct * p)792 static int effective_prio(struct task_struct *p)
793 {
794 p->normal_prio = normal_prio(p);
795 /*
796 * If we are RT tasks or we were boosted to RT priority,
797 * keep the priority unchanged. Otherwise, update priority
798 * to the normal priority:
799 */
800 if (!rt_prio(p->prio))
801 return p->normal_prio;
802 return p->prio;
803 }
804
805 /**
806 * task_curr - is this task currently executing on a CPU?
807 * @p: the task in question.
808 *
809 * Return: 1 if the task is currently executing. 0 otherwise.
810 */
task_curr(const struct task_struct * p)811 inline int task_curr(const struct task_struct *p)
812 {
813 return cpu_curr(task_cpu(p)) == p;
814 }
815
816 /*
817 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
818 * use the balance_callback list if you want balancing.
819 *
820 * this means any call to check_class_changed() must be followed by a call to
821 * balance_callback().
822 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)823 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
824 const struct sched_class *prev_class,
825 int oldprio)
826 {
827 if (prev_class != p->sched_class) {
828 if (prev_class->switched_from)
829 prev_class->switched_from(rq, p);
830
831 p->sched_class->switched_to(rq, p);
832 } else if (oldprio != p->prio || dl_task(p))
833 p->sched_class->prio_changed(rq, p, oldprio);
834 }
835
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)836 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
837 {
838 const struct sched_class *class;
839
840 if (p->sched_class == rq->curr->sched_class) {
841 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
842 } else {
843 for_each_class(class) {
844 if (class == rq->curr->sched_class)
845 break;
846 if (class == p->sched_class) {
847 resched_curr(rq);
848 break;
849 }
850 }
851 }
852
853 /*
854 * A queue event has occurred, and we're going to schedule. In
855 * this case, we can save a useless back to back clock update.
856 */
857 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
858 rq_clock_skip_update(rq);
859 }
860
861 #ifdef CONFIG_SMP
862
is_per_cpu_kthread(struct task_struct * p)863 static inline bool is_per_cpu_kthread(struct task_struct *p)
864 {
865 if (!(p->flags & PF_KTHREAD))
866 return false;
867
868 if (p->nr_cpus_allowed != 1)
869 return false;
870
871 return true;
872 }
873
874 /*
875 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
876 * __set_cpus_allowed_ptr() and select_fallback_rq().
877 */
is_cpu_allowed(struct task_struct * p,int cpu)878 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
879 {
880 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
881 return false;
882
883 if (is_per_cpu_kthread(p))
884 return cpu_online(cpu);
885
886 return cpu_active(cpu);
887 }
888
889 /*
890 * This is how migration works:
891 *
892 * 1) we invoke migration_cpu_stop() on the target CPU using
893 * stop_one_cpu().
894 * 2) stopper starts to run (implicitly forcing the migrated thread
895 * off the CPU)
896 * 3) it checks whether the migrated task is still in the wrong runqueue.
897 * 4) if it's in the wrong runqueue then the migration thread removes
898 * it and puts it into the right queue.
899 * 5) stopper completes and stop_one_cpu() returns and the migration
900 * is done.
901 */
902
903 /*
904 * move_queued_task - move a queued task to new rq.
905 *
906 * Returns (locked) new rq. Old rq's lock is released.
907 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)908 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
909 struct task_struct *p, int new_cpu)
910 {
911 lockdep_assert_held(&rq->lock);
912
913 p->on_rq = TASK_ON_RQ_MIGRATING;
914 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
915 set_task_cpu(p, new_cpu);
916 rq_unlock(rq, rf);
917
918 rq = cpu_rq(new_cpu);
919
920 rq_lock(rq, rf);
921 BUG_ON(task_cpu(p) != new_cpu);
922 enqueue_task(rq, p, 0);
923 p->on_rq = TASK_ON_RQ_QUEUED;
924 check_preempt_curr(rq, p, 0);
925
926 return rq;
927 }
928
929 struct migration_arg {
930 struct task_struct *task;
931 int dest_cpu;
932 };
933
934 /*
935 * Move (not current) task off this CPU, onto the destination CPU. We're doing
936 * this because either it can't run here any more (set_cpus_allowed()
937 * away from this CPU, or CPU going down), or because we're
938 * attempting to rebalance this task on exec (sched_exec).
939 *
940 * So we race with normal scheduler movements, but that's OK, as long
941 * as the task is no longer on this CPU.
942 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)943 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
944 struct task_struct *p, int dest_cpu)
945 {
946 /* Affinity changed (again). */
947 if (!is_cpu_allowed(p, dest_cpu))
948 return rq;
949
950 update_rq_clock(rq);
951 rq = move_queued_task(rq, rf, p, dest_cpu);
952
953 return rq;
954 }
955
956 /*
957 * migration_cpu_stop - this will be executed by a highprio stopper thread
958 * and performs thread migration by bumping thread off CPU then
959 * 'pushing' onto another runqueue.
960 */
migration_cpu_stop(void * data)961 static int migration_cpu_stop(void *data)
962 {
963 struct migration_arg *arg = data;
964 struct task_struct *p = arg->task;
965 struct rq *rq = this_rq();
966 struct rq_flags rf;
967
968 /*
969 * The original target CPU might have gone down and we might
970 * be on another CPU but it doesn't matter.
971 */
972 local_irq_disable();
973 /*
974 * We need to explicitly wake pending tasks before running
975 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
977 */
978 sched_ttwu_pending();
979
980 raw_spin_lock(&p->pi_lock);
981 rq_lock(rq, &rf);
982 /*
983 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 * we're holding p->pi_lock.
986 */
987 if (task_rq(p) == rq) {
988 if (task_on_rq_queued(p))
989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
990 else
991 p->wake_cpu = arg->dest_cpu;
992 }
993 rq_unlock(rq, &rf);
994 raw_spin_unlock(&p->pi_lock);
995
996 local_irq_enable();
997 return 0;
998 }
999
1000 /*
1001 * sched_class::set_cpus_allowed must do the below, but is not required to
1002 * actually call this function.
1003 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1005 {
1006 cpumask_copy(&p->cpus_allowed, new_mask);
1007 p->nr_cpus_allowed = cpumask_weight(new_mask);
1008 }
1009
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011 {
1012 struct rq *rq = task_rq(p);
1013 bool queued, running;
1014
1015 lockdep_assert_held(&p->pi_lock);
1016
1017 queued = task_on_rq_queued(p);
1018 running = task_current(rq, p);
1019
1020 if (queued) {
1021 /*
1022 * Because __kthread_bind() calls this on blocked tasks without
1023 * holding rq->lock.
1024 */
1025 lockdep_assert_held(&rq->lock);
1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1027 }
1028 if (running)
1029 put_prev_task(rq, p);
1030
1031 p->sched_class->set_cpus_allowed(p, new_mask);
1032
1033 if (queued)
1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1035 if (running)
1036 set_curr_task(rq, p);
1037 }
1038
1039 /*
1040 * Change a given task's CPU affinity. Migrate the thread to a
1041 * proper CPU and schedule it away if the CPU it's executing on
1042 * is removed from the allowed bitmask.
1043 *
1044 * NOTE: the caller must have a valid reference to the task, the
1045 * task must not exit() & deallocate itself prematurely. The
1046 * call is not atomic; no spinlocks may be held.
1047 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1048 static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 const struct cpumask *new_mask, bool check)
1050 {
1051 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1052 unsigned int dest_cpu;
1053 struct rq_flags rf;
1054 struct rq *rq;
1055 int ret = 0;
1056
1057 rq = task_rq_lock(p, &rf);
1058 update_rq_clock(rq);
1059
1060 if (p->flags & PF_KTHREAD) {
1061 /*
1062 * Kernel threads are allowed on online && !active CPUs
1063 */
1064 cpu_valid_mask = cpu_online_mask;
1065 }
1066
1067 /*
1068 * Must re-check here, to close a race against __kthread_bind(),
1069 * sched_setaffinity() is not guaranteed to observe the flag.
1070 */
1071 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072 ret = -EINVAL;
1073 goto out;
1074 }
1075
1076 if (cpumask_equal(&p->cpus_allowed, new_mask))
1077 goto out;
1078
1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 do_set_cpus_allowed(p, new_mask);
1085
1086 if (p->flags & PF_KTHREAD) {
1087 /*
1088 * For kernel threads that do indeed end up on online &&
1089 * !active we want to ensure they are strict per-CPU threads.
1090 */
1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 !cpumask_intersects(new_mask, cpu_active_mask) &&
1093 p->nr_cpus_allowed != 1);
1094 }
1095
1096 /* Can the task run on the task's current CPU? If so, we're done */
1097 if (cpumask_test_cpu(task_cpu(p), new_mask))
1098 goto out;
1099
1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1101 if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 struct migration_arg arg = { p, dest_cpu };
1103 /* Need help from migration thread: drop lock and wait. */
1104 task_rq_unlock(rq, p, &rf);
1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 tlb_migrate_finish(p->mm);
1107 return 0;
1108 } else if (task_on_rq_queued(p)) {
1109 /*
1110 * OK, since we're going to drop the lock immediately
1111 * afterwards anyway.
1112 */
1113 rq = move_queued_task(rq, &rf, p, dest_cpu);
1114 }
1115 out:
1116 task_rq_unlock(rq, p, &rf);
1117
1118 return ret;
1119 }
1120
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122 {
1123 return __set_cpus_allowed_ptr(p, new_mask, false);
1124 }
1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1128 {
1129 #ifdef CONFIG_SCHED_DEBUG
1130 /*
1131 * We should never call set_task_cpu() on a blocked task,
1132 * ttwu() will sort out the placement.
1133 */
1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1135 !p->on_rq);
1136
1137 /*
1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 * time relying on p->on_rq.
1141 */
1142 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 p->sched_class == &fair_sched_class &&
1144 (p->on_rq && !task_on_rq_migrating(p)));
1145
1146 #ifdef CONFIG_LOCKDEP
1147 /*
1148 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150 *
1151 * sched_move_task() holds both and thus holding either pins the cgroup,
1152 * see task_group().
1153 *
1154 * Furthermore, all task_rq users should acquire both locks, see
1155 * task_rq_lock().
1156 */
1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 lockdep_is_held(&task_rq(p)->lock)));
1159 #endif
1160 /*
1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162 */
1163 WARN_ON_ONCE(!cpu_online(new_cpu));
1164 #endif
1165
1166 trace_sched_migrate_task(p, new_cpu);
1167
1168 if (task_cpu(p) != new_cpu) {
1169 if (p->sched_class->migrate_task_rq)
1170 p->sched_class->migrate_task_rq(p, new_cpu);
1171 p->se.nr_migrations++;
1172 rseq_migrate(p);
1173 perf_event_task_migrate(p);
1174 }
1175
1176 __set_task_cpu(p, new_cpu);
1177 }
1178
1179 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)1180 static void __migrate_swap_task(struct task_struct *p, int cpu)
1181 {
1182 if (task_on_rq_queued(p)) {
1183 struct rq *src_rq, *dst_rq;
1184 struct rq_flags srf, drf;
1185
1186 src_rq = task_rq(p);
1187 dst_rq = cpu_rq(cpu);
1188
1189 rq_pin_lock(src_rq, &srf);
1190 rq_pin_lock(dst_rq, &drf);
1191
1192 p->on_rq = TASK_ON_RQ_MIGRATING;
1193 deactivate_task(src_rq, p, 0);
1194 set_task_cpu(p, cpu);
1195 activate_task(dst_rq, p, 0);
1196 p->on_rq = TASK_ON_RQ_QUEUED;
1197 check_preempt_curr(dst_rq, p, 0);
1198
1199 rq_unpin_lock(dst_rq, &drf);
1200 rq_unpin_lock(src_rq, &srf);
1201
1202 } else {
1203 /*
1204 * Task isn't running anymore; make it appear like we migrated
1205 * it before it went to sleep. This means on wakeup we make the
1206 * previous CPU our target instead of where it really is.
1207 */
1208 p->wake_cpu = cpu;
1209 }
1210 }
1211
1212 struct migration_swap_arg {
1213 struct task_struct *src_task, *dst_task;
1214 int src_cpu, dst_cpu;
1215 };
1216
migrate_swap_stop(void * data)1217 static int migrate_swap_stop(void *data)
1218 {
1219 struct migration_swap_arg *arg = data;
1220 struct rq *src_rq, *dst_rq;
1221 int ret = -EAGAIN;
1222
1223 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1224 return -EAGAIN;
1225
1226 src_rq = cpu_rq(arg->src_cpu);
1227 dst_rq = cpu_rq(arg->dst_cpu);
1228
1229 double_raw_lock(&arg->src_task->pi_lock,
1230 &arg->dst_task->pi_lock);
1231 double_rq_lock(src_rq, dst_rq);
1232
1233 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1234 goto unlock;
1235
1236 if (task_cpu(arg->src_task) != arg->src_cpu)
1237 goto unlock;
1238
1239 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1240 goto unlock;
1241
1242 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1243 goto unlock;
1244
1245 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1246 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1247
1248 ret = 0;
1249
1250 unlock:
1251 double_rq_unlock(src_rq, dst_rq);
1252 raw_spin_unlock(&arg->dst_task->pi_lock);
1253 raw_spin_unlock(&arg->src_task->pi_lock);
1254
1255 return ret;
1256 }
1257
1258 /*
1259 * Cross migrate two tasks
1260 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)1261 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1262 int target_cpu, int curr_cpu)
1263 {
1264 struct migration_swap_arg arg;
1265 int ret = -EINVAL;
1266
1267 arg = (struct migration_swap_arg){
1268 .src_task = cur,
1269 .src_cpu = curr_cpu,
1270 .dst_task = p,
1271 .dst_cpu = target_cpu,
1272 };
1273
1274 if (arg.src_cpu == arg.dst_cpu)
1275 goto out;
1276
1277 /*
1278 * These three tests are all lockless; this is OK since all of them
1279 * will be re-checked with proper locks held further down the line.
1280 */
1281 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1282 goto out;
1283
1284 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1285 goto out;
1286
1287 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1288 goto out;
1289
1290 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1291 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1292
1293 out:
1294 return ret;
1295 }
1296 #endif /* CONFIG_NUMA_BALANCING */
1297
1298 /*
1299 * wait_task_inactive - wait for a thread to unschedule.
1300 *
1301 * If @match_state is nonzero, it's the @p->state value just checked and
1302 * not expected to change. If it changes, i.e. @p might have woken up,
1303 * then return zero. When we succeed in waiting for @p to be off its CPU,
1304 * we return a positive number (its total switch count). If a second call
1305 * a short while later returns the same number, the caller can be sure that
1306 * @p has remained unscheduled the whole time.
1307 *
1308 * The caller must ensure that the task *will* unschedule sometime soon,
1309 * else this function might spin for a *long* time. This function can't
1310 * be called with interrupts off, or it may introduce deadlock with
1311 * smp_call_function() if an IPI is sent by the same process we are
1312 * waiting to become inactive.
1313 */
wait_task_inactive(struct task_struct * p,long match_state)1314 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1315 {
1316 int running, queued;
1317 struct rq_flags rf;
1318 unsigned long ncsw;
1319 struct rq *rq;
1320
1321 for (;;) {
1322 /*
1323 * We do the initial early heuristics without holding
1324 * any task-queue locks at all. We'll only try to get
1325 * the runqueue lock when things look like they will
1326 * work out!
1327 */
1328 rq = task_rq(p);
1329
1330 /*
1331 * If the task is actively running on another CPU
1332 * still, just relax and busy-wait without holding
1333 * any locks.
1334 *
1335 * NOTE! Since we don't hold any locks, it's not
1336 * even sure that "rq" stays as the right runqueue!
1337 * But we don't care, since "task_running()" will
1338 * return false if the runqueue has changed and p
1339 * is actually now running somewhere else!
1340 */
1341 while (task_running(rq, p)) {
1342 if (match_state && unlikely(p->state != match_state))
1343 return 0;
1344 cpu_relax();
1345 }
1346
1347 /*
1348 * Ok, time to look more closely! We need the rq
1349 * lock now, to be *sure*. If we're wrong, we'll
1350 * just go back and repeat.
1351 */
1352 rq = task_rq_lock(p, &rf);
1353 trace_sched_wait_task(p);
1354 running = task_running(rq, p);
1355 queued = task_on_rq_queued(p);
1356 ncsw = 0;
1357 if (!match_state || p->state == match_state)
1358 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1359 task_rq_unlock(rq, p, &rf);
1360
1361 /*
1362 * If it changed from the expected state, bail out now.
1363 */
1364 if (unlikely(!ncsw))
1365 break;
1366
1367 /*
1368 * Was it really running after all now that we
1369 * checked with the proper locks actually held?
1370 *
1371 * Oops. Go back and try again..
1372 */
1373 if (unlikely(running)) {
1374 cpu_relax();
1375 continue;
1376 }
1377
1378 /*
1379 * It's not enough that it's not actively running,
1380 * it must be off the runqueue _entirely_, and not
1381 * preempted!
1382 *
1383 * So if it was still runnable (but just not actively
1384 * running right now), it's preempted, and we should
1385 * yield - it could be a while.
1386 */
1387 if (unlikely(queued)) {
1388 ktime_t to = NSEC_PER_SEC / HZ;
1389
1390 set_current_state(TASK_UNINTERRUPTIBLE);
1391 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1392 continue;
1393 }
1394
1395 /*
1396 * Ahh, all good. It wasn't running, and it wasn't
1397 * runnable, which means that it will never become
1398 * running in the future either. We're all done!
1399 */
1400 break;
1401 }
1402
1403 return ncsw;
1404 }
1405
1406 /***
1407 * kick_process - kick a running thread to enter/exit the kernel
1408 * @p: the to-be-kicked thread
1409 *
1410 * Cause a process which is running on another CPU to enter
1411 * kernel-mode, without any delay. (to get signals handled.)
1412 *
1413 * NOTE: this function doesn't have to take the runqueue lock,
1414 * because all it wants to ensure is that the remote task enters
1415 * the kernel. If the IPI races and the task has been migrated
1416 * to another CPU then no harm is done and the purpose has been
1417 * achieved as well.
1418 */
kick_process(struct task_struct * p)1419 void kick_process(struct task_struct *p)
1420 {
1421 int cpu;
1422
1423 preempt_disable();
1424 cpu = task_cpu(p);
1425 if ((cpu != smp_processor_id()) && task_curr(p))
1426 smp_send_reschedule(cpu);
1427 preempt_enable();
1428 }
1429 EXPORT_SYMBOL_GPL(kick_process);
1430
1431 /*
1432 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1433 *
1434 * A few notes on cpu_active vs cpu_online:
1435 *
1436 * - cpu_active must be a subset of cpu_online
1437 *
1438 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1439 * see __set_cpus_allowed_ptr(). At this point the newly online
1440 * CPU isn't yet part of the sched domains, and balancing will not
1441 * see it.
1442 *
1443 * - on CPU-down we clear cpu_active() to mask the sched domains and
1444 * avoid the load balancer to place new tasks on the to be removed
1445 * CPU. Existing tasks will remain running there and will be taken
1446 * off.
1447 *
1448 * This means that fallback selection must not select !active CPUs.
1449 * And can assume that any active CPU must be online. Conversely
1450 * select_task_rq() below may allow selection of !active CPUs in order
1451 * to satisfy the above rules.
1452 */
select_fallback_rq(int cpu,struct task_struct * p)1453 static int select_fallback_rq(int cpu, struct task_struct *p)
1454 {
1455 int nid = cpu_to_node(cpu);
1456 const struct cpumask *nodemask = NULL;
1457 enum { cpuset, possible, fail } state = cpuset;
1458 int dest_cpu;
1459
1460 /*
1461 * If the node that the CPU is on has been offlined, cpu_to_node()
1462 * will return -1. There is no CPU on the node, and we should
1463 * select the CPU on the other node.
1464 */
1465 if (nid != -1) {
1466 nodemask = cpumask_of_node(nid);
1467
1468 /* Look for allowed, online CPU in same node. */
1469 for_each_cpu(dest_cpu, nodemask) {
1470 if (!cpu_active(dest_cpu))
1471 continue;
1472 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1473 return dest_cpu;
1474 }
1475 }
1476
1477 for (;;) {
1478 /* Any allowed, online CPU? */
1479 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1480 if (!is_cpu_allowed(p, dest_cpu))
1481 continue;
1482
1483 goto out;
1484 }
1485
1486 /* No more Mr. Nice Guy. */
1487 switch (state) {
1488 case cpuset:
1489 if (IS_ENABLED(CONFIG_CPUSETS)) {
1490 cpuset_cpus_allowed_fallback(p);
1491 state = possible;
1492 break;
1493 }
1494 /* Fall-through */
1495 case possible:
1496 do_set_cpus_allowed(p, cpu_possible_mask);
1497 state = fail;
1498 break;
1499
1500 case fail:
1501 BUG();
1502 break;
1503 }
1504 }
1505
1506 out:
1507 if (state != cpuset) {
1508 /*
1509 * Don't tell them about moving exiting tasks or
1510 * kernel threads (both mm NULL), since they never
1511 * leave kernel.
1512 */
1513 if (p->mm && printk_ratelimit()) {
1514 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1515 task_pid_nr(p), p->comm, cpu);
1516 }
1517 }
1518
1519 return dest_cpu;
1520 }
1521
1522 /*
1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1524 */
1525 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)1526 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1527 {
1528 lockdep_assert_held(&p->pi_lock);
1529
1530 if (p->nr_cpus_allowed > 1)
1531 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1532 else
1533 cpu = cpumask_any(&p->cpus_allowed);
1534
1535 /*
1536 * In order not to call set_task_cpu() on a blocking task we need
1537 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1538 * CPU.
1539 *
1540 * Since this is common to all placement strategies, this lives here.
1541 *
1542 * [ this allows ->select_task() to simply return task_cpu(p) and
1543 * not worry about this generic constraint ]
1544 */
1545 if (unlikely(!is_cpu_allowed(p, cpu)))
1546 cpu = select_fallback_rq(task_cpu(p), p);
1547
1548 return cpu;
1549 }
1550
update_avg(u64 * avg,u64 sample)1551 static void update_avg(u64 *avg, u64 sample)
1552 {
1553 s64 diff = sample - *avg;
1554 *avg += diff >> 3;
1555 }
1556
sched_set_stop_task(int cpu,struct task_struct * stop)1557 void sched_set_stop_task(int cpu, struct task_struct *stop)
1558 {
1559 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1560 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1561
1562 if (stop) {
1563 /*
1564 * Make it appear like a SCHED_FIFO task, its something
1565 * userspace knows about and won't get confused about.
1566 *
1567 * Also, it will make PI more or less work without too
1568 * much confusion -- but then, stop work should not
1569 * rely on PI working anyway.
1570 */
1571 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1572
1573 stop->sched_class = &stop_sched_class;
1574 }
1575
1576 cpu_rq(cpu)->stop = stop;
1577
1578 if (old_stop) {
1579 /*
1580 * Reset it back to a normal scheduling class so that
1581 * it can die in pieces.
1582 */
1583 old_stop->sched_class = &rt_sched_class;
1584 }
1585 }
1586
1587 #else
1588
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1589 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1590 const struct cpumask *new_mask, bool check)
1591 {
1592 return set_cpus_allowed_ptr(p, new_mask);
1593 }
1594
1595 #endif /* CONFIG_SMP */
1596
1597 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1598 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1599 {
1600 struct rq *rq;
1601
1602 if (!schedstat_enabled())
1603 return;
1604
1605 rq = this_rq();
1606
1607 #ifdef CONFIG_SMP
1608 if (cpu == rq->cpu) {
1609 __schedstat_inc(rq->ttwu_local);
1610 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1611 } else {
1612 struct sched_domain *sd;
1613
1614 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1615 rcu_read_lock();
1616 for_each_domain(rq->cpu, sd) {
1617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1618 __schedstat_inc(sd->ttwu_wake_remote);
1619 break;
1620 }
1621 }
1622 rcu_read_unlock();
1623 }
1624
1625 if (wake_flags & WF_MIGRATED)
1626 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1627 #endif /* CONFIG_SMP */
1628
1629 __schedstat_inc(rq->ttwu_count);
1630 __schedstat_inc(p->se.statistics.nr_wakeups);
1631
1632 if (wake_flags & WF_SYNC)
1633 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1634 }
1635
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1636 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1637 {
1638 activate_task(rq, p, en_flags);
1639 p->on_rq = TASK_ON_RQ_QUEUED;
1640
1641 /* If a worker is waking up, notify the workqueue: */
1642 if (p->flags & PF_WQ_WORKER)
1643 wq_worker_waking_up(p, cpu_of(rq));
1644 }
1645
1646 /*
1647 * Mark the task runnable and perform wakeup-preemption.
1648 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)1649 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1650 struct rq_flags *rf)
1651 {
1652 check_preempt_curr(rq, p, wake_flags);
1653 p->state = TASK_RUNNING;
1654 trace_sched_wakeup(p);
1655
1656 #ifdef CONFIG_SMP
1657 if (p->sched_class->task_woken) {
1658 /*
1659 * Our task @p is fully woken up and running; so its safe to
1660 * drop the rq->lock, hereafter rq is only used for statistics.
1661 */
1662 rq_unpin_lock(rq, rf);
1663 p->sched_class->task_woken(rq, p);
1664 rq_repin_lock(rq, rf);
1665 }
1666
1667 if (rq->idle_stamp) {
1668 u64 delta = rq_clock(rq) - rq->idle_stamp;
1669 u64 max = 2*rq->max_idle_balance_cost;
1670
1671 update_avg(&rq->avg_idle, delta);
1672
1673 if (rq->avg_idle > max)
1674 rq->avg_idle = max;
1675
1676 rq->idle_stamp = 0;
1677 }
1678 #endif
1679 }
1680
1681 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)1682 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct rq_flags *rf)
1684 {
1685 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1686
1687 lockdep_assert_held(&rq->lock);
1688
1689 #ifdef CONFIG_SMP
1690 if (p->sched_contributes_to_load)
1691 rq->nr_uninterruptible--;
1692
1693 if (wake_flags & WF_MIGRATED)
1694 en_flags |= ENQUEUE_MIGRATED;
1695 #endif
1696
1697 ttwu_activate(rq, p, en_flags);
1698 ttwu_do_wakeup(rq, p, wake_flags, rf);
1699 }
1700
1701 /*
1702 * Called in case the task @p isn't fully descheduled from its runqueue,
1703 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1704 * since all we need to do is flip p->state to TASK_RUNNING, since
1705 * the task is still ->on_rq.
1706 */
ttwu_remote(struct task_struct * p,int wake_flags)1707 static int ttwu_remote(struct task_struct *p, int wake_flags)
1708 {
1709 struct rq_flags rf;
1710 struct rq *rq;
1711 int ret = 0;
1712
1713 rq = __task_rq_lock(p, &rf);
1714 if (task_on_rq_queued(p)) {
1715 /* check_preempt_curr() may use rq clock */
1716 update_rq_clock(rq);
1717 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1718 ret = 1;
1719 }
1720 __task_rq_unlock(rq, &rf);
1721
1722 return ret;
1723 }
1724
1725 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1726 void sched_ttwu_pending(void)
1727 {
1728 struct rq *rq = this_rq();
1729 struct llist_node *llist = llist_del_all(&rq->wake_list);
1730 struct task_struct *p, *t;
1731 struct rq_flags rf;
1732
1733 if (!llist)
1734 return;
1735
1736 rq_lock_irqsave(rq, &rf);
1737 update_rq_clock(rq);
1738
1739 llist_for_each_entry_safe(p, t, llist, wake_entry)
1740 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1741
1742 rq_unlock_irqrestore(rq, &rf);
1743 }
1744
scheduler_ipi(void)1745 void scheduler_ipi(void)
1746 {
1747 /*
1748 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1749 * TIF_NEED_RESCHED remotely (for the first time) will also send
1750 * this IPI.
1751 */
1752 preempt_fold_need_resched();
1753
1754 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1755 return;
1756
1757 /*
1758 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1759 * traditionally all their work was done from the interrupt return
1760 * path. Now that we actually do some work, we need to make sure
1761 * we do call them.
1762 *
1763 * Some archs already do call them, luckily irq_enter/exit nest
1764 * properly.
1765 *
1766 * Arguably we should visit all archs and update all handlers,
1767 * however a fair share of IPIs are still resched only so this would
1768 * somewhat pessimize the simple resched case.
1769 */
1770 irq_enter();
1771 sched_ttwu_pending();
1772
1773 /*
1774 * Check if someone kicked us for doing the nohz idle load balance.
1775 */
1776 if (unlikely(got_nohz_idle_kick())) {
1777 this_rq()->idle_balance = 1;
1778 raise_softirq_irqoff(SCHED_SOFTIRQ);
1779 }
1780 irq_exit();
1781 }
1782
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)1783 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1784 {
1785 struct rq *rq = cpu_rq(cpu);
1786
1787 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1788
1789 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1790 if (!set_nr_if_polling(rq->idle))
1791 smp_send_reschedule(cpu);
1792 else
1793 trace_sched_wake_idle_without_ipi(cpu);
1794 }
1795 }
1796
wake_up_if_idle(int cpu)1797 void wake_up_if_idle(int cpu)
1798 {
1799 struct rq *rq = cpu_rq(cpu);
1800 struct rq_flags rf;
1801
1802 rcu_read_lock();
1803
1804 if (!is_idle_task(rcu_dereference(rq->curr)))
1805 goto out;
1806
1807 if (set_nr_if_polling(rq->idle)) {
1808 trace_sched_wake_idle_without_ipi(cpu);
1809 } else {
1810 rq_lock_irqsave(rq, &rf);
1811 if (is_idle_task(rq->curr))
1812 smp_send_reschedule(cpu);
1813 /* Else CPU is not idle, do nothing here: */
1814 rq_unlock_irqrestore(rq, &rf);
1815 }
1816
1817 out:
1818 rcu_read_unlock();
1819 }
1820
cpus_share_cache(int this_cpu,int that_cpu)1821 bool cpus_share_cache(int this_cpu, int that_cpu)
1822 {
1823 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1824 }
1825 #endif /* CONFIG_SMP */
1826
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)1827 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 struct rq *rq = cpu_rq(cpu);
1830 struct rq_flags rf;
1831
1832 #if defined(CONFIG_SMP)
1833 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1834 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1835 ttwu_queue_remote(p, cpu, wake_flags);
1836 return;
1837 }
1838 #endif
1839
1840 rq_lock(rq, &rf);
1841 update_rq_clock(rq);
1842 ttwu_do_activate(rq, p, wake_flags, &rf);
1843 rq_unlock(rq, &rf);
1844 }
1845
1846 /*
1847 * Notes on Program-Order guarantees on SMP systems.
1848 *
1849 * MIGRATION
1850 *
1851 * The basic program-order guarantee on SMP systems is that when a task [t]
1852 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1853 * execution on its new CPU [c1].
1854 *
1855 * For migration (of runnable tasks) this is provided by the following means:
1856 *
1857 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1858 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1859 * rq(c1)->lock (if not at the same time, then in that order).
1860 * C) LOCK of the rq(c1)->lock scheduling in task
1861 *
1862 * Release/acquire chaining guarantees that B happens after A and C after B.
1863 * Note: the CPU doing B need not be c0 or c1
1864 *
1865 * Example:
1866 *
1867 * CPU0 CPU1 CPU2
1868 *
1869 * LOCK rq(0)->lock
1870 * sched-out X
1871 * sched-in Y
1872 * UNLOCK rq(0)->lock
1873 *
1874 * LOCK rq(0)->lock // orders against CPU0
1875 * dequeue X
1876 * UNLOCK rq(0)->lock
1877 *
1878 * LOCK rq(1)->lock
1879 * enqueue X
1880 * UNLOCK rq(1)->lock
1881 *
1882 * LOCK rq(1)->lock // orders against CPU2
1883 * sched-out Z
1884 * sched-in X
1885 * UNLOCK rq(1)->lock
1886 *
1887 *
1888 * BLOCKING -- aka. SLEEP + WAKEUP
1889 *
1890 * For blocking we (obviously) need to provide the same guarantee as for
1891 * migration. However the means are completely different as there is no lock
1892 * chain to provide order. Instead we do:
1893 *
1894 * 1) smp_store_release(X->on_cpu, 0)
1895 * 2) smp_cond_load_acquire(!X->on_cpu)
1896 *
1897 * Example:
1898 *
1899 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1900 *
1901 * LOCK rq(0)->lock LOCK X->pi_lock
1902 * dequeue X
1903 * sched-out X
1904 * smp_store_release(X->on_cpu, 0);
1905 *
1906 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1907 * X->state = WAKING
1908 * set_task_cpu(X,2)
1909 *
1910 * LOCK rq(2)->lock
1911 * enqueue X
1912 * X->state = RUNNING
1913 * UNLOCK rq(2)->lock
1914 *
1915 * LOCK rq(2)->lock // orders against CPU1
1916 * sched-out Z
1917 * sched-in X
1918 * UNLOCK rq(2)->lock
1919 *
1920 * UNLOCK X->pi_lock
1921 * UNLOCK rq(0)->lock
1922 *
1923 *
1924 * However, for wakeups there is a second guarantee we must provide, namely we
1925 * must ensure that CONDITION=1 done by the caller can not be reordered with
1926 * accesses to the task state; see try_to_wake_up() and set_current_state().
1927 */
1928
1929 /**
1930 * try_to_wake_up - wake up a thread
1931 * @p: the thread to be awakened
1932 * @state: the mask of task states that can be woken
1933 * @wake_flags: wake modifier flags (WF_*)
1934 *
1935 * If (@state & @p->state) @p->state = TASK_RUNNING.
1936 *
1937 * If the task was not queued/runnable, also place it back on a runqueue.
1938 *
1939 * Atomic against schedule() which would dequeue a task, also see
1940 * set_current_state().
1941 *
1942 * This function executes a full memory barrier before accessing the task
1943 * state; see set_current_state().
1944 *
1945 * Return: %true if @p->state changes (an actual wakeup was done),
1946 * %false otherwise.
1947 */
1948 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)1949 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1950 {
1951 unsigned long flags;
1952 int cpu, success = 0;
1953
1954 /*
1955 * If we are going to wake up a thread waiting for CONDITION we
1956 * need to ensure that CONDITION=1 done by the caller can not be
1957 * reordered with p->state check below. This pairs with mb() in
1958 * set_current_state() the waiting thread does.
1959 */
1960 raw_spin_lock_irqsave(&p->pi_lock, flags);
1961 smp_mb__after_spinlock();
1962 if (!(p->state & state))
1963 goto out;
1964
1965 trace_sched_waking(p);
1966
1967 /* We're going to change ->state: */
1968 success = 1;
1969 cpu = task_cpu(p);
1970
1971 /*
1972 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1973 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1974 * in smp_cond_load_acquire() below.
1975 *
1976 * sched_ttwu_pending() try_to_wake_up()
1977 * STORE p->on_rq = 1 LOAD p->state
1978 * UNLOCK rq->lock
1979 *
1980 * __schedule() (switch to task 'p')
1981 * LOCK rq->lock smp_rmb();
1982 * smp_mb__after_spinlock();
1983 * UNLOCK rq->lock
1984 *
1985 * [task p]
1986 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
1987 *
1988 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1989 * __schedule(). See the comment for smp_mb__after_spinlock().
1990 */
1991 smp_rmb();
1992 if (p->on_rq && ttwu_remote(p, wake_flags))
1993 goto stat;
1994
1995 #ifdef CONFIG_SMP
1996 /*
1997 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1998 * possible to, falsely, observe p->on_cpu == 0.
1999 *
2000 * One must be running (->on_cpu == 1) in order to remove oneself
2001 * from the runqueue.
2002 *
2003 * __schedule() (switch to task 'p') try_to_wake_up()
2004 * STORE p->on_cpu = 1 LOAD p->on_rq
2005 * UNLOCK rq->lock
2006 *
2007 * __schedule() (put 'p' to sleep)
2008 * LOCK rq->lock smp_rmb();
2009 * smp_mb__after_spinlock();
2010 * STORE p->on_rq = 0 LOAD p->on_cpu
2011 *
2012 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2013 * __schedule(). See the comment for smp_mb__after_spinlock().
2014 */
2015 smp_rmb();
2016
2017 /*
2018 * If the owning (remote) CPU is still in the middle of schedule() with
2019 * this task as prev, wait until its done referencing the task.
2020 *
2021 * Pairs with the smp_store_release() in finish_task().
2022 *
2023 * This ensures that tasks getting woken will be fully ordered against
2024 * their previous state and preserve Program Order.
2025 */
2026 smp_cond_load_acquire(&p->on_cpu, !VAL);
2027
2028 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2029 p->state = TASK_WAKING;
2030
2031 if (p->in_iowait) {
2032 delayacct_blkio_end(p);
2033 atomic_dec(&task_rq(p)->nr_iowait);
2034 }
2035
2036 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2037 if (task_cpu(p) != cpu) {
2038 wake_flags |= WF_MIGRATED;
2039 set_task_cpu(p, cpu);
2040 }
2041
2042 #else /* CONFIG_SMP */
2043
2044 if (p->in_iowait) {
2045 delayacct_blkio_end(p);
2046 atomic_dec(&task_rq(p)->nr_iowait);
2047 }
2048
2049 #endif /* CONFIG_SMP */
2050
2051 ttwu_queue(p, cpu, wake_flags);
2052 stat:
2053 ttwu_stat(p, cpu, wake_flags);
2054 out:
2055 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2056
2057 return success;
2058 }
2059
2060 /**
2061 * try_to_wake_up_local - try to wake up a local task with rq lock held
2062 * @p: the thread to be awakened
2063 * @rf: request-queue flags for pinning
2064 *
2065 * Put @p on the run-queue if it's not already there. The caller must
2066 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2067 * the current task.
2068 */
try_to_wake_up_local(struct task_struct * p,struct rq_flags * rf)2069 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2070 {
2071 struct rq *rq = task_rq(p);
2072
2073 if (WARN_ON_ONCE(rq != this_rq()) ||
2074 WARN_ON_ONCE(p == current))
2075 return;
2076
2077 lockdep_assert_held(&rq->lock);
2078
2079 if (!raw_spin_trylock(&p->pi_lock)) {
2080 /*
2081 * This is OK, because current is on_cpu, which avoids it being
2082 * picked for load-balance and preemption/IRQs are still
2083 * disabled avoiding further scheduler activity on it and we've
2084 * not yet picked a replacement task.
2085 */
2086 rq_unlock(rq, rf);
2087 raw_spin_lock(&p->pi_lock);
2088 rq_relock(rq, rf);
2089 }
2090
2091 if (!(p->state & TASK_NORMAL))
2092 goto out;
2093
2094 trace_sched_waking(p);
2095
2096 if (!task_on_rq_queued(p)) {
2097 if (p->in_iowait) {
2098 delayacct_blkio_end(p);
2099 atomic_dec(&rq->nr_iowait);
2100 }
2101 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2102 }
2103
2104 ttwu_do_wakeup(rq, p, 0, rf);
2105 ttwu_stat(p, smp_processor_id(), 0);
2106 out:
2107 raw_spin_unlock(&p->pi_lock);
2108 }
2109
2110 /**
2111 * wake_up_process - Wake up a specific process
2112 * @p: The process to be woken up.
2113 *
2114 * Attempt to wake up the nominated process and move it to the set of runnable
2115 * processes.
2116 *
2117 * Return: 1 if the process was woken up, 0 if it was already running.
2118 *
2119 * This function executes a full memory barrier before accessing the task state.
2120 */
wake_up_process(struct task_struct * p)2121 int wake_up_process(struct task_struct *p)
2122 {
2123 return try_to_wake_up(p, TASK_NORMAL, 0);
2124 }
2125 EXPORT_SYMBOL(wake_up_process);
2126
wake_up_state(struct task_struct * p,unsigned int state)2127 int wake_up_state(struct task_struct *p, unsigned int state)
2128 {
2129 return try_to_wake_up(p, state, 0);
2130 }
2131
2132 /*
2133 * Perform scheduler related setup for a newly forked process p.
2134 * p is forked by current.
2135 *
2136 * __sched_fork() is basic setup used by init_idle() too:
2137 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2138 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2139 {
2140 p->on_rq = 0;
2141
2142 p->se.on_rq = 0;
2143 p->se.exec_start = 0;
2144 p->se.sum_exec_runtime = 0;
2145 p->se.prev_sum_exec_runtime = 0;
2146 p->se.nr_migrations = 0;
2147 p->se.vruntime = 0;
2148 INIT_LIST_HEAD(&p->se.group_node);
2149
2150 #ifdef CONFIG_FAIR_GROUP_SCHED
2151 p->se.cfs_rq = NULL;
2152 #endif
2153
2154 #ifdef CONFIG_SCHEDSTATS
2155 /* Even if schedstat is disabled, there should not be garbage */
2156 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2157 #endif
2158
2159 RB_CLEAR_NODE(&p->dl.rb_node);
2160 init_dl_task_timer(&p->dl);
2161 init_dl_inactive_task_timer(&p->dl);
2162 __dl_clear_params(p);
2163
2164 INIT_LIST_HEAD(&p->rt.run_list);
2165 p->rt.timeout = 0;
2166 p->rt.time_slice = sched_rr_timeslice;
2167 p->rt.on_rq = 0;
2168 p->rt.on_list = 0;
2169
2170 #ifdef CONFIG_PREEMPT_NOTIFIERS
2171 INIT_HLIST_HEAD(&p->preempt_notifiers);
2172 #endif
2173
2174 init_numa_balancing(clone_flags, p);
2175 }
2176
2177 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2178
2179 #ifdef CONFIG_NUMA_BALANCING
2180
set_numabalancing_state(bool enabled)2181 void set_numabalancing_state(bool enabled)
2182 {
2183 if (enabled)
2184 static_branch_enable(&sched_numa_balancing);
2185 else
2186 static_branch_disable(&sched_numa_balancing);
2187 }
2188
2189 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2190 int sysctl_numa_balancing(struct ctl_table *table, int write,
2191 void __user *buffer, size_t *lenp, loff_t *ppos)
2192 {
2193 struct ctl_table t;
2194 int err;
2195 int state = static_branch_likely(&sched_numa_balancing);
2196
2197 if (write && !capable(CAP_SYS_ADMIN))
2198 return -EPERM;
2199
2200 t = *table;
2201 t.data = &state;
2202 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2203 if (err < 0)
2204 return err;
2205 if (write)
2206 set_numabalancing_state(state);
2207 return err;
2208 }
2209 #endif
2210 #endif
2211
2212 #ifdef CONFIG_SCHEDSTATS
2213
2214 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2215 static bool __initdata __sched_schedstats = false;
2216
set_schedstats(bool enabled)2217 static void set_schedstats(bool enabled)
2218 {
2219 if (enabled)
2220 static_branch_enable(&sched_schedstats);
2221 else
2222 static_branch_disable(&sched_schedstats);
2223 }
2224
force_schedstat_enabled(void)2225 void force_schedstat_enabled(void)
2226 {
2227 if (!schedstat_enabled()) {
2228 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2229 static_branch_enable(&sched_schedstats);
2230 }
2231 }
2232
setup_schedstats(char * str)2233 static int __init setup_schedstats(char *str)
2234 {
2235 int ret = 0;
2236 if (!str)
2237 goto out;
2238
2239 /*
2240 * This code is called before jump labels have been set up, so we can't
2241 * change the static branch directly just yet. Instead set a temporary
2242 * variable so init_schedstats() can do it later.
2243 */
2244 if (!strcmp(str, "enable")) {
2245 __sched_schedstats = true;
2246 ret = 1;
2247 } else if (!strcmp(str, "disable")) {
2248 __sched_schedstats = false;
2249 ret = 1;
2250 }
2251 out:
2252 if (!ret)
2253 pr_warn("Unable to parse schedstats=\n");
2254
2255 return ret;
2256 }
2257 __setup("schedstats=", setup_schedstats);
2258
init_schedstats(void)2259 static void __init init_schedstats(void)
2260 {
2261 set_schedstats(__sched_schedstats);
2262 }
2263
2264 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2265 int sysctl_schedstats(struct ctl_table *table, int write,
2266 void __user *buffer, size_t *lenp, loff_t *ppos)
2267 {
2268 struct ctl_table t;
2269 int err;
2270 int state = static_branch_likely(&sched_schedstats);
2271
2272 if (write && !capable(CAP_SYS_ADMIN))
2273 return -EPERM;
2274
2275 t = *table;
2276 t.data = &state;
2277 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2278 if (err < 0)
2279 return err;
2280 if (write)
2281 set_schedstats(state);
2282 return err;
2283 }
2284 #endif /* CONFIG_PROC_SYSCTL */
2285 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2286 static inline void init_schedstats(void) {}
2287 #endif /* CONFIG_SCHEDSTATS */
2288
2289 /*
2290 * fork()/clone()-time setup:
2291 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2292 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2293 {
2294 unsigned long flags;
2295
2296 __sched_fork(clone_flags, p);
2297 /*
2298 * We mark the process as NEW here. This guarantees that
2299 * nobody will actually run it, and a signal or other external
2300 * event cannot wake it up and insert it on the runqueue either.
2301 */
2302 p->state = TASK_NEW;
2303
2304 /*
2305 * Make sure we do not leak PI boosting priority to the child.
2306 */
2307 p->prio = current->normal_prio;
2308
2309 /*
2310 * Revert to default priority/policy on fork if requested.
2311 */
2312 if (unlikely(p->sched_reset_on_fork)) {
2313 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2314 p->policy = SCHED_NORMAL;
2315 p->static_prio = NICE_TO_PRIO(0);
2316 p->rt_priority = 0;
2317 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2318 p->static_prio = NICE_TO_PRIO(0);
2319
2320 p->prio = p->normal_prio = __normal_prio(p);
2321 set_load_weight(p, false);
2322
2323 /*
2324 * We don't need the reset flag anymore after the fork. It has
2325 * fulfilled its duty:
2326 */
2327 p->sched_reset_on_fork = 0;
2328 }
2329
2330 if (dl_prio(p->prio))
2331 return -EAGAIN;
2332 else if (rt_prio(p->prio))
2333 p->sched_class = &rt_sched_class;
2334 else
2335 p->sched_class = &fair_sched_class;
2336
2337 init_entity_runnable_average(&p->se);
2338
2339 /*
2340 * The child is not yet in the pid-hash so no cgroup attach races,
2341 * and the cgroup is pinned to this child due to cgroup_fork()
2342 * is ran before sched_fork().
2343 *
2344 * Silence PROVE_RCU.
2345 */
2346 raw_spin_lock_irqsave(&p->pi_lock, flags);
2347 /*
2348 * We're setting the CPU for the first time, we don't migrate,
2349 * so use __set_task_cpu().
2350 */
2351 __set_task_cpu(p, smp_processor_id());
2352 if (p->sched_class->task_fork)
2353 p->sched_class->task_fork(p);
2354 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2355
2356 #ifdef CONFIG_SCHED_INFO
2357 if (likely(sched_info_on()))
2358 memset(&p->sched_info, 0, sizeof(p->sched_info));
2359 #endif
2360 #if defined(CONFIG_SMP)
2361 p->on_cpu = 0;
2362 #endif
2363 init_task_preempt_count(p);
2364 #ifdef CONFIG_SMP
2365 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2366 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2367 #endif
2368 return 0;
2369 }
2370
to_ratio(u64 period,u64 runtime)2371 unsigned long to_ratio(u64 period, u64 runtime)
2372 {
2373 if (runtime == RUNTIME_INF)
2374 return BW_UNIT;
2375
2376 /*
2377 * Doing this here saves a lot of checks in all
2378 * the calling paths, and returning zero seems
2379 * safe for them anyway.
2380 */
2381 if (period == 0)
2382 return 0;
2383
2384 return div64_u64(runtime << BW_SHIFT, period);
2385 }
2386
2387 /*
2388 * wake_up_new_task - wake up a newly created task for the first time.
2389 *
2390 * This function will do some initial scheduler statistics housekeeping
2391 * that must be done for every newly created context, then puts the task
2392 * on the runqueue and wakes it.
2393 */
wake_up_new_task(struct task_struct * p)2394 void wake_up_new_task(struct task_struct *p)
2395 {
2396 struct rq_flags rf;
2397 struct rq *rq;
2398
2399 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2400 p->state = TASK_RUNNING;
2401 #ifdef CONFIG_SMP
2402 /*
2403 * Fork balancing, do it here and not earlier because:
2404 * - cpus_allowed can change in the fork path
2405 * - any previously selected CPU might disappear through hotplug
2406 *
2407 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2408 * as we're not fully set-up yet.
2409 */
2410 p->recent_used_cpu = task_cpu(p);
2411 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2412 #endif
2413 rq = __task_rq_lock(p, &rf);
2414 update_rq_clock(rq);
2415 post_init_entity_util_avg(&p->se);
2416
2417 activate_task(rq, p, ENQUEUE_NOCLOCK);
2418 p->on_rq = TASK_ON_RQ_QUEUED;
2419 trace_sched_wakeup_new(p);
2420 check_preempt_curr(rq, p, WF_FORK);
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_woken) {
2423 /*
2424 * Nothing relies on rq->lock after this, so its fine to
2425 * drop it.
2426 */
2427 rq_unpin_lock(rq, &rf);
2428 p->sched_class->task_woken(rq, p);
2429 rq_repin_lock(rq, &rf);
2430 }
2431 #endif
2432 task_rq_unlock(rq, p, &rf);
2433 }
2434
2435 #ifdef CONFIG_PREEMPT_NOTIFIERS
2436
2437 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2438
preempt_notifier_inc(void)2439 void preempt_notifier_inc(void)
2440 {
2441 static_branch_inc(&preempt_notifier_key);
2442 }
2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444
preempt_notifier_dec(void)2445 void preempt_notifier_dec(void)
2446 {
2447 static_branch_dec(&preempt_notifier_key);
2448 }
2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2450
2451 /**
2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453 * @notifier: notifier struct to register
2454 */
preempt_notifier_register(struct preempt_notifier * notifier)2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2456 {
2457 if (!static_branch_unlikely(&preempt_notifier_key))
2458 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459
2460 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463
2464 /**
2465 * preempt_notifier_unregister - no longer interested in preemption notifications
2466 * @notifier: notifier struct to unregister
2467 *
2468 * This is *not* safe to call from within a preemption notifier.
2469 */
preempt_notifier_unregister(struct preempt_notifier * notifier)2470 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471 {
2472 hlist_del(¬ifier->link);
2473 }
2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 {
2478 struct preempt_notifier *notifier;
2479
2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482 }
2483
fire_sched_in_preempt_notifiers(struct task_struct * curr)2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485 {
2486 if (static_branch_unlikely(&preempt_notifier_key))
2487 __fire_sched_in_preempt_notifiers(curr);
2488 }
2489
2490 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 struct task_struct *next)
2493 {
2494 struct preempt_notifier *notifier;
2495
2496 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 notifier->ops->sched_out(notifier, next);
2498 }
2499
2500 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2503 {
2504 if (static_branch_unlikely(&preempt_notifier_key))
2505 __fire_sched_out_preempt_notifiers(curr, next);
2506 }
2507
2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509
fire_sched_in_preempt_notifiers(struct task_struct * curr)2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 }
2513
2514 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2515 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 struct task_struct *next)
2517 {
2518 }
2519
2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2521
prepare_task(struct task_struct * next)2522 static inline void prepare_task(struct task_struct *next)
2523 {
2524 #ifdef CONFIG_SMP
2525 /*
2526 * Claim the task as running, we do this before switching to it
2527 * such that any running task will have this set.
2528 */
2529 next->on_cpu = 1;
2530 #endif
2531 }
2532
finish_task(struct task_struct * prev)2533 static inline void finish_task(struct task_struct *prev)
2534 {
2535 #ifdef CONFIG_SMP
2536 /*
2537 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2538 * We must ensure this doesn't happen until the switch is completely
2539 * finished.
2540 *
2541 * In particular, the load of prev->state in finish_task_switch() must
2542 * happen before this.
2543 *
2544 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2545 */
2546 smp_store_release(&prev->on_cpu, 0);
2547 #endif
2548 }
2549
2550 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)2551 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2552 {
2553 /*
2554 * Since the runqueue lock will be released by the next
2555 * task (which is an invalid locking op but in the case
2556 * of the scheduler it's an obvious special-case), so we
2557 * do an early lockdep release here:
2558 */
2559 rq_unpin_lock(rq, rf);
2560 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2561 #ifdef CONFIG_DEBUG_SPINLOCK
2562 /* this is a valid case when another task releases the spinlock */
2563 rq->lock.owner = next;
2564 #endif
2565 }
2566
finish_lock_switch(struct rq * rq)2567 static inline void finish_lock_switch(struct rq *rq)
2568 {
2569 /*
2570 * If we are tracking spinlock dependencies then we have to
2571 * fix up the runqueue lock - which gets 'carried over' from
2572 * prev into current:
2573 */
2574 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2575 raw_spin_unlock_irq(&rq->lock);
2576 }
2577
2578 /*
2579 * NOP if the arch has not defined these:
2580 */
2581
2582 #ifndef prepare_arch_switch
2583 # define prepare_arch_switch(next) do { } while (0)
2584 #endif
2585
2586 #ifndef finish_arch_post_lock_switch
2587 # define finish_arch_post_lock_switch() do { } while (0)
2588 #endif
2589
2590 /**
2591 * prepare_task_switch - prepare to switch tasks
2592 * @rq: the runqueue preparing to switch
2593 * @prev: the current task that is being switched out
2594 * @next: the task we are going to switch to.
2595 *
2596 * This is called with the rq lock held and interrupts off. It must
2597 * be paired with a subsequent finish_task_switch after the context
2598 * switch.
2599 *
2600 * prepare_task_switch sets up locking and calls architecture specific
2601 * hooks.
2602 */
2603 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2604 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2605 struct task_struct *next)
2606 {
2607 kcov_prepare_switch(prev);
2608 sched_info_switch(rq, prev, next);
2609 perf_event_task_sched_out(prev, next);
2610 rseq_preempt(prev);
2611 fire_sched_out_preempt_notifiers(prev, next);
2612 prepare_task(next);
2613 prepare_arch_switch(next);
2614 }
2615
2616 /**
2617 * finish_task_switch - clean up after a task-switch
2618 * @prev: the thread we just switched away from.
2619 *
2620 * finish_task_switch must be called after the context switch, paired
2621 * with a prepare_task_switch call before the context switch.
2622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623 * and do any other architecture-specific cleanup actions.
2624 *
2625 * Note that we may have delayed dropping an mm in context_switch(). If
2626 * so, we finish that here outside of the runqueue lock. (Doing it
2627 * with the lock held can cause deadlocks; see schedule() for
2628 * details.)
2629 *
2630 * The context switch have flipped the stack from under us and restored the
2631 * local variables which were saved when this task called schedule() in the
2632 * past. prev == current is still correct but we need to recalculate this_rq
2633 * because prev may have moved to another CPU.
2634 */
finish_task_switch(struct task_struct * prev)2635 static struct rq *finish_task_switch(struct task_struct *prev)
2636 __releases(rq->lock)
2637 {
2638 struct rq *rq = this_rq();
2639 struct mm_struct *mm = rq->prev_mm;
2640 long prev_state;
2641
2642 /*
2643 * The previous task will have left us with a preempt_count of 2
2644 * because it left us after:
2645 *
2646 * schedule()
2647 * preempt_disable(); // 1
2648 * __schedule()
2649 * raw_spin_lock_irq(&rq->lock) // 2
2650 *
2651 * Also, see FORK_PREEMPT_COUNT.
2652 */
2653 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2654 "corrupted preempt_count: %s/%d/0x%x\n",
2655 current->comm, current->pid, preempt_count()))
2656 preempt_count_set(FORK_PREEMPT_COUNT);
2657
2658 rq->prev_mm = NULL;
2659
2660 /*
2661 * A task struct has one reference for the use as "current".
2662 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2663 * schedule one last time. The schedule call will never return, and
2664 * the scheduled task must drop that reference.
2665 *
2666 * We must observe prev->state before clearing prev->on_cpu (in
2667 * finish_task), otherwise a concurrent wakeup can get prev
2668 * running on another CPU and we could rave with its RUNNING -> DEAD
2669 * transition, resulting in a double drop.
2670 */
2671 prev_state = prev->state;
2672 vtime_task_switch(prev);
2673 perf_event_task_sched_in(prev, current);
2674 finish_task(prev);
2675 finish_lock_switch(rq);
2676 finish_arch_post_lock_switch();
2677 kcov_finish_switch(current);
2678
2679 fire_sched_in_preempt_notifiers(current);
2680 /*
2681 * When switching through a kernel thread, the loop in
2682 * membarrier_{private,global}_expedited() may have observed that
2683 * kernel thread and not issued an IPI. It is therefore possible to
2684 * schedule between user->kernel->user threads without passing though
2685 * switch_mm(). Membarrier requires a barrier after storing to
2686 * rq->curr, before returning to userspace, so provide them here:
2687 *
2688 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2689 * provided by mmdrop(),
2690 * - a sync_core for SYNC_CORE.
2691 */
2692 if (mm) {
2693 membarrier_mm_sync_core_before_usermode(mm);
2694 mmdrop(mm);
2695 }
2696 if (unlikely(prev_state == TASK_DEAD)) {
2697 if (prev->sched_class->task_dead)
2698 prev->sched_class->task_dead(prev);
2699
2700 /*
2701 * Remove function-return probe instances associated with this
2702 * task and put them back on the free list.
2703 */
2704 kprobe_flush_task(prev);
2705
2706 /* Task is done with its stack. */
2707 put_task_stack(prev);
2708
2709 put_task_struct(prev);
2710 }
2711
2712 tick_nohz_task_switch();
2713 return rq;
2714 }
2715
2716 #ifdef CONFIG_SMP
2717
2718 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2719 static void __balance_callback(struct rq *rq)
2720 {
2721 struct callback_head *head, *next;
2722 void (*func)(struct rq *rq);
2723 unsigned long flags;
2724
2725 raw_spin_lock_irqsave(&rq->lock, flags);
2726 head = rq->balance_callback;
2727 rq->balance_callback = NULL;
2728 while (head) {
2729 func = (void (*)(struct rq *))head->func;
2730 next = head->next;
2731 head->next = NULL;
2732 head = next;
2733
2734 func(rq);
2735 }
2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
2737 }
2738
balance_callback(struct rq * rq)2739 static inline void balance_callback(struct rq *rq)
2740 {
2741 if (unlikely(rq->balance_callback))
2742 __balance_callback(rq);
2743 }
2744
2745 #else
2746
balance_callback(struct rq * rq)2747 static inline void balance_callback(struct rq *rq)
2748 {
2749 }
2750
2751 #endif
2752
2753 /**
2754 * schedule_tail - first thing a freshly forked thread must call.
2755 * @prev: the thread we just switched away from.
2756 */
schedule_tail(struct task_struct * prev)2757 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2758 __releases(rq->lock)
2759 {
2760 struct rq *rq;
2761
2762 /*
2763 * New tasks start with FORK_PREEMPT_COUNT, see there and
2764 * finish_task_switch() for details.
2765 *
2766 * finish_task_switch() will drop rq->lock() and lower preempt_count
2767 * and the preempt_enable() will end up enabling preemption (on
2768 * PREEMPT_COUNT kernels).
2769 */
2770
2771 rq = finish_task_switch(prev);
2772 balance_callback(rq);
2773 preempt_enable();
2774
2775 if (current->set_child_tid)
2776 put_user(task_pid_vnr(current), current->set_child_tid);
2777
2778 calculate_sigpending();
2779 }
2780
2781 /*
2782 * context_switch - switch to the new MM and the new thread's register state.
2783 */
2784 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)2785 context_switch(struct rq *rq, struct task_struct *prev,
2786 struct task_struct *next, struct rq_flags *rf)
2787 {
2788 struct mm_struct *mm, *oldmm;
2789
2790 prepare_task_switch(rq, prev, next);
2791
2792 mm = next->mm;
2793 oldmm = prev->active_mm;
2794 /*
2795 * For paravirt, this is coupled with an exit in switch_to to
2796 * combine the page table reload and the switch backend into
2797 * one hypercall.
2798 */
2799 arch_start_context_switch(prev);
2800
2801 /*
2802 * If mm is non-NULL, we pass through switch_mm(). If mm is
2803 * NULL, we will pass through mmdrop() in finish_task_switch().
2804 * Both of these contain the full memory barrier required by
2805 * membarrier after storing to rq->curr, before returning to
2806 * user-space.
2807 */
2808 if (!mm) {
2809 next->active_mm = oldmm;
2810 mmgrab(oldmm);
2811 enter_lazy_tlb(oldmm, next);
2812 } else
2813 switch_mm_irqs_off(oldmm, mm, next);
2814
2815 if (!prev->mm) {
2816 prev->active_mm = NULL;
2817 rq->prev_mm = oldmm;
2818 }
2819
2820 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2821
2822 prepare_lock_switch(rq, next, rf);
2823
2824 /* Here we just switch the register state and the stack. */
2825 switch_to(prev, next, prev);
2826 barrier();
2827
2828 return finish_task_switch(prev);
2829 }
2830
2831 /*
2832 * nr_running and nr_context_switches:
2833 *
2834 * externally visible scheduler statistics: current number of runnable
2835 * threads, total number of context switches performed since bootup.
2836 */
nr_running(void)2837 unsigned long nr_running(void)
2838 {
2839 unsigned long i, sum = 0;
2840
2841 for_each_online_cpu(i)
2842 sum += cpu_rq(i)->nr_running;
2843
2844 return sum;
2845 }
2846
2847 /*
2848 * Check if only the current task is running on the CPU.
2849 *
2850 * Caution: this function does not check that the caller has disabled
2851 * preemption, thus the result might have a time-of-check-to-time-of-use
2852 * race. The caller is responsible to use it correctly, for example:
2853 *
2854 * - from a non-preemptable section (of course)
2855 *
2856 * - from a thread that is bound to a single CPU
2857 *
2858 * - in a loop with very short iterations (e.g. a polling loop)
2859 */
single_task_running(void)2860 bool single_task_running(void)
2861 {
2862 return raw_rq()->nr_running == 1;
2863 }
2864 EXPORT_SYMBOL(single_task_running);
2865
nr_context_switches(void)2866 unsigned long long nr_context_switches(void)
2867 {
2868 int i;
2869 unsigned long long sum = 0;
2870
2871 for_each_possible_cpu(i)
2872 sum += cpu_rq(i)->nr_switches;
2873
2874 return sum;
2875 }
2876
2877 /*
2878 * IO-wait accounting, and how its mostly bollocks (on SMP).
2879 *
2880 * The idea behind IO-wait account is to account the idle time that we could
2881 * have spend running if it were not for IO. That is, if we were to improve the
2882 * storage performance, we'd have a proportional reduction in IO-wait time.
2883 *
2884 * This all works nicely on UP, where, when a task blocks on IO, we account
2885 * idle time as IO-wait, because if the storage were faster, it could've been
2886 * running and we'd not be idle.
2887 *
2888 * This has been extended to SMP, by doing the same for each CPU. This however
2889 * is broken.
2890 *
2891 * Imagine for instance the case where two tasks block on one CPU, only the one
2892 * CPU will have IO-wait accounted, while the other has regular idle. Even
2893 * though, if the storage were faster, both could've ran at the same time,
2894 * utilising both CPUs.
2895 *
2896 * This means, that when looking globally, the current IO-wait accounting on
2897 * SMP is a lower bound, by reason of under accounting.
2898 *
2899 * Worse, since the numbers are provided per CPU, they are sometimes
2900 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2901 * associated with any one particular CPU, it can wake to another CPU than it
2902 * blocked on. This means the per CPU IO-wait number is meaningless.
2903 *
2904 * Task CPU affinities can make all that even more 'interesting'.
2905 */
2906
nr_iowait(void)2907 unsigned long nr_iowait(void)
2908 {
2909 unsigned long i, sum = 0;
2910
2911 for_each_possible_cpu(i)
2912 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913
2914 return sum;
2915 }
2916
2917 /*
2918 * Consumers of these two interfaces, like for example the cpufreq menu
2919 * governor are using nonsensical data. Boosting frequency for a CPU that has
2920 * IO-wait which might not even end up running the task when it does become
2921 * runnable.
2922 */
2923
nr_iowait_cpu(int cpu)2924 unsigned long nr_iowait_cpu(int cpu)
2925 {
2926 struct rq *this = cpu_rq(cpu);
2927 return atomic_read(&this->nr_iowait);
2928 }
2929
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)2930 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2931 {
2932 struct rq *rq = this_rq();
2933 *nr_waiters = atomic_read(&rq->nr_iowait);
2934 *load = rq->load.weight;
2935 }
2936
2937 #ifdef CONFIG_SMP
2938
2939 /*
2940 * sched_exec - execve() is a valuable balancing opportunity, because at
2941 * this point the task has the smallest effective memory and cache footprint.
2942 */
sched_exec(void)2943 void sched_exec(void)
2944 {
2945 struct task_struct *p = current;
2946 unsigned long flags;
2947 int dest_cpu;
2948
2949 raw_spin_lock_irqsave(&p->pi_lock, flags);
2950 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2951 if (dest_cpu == smp_processor_id())
2952 goto unlock;
2953
2954 if (likely(cpu_active(dest_cpu))) {
2955 struct migration_arg arg = { p, dest_cpu };
2956
2957 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2958 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2959 return;
2960 }
2961 unlock:
2962 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2963 }
2964
2965 #endif
2966
2967 DEFINE_PER_CPU(struct kernel_stat, kstat);
2968 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2969
2970 EXPORT_PER_CPU_SYMBOL(kstat);
2971 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2972
2973 /*
2974 * The function fair_sched_class.update_curr accesses the struct curr
2975 * and its field curr->exec_start; when called from task_sched_runtime(),
2976 * we observe a high rate of cache misses in practice.
2977 * Prefetching this data results in improved performance.
2978 */
prefetch_curr_exec_start(struct task_struct * p)2979 static inline void prefetch_curr_exec_start(struct task_struct *p)
2980 {
2981 #ifdef CONFIG_FAIR_GROUP_SCHED
2982 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2983 #else
2984 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2985 #endif
2986 prefetch(curr);
2987 prefetch(&curr->exec_start);
2988 }
2989
2990 /*
2991 * Return accounted runtime for the task.
2992 * In case the task is currently running, return the runtime plus current's
2993 * pending runtime that have not been accounted yet.
2994 */
task_sched_runtime(struct task_struct * p)2995 unsigned long long task_sched_runtime(struct task_struct *p)
2996 {
2997 struct rq_flags rf;
2998 struct rq *rq;
2999 u64 ns;
3000
3001 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3002 /*
3003 * 64-bit doesn't need locks to atomically read a 64-bit value.
3004 * So we have a optimization chance when the task's delta_exec is 0.
3005 * Reading ->on_cpu is racy, but this is ok.
3006 *
3007 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3008 * If we race with it entering CPU, unaccounted time is 0. This is
3009 * indistinguishable from the read occurring a few cycles earlier.
3010 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3011 * been accounted, so we're correct here as well.
3012 */
3013 if (!p->on_cpu || !task_on_rq_queued(p))
3014 return p->se.sum_exec_runtime;
3015 #endif
3016
3017 rq = task_rq_lock(p, &rf);
3018 /*
3019 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3020 * project cycles that may never be accounted to this
3021 * thread, breaking clock_gettime().
3022 */
3023 if (task_current(rq, p) && task_on_rq_queued(p)) {
3024 prefetch_curr_exec_start(p);
3025 update_rq_clock(rq);
3026 p->sched_class->update_curr(rq);
3027 }
3028 ns = p->se.sum_exec_runtime;
3029 task_rq_unlock(rq, p, &rf);
3030
3031 return ns;
3032 }
3033
3034 /*
3035 * This function gets called by the timer code, with HZ frequency.
3036 * We call it with interrupts disabled.
3037 */
scheduler_tick(void)3038 void scheduler_tick(void)
3039 {
3040 int cpu = smp_processor_id();
3041 struct rq *rq = cpu_rq(cpu);
3042 struct task_struct *curr = rq->curr;
3043 struct rq_flags rf;
3044
3045 sched_clock_tick();
3046
3047 rq_lock(rq, &rf);
3048
3049 update_rq_clock(rq);
3050 curr->sched_class->task_tick(rq, curr, 0);
3051 cpu_load_update_active(rq);
3052 calc_global_load_tick(rq);
3053
3054 rq_unlock(rq, &rf);
3055
3056 perf_event_task_tick();
3057
3058 #ifdef CONFIG_SMP
3059 rq->idle_balance = idle_cpu(cpu);
3060 trigger_load_balance(rq);
3061 #endif
3062 }
3063
3064 #ifdef CONFIG_NO_HZ_FULL
3065
3066 struct tick_work {
3067 int cpu;
3068 struct delayed_work work;
3069 };
3070
3071 static struct tick_work __percpu *tick_work_cpu;
3072
sched_tick_remote(struct work_struct * work)3073 static void sched_tick_remote(struct work_struct *work)
3074 {
3075 struct delayed_work *dwork = to_delayed_work(work);
3076 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3077 int cpu = twork->cpu;
3078 struct rq *rq = cpu_rq(cpu);
3079 struct task_struct *curr;
3080 struct rq_flags rf;
3081 u64 delta;
3082
3083 /*
3084 * Handle the tick only if it appears the remote CPU is running in full
3085 * dynticks mode. The check is racy by nature, but missing a tick or
3086 * having one too much is no big deal because the scheduler tick updates
3087 * statistics and checks timeslices in a time-independent way, regardless
3088 * of when exactly it is running.
3089 */
3090 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3091 goto out_requeue;
3092
3093 rq_lock_irq(rq, &rf);
3094 curr = rq->curr;
3095 if (is_idle_task(curr))
3096 goto out_unlock;
3097
3098 update_rq_clock(rq);
3099 delta = rq_clock_task(rq) - curr->se.exec_start;
3100
3101 /*
3102 * Make sure the next tick runs within a reasonable
3103 * amount of time.
3104 */
3105 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3106 curr->sched_class->task_tick(rq, curr, 0);
3107
3108 out_unlock:
3109 rq_unlock_irq(rq, &rf);
3110
3111 out_requeue:
3112 /*
3113 * Run the remote tick once per second (1Hz). This arbitrary
3114 * frequency is large enough to avoid overload but short enough
3115 * to keep scheduler internal stats reasonably up to date.
3116 */
3117 queue_delayed_work(system_unbound_wq, dwork, HZ);
3118 }
3119
sched_tick_start(int cpu)3120 static void sched_tick_start(int cpu)
3121 {
3122 struct tick_work *twork;
3123
3124 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3125 return;
3126
3127 WARN_ON_ONCE(!tick_work_cpu);
3128
3129 twork = per_cpu_ptr(tick_work_cpu, cpu);
3130 twork->cpu = cpu;
3131 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3132 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3133 }
3134
3135 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)3136 static void sched_tick_stop(int cpu)
3137 {
3138 struct tick_work *twork;
3139
3140 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3141 return;
3142
3143 WARN_ON_ONCE(!tick_work_cpu);
3144
3145 twork = per_cpu_ptr(tick_work_cpu, cpu);
3146 cancel_delayed_work_sync(&twork->work);
3147 }
3148 #endif /* CONFIG_HOTPLUG_CPU */
3149
sched_tick_offload_init(void)3150 int __init sched_tick_offload_init(void)
3151 {
3152 tick_work_cpu = alloc_percpu(struct tick_work);
3153 BUG_ON(!tick_work_cpu);
3154
3155 return 0;
3156 }
3157
3158 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)3159 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)3160 static inline void sched_tick_stop(int cpu) { }
3161 #endif
3162
3163 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3164 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3165 /*
3166 * If the value passed in is equal to the current preempt count
3167 * then we just disabled preemption. Start timing the latency.
3168 */
preempt_latency_start(int val)3169 static inline void preempt_latency_start(int val)
3170 {
3171 if (preempt_count() == val) {
3172 unsigned long ip = get_lock_parent_ip();
3173 #ifdef CONFIG_DEBUG_PREEMPT
3174 current->preempt_disable_ip = ip;
3175 #endif
3176 trace_preempt_off(CALLER_ADDR0, ip);
3177 }
3178 }
3179
preempt_count_add(int val)3180 void preempt_count_add(int val)
3181 {
3182 #ifdef CONFIG_DEBUG_PREEMPT
3183 /*
3184 * Underflow?
3185 */
3186 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3187 return;
3188 #endif
3189 __preempt_count_add(val);
3190 #ifdef CONFIG_DEBUG_PREEMPT
3191 /*
3192 * Spinlock count overflowing soon?
3193 */
3194 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3195 PREEMPT_MASK - 10);
3196 #endif
3197 preempt_latency_start(val);
3198 }
3199 EXPORT_SYMBOL(preempt_count_add);
3200 NOKPROBE_SYMBOL(preempt_count_add);
3201
3202 /*
3203 * If the value passed in equals to the current preempt count
3204 * then we just enabled preemption. Stop timing the latency.
3205 */
preempt_latency_stop(int val)3206 static inline void preempt_latency_stop(int val)
3207 {
3208 if (preempt_count() == val)
3209 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3210 }
3211
preempt_count_sub(int val)3212 void preempt_count_sub(int val)
3213 {
3214 #ifdef CONFIG_DEBUG_PREEMPT
3215 /*
3216 * Underflow?
3217 */
3218 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3219 return;
3220 /*
3221 * Is the spinlock portion underflowing?
3222 */
3223 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3224 !(preempt_count() & PREEMPT_MASK)))
3225 return;
3226 #endif
3227
3228 preempt_latency_stop(val);
3229 __preempt_count_sub(val);
3230 }
3231 EXPORT_SYMBOL(preempt_count_sub);
3232 NOKPROBE_SYMBOL(preempt_count_sub);
3233
3234 #else
preempt_latency_start(int val)3235 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3236 static inline void preempt_latency_stop(int val) { }
3237 #endif
3238
get_preempt_disable_ip(struct task_struct * p)3239 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3240 {
3241 #ifdef CONFIG_DEBUG_PREEMPT
3242 return p->preempt_disable_ip;
3243 #else
3244 return 0;
3245 #endif
3246 }
3247
3248 /*
3249 * Print scheduling while atomic bug:
3250 */
__schedule_bug(struct task_struct * prev)3251 static noinline void __schedule_bug(struct task_struct *prev)
3252 {
3253 /* Save this before calling printk(), since that will clobber it */
3254 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3255
3256 if (oops_in_progress)
3257 return;
3258
3259 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3260 prev->comm, prev->pid, preempt_count());
3261
3262 debug_show_held_locks(prev);
3263 print_modules();
3264 if (irqs_disabled())
3265 print_irqtrace_events(prev);
3266 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3267 && in_atomic_preempt_off()) {
3268 pr_err("Preemption disabled at:");
3269 print_ip_sym(preempt_disable_ip);
3270 pr_cont("\n");
3271 }
3272 if (panic_on_warn)
3273 panic("scheduling while atomic\n");
3274
3275 dump_stack();
3276 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3277 }
3278
3279 /*
3280 * Various schedule()-time debugging checks and statistics:
3281 */
schedule_debug(struct task_struct * prev)3282 static inline void schedule_debug(struct task_struct *prev)
3283 {
3284 #ifdef CONFIG_SCHED_STACK_END_CHECK
3285 if (task_stack_end_corrupted(prev))
3286 panic("corrupted stack end detected inside scheduler\n");
3287 #endif
3288
3289 if (unlikely(in_atomic_preempt_off())) {
3290 __schedule_bug(prev);
3291 preempt_count_set(PREEMPT_DISABLED);
3292 }
3293 rcu_sleep_check();
3294
3295 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3296
3297 schedstat_inc(this_rq()->sched_count);
3298 }
3299
3300 /*
3301 * Pick up the highest-prio task:
3302 */
3303 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)3304 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3305 {
3306 const struct sched_class *class;
3307 struct task_struct *p;
3308
3309 /*
3310 * Optimization: we know that if all tasks are in the fair class we can
3311 * call that function directly, but only if the @prev task wasn't of a
3312 * higher scheduling class, because otherwise those loose the
3313 * opportunity to pull in more work from other CPUs.
3314 */
3315 if (likely((prev->sched_class == &idle_sched_class ||
3316 prev->sched_class == &fair_sched_class) &&
3317 rq->nr_running == rq->cfs.h_nr_running)) {
3318
3319 p = fair_sched_class.pick_next_task(rq, prev, rf);
3320 if (unlikely(p == RETRY_TASK))
3321 goto again;
3322
3323 /* Assumes fair_sched_class->next == idle_sched_class */
3324 if (unlikely(!p))
3325 p = idle_sched_class.pick_next_task(rq, prev, rf);
3326
3327 return p;
3328 }
3329
3330 again:
3331 for_each_class(class) {
3332 p = class->pick_next_task(rq, prev, rf);
3333 if (p) {
3334 if (unlikely(p == RETRY_TASK))
3335 goto again;
3336 return p;
3337 }
3338 }
3339
3340 /* The idle class should always have a runnable task: */
3341 BUG();
3342 }
3343
3344 /*
3345 * __schedule() is the main scheduler function.
3346 *
3347 * The main means of driving the scheduler and thus entering this function are:
3348 *
3349 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3350 *
3351 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3352 * paths. For example, see arch/x86/entry_64.S.
3353 *
3354 * To drive preemption between tasks, the scheduler sets the flag in timer
3355 * interrupt handler scheduler_tick().
3356 *
3357 * 3. Wakeups don't really cause entry into schedule(). They add a
3358 * task to the run-queue and that's it.
3359 *
3360 * Now, if the new task added to the run-queue preempts the current
3361 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3362 * called on the nearest possible occasion:
3363 *
3364 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3365 *
3366 * - in syscall or exception context, at the next outmost
3367 * preempt_enable(). (this might be as soon as the wake_up()'s
3368 * spin_unlock()!)
3369 *
3370 * - in IRQ context, return from interrupt-handler to
3371 * preemptible context
3372 *
3373 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3374 * then at the next:
3375 *
3376 * - cond_resched() call
3377 * - explicit schedule() call
3378 * - return from syscall or exception to user-space
3379 * - return from interrupt-handler to user-space
3380 *
3381 * WARNING: must be called with preemption disabled!
3382 */
__schedule(bool preempt)3383 static void __sched notrace __schedule(bool preempt)
3384 {
3385 struct task_struct *prev, *next;
3386 unsigned long *switch_count;
3387 struct rq_flags rf;
3388 struct rq *rq;
3389 int cpu;
3390
3391 cpu = smp_processor_id();
3392 rq = cpu_rq(cpu);
3393 prev = rq->curr;
3394
3395 schedule_debug(prev);
3396
3397 if (sched_feat(HRTICK))
3398 hrtick_clear(rq);
3399
3400 local_irq_disable();
3401 rcu_note_context_switch(preempt);
3402
3403 /*
3404 * Make sure that signal_pending_state()->signal_pending() below
3405 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3406 * done by the caller to avoid the race with signal_wake_up().
3407 *
3408 * The membarrier system call requires a full memory barrier
3409 * after coming from user-space, before storing to rq->curr.
3410 */
3411 rq_lock(rq, &rf);
3412 smp_mb__after_spinlock();
3413
3414 /* Promote REQ to ACT */
3415 rq->clock_update_flags <<= 1;
3416 update_rq_clock(rq);
3417
3418 switch_count = &prev->nivcsw;
3419 if (!preempt && prev->state) {
3420 if (unlikely(signal_pending_state(prev->state, prev))) {
3421 prev->state = TASK_RUNNING;
3422 } else {
3423 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3424 prev->on_rq = 0;
3425
3426 if (prev->in_iowait) {
3427 atomic_inc(&rq->nr_iowait);
3428 delayacct_blkio_start();
3429 }
3430
3431 /*
3432 * If a worker went to sleep, notify and ask workqueue
3433 * whether it wants to wake up a task to maintain
3434 * concurrency.
3435 */
3436 if (prev->flags & PF_WQ_WORKER) {
3437 struct task_struct *to_wakeup;
3438
3439 to_wakeup = wq_worker_sleeping(prev);
3440 if (to_wakeup)
3441 try_to_wake_up_local(to_wakeup, &rf);
3442 }
3443 }
3444 switch_count = &prev->nvcsw;
3445 }
3446
3447 next = pick_next_task(rq, prev, &rf);
3448 clear_tsk_need_resched(prev);
3449 clear_preempt_need_resched();
3450
3451 if (likely(prev != next)) {
3452 rq->nr_switches++;
3453 rq->curr = next;
3454 /*
3455 * The membarrier system call requires each architecture
3456 * to have a full memory barrier after updating
3457 * rq->curr, before returning to user-space.
3458 *
3459 * Here are the schemes providing that barrier on the
3460 * various architectures:
3461 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3462 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3463 * - finish_lock_switch() for weakly-ordered
3464 * architectures where spin_unlock is a full barrier,
3465 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3466 * is a RELEASE barrier),
3467 */
3468 ++*switch_count;
3469
3470 trace_sched_switch(preempt, prev, next);
3471
3472 /* Also unlocks the rq: */
3473 rq = context_switch(rq, prev, next, &rf);
3474 } else {
3475 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3476 rq_unlock_irq(rq, &rf);
3477 }
3478
3479 balance_callback(rq);
3480 }
3481
do_task_dead(void)3482 void __noreturn do_task_dead(void)
3483 {
3484 /* Causes final put_task_struct in finish_task_switch(): */
3485 set_special_state(TASK_DEAD);
3486
3487 /* Tell freezer to ignore us: */
3488 current->flags |= PF_NOFREEZE;
3489
3490 __schedule(false);
3491 BUG();
3492
3493 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3494 for (;;)
3495 cpu_relax();
3496 }
3497
sched_submit_work(struct task_struct * tsk)3498 static inline void sched_submit_work(struct task_struct *tsk)
3499 {
3500 if (!tsk->state || tsk_is_pi_blocked(tsk))
3501 return;
3502 /*
3503 * If we are going to sleep and we have plugged IO queued,
3504 * make sure to submit it to avoid deadlocks.
3505 */
3506 if (blk_needs_flush_plug(tsk))
3507 blk_schedule_flush_plug(tsk);
3508 }
3509
schedule(void)3510 asmlinkage __visible void __sched schedule(void)
3511 {
3512 struct task_struct *tsk = current;
3513
3514 sched_submit_work(tsk);
3515 do {
3516 preempt_disable();
3517 __schedule(false);
3518 sched_preempt_enable_no_resched();
3519 } while (need_resched());
3520 }
3521 EXPORT_SYMBOL(schedule);
3522
3523 /*
3524 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3525 * state (have scheduled out non-voluntarily) by making sure that all
3526 * tasks have either left the run queue or have gone into user space.
3527 * As idle tasks do not do either, they must not ever be preempted
3528 * (schedule out non-voluntarily).
3529 *
3530 * schedule_idle() is similar to schedule_preempt_disable() except that it
3531 * never enables preemption because it does not call sched_submit_work().
3532 */
schedule_idle(void)3533 void __sched schedule_idle(void)
3534 {
3535 /*
3536 * As this skips calling sched_submit_work(), which the idle task does
3537 * regardless because that function is a nop when the task is in a
3538 * TASK_RUNNING state, make sure this isn't used someplace that the
3539 * current task can be in any other state. Note, idle is always in the
3540 * TASK_RUNNING state.
3541 */
3542 WARN_ON_ONCE(current->state);
3543 do {
3544 __schedule(false);
3545 } while (need_resched());
3546 }
3547
3548 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3549 asmlinkage __visible void __sched schedule_user(void)
3550 {
3551 /*
3552 * If we come here after a random call to set_need_resched(),
3553 * or we have been woken up remotely but the IPI has not yet arrived,
3554 * we haven't yet exited the RCU idle mode. Do it here manually until
3555 * we find a better solution.
3556 *
3557 * NB: There are buggy callers of this function. Ideally we
3558 * should warn if prev_state != CONTEXT_USER, but that will trigger
3559 * too frequently to make sense yet.
3560 */
3561 enum ctx_state prev_state = exception_enter();
3562 schedule();
3563 exception_exit(prev_state);
3564 }
3565 #endif
3566
3567 /**
3568 * schedule_preempt_disabled - called with preemption disabled
3569 *
3570 * Returns with preemption disabled. Note: preempt_count must be 1
3571 */
schedule_preempt_disabled(void)3572 void __sched schedule_preempt_disabled(void)
3573 {
3574 sched_preempt_enable_no_resched();
3575 schedule();
3576 preempt_disable();
3577 }
3578
preempt_schedule_common(void)3579 static void __sched notrace preempt_schedule_common(void)
3580 {
3581 do {
3582 /*
3583 * Because the function tracer can trace preempt_count_sub()
3584 * and it also uses preempt_enable/disable_notrace(), if
3585 * NEED_RESCHED is set, the preempt_enable_notrace() called
3586 * by the function tracer will call this function again and
3587 * cause infinite recursion.
3588 *
3589 * Preemption must be disabled here before the function
3590 * tracer can trace. Break up preempt_disable() into two
3591 * calls. One to disable preemption without fear of being
3592 * traced. The other to still record the preemption latency,
3593 * which can also be traced by the function tracer.
3594 */
3595 preempt_disable_notrace();
3596 preempt_latency_start(1);
3597 __schedule(true);
3598 preempt_latency_stop(1);
3599 preempt_enable_no_resched_notrace();
3600
3601 /*
3602 * Check again in case we missed a preemption opportunity
3603 * between schedule and now.
3604 */
3605 } while (need_resched());
3606 }
3607
3608 #ifdef CONFIG_PREEMPT
3609 /*
3610 * this is the entry point to schedule() from in-kernel preemption
3611 * off of preempt_enable. Kernel preemptions off return from interrupt
3612 * occur there and call schedule directly.
3613 */
preempt_schedule(void)3614 asmlinkage __visible void __sched notrace preempt_schedule(void)
3615 {
3616 /*
3617 * If there is a non-zero preempt_count or interrupts are disabled,
3618 * we do not want to preempt the current task. Just return..
3619 */
3620 if (likely(!preemptible()))
3621 return;
3622
3623 preempt_schedule_common();
3624 }
3625 NOKPROBE_SYMBOL(preempt_schedule);
3626 EXPORT_SYMBOL(preempt_schedule);
3627
3628 /**
3629 * preempt_schedule_notrace - preempt_schedule called by tracing
3630 *
3631 * The tracing infrastructure uses preempt_enable_notrace to prevent
3632 * recursion and tracing preempt enabling caused by the tracing
3633 * infrastructure itself. But as tracing can happen in areas coming
3634 * from userspace or just about to enter userspace, a preempt enable
3635 * can occur before user_exit() is called. This will cause the scheduler
3636 * to be called when the system is still in usermode.
3637 *
3638 * To prevent this, the preempt_enable_notrace will use this function
3639 * instead of preempt_schedule() to exit user context if needed before
3640 * calling the scheduler.
3641 */
preempt_schedule_notrace(void)3642 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3643 {
3644 enum ctx_state prev_ctx;
3645
3646 if (likely(!preemptible()))
3647 return;
3648
3649 do {
3650 /*
3651 * Because the function tracer can trace preempt_count_sub()
3652 * and it also uses preempt_enable/disable_notrace(), if
3653 * NEED_RESCHED is set, the preempt_enable_notrace() called
3654 * by the function tracer will call this function again and
3655 * cause infinite recursion.
3656 *
3657 * Preemption must be disabled here before the function
3658 * tracer can trace. Break up preempt_disable() into two
3659 * calls. One to disable preemption without fear of being
3660 * traced. The other to still record the preemption latency,
3661 * which can also be traced by the function tracer.
3662 */
3663 preempt_disable_notrace();
3664 preempt_latency_start(1);
3665 /*
3666 * Needs preempt disabled in case user_exit() is traced
3667 * and the tracer calls preempt_enable_notrace() causing
3668 * an infinite recursion.
3669 */
3670 prev_ctx = exception_enter();
3671 __schedule(true);
3672 exception_exit(prev_ctx);
3673
3674 preempt_latency_stop(1);
3675 preempt_enable_no_resched_notrace();
3676 } while (need_resched());
3677 }
3678 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3679
3680 #endif /* CONFIG_PREEMPT */
3681
3682 /*
3683 * this is the entry point to schedule() from kernel preemption
3684 * off of irq context.
3685 * Note, that this is called and return with irqs disabled. This will
3686 * protect us against recursive calling from irq.
3687 */
preempt_schedule_irq(void)3688 asmlinkage __visible void __sched preempt_schedule_irq(void)
3689 {
3690 enum ctx_state prev_state;
3691
3692 /* Catch callers which need to be fixed */
3693 BUG_ON(preempt_count() || !irqs_disabled());
3694
3695 prev_state = exception_enter();
3696
3697 do {
3698 preempt_disable();
3699 local_irq_enable();
3700 __schedule(true);
3701 local_irq_disable();
3702 sched_preempt_enable_no_resched();
3703 } while (need_resched());
3704
3705 exception_exit(prev_state);
3706 }
3707
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)3708 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3709 void *key)
3710 {
3711 return try_to_wake_up(curr->private, mode, wake_flags);
3712 }
3713 EXPORT_SYMBOL(default_wake_function);
3714
3715 #ifdef CONFIG_RT_MUTEXES
3716
__rt_effective_prio(struct task_struct * pi_task,int prio)3717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3718 {
3719 if (pi_task)
3720 prio = min(prio, pi_task->prio);
3721
3722 return prio;
3723 }
3724
rt_effective_prio(struct task_struct * p,int prio)3725 static inline int rt_effective_prio(struct task_struct *p, int prio)
3726 {
3727 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3728
3729 return __rt_effective_prio(pi_task, prio);
3730 }
3731
3732 /*
3733 * rt_mutex_setprio - set the current priority of a task
3734 * @p: task to boost
3735 * @pi_task: donor task
3736 *
3737 * This function changes the 'effective' priority of a task. It does
3738 * not touch ->normal_prio like __setscheduler().
3739 *
3740 * Used by the rt_mutex code to implement priority inheritance
3741 * logic. Call site only calls if the priority of the task changed.
3742 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)3743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3744 {
3745 int prio, oldprio, queued, running, queue_flag =
3746 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3747 const struct sched_class *prev_class;
3748 struct rq_flags rf;
3749 struct rq *rq;
3750
3751 /* XXX used to be waiter->prio, not waiter->task->prio */
3752 prio = __rt_effective_prio(pi_task, p->normal_prio);
3753
3754 /*
3755 * If nothing changed; bail early.
3756 */
3757 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3758 return;
3759
3760 rq = __task_rq_lock(p, &rf);
3761 update_rq_clock(rq);
3762 /*
3763 * Set under pi_lock && rq->lock, such that the value can be used under
3764 * either lock.
3765 *
3766 * Note that there is loads of tricky to make this pointer cache work
3767 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3768 * ensure a task is de-boosted (pi_task is set to NULL) before the
3769 * task is allowed to run again (and can exit). This ensures the pointer
3770 * points to a blocked task -- which guaratees the task is present.
3771 */
3772 p->pi_top_task = pi_task;
3773
3774 /*
3775 * For FIFO/RR we only need to set prio, if that matches we're done.
3776 */
3777 if (prio == p->prio && !dl_prio(prio))
3778 goto out_unlock;
3779
3780 /*
3781 * Idle task boosting is a nono in general. There is one
3782 * exception, when PREEMPT_RT and NOHZ is active:
3783 *
3784 * The idle task calls get_next_timer_interrupt() and holds
3785 * the timer wheel base->lock on the CPU and another CPU wants
3786 * to access the timer (probably to cancel it). We can safely
3787 * ignore the boosting request, as the idle CPU runs this code
3788 * with interrupts disabled and will complete the lock
3789 * protected section without being interrupted. So there is no
3790 * real need to boost.
3791 */
3792 if (unlikely(p == rq->idle)) {
3793 WARN_ON(p != rq->curr);
3794 WARN_ON(p->pi_blocked_on);
3795 goto out_unlock;
3796 }
3797
3798 trace_sched_pi_setprio(p, pi_task);
3799 oldprio = p->prio;
3800
3801 if (oldprio == prio)
3802 queue_flag &= ~DEQUEUE_MOVE;
3803
3804 prev_class = p->sched_class;
3805 queued = task_on_rq_queued(p);
3806 running = task_current(rq, p);
3807 if (queued)
3808 dequeue_task(rq, p, queue_flag);
3809 if (running)
3810 put_prev_task(rq, p);
3811
3812 /*
3813 * Boosting condition are:
3814 * 1. -rt task is running and holds mutex A
3815 * --> -dl task blocks on mutex A
3816 *
3817 * 2. -dl task is running and holds mutex A
3818 * --> -dl task blocks on mutex A and could preempt the
3819 * running task
3820 */
3821 if (dl_prio(prio)) {
3822 if (!dl_prio(p->normal_prio) ||
3823 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3824 p->dl.dl_boosted = 1;
3825 queue_flag |= ENQUEUE_REPLENISH;
3826 } else
3827 p->dl.dl_boosted = 0;
3828 p->sched_class = &dl_sched_class;
3829 } else if (rt_prio(prio)) {
3830 if (dl_prio(oldprio))
3831 p->dl.dl_boosted = 0;
3832 if (oldprio < prio)
3833 queue_flag |= ENQUEUE_HEAD;
3834 p->sched_class = &rt_sched_class;
3835 } else {
3836 if (dl_prio(oldprio))
3837 p->dl.dl_boosted = 0;
3838 if (rt_prio(oldprio))
3839 p->rt.timeout = 0;
3840 p->sched_class = &fair_sched_class;
3841 }
3842
3843 p->prio = prio;
3844
3845 if (queued)
3846 enqueue_task(rq, p, queue_flag);
3847 if (running)
3848 set_curr_task(rq, p);
3849
3850 check_class_changed(rq, p, prev_class, oldprio);
3851 out_unlock:
3852 /* Avoid rq from going away on us: */
3853 preempt_disable();
3854 __task_rq_unlock(rq, &rf);
3855
3856 balance_callback(rq);
3857 preempt_enable();
3858 }
3859 #else
rt_effective_prio(struct task_struct * p,int prio)3860 static inline int rt_effective_prio(struct task_struct *p, int prio)
3861 {
3862 return prio;
3863 }
3864 #endif
3865
set_user_nice(struct task_struct * p,long nice)3866 void set_user_nice(struct task_struct *p, long nice)
3867 {
3868 bool queued, running;
3869 int old_prio, delta;
3870 struct rq_flags rf;
3871 struct rq *rq;
3872
3873 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3874 return;
3875 /*
3876 * We have to be careful, if called from sys_setpriority(),
3877 * the task might be in the middle of scheduling on another CPU.
3878 */
3879 rq = task_rq_lock(p, &rf);
3880 update_rq_clock(rq);
3881
3882 /*
3883 * The RT priorities are set via sched_setscheduler(), but we still
3884 * allow the 'normal' nice value to be set - but as expected
3885 * it wont have any effect on scheduling until the task is
3886 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3887 */
3888 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3889 p->static_prio = NICE_TO_PRIO(nice);
3890 goto out_unlock;
3891 }
3892 queued = task_on_rq_queued(p);
3893 running = task_current(rq, p);
3894 if (queued)
3895 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3896 if (running)
3897 put_prev_task(rq, p);
3898
3899 p->static_prio = NICE_TO_PRIO(nice);
3900 set_load_weight(p, true);
3901 old_prio = p->prio;
3902 p->prio = effective_prio(p);
3903 delta = p->prio - old_prio;
3904
3905 if (queued) {
3906 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3907 /*
3908 * If the task increased its priority or is running and
3909 * lowered its priority, then reschedule its CPU:
3910 */
3911 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3912 resched_curr(rq);
3913 }
3914 if (running)
3915 set_curr_task(rq, p);
3916 out_unlock:
3917 task_rq_unlock(rq, p, &rf);
3918 }
3919 EXPORT_SYMBOL(set_user_nice);
3920
3921 /*
3922 * can_nice - check if a task can reduce its nice value
3923 * @p: task
3924 * @nice: nice value
3925 */
can_nice(const struct task_struct * p,const int nice)3926 int can_nice(const struct task_struct *p, const int nice)
3927 {
3928 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3929 int nice_rlim = nice_to_rlimit(nice);
3930
3931 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3932 capable(CAP_SYS_NICE));
3933 }
3934
3935 #ifdef __ARCH_WANT_SYS_NICE
3936
3937 /*
3938 * sys_nice - change the priority of the current process.
3939 * @increment: priority increment
3940 *
3941 * sys_setpriority is a more generic, but much slower function that
3942 * does similar things.
3943 */
SYSCALL_DEFINE1(nice,int,increment)3944 SYSCALL_DEFINE1(nice, int, increment)
3945 {
3946 long nice, retval;
3947
3948 /*
3949 * Setpriority might change our priority at the same moment.
3950 * We don't have to worry. Conceptually one call occurs first
3951 * and we have a single winner.
3952 */
3953 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3954 nice = task_nice(current) + increment;
3955
3956 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3957 if (increment < 0 && !can_nice(current, nice))
3958 return -EPERM;
3959
3960 retval = security_task_setnice(current, nice);
3961 if (retval)
3962 return retval;
3963
3964 set_user_nice(current, nice);
3965 return 0;
3966 }
3967
3968 #endif
3969
3970 /**
3971 * task_prio - return the priority value of a given task.
3972 * @p: the task in question.
3973 *
3974 * Return: The priority value as seen by users in /proc.
3975 * RT tasks are offset by -200. Normal tasks are centered
3976 * around 0, value goes from -16 to +15.
3977 */
task_prio(const struct task_struct * p)3978 int task_prio(const struct task_struct *p)
3979 {
3980 return p->prio - MAX_RT_PRIO;
3981 }
3982
3983 /**
3984 * idle_cpu - is a given CPU idle currently?
3985 * @cpu: the processor in question.
3986 *
3987 * Return: 1 if the CPU is currently idle. 0 otherwise.
3988 */
idle_cpu(int cpu)3989 int idle_cpu(int cpu)
3990 {
3991 struct rq *rq = cpu_rq(cpu);
3992
3993 if (rq->curr != rq->idle)
3994 return 0;
3995
3996 if (rq->nr_running)
3997 return 0;
3998
3999 #ifdef CONFIG_SMP
4000 if (!llist_empty(&rq->wake_list))
4001 return 0;
4002 #endif
4003
4004 return 1;
4005 }
4006
4007 /**
4008 * available_idle_cpu - is a given CPU idle for enqueuing work.
4009 * @cpu: the CPU in question.
4010 *
4011 * Return: 1 if the CPU is currently idle. 0 otherwise.
4012 */
available_idle_cpu(int cpu)4013 int available_idle_cpu(int cpu)
4014 {
4015 if (!idle_cpu(cpu))
4016 return 0;
4017
4018 if (vcpu_is_preempted(cpu))
4019 return 0;
4020
4021 return 1;
4022 }
4023
4024 /**
4025 * idle_task - return the idle task for a given CPU.
4026 * @cpu: the processor in question.
4027 *
4028 * Return: The idle task for the CPU @cpu.
4029 */
idle_task(int cpu)4030 struct task_struct *idle_task(int cpu)
4031 {
4032 return cpu_rq(cpu)->idle;
4033 }
4034
4035 /**
4036 * find_process_by_pid - find a process with a matching PID value.
4037 * @pid: the pid in question.
4038 *
4039 * The task of @pid, if found. %NULL otherwise.
4040 */
find_process_by_pid(pid_t pid)4041 static struct task_struct *find_process_by_pid(pid_t pid)
4042 {
4043 return pid ? find_task_by_vpid(pid) : current;
4044 }
4045
4046 /*
4047 * sched_setparam() passes in -1 for its policy, to let the functions
4048 * it calls know not to change it.
4049 */
4050 #define SETPARAM_POLICY -1
4051
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4052 static void __setscheduler_params(struct task_struct *p,
4053 const struct sched_attr *attr)
4054 {
4055 int policy = attr->sched_policy;
4056
4057 if (policy == SETPARAM_POLICY)
4058 policy = p->policy;
4059
4060 p->policy = policy;
4061
4062 if (dl_policy(policy))
4063 __setparam_dl(p, attr);
4064 else if (fair_policy(policy))
4065 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4066
4067 /*
4068 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4069 * !rt_policy. Always setting this ensures that things like
4070 * getparam()/getattr() don't report silly values for !rt tasks.
4071 */
4072 p->rt_priority = attr->sched_priority;
4073 p->normal_prio = normal_prio(p);
4074 set_load_weight(p, true);
4075 }
4076
4077 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4078 static void __setscheduler(struct rq *rq, struct task_struct *p,
4079 const struct sched_attr *attr, bool keep_boost)
4080 {
4081 __setscheduler_params(p, attr);
4082
4083 /*
4084 * Keep a potential priority boosting if called from
4085 * sched_setscheduler().
4086 */
4087 p->prio = normal_prio(p);
4088 if (keep_boost)
4089 p->prio = rt_effective_prio(p, p->prio);
4090
4091 if (dl_prio(p->prio))
4092 p->sched_class = &dl_sched_class;
4093 else if (rt_prio(p->prio))
4094 p->sched_class = &rt_sched_class;
4095 else
4096 p->sched_class = &fair_sched_class;
4097 }
4098
4099 /*
4100 * Check the target process has a UID that matches the current process's:
4101 */
check_same_owner(struct task_struct * p)4102 static bool check_same_owner(struct task_struct *p)
4103 {
4104 const struct cred *cred = current_cred(), *pcred;
4105 bool match;
4106
4107 rcu_read_lock();
4108 pcred = __task_cred(p);
4109 match = (uid_eq(cred->euid, pcred->euid) ||
4110 uid_eq(cred->euid, pcred->uid));
4111 rcu_read_unlock();
4112 return match;
4113 }
4114
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4115 static int __sched_setscheduler(struct task_struct *p,
4116 const struct sched_attr *attr,
4117 bool user, bool pi)
4118 {
4119 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4120 MAX_RT_PRIO - 1 - attr->sched_priority;
4121 int retval, oldprio, oldpolicy = -1, queued, running;
4122 int new_effective_prio, policy = attr->sched_policy;
4123 const struct sched_class *prev_class;
4124 struct rq_flags rf;
4125 int reset_on_fork;
4126 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4127 struct rq *rq;
4128
4129 /* The pi code expects interrupts enabled */
4130 BUG_ON(pi && in_interrupt());
4131 recheck:
4132 /* Double check policy once rq lock held: */
4133 if (policy < 0) {
4134 reset_on_fork = p->sched_reset_on_fork;
4135 policy = oldpolicy = p->policy;
4136 } else {
4137 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4138
4139 if (!valid_policy(policy))
4140 return -EINVAL;
4141 }
4142
4143 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4144 return -EINVAL;
4145
4146 /*
4147 * Valid priorities for SCHED_FIFO and SCHED_RR are
4148 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4149 * SCHED_BATCH and SCHED_IDLE is 0.
4150 */
4151 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4152 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4153 return -EINVAL;
4154 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4155 (rt_policy(policy) != (attr->sched_priority != 0)))
4156 return -EINVAL;
4157
4158 /*
4159 * Allow unprivileged RT tasks to decrease priority:
4160 */
4161 if (user && !capable(CAP_SYS_NICE)) {
4162 if (fair_policy(policy)) {
4163 if (attr->sched_nice < task_nice(p) &&
4164 !can_nice(p, attr->sched_nice))
4165 return -EPERM;
4166 }
4167
4168 if (rt_policy(policy)) {
4169 unsigned long rlim_rtprio =
4170 task_rlimit(p, RLIMIT_RTPRIO);
4171
4172 /* Can't set/change the rt policy: */
4173 if (policy != p->policy && !rlim_rtprio)
4174 return -EPERM;
4175
4176 /* Can't increase priority: */
4177 if (attr->sched_priority > p->rt_priority &&
4178 attr->sched_priority > rlim_rtprio)
4179 return -EPERM;
4180 }
4181
4182 /*
4183 * Can't set/change SCHED_DEADLINE policy at all for now
4184 * (safest behavior); in the future we would like to allow
4185 * unprivileged DL tasks to increase their relative deadline
4186 * or reduce their runtime (both ways reducing utilization)
4187 */
4188 if (dl_policy(policy))
4189 return -EPERM;
4190
4191 /*
4192 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4193 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4194 */
4195 if (idle_policy(p->policy) && !idle_policy(policy)) {
4196 if (!can_nice(p, task_nice(p)))
4197 return -EPERM;
4198 }
4199
4200 /* Can't change other user's priorities: */
4201 if (!check_same_owner(p))
4202 return -EPERM;
4203
4204 /* Normal users shall not reset the sched_reset_on_fork flag: */
4205 if (p->sched_reset_on_fork && !reset_on_fork)
4206 return -EPERM;
4207 }
4208
4209 if (user) {
4210 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4211 return -EINVAL;
4212
4213 retval = security_task_setscheduler(p);
4214 if (retval)
4215 return retval;
4216 }
4217
4218 /*
4219 * Make sure no PI-waiters arrive (or leave) while we are
4220 * changing the priority of the task:
4221 *
4222 * To be able to change p->policy safely, the appropriate
4223 * runqueue lock must be held.
4224 */
4225 rq = task_rq_lock(p, &rf);
4226 update_rq_clock(rq);
4227
4228 /*
4229 * Changing the policy of the stop threads its a very bad idea:
4230 */
4231 if (p == rq->stop) {
4232 task_rq_unlock(rq, p, &rf);
4233 return -EINVAL;
4234 }
4235
4236 /*
4237 * If not changing anything there's no need to proceed further,
4238 * but store a possible modification of reset_on_fork.
4239 */
4240 if (unlikely(policy == p->policy)) {
4241 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4242 goto change;
4243 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4244 goto change;
4245 if (dl_policy(policy) && dl_param_changed(p, attr))
4246 goto change;
4247
4248 p->sched_reset_on_fork = reset_on_fork;
4249 task_rq_unlock(rq, p, &rf);
4250 return 0;
4251 }
4252 change:
4253
4254 if (user) {
4255 #ifdef CONFIG_RT_GROUP_SCHED
4256 /*
4257 * Do not allow realtime tasks into groups that have no runtime
4258 * assigned.
4259 */
4260 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4261 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4262 !task_group_is_autogroup(task_group(p))) {
4263 task_rq_unlock(rq, p, &rf);
4264 return -EPERM;
4265 }
4266 #endif
4267 #ifdef CONFIG_SMP
4268 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4269 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4270 cpumask_t *span = rq->rd->span;
4271
4272 /*
4273 * Don't allow tasks with an affinity mask smaller than
4274 * the entire root_domain to become SCHED_DEADLINE. We
4275 * will also fail if there's no bandwidth available.
4276 */
4277 if (!cpumask_subset(span, &p->cpus_allowed) ||
4278 rq->rd->dl_bw.bw == 0) {
4279 task_rq_unlock(rq, p, &rf);
4280 return -EPERM;
4281 }
4282 }
4283 #endif
4284 }
4285
4286 /* Re-check policy now with rq lock held: */
4287 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4288 policy = oldpolicy = -1;
4289 task_rq_unlock(rq, p, &rf);
4290 goto recheck;
4291 }
4292
4293 /*
4294 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4295 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4296 * is available.
4297 */
4298 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4299 task_rq_unlock(rq, p, &rf);
4300 return -EBUSY;
4301 }
4302
4303 p->sched_reset_on_fork = reset_on_fork;
4304 oldprio = p->prio;
4305
4306 if (pi) {
4307 /*
4308 * Take priority boosted tasks into account. If the new
4309 * effective priority is unchanged, we just store the new
4310 * normal parameters and do not touch the scheduler class and
4311 * the runqueue. This will be done when the task deboost
4312 * itself.
4313 */
4314 new_effective_prio = rt_effective_prio(p, newprio);
4315 if (new_effective_prio == oldprio)
4316 queue_flags &= ~DEQUEUE_MOVE;
4317 }
4318
4319 queued = task_on_rq_queued(p);
4320 running = task_current(rq, p);
4321 if (queued)
4322 dequeue_task(rq, p, queue_flags);
4323 if (running)
4324 put_prev_task(rq, p);
4325
4326 prev_class = p->sched_class;
4327 __setscheduler(rq, p, attr, pi);
4328
4329 if (queued) {
4330 /*
4331 * We enqueue to tail when the priority of a task is
4332 * increased (user space view).
4333 */
4334 if (oldprio < p->prio)
4335 queue_flags |= ENQUEUE_HEAD;
4336
4337 enqueue_task(rq, p, queue_flags);
4338 }
4339 if (running)
4340 set_curr_task(rq, p);
4341
4342 check_class_changed(rq, p, prev_class, oldprio);
4343
4344 /* Avoid rq from going away on us: */
4345 preempt_disable();
4346 task_rq_unlock(rq, p, &rf);
4347
4348 if (pi)
4349 rt_mutex_adjust_pi(p);
4350
4351 /* Run balance callbacks after we've adjusted the PI chain: */
4352 balance_callback(rq);
4353 preempt_enable();
4354
4355 return 0;
4356 }
4357
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4358 static int _sched_setscheduler(struct task_struct *p, int policy,
4359 const struct sched_param *param, bool check)
4360 {
4361 struct sched_attr attr = {
4362 .sched_policy = policy,
4363 .sched_priority = param->sched_priority,
4364 .sched_nice = PRIO_TO_NICE(p->static_prio),
4365 };
4366
4367 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4368 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4369 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4370 policy &= ~SCHED_RESET_ON_FORK;
4371 attr.sched_policy = policy;
4372 }
4373
4374 return __sched_setscheduler(p, &attr, check, true);
4375 }
4376 /**
4377 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4378 * @p: the task in question.
4379 * @policy: new policy.
4380 * @param: structure containing the new RT priority.
4381 *
4382 * Return: 0 on success. An error code otherwise.
4383 *
4384 * NOTE that the task may be already dead.
4385 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4386 int sched_setscheduler(struct task_struct *p, int policy,
4387 const struct sched_param *param)
4388 {
4389 return _sched_setscheduler(p, policy, param, true);
4390 }
4391 EXPORT_SYMBOL_GPL(sched_setscheduler);
4392
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4393 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4394 {
4395 return __sched_setscheduler(p, attr, true, true);
4396 }
4397 EXPORT_SYMBOL_GPL(sched_setattr);
4398
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)4399 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4400 {
4401 return __sched_setscheduler(p, attr, false, true);
4402 }
4403
4404 /**
4405 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4406 * @p: the task in question.
4407 * @policy: new policy.
4408 * @param: structure containing the new RT priority.
4409 *
4410 * Just like sched_setscheduler, only don't bother checking if the
4411 * current context has permission. For example, this is needed in
4412 * stop_machine(): we create temporary high priority worker threads,
4413 * but our caller might not have that capability.
4414 *
4415 * Return: 0 on success. An error code otherwise.
4416 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4417 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4418 const struct sched_param *param)
4419 {
4420 return _sched_setscheduler(p, policy, param, false);
4421 }
4422 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4423
4424 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4425 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4426 {
4427 struct sched_param lparam;
4428 struct task_struct *p;
4429 int retval;
4430
4431 if (!param || pid < 0)
4432 return -EINVAL;
4433 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4434 return -EFAULT;
4435
4436 rcu_read_lock();
4437 retval = -ESRCH;
4438 p = find_process_by_pid(pid);
4439 if (p != NULL)
4440 retval = sched_setscheduler(p, policy, &lparam);
4441 rcu_read_unlock();
4442
4443 return retval;
4444 }
4445
4446 /*
4447 * Mimics kernel/events/core.c perf_copy_attr().
4448 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4449 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4450 {
4451 u32 size;
4452 int ret;
4453
4454 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4455 return -EFAULT;
4456
4457 /* Zero the full structure, so that a short copy will be nice: */
4458 memset(attr, 0, sizeof(*attr));
4459
4460 ret = get_user(size, &uattr->size);
4461 if (ret)
4462 return ret;
4463
4464 /* Bail out on silly large: */
4465 if (size > PAGE_SIZE)
4466 goto err_size;
4467
4468 /* ABI compatibility quirk: */
4469 if (!size)
4470 size = SCHED_ATTR_SIZE_VER0;
4471
4472 if (size < SCHED_ATTR_SIZE_VER0)
4473 goto err_size;
4474
4475 /*
4476 * If we're handed a bigger struct than we know of,
4477 * ensure all the unknown bits are 0 - i.e. new
4478 * user-space does not rely on any kernel feature
4479 * extensions we dont know about yet.
4480 */
4481 if (size > sizeof(*attr)) {
4482 unsigned char __user *addr;
4483 unsigned char __user *end;
4484 unsigned char val;
4485
4486 addr = (void __user *)uattr + sizeof(*attr);
4487 end = (void __user *)uattr + size;
4488
4489 for (; addr < end; addr++) {
4490 ret = get_user(val, addr);
4491 if (ret)
4492 return ret;
4493 if (val)
4494 goto err_size;
4495 }
4496 size = sizeof(*attr);
4497 }
4498
4499 ret = copy_from_user(attr, uattr, size);
4500 if (ret)
4501 return -EFAULT;
4502
4503 /*
4504 * XXX: Do we want to be lenient like existing syscalls; or do we want
4505 * to be strict and return an error on out-of-bounds values?
4506 */
4507 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4508
4509 return 0;
4510
4511 err_size:
4512 put_user(sizeof(*attr), &uattr->size);
4513 return -E2BIG;
4514 }
4515
4516 /**
4517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4518 * @pid: the pid in question.
4519 * @policy: new policy.
4520 * @param: structure containing the new RT priority.
4521 *
4522 * Return: 0 on success. An error code otherwise.
4523 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4524 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4525 {
4526 if (policy < 0)
4527 return -EINVAL;
4528
4529 return do_sched_setscheduler(pid, policy, param);
4530 }
4531
4532 /**
4533 * sys_sched_setparam - set/change the RT priority of a thread
4534 * @pid: the pid in question.
4535 * @param: structure containing the new RT priority.
4536 *
4537 * Return: 0 on success. An error code otherwise.
4538 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4539 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4540 {
4541 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4542 }
4543
4544 /**
4545 * sys_sched_setattr - same as above, but with extended sched_attr
4546 * @pid: the pid in question.
4547 * @uattr: structure containing the extended parameters.
4548 * @flags: for future extension.
4549 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4550 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4551 unsigned int, flags)
4552 {
4553 struct sched_attr attr;
4554 struct task_struct *p;
4555 int retval;
4556
4557 if (!uattr || pid < 0 || flags)
4558 return -EINVAL;
4559
4560 retval = sched_copy_attr(uattr, &attr);
4561 if (retval)
4562 return retval;
4563
4564 if ((int)attr.sched_policy < 0)
4565 return -EINVAL;
4566
4567 rcu_read_lock();
4568 retval = -ESRCH;
4569 p = find_process_by_pid(pid);
4570 if (p != NULL)
4571 retval = sched_setattr(p, &attr);
4572 rcu_read_unlock();
4573
4574 return retval;
4575 }
4576
4577 /**
4578 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4579 * @pid: the pid in question.
4580 *
4581 * Return: On success, the policy of the thread. Otherwise, a negative error
4582 * code.
4583 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4584 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4585 {
4586 struct task_struct *p;
4587 int retval;
4588
4589 if (pid < 0)
4590 return -EINVAL;
4591
4592 retval = -ESRCH;
4593 rcu_read_lock();
4594 p = find_process_by_pid(pid);
4595 if (p) {
4596 retval = security_task_getscheduler(p);
4597 if (!retval)
4598 retval = p->policy
4599 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4600 }
4601 rcu_read_unlock();
4602 return retval;
4603 }
4604
4605 /**
4606 * sys_sched_getparam - get the RT priority of a thread
4607 * @pid: the pid in question.
4608 * @param: structure containing the RT priority.
4609 *
4610 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4611 * code.
4612 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4613 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4614 {
4615 struct sched_param lp = { .sched_priority = 0 };
4616 struct task_struct *p;
4617 int retval;
4618
4619 if (!param || pid < 0)
4620 return -EINVAL;
4621
4622 rcu_read_lock();
4623 p = find_process_by_pid(pid);
4624 retval = -ESRCH;
4625 if (!p)
4626 goto out_unlock;
4627
4628 retval = security_task_getscheduler(p);
4629 if (retval)
4630 goto out_unlock;
4631
4632 if (task_has_rt_policy(p))
4633 lp.sched_priority = p->rt_priority;
4634 rcu_read_unlock();
4635
4636 /*
4637 * This one might sleep, we cannot do it with a spinlock held ...
4638 */
4639 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4640
4641 return retval;
4642
4643 out_unlock:
4644 rcu_read_unlock();
4645 return retval;
4646 }
4647
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4648 static int sched_read_attr(struct sched_attr __user *uattr,
4649 struct sched_attr *attr,
4650 unsigned int usize)
4651 {
4652 int ret;
4653
4654 if (!access_ok(VERIFY_WRITE, uattr, usize))
4655 return -EFAULT;
4656
4657 /*
4658 * If we're handed a smaller struct than we know of,
4659 * ensure all the unknown bits are 0 - i.e. old
4660 * user-space does not get uncomplete information.
4661 */
4662 if (usize < sizeof(*attr)) {
4663 unsigned char *addr;
4664 unsigned char *end;
4665
4666 addr = (void *)attr + usize;
4667 end = (void *)attr + sizeof(*attr);
4668
4669 for (; addr < end; addr++) {
4670 if (*addr)
4671 return -EFBIG;
4672 }
4673
4674 attr->size = usize;
4675 }
4676
4677 ret = copy_to_user(uattr, attr, attr->size);
4678 if (ret)
4679 return -EFAULT;
4680
4681 return 0;
4682 }
4683
4684 /**
4685 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4686 * @pid: the pid in question.
4687 * @uattr: structure containing the extended parameters.
4688 * @size: sizeof(attr) for fwd/bwd comp.
4689 * @flags: for future extension.
4690 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4691 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4692 unsigned int, size, unsigned int, flags)
4693 {
4694 struct sched_attr attr = {
4695 .size = sizeof(struct sched_attr),
4696 };
4697 struct task_struct *p;
4698 int retval;
4699
4700 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4701 size < SCHED_ATTR_SIZE_VER0 || flags)
4702 return -EINVAL;
4703
4704 rcu_read_lock();
4705 p = find_process_by_pid(pid);
4706 retval = -ESRCH;
4707 if (!p)
4708 goto out_unlock;
4709
4710 retval = security_task_getscheduler(p);
4711 if (retval)
4712 goto out_unlock;
4713
4714 attr.sched_policy = p->policy;
4715 if (p->sched_reset_on_fork)
4716 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4717 if (task_has_dl_policy(p))
4718 __getparam_dl(p, &attr);
4719 else if (task_has_rt_policy(p))
4720 attr.sched_priority = p->rt_priority;
4721 else
4722 attr.sched_nice = task_nice(p);
4723
4724 rcu_read_unlock();
4725
4726 retval = sched_read_attr(uattr, &attr, size);
4727 return retval;
4728
4729 out_unlock:
4730 rcu_read_unlock();
4731 return retval;
4732 }
4733
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4734 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4735 {
4736 cpumask_var_t cpus_allowed, new_mask;
4737 struct task_struct *p;
4738 int retval;
4739
4740 rcu_read_lock();
4741
4742 p = find_process_by_pid(pid);
4743 if (!p) {
4744 rcu_read_unlock();
4745 return -ESRCH;
4746 }
4747
4748 /* Prevent p going away */
4749 get_task_struct(p);
4750 rcu_read_unlock();
4751
4752 if (p->flags & PF_NO_SETAFFINITY) {
4753 retval = -EINVAL;
4754 goto out_put_task;
4755 }
4756 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4757 retval = -ENOMEM;
4758 goto out_put_task;
4759 }
4760 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4761 retval = -ENOMEM;
4762 goto out_free_cpus_allowed;
4763 }
4764 retval = -EPERM;
4765 if (!check_same_owner(p)) {
4766 rcu_read_lock();
4767 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4768 rcu_read_unlock();
4769 goto out_free_new_mask;
4770 }
4771 rcu_read_unlock();
4772 }
4773
4774 retval = security_task_setscheduler(p);
4775 if (retval)
4776 goto out_free_new_mask;
4777
4778
4779 cpuset_cpus_allowed(p, cpus_allowed);
4780 cpumask_and(new_mask, in_mask, cpus_allowed);
4781
4782 /*
4783 * Since bandwidth control happens on root_domain basis,
4784 * if admission test is enabled, we only admit -deadline
4785 * tasks allowed to run on all the CPUs in the task's
4786 * root_domain.
4787 */
4788 #ifdef CONFIG_SMP
4789 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4790 rcu_read_lock();
4791 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4792 retval = -EBUSY;
4793 rcu_read_unlock();
4794 goto out_free_new_mask;
4795 }
4796 rcu_read_unlock();
4797 }
4798 #endif
4799 again:
4800 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4801
4802 if (!retval) {
4803 cpuset_cpus_allowed(p, cpus_allowed);
4804 if (!cpumask_subset(new_mask, cpus_allowed)) {
4805 /*
4806 * We must have raced with a concurrent cpuset
4807 * update. Just reset the cpus_allowed to the
4808 * cpuset's cpus_allowed
4809 */
4810 cpumask_copy(new_mask, cpus_allowed);
4811 goto again;
4812 }
4813 }
4814 out_free_new_mask:
4815 free_cpumask_var(new_mask);
4816 out_free_cpus_allowed:
4817 free_cpumask_var(cpus_allowed);
4818 out_put_task:
4819 put_task_struct(p);
4820 return retval;
4821 }
4822
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4823 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4824 struct cpumask *new_mask)
4825 {
4826 if (len < cpumask_size())
4827 cpumask_clear(new_mask);
4828 else if (len > cpumask_size())
4829 len = cpumask_size();
4830
4831 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4832 }
4833
4834 /**
4835 * sys_sched_setaffinity - set the CPU affinity of a process
4836 * @pid: pid of the process
4837 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4838 * @user_mask_ptr: user-space pointer to the new CPU mask
4839 *
4840 * Return: 0 on success. An error code otherwise.
4841 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4842 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4843 unsigned long __user *, user_mask_ptr)
4844 {
4845 cpumask_var_t new_mask;
4846 int retval;
4847
4848 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4849 return -ENOMEM;
4850
4851 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4852 if (retval == 0)
4853 retval = sched_setaffinity(pid, new_mask);
4854 free_cpumask_var(new_mask);
4855 return retval;
4856 }
4857
sched_getaffinity(pid_t pid,struct cpumask * mask)4858 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4859 {
4860 struct task_struct *p;
4861 unsigned long flags;
4862 int retval;
4863
4864 rcu_read_lock();
4865
4866 retval = -ESRCH;
4867 p = find_process_by_pid(pid);
4868 if (!p)
4869 goto out_unlock;
4870
4871 retval = security_task_getscheduler(p);
4872 if (retval)
4873 goto out_unlock;
4874
4875 raw_spin_lock_irqsave(&p->pi_lock, flags);
4876 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4877 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4878
4879 out_unlock:
4880 rcu_read_unlock();
4881
4882 return retval;
4883 }
4884
4885 /**
4886 * sys_sched_getaffinity - get the CPU affinity of a process
4887 * @pid: pid of the process
4888 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4889 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4890 *
4891 * Return: size of CPU mask copied to user_mask_ptr on success. An
4892 * error code otherwise.
4893 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4894 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4895 unsigned long __user *, user_mask_ptr)
4896 {
4897 int ret;
4898 cpumask_var_t mask;
4899
4900 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4901 return -EINVAL;
4902 if (len & (sizeof(unsigned long)-1))
4903 return -EINVAL;
4904
4905 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4906 return -ENOMEM;
4907
4908 ret = sched_getaffinity(pid, mask);
4909 if (ret == 0) {
4910 unsigned int retlen = min(len, cpumask_size());
4911
4912 if (copy_to_user(user_mask_ptr, mask, retlen))
4913 ret = -EFAULT;
4914 else
4915 ret = retlen;
4916 }
4917 free_cpumask_var(mask);
4918
4919 return ret;
4920 }
4921
4922 /**
4923 * sys_sched_yield - yield the current processor to other threads.
4924 *
4925 * This function yields the current CPU to other tasks. If there are no
4926 * other threads running on this CPU then this function will return.
4927 *
4928 * Return: 0.
4929 */
do_sched_yield(void)4930 static void do_sched_yield(void)
4931 {
4932 struct rq_flags rf;
4933 struct rq *rq;
4934
4935 local_irq_disable();
4936 rq = this_rq();
4937 rq_lock(rq, &rf);
4938
4939 schedstat_inc(rq->yld_count);
4940 current->sched_class->yield_task(rq);
4941
4942 /*
4943 * Since we are going to call schedule() anyway, there's
4944 * no need to preempt or enable interrupts:
4945 */
4946 preempt_disable();
4947 rq_unlock(rq, &rf);
4948 sched_preempt_enable_no_resched();
4949
4950 schedule();
4951 }
4952
SYSCALL_DEFINE0(sched_yield)4953 SYSCALL_DEFINE0(sched_yield)
4954 {
4955 do_sched_yield();
4956 return 0;
4957 }
4958
4959 #ifndef CONFIG_PREEMPT
_cond_resched(void)4960 int __sched _cond_resched(void)
4961 {
4962 if (should_resched(0)) {
4963 preempt_schedule_common();
4964 return 1;
4965 }
4966 rcu_all_qs();
4967 return 0;
4968 }
4969 EXPORT_SYMBOL(_cond_resched);
4970 #endif
4971
4972 /*
4973 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4974 * call schedule, and on return reacquire the lock.
4975 *
4976 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4977 * operations here to prevent schedule() from being called twice (once via
4978 * spin_unlock(), once by hand).
4979 */
__cond_resched_lock(spinlock_t * lock)4980 int __cond_resched_lock(spinlock_t *lock)
4981 {
4982 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4983 int ret = 0;
4984
4985 lockdep_assert_held(lock);
4986
4987 if (spin_needbreak(lock) || resched) {
4988 spin_unlock(lock);
4989 if (resched)
4990 preempt_schedule_common();
4991 else
4992 cpu_relax();
4993 ret = 1;
4994 spin_lock(lock);
4995 }
4996 return ret;
4997 }
4998 EXPORT_SYMBOL(__cond_resched_lock);
4999
5000 /**
5001 * yield - yield the current processor to other threads.
5002 *
5003 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5004 *
5005 * The scheduler is at all times free to pick the calling task as the most
5006 * eligible task to run, if removing the yield() call from your code breaks
5007 * it, its already broken.
5008 *
5009 * Typical broken usage is:
5010 *
5011 * while (!event)
5012 * yield();
5013 *
5014 * where one assumes that yield() will let 'the other' process run that will
5015 * make event true. If the current task is a SCHED_FIFO task that will never
5016 * happen. Never use yield() as a progress guarantee!!
5017 *
5018 * If you want to use yield() to wait for something, use wait_event().
5019 * If you want to use yield() to be 'nice' for others, use cond_resched().
5020 * If you still want to use yield(), do not!
5021 */
yield(void)5022 void __sched yield(void)
5023 {
5024 set_current_state(TASK_RUNNING);
5025 do_sched_yield();
5026 }
5027 EXPORT_SYMBOL(yield);
5028
5029 /**
5030 * yield_to - yield the current processor to another thread in
5031 * your thread group, or accelerate that thread toward the
5032 * processor it's on.
5033 * @p: target task
5034 * @preempt: whether task preemption is allowed or not
5035 *
5036 * It's the caller's job to ensure that the target task struct
5037 * can't go away on us before we can do any checks.
5038 *
5039 * Return:
5040 * true (>0) if we indeed boosted the target task.
5041 * false (0) if we failed to boost the target.
5042 * -ESRCH if there's no task to yield to.
5043 */
yield_to(struct task_struct * p,bool preempt)5044 int __sched yield_to(struct task_struct *p, bool preempt)
5045 {
5046 struct task_struct *curr = current;
5047 struct rq *rq, *p_rq;
5048 unsigned long flags;
5049 int yielded = 0;
5050
5051 local_irq_save(flags);
5052 rq = this_rq();
5053
5054 again:
5055 p_rq = task_rq(p);
5056 /*
5057 * If we're the only runnable task on the rq and target rq also
5058 * has only one task, there's absolutely no point in yielding.
5059 */
5060 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5061 yielded = -ESRCH;
5062 goto out_irq;
5063 }
5064
5065 double_rq_lock(rq, p_rq);
5066 if (task_rq(p) != p_rq) {
5067 double_rq_unlock(rq, p_rq);
5068 goto again;
5069 }
5070
5071 if (!curr->sched_class->yield_to_task)
5072 goto out_unlock;
5073
5074 if (curr->sched_class != p->sched_class)
5075 goto out_unlock;
5076
5077 if (task_running(p_rq, p) || p->state)
5078 goto out_unlock;
5079
5080 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5081 if (yielded) {
5082 schedstat_inc(rq->yld_count);
5083 /*
5084 * Make p's CPU reschedule; pick_next_entity takes care of
5085 * fairness.
5086 */
5087 if (preempt && rq != p_rq)
5088 resched_curr(p_rq);
5089 }
5090
5091 out_unlock:
5092 double_rq_unlock(rq, p_rq);
5093 out_irq:
5094 local_irq_restore(flags);
5095
5096 if (yielded > 0)
5097 schedule();
5098
5099 return yielded;
5100 }
5101 EXPORT_SYMBOL_GPL(yield_to);
5102
io_schedule_prepare(void)5103 int io_schedule_prepare(void)
5104 {
5105 int old_iowait = current->in_iowait;
5106
5107 current->in_iowait = 1;
5108 blk_schedule_flush_plug(current);
5109
5110 return old_iowait;
5111 }
5112
io_schedule_finish(int token)5113 void io_schedule_finish(int token)
5114 {
5115 current->in_iowait = token;
5116 }
5117
5118 /*
5119 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5120 * that process accounting knows that this is a task in IO wait state.
5121 */
io_schedule_timeout(long timeout)5122 long __sched io_schedule_timeout(long timeout)
5123 {
5124 int token;
5125 long ret;
5126
5127 token = io_schedule_prepare();
5128 ret = schedule_timeout(timeout);
5129 io_schedule_finish(token);
5130
5131 return ret;
5132 }
5133 EXPORT_SYMBOL(io_schedule_timeout);
5134
io_schedule(void)5135 void io_schedule(void)
5136 {
5137 int token;
5138
5139 token = io_schedule_prepare();
5140 schedule();
5141 io_schedule_finish(token);
5142 }
5143 EXPORT_SYMBOL(io_schedule);
5144
5145 /**
5146 * sys_sched_get_priority_max - return maximum RT priority.
5147 * @policy: scheduling class.
5148 *
5149 * Return: On success, this syscall returns the maximum
5150 * rt_priority that can be used by a given scheduling class.
5151 * On failure, a negative error code is returned.
5152 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5153 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5154 {
5155 int ret = -EINVAL;
5156
5157 switch (policy) {
5158 case SCHED_FIFO:
5159 case SCHED_RR:
5160 ret = MAX_USER_RT_PRIO-1;
5161 break;
5162 case SCHED_DEADLINE:
5163 case SCHED_NORMAL:
5164 case SCHED_BATCH:
5165 case SCHED_IDLE:
5166 ret = 0;
5167 break;
5168 }
5169 return ret;
5170 }
5171
5172 /**
5173 * sys_sched_get_priority_min - return minimum RT priority.
5174 * @policy: scheduling class.
5175 *
5176 * Return: On success, this syscall returns the minimum
5177 * rt_priority that can be used by a given scheduling class.
5178 * On failure, a negative error code is returned.
5179 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5180 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5181 {
5182 int ret = -EINVAL;
5183
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = 1;
5188 break;
5189 case SCHED_DEADLINE:
5190 case SCHED_NORMAL:
5191 case SCHED_BATCH:
5192 case SCHED_IDLE:
5193 ret = 0;
5194 }
5195 return ret;
5196 }
5197
sched_rr_get_interval(pid_t pid,struct timespec64 * t)5198 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5199 {
5200 struct task_struct *p;
5201 unsigned int time_slice;
5202 struct rq_flags rf;
5203 struct rq *rq;
5204 int retval;
5205
5206 if (pid < 0)
5207 return -EINVAL;
5208
5209 retval = -ESRCH;
5210 rcu_read_lock();
5211 p = find_process_by_pid(pid);
5212 if (!p)
5213 goto out_unlock;
5214
5215 retval = security_task_getscheduler(p);
5216 if (retval)
5217 goto out_unlock;
5218
5219 rq = task_rq_lock(p, &rf);
5220 time_slice = 0;
5221 if (p->sched_class->get_rr_interval)
5222 time_slice = p->sched_class->get_rr_interval(rq, p);
5223 task_rq_unlock(rq, p, &rf);
5224
5225 rcu_read_unlock();
5226 jiffies_to_timespec64(time_slice, t);
5227 return 0;
5228
5229 out_unlock:
5230 rcu_read_unlock();
5231 return retval;
5232 }
5233
5234 /**
5235 * sys_sched_rr_get_interval - return the default timeslice of a process.
5236 * @pid: pid of the process.
5237 * @interval: userspace pointer to the timeslice value.
5238 *
5239 * this syscall writes the default timeslice value of a given process
5240 * into the user-space timespec buffer. A value of '0' means infinity.
5241 *
5242 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5243 * an error code.
5244 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5245 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5246 struct timespec __user *, interval)
5247 {
5248 struct timespec64 t;
5249 int retval = sched_rr_get_interval(pid, &t);
5250
5251 if (retval == 0)
5252 retval = put_timespec64(&t, interval);
5253
5254 return retval;
5255 }
5256
5257 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,compat_pid_t,pid,struct compat_timespec __user *,interval)5258 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5259 compat_pid_t, pid,
5260 struct compat_timespec __user *, interval)
5261 {
5262 struct timespec64 t;
5263 int retval = sched_rr_get_interval(pid, &t);
5264
5265 if (retval == 0)
5266 retval = compat_put_timespec64(&t, interval);
5267 return retval;
5268 }
5269 #endif
5270
sched_show_task(struct task_struct * p)5271 void sched_show_task(struct task_struct *p)
5272 {
5273 unsigned long free = 0;
5274 int ppid;
5275
5276 if (!try_get_task_stack(p))
5277 return;
5278
5279 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5280
5281 if (p->state == TASK_RUNNING)
5282 printk(KERN_CONT " running task ");
5283 #ifdef CONFIG_DEBUG_STACK_USAGE
5284 free = stack_not_used(p);
5285 #endif
5286 ppid = 0;
5287 rcu_read_lock();
5288 if (pid_alive(p))
5289 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5290 rcu_read_unlock();
5291 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5292 task_pid_nr(p), ppid,
5293 (unsigned long)task_thread_info(p)->flags);
5294
5295 print_worker_info(KERN_INFO, p);
5296 show_stack(p, NULL);
5297 put_task_stack(p);
5298 }
5299 EXPORT_SYMBOL_GPL(sched_show_task);
5300
5301 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)5302 state_filter_match(unsigned long state_filter, struct task_struct *p)
5303 {
5304 /* no filter, everything matches */
5305 if (!state_filter)
5306 return true;
5307
5308 /* filter, but doesn't match */
5309 if (!(p->state & state_filter))
5310 return false;
5311
5312 /*
5313 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5314 * TASK_KILLABLE).
5315 */
5316 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5317 return false;
5318
5319 return true;
5320 }
5321
5322
show_state_filter(unsigned long state_filter)5323 void show_state_filter(unsigned long state_filter)
5324 {
5325 struct task_struct *g, *p;
5326
5327 #if BITS_PER_LONG == 32
5328 printk(KERN_INFO
5329 " task PC stack pid father\n");
5330 #else
5331 printk(KERN_INFO
5332 " task PC stack pid father\n");
5333 #endif
5334 rcu_read_lock();
5335 for_each_process_thread(g, p) {
5336 /*
5337 * reset the NMI-timeout, listing all files on a slow
5338 * console might take a lot of time:
5339 * Also, reset softlockup watchdogs on all CPUs, because
5340 * another CPU might be blocked waiting for us to process
5341 * an IPI.
5342 */
5343 touch_nmi_watchdog();
5344 touch_all_softlockup_watchdogs();
5345 if (state_filter_match(state_filter, p))
5346 sched_show_task(p);
5347 }
5348
5349 #ifdef CONFIG_SCHED_DEBUG
5350 if (!state_filter)
5351 sysrq_sched_debug_show();
5352 #endif
5353 rcu_read_unlock();
5354 /*
5355 * Only show locks if all tasks are dumped:
5356 */
5357 if (!state_filter)
5358 debug_show_all_locks();
5359 }
5360
5361 /**
5362 * init_idle - set up an idle thread for a given CPU
5363 * @idle: task in question
5364 * @cpu: CPU the idle task belongs to
5365 *
5366 * NOTE: this function does not set the idle thread's NEED_RESCHED
5367 * flag, to make booting more robust.
5368 */
init_idle(struct task_struct * idle,int cpu)5369 void init_idle(struct task_struct *idle, int cpu)
5370 {
5371 struct rq *rq = cpu_rq(cpu);
5372 unsigned long flags;
5373
5374 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5375 raw_spin_lock(&rq->lock);
5376
5377 __sched_fork(0, idle);
5378 idle->state = TASK_RUNNING;
5379 idle->se.exec_start = sched_clock();
5380 idle->flags |= PF_IDLE;
5381
5382 kasan_unpoison_task_stack(idle);
5383
5384 #ifdef CONFIG_SMP
5385 /*
5386 * Its possible that init_idle() gets called multiple times on a task,
5387 * in that case do_set_cpus_allowed() will not do the right thing.
5388 *
5389 * And since this is boot we can forgo the serialization.
5390 */
5391 set_cpus_allowed_common(idle, cpumask_of(cpu));
5392 #endif
5393 /*
5394 * We're having a chicken and egg problem, even though we are
5395 * holding rq->lock, the CPU isn't yet set to this CPU so the
5396 * lockdep check in task_group() will fail.
5397 *
5398 * Similar case to sched_fork(). / Alternatively we could
5399 * use task_rq_lock() here and obtain the other rq->lock.
5400 *
5401 * Silence PROVE_RCU
5402 */
5403 rcu_read_lock();
5404 __set_task_cpu(idle, cpu);
5405 rcu_read_unlock();
5406
5407 rq->curr = rq->idle = idle;
5408 idle->on_rq = TASK_ON_RQ_QUEUED;
5409 #ifdef CONFIG_SMP
5410 idle->on_cpu = 1;
5411 #endif
5412 raw_spin_unlock(&rq->lock);
5413 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5414
5415 /* Set the preempt count _outside_ the spinlocks! */
5416 init_idle_preempt_count(idle, cpu);
5417
5418 /*
5419 * The idle tasks have their own, simple scheduling class:
5420 */
5421 idle->sched_class = &idle_sched_class;
5422 ftrace_graph_init_idle_task(idle, cpu);
5423 vtime_init_idle(idle, cpu);
5424 #ifdef CONFIG_SMP
5425 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5426 #endif
5427 }
5428
5429 #ifdef CONFIG_SMP
5430
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5431 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5432 const struct cpumask *trial)
5433 {
5434 int ret = 1;
5435
5436 if (!cpumask_weight(cur))
5437 return ret;
5438
5439 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5440
5441 return ret;
5442 }
5443
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5444 int task_can_attach(struct task_struct *p,
5445 const struct cpumask *cs_cpus_allowed)
5446 {
5447 int ret = 0;
5448
5449 /*
5450 * Kthreads which disallow setaffinity shouldn't be moved
5451 * to a new cpuset; we don't want to change their CPU
5452 * affinity and isolating such threads by their set of
5453 * allowed nodes is unnecessary. Thus, cpusets are not
5454 * applicable for such threads. This prevents checking for
5455 * success of set_cpus_allowed_ptr() on all attached tasks
5456 * before cpus_allowed may be changed.
5457 */
5458 if (p->flags & PF_NO_SETAFFINITY) {
5459 ret = -EINVAL;
5460 goto out;
5461 }
5462
5463 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5464 cs_cpus_allowed))
5465 ret = dl_task_can_attach(p, cs_cpus_allowed);
5466
5467 out:
5468 return ret;
5469 }
5470
5471 bool sched_smp_initialized __read_mostly;
5472
5473 #ifdef CONFIG_NUMA_BALANCING
5474 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5475 int migrate_task_to(struct task_struct *p, int target_cpu)
5476 {
5477 struct migration_arg arg = { p, target_cpu };
5478 int curr_cpu = task_cpu(p);
5479
5480 if (curr_cpu == target_cpu)
5481 return 0;
5482
5483 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5484 return -EINVAL;
5485
5486 /* TODO: This is not properly updating schedstats */
5487
5488 trace_sched_move_numa(p, curr_cpu, target_cpu);
5489 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5490 }
5491
5492 /*
5493 * Requeue a task on a given node and accurately track the number of NUMA
5494 * tasks on the runqueues
5495 */
sched_setnuma(struct task_struct * p,int nid)5496 void sched_setnuma(struct task_struct *p, int nid)
5497 {
5498 bool queued, running;
5499 struct rq_flags rf;
5500 struct rq *rq;
5501
5502 rq = task_rq_lock(p, &rf);
5503 queued = task_on_rq_queued(p);
5504 running = task_current(rq, p);
5505
5506 if (queued)
5507 dequeue_task(rq, p, DEQUEUE_SAVE);
5508 if (running)
5509 put_prev_task(rq, p);
5510
5511 p->numa_preferred_nid = nid;
5512
5513 if (queued)
5514 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5515 if (running)
5516 set_curr_task(rq, p);
5517 task_rq_unlock(rq, p, &rf);
5518 }
5519 #endif /* CONFIG_NUMA_BALANCING */
5520
5521 #ifdef CONFIG_HOTPLUG_CPU
5522 /*
5523 * Ensure that the idle task is using init_mm right before its CPU goes
5524 * offline.
5525 */
idle_task_exit(void)5526 void idle_task_exit(void)
5527 {
5528 struct mm_struct *mm = current->active_mm;
5529
5530 BUG_ON(cpu_online(smp_processor_id()));
5531
5532 if (mm != &init_mm) {
5533 switch_mm(mm, &init_mm, current);
5534 current->active_mm = &init_mm;
5535 finish_arch_post_lock_switch();
5536 }
5537 mmdrop(mm);
5538 }
5539
5540 /*
5541 * Since this CPU is going 'away' for a while, fold any nr_active delta
5542 * we might have. Assumes we're called after migrate_tasks() so that the
5543 * nr_active count is stable. We need to take the teardown thread which
5544 * is calling this into account, so we hand in adjust = 1 to the load
5545 * calculation.
5546 *
5547 * Also see the comment "Global load-average calculations".
5548 */
calc_load_migrate(struct rq * rq)5549 static void calc_load_migrate(struct rq *rq)
5550 {
5551 long delta = calc_load_fold_active(rq, 1);
5552 if (delta)
5553 atomic_long_add(delta, &calc_load_tasks);
5554 }
5555
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5556 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5557 {
5558 }
5559
5560 static const struct sched_class fake_sched_class = {
5561 .put_prev_task = put_prev_task_fake,
5562 };
5563
5564 static struct task_struct fake_task = {
5565 /*
5566 * Avoid pull_{rt,dl}_task()
5567 */
5568 .prio = MAX_PRIO + 1,
5569 .sched_class = &fake_sched_class,
5570 };
5571
5572 /*
5573 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5574 * try_to_wake_up()->select_task_rq().
5575 *
5576 * Called with rq->lock held even though we'er in stop_machine() and
5577 * there's no concurrency possible, we hold the required locks anyway
5578 * because of lock validation efforts.
5579 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf)5580 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5581 {
5582 struct rq *rq = dead_rq;
5583 struct task_struct *next, *stop = rq->stop;
5584 struct rq_flags orf = *rf;
5585 int dest_cpu;
5586
5587 /*
5588 * Fudge the rq selection such that the below task selection loop
5589 * doesn't get stuck on the currently eligible stop task.
5590 *
5591 * We're currently inside stop_machine() and the rq is either stuck
5592 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5593 * either way we should never end up calling schedule() until we're
5594 * done here.
5595 */
5596 rq->stop = NULL;
5597
5598 /*
5599 * put_prev_task() and pick_next_task() sched
5600 * class method both need to have an up-to-date
5601 * value of rq->clock[_task]
5602 */
5603 update_rq_clock(rq);
5604
5605 for (;;) {
5606 /*
5607 * There's this thread running, bail when that's the only
5608 * remaining thread:
5609 */
5610 if (rq->nr_running == 1)
5611 break;
5612
5613 /*
5614 * pick_next_task() assumes pinned rq->lock:
5615 */
5616 next = pick_next_task(rq, &fake_task, rf);
5617 BUG_ON(!next);
5618 put_prev_task(rq, next);
5619
5620 /*
5621 * Rules for changing task_struct::cpus_allowed are holding
5622 * both pi_lock and rq->lock, such that holding either
5623 * stabilizes the mask.
5624 *
5625 * Drop rq->lock is not quite as disastrous as it usually is
5626 * because !cpu_active at this point, which means load-balance
5627 * will not interfere. Also, stop-machine.
5628 */
5629 rq_unlock(rq, rf);
5630 raw_spin_lock(&next->pi_lock);
5631 rq_relock(rq, rf);
5632
5633 /*
5634 * Since we're inside stop-machine, _nothing_ should have
5635 * changed the task, WARN if weird stuff happened, because in
5636 * that case the above rq->lock drop is a fail too.
5637 */
5638 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5639 raw_spin_unlock(&next->pi_lock);
5640 continue;
5641 }
5642
5643 /* Find suitable destination for @next, with force if needed. */
5644 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5645 rq = __migrate_task(rq, rf, next, dest_cpu);
5646 if (rq != dead_rq) {
5647 rq_unlock(rq, rf);
5648 rq = dead_rq;
5649 *rf = orf;
5650 rq_relock(rq, rf);
5651 }
5652 raw_spin_unlock(&next->pi_lock);
5653 }
5654
5655 rq->stop = stop;
5656 }
5657 #endif /* CONFIG_HOTPLUG_CPU */
5658
set_rq_online(struct rq * rq)5659 void set_rq_online(struct rq *rq)
5660 {
5661 if (!rq->online) {
5662 const struct sched_class *class;
5663
5664 cpumask_set_cpu(rq->cpu, rq->rd->online);
5665 rq->online = 1;
5666
5667 for_each_class(class) {
5668 if (class->rq_online)
5669 class->rq_online(rq);
5670 }
5671 }
5672 }
5673
set_rq_offline(struct rq * rq)5674 void set_rq_offline(struct rq *rq)
5675 {
5676 if (rq->online) {
5677 const struct sched_class *class;
5678
5679 for_each_class(class) {
5680 if (class->rq_offline)
5681 class->rq_offline(rq);
5682 }
5683
5684 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5685 rq->online = 0;
5686 }
5687 }
5688
5689 /*
5690 * used to mark begin/end of suspend/resume:
5691 */
5692 static int num_cpus_frozen;
5693
5694 /*
5695 * Update cpusets according to cpu_active mask. If cpusets are
5696 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5697 * around partition_sched_domains().
5698 *
5699 * If we come here as part of a suspend/resume, don't touch cpusets because we
5700 * want to restore it back to its original state upon resume anyway.
5701 */
cpuset_cpu_active(void)5702 static void cpuset_cpu_active(void)
5703 {
5704 if (cpuhp_tasks_frozen) {
5705 /*
5706 * num_cpus_frozen tracks how many CPUs are involved in suspend
5707 * resume sequence. As long as this is not the last online
5708 * operation in the resume sequence, just build a single sched
5709 * domain, ignoring cpusets.
5710 */
5711 partition_sched_domains(1, NULL, NULL);
5712 if (--num_cpus_frozen)
5713 return;
5714 /*
5715 * This is the last CPU online operation. So fall through and
5716 * restore the original sched domains by considering the
5717 * cpuset configurations.
5718 */
5719 cpuset_force_rebuild();
5720 }
5721 cpuset_update_active_cpus();
5722 }
5723
cpuset_cpu_inactive(unsigned int cpu)5724 static int cpuset_cpu_inactive(unsigned int cpu)
5725 {
5726 if (!cpuhp_tasks_frozen) {
5727 if (dl_cpu_busy(cpu))
5728 return -EBUSY;
5729 cpuset_update_active_cpus();
5730 } else {
5731 num_cpus_frozen++;
5732 partition_sched_domains(1, NULL, NULL);
5733 }
5734 return 0;
5735 }
5736
sched_cpu_activate(unsigned int cpu)5737 int sched_cpu_activate(unsigned int cpu)
5738 {
5739 struct rq *rq = cpu_rq(cpu);
5740 struct rq_flags rf;
5741
5742 #ifdef CONFIG_SCHED_SMT
5743 /*
5744 * The sched_smt_present static key needs to be evaluated on every
5745 * hotplug event because at boot time SMT might be disabled when
5746 * the number of booted CPUs is limited.
5747 *
5748 * If then later a sibling gets hotplugged, then the key would stay
5749 * off and SMT scheduling would never be functional.
5750 */
5751 if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5752 static_branch_enable_cpuslocked(&sched_smt_present);
5753 #endif
5754 set_cpu_active(cpu, true);
5755
5756 if (sched_smp_initialized) {
5757 sched_domains_numa_masks_set(cpu);
5758 cpuset_cpu_active();
5759 }
5760
5761 /*
5762 * Put the rq online, if not already. This happens:
5763 *
5764 * 1) In the early boot process, because we build the real domains
5765 * after all CPUs have been brought up.
5766 *
5767 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5768 * domains.
5769 */
5770 rq_lock_irqsave(rq, &rf);
5771 if (rq->rd) {
5772 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773 set_rq_online(rq);
5774 }
5775 rq_unlock_irqrestore(rq, &rf);
5776
5777 update_max_interval();
5778
5779 return 0;
5780 }
5781
sched_cpu_deactivate(unsigned int cpu)5782 int sched_cpu_deactivate(unsigned int cpu)
5783 {
5784 int ret;
5785
5786 set_cpu_active(cpu, false);
5787 /*
5788 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5789 * users of this state to go away such that all new such users will
5790 * observe it.
5791 *
5792 * Do sync before park smpboot threads to take care the rcu boost case.
5793 */
5794 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5795
5796 if (!sched_smp_initialized)
5797 return 0;
5798
5799 ret = cpuset_cpu_inactive(cpu);
5800 if (ret) {
5801 set_cpu_active(cpu, true);
5802 return ret;
5803 }
5804 sched_domains_numa_masks_clear(cpu);
5805 return 0;
5806 }
5807
sched_rq_cpu_starting(unsigned int cpu)5808 static void sched_rq_cpu_starting(unsigned int cpu)
5809 {
5810 struct rq *rq = cpu_rq(cpu);
5811
5812 rq->calc_load_update = calc_load_update;
5813 update_max_interval();
5814 }
5815
sched_cpu_starting(unsigned int cpu)5816 int sched_cpu_starting(unsigned int cpu)
5817 {
5818 sched_rq_cpu_starting(cpu);
5819 sched_tick_start(cpu);
5820 return 0;
5821 }
5822
5823 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)5824 int sched_cpu_dying(unsigned int cpu)
5825 {
5826 struct rq *rq = cpu_rq(cpu);
5827 struct rq_flags rf;
5828
5829 /* Handle pending wakeups and then migrate everything off */
5830 sched_ttwu_pending();
5831 sched_tick_stop(cpu);
5832
5833 rq_lock_irqsave(rq, &rf);
5834 if (rq->rd) {
5835 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5836 set_rq_offline(rq);
5837 }
5838 migrate_tasks(rq, &rf);
5839 BUG_ON(rq->nr_running != 1);
5840 rq_unlock_irqrestore(rq, &rf);
5841
5842 calc_load_migrate(rq);
5843 update_max_interval();
5844 nohz_balance_exit_idle(rq);
5845 hrtick_clear(rq);
5846 return 0;
5847 }
5848 #endif
5849
sched_init_smp(void)5850 void __init sched_init_smp(void)
5851 {
5852 sched_init_numa();
5853
5854 /*
5855 * There's no userspace yet to cause hotplug operations; hence all the
5856 * CPU masks are stable and all blatant races in the below code cannot
5857 * happen.
5858 */
5859 mutex_lock(&sched_domains_mutex);
5860 sched_init_domains(cpu_active_mask);
5861 mutex_unlock(&sched_domains_mutex);
5862
5863 /* Move init over to a non-isolated CPU */
5864 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5865 BUG();
5866 sched_init_granularity();
5867
5868 init_sched_rt_class();
5869 init_sched_dl_class();
5870
5871 sched_smp_initialized = true;
5872 }
5873
migration_init(void)5874 static int __init migration_init(void)
5875 {
5876 sched_rq_cpu_starting(smp_processor_id());
5877 return 0;
5878 }
5879 early_initcall(migration_init);
5880
5881 #else
sched_init_smp(void)5882 void __init sched_init_smp(void)
5883 {
5884 sched_init_granularity();
5885 }
5886 #endif /* CONFIG_SMP */
5887
in_sched_functions(unsigned long addr)5888 int in_sched_functions(unsigned long addr)
5889 {
5890 return in_lock_functions(addr) ||
5891 (addr >= (unsigned long)__sched_text_start
5892 && addr < (unsigned long)__sched_text_end);
5893 }
5894
5895 #ifdef CONFIG_CGROUP_SCHED
5896 /*
5897 * Default task group.
5898 * Every task in system belongs to this group at bootup.
5899 */
5900 struct task_group root_task_group;
5901 LIST_HEAD(task_groups);
5902
5903 /* Cacheline aligned slab cache for task_group */
5904 static struct kmem_cache *task_group_cache __read_mostly;
5905 #endif
5906
5907 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5908 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5909
sched_init(void)5910 void __init sched_init(void)
5911 {
5912 int i, j;
5913 unsigned long alloc_size = 0, ptr;
5914
5915 wait_bit_init();
5916
5917 #ifdef CONFIG_FAIR_GROUP_SCHED
5918 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5919 #endif
5920 #ifdef CONFIG_RT_GROUP_SCHED
5921 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5922 #endif
5923 if (alloc_size) {
5924 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5925
5926 #ifdef CONFIG_FAIR_GROUP_SCHED
5927 root_task_group.se = (struct sched_entity **)ptr;
5928 ptr += nr_cpu_ids * sizeof(void **);
5929
5930 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5931 ptr += nr_cpu_ids * sizeof(void **);
5932
5933 #endif /* CONFIG_FAIR_GROUP_SCHED */
5934 #ifdef CONFIG_RT_GROUP_SCHED
5935 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5936 ptr += nr_cpu_ids * sizeof(void **);
5937
5938 root_task_group.rt_rq = (struct rt_rq **)ptr;
5939 ptr += nr_cpu_ids * sizeof(void **);
5940
5941 #endif /* CONFIG_RT_GROUP_SCHED */
5942 }
5943 #ifdef CONFIG_CPUMASK_OFFSTACK
5944 for_each_possible_cpu(i) {
5945 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5946 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5947 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5948 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5949 }
5950 #endif /* CONFIG_CPUMASK_OFFSTACK */
5951
5952 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5953 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5954
5955 #ifdef CONFIG_SMP
5956 init_defrootdomain();
5957 #endif
5958
5959 #ifdef CONFIG_RT_GROUP_SCHED
5960 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5961 global_rt_period(), global_rt_runtime());
5962 #endif /* CONFIG_RT_GROUP_SCHED */
5963
5964 #ifdef CONFIG_CGROUP_SCHED
5965 task_group_cache = KMEM_CACHE(task_group, 0);
5966
5967 list_add(&root_task_group.list, &task_groups);
5968 INIT_LIST_HEAD(&root_task_group.children);
5969 INIT_LIST_HEAD(&root_task_group.siblings);
5970 autogroup_init(&init_task);
5971 #endif /* CONFIG_CGROUP_SCHED */
5972
5973 for_each_possible_cpu(i) {
5974 struct rq *rq;
5975
5976 rq = cpu_rq(i);
5977 raw_spin_lock_init(&rq->lock);
5978 rq->nr_running = 0;
5979 rq->calc_load_active = 0;
5980 rq->calc_load_update = jiffies + LOAD_FREQ;
5981 init_cfs_rq(&rq->cfs);
5982 init_rt_rq(&rq->rt);
5983 init_dl_rq(&rq->dl);
5984 #ifdef CONFIG_FAIR_GROUP_SCHED
5985 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5986 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5987 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5988 /*
5989 * How much CPU bandwidth does root_task_group get?
5990 *
5991 * In case of task-groups formed thr' the cgroup filesystem, it
5992 * gets 100% of the CPU resources in the system. This overall
5993 * system CPU resource is divided among the tasks of
5994 * root_task_group and its child task-groups in a fair manner,
5995 * based on each entity's (task or task-group's) weight
5996 * (se->load.weight).
5997 *
5998 * In other words, if root_task_group has 10 tasks of weight
5999 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6000 * then A0's share of the CPU resource is:
6001 *
6002 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6003 *
6004 * We achieve this by letting root_task_group's tasks sit
6005 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6006 */
6007 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6008 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6009 #endif /* CONFIG_FAIR_GROUP_SCHED */
6010
6011 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6012 #ifdef CONFIG_RT_GROUP_SCHED
6013 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6014 #endif
6015
6016 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6017 rq->cpu_load[j] = 0;
6018
6019 #ifdef CONFIG_SMP
6020 rq->sd = NULL;
6021 rq->rd = NULL;
6022 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6023 rq->balance_callback = NULL;
6024 rq->active_balance = 0;
6025 rq->next_balance = jiffies;
6026 rq->push_cpu = 0;
6027 rq->cpu = i;
6028 rq->online = 0;
6029 rq->idle_stamp = 0;
6030 rq->avg_idle = 2*sysctl_sched_migration_cost;
6031 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6032
6033 INIT_LIST_HEAD(&rq->cfs_tasks);
6034
6035 rq_attach_root(rq, &def_root_domain);
6036 #ifdef CONFIG_NO_HZ_COMMON
6037 rq->last_load_update_tick = jiffies;
6038 rq->last_blocked_load_update_tick = jiffies;
6039 atomic_set(&rq->nohz_flags, 0);
6040 #endif
6041 #endif /* CONFIG_SMP */
6042 hrtick_rq_init(rq);
6043 atomic_set(&rq->nr_iowait, 0);
6044 }
6045
6046 set_load_weight(&init_task, false);
6047
6048 /*
6049 * The boot idle thread does lazy MMU switching as well:
6050 */
6051 mmgrab(&init_mm);
6052 enter_lazy_tlb(&init_mm, current);
6053
6054 /*
6055 * Make us the idle thread. Technically, schedule() should not be
6056 * called from this thread, however somewhere below it might be,
6057 * but because we are the idle thread, we just pick up running again
6058 * when this runqueue becomes "idle".
6059 */
6060 init_idle(current, smp_processor_id());
6061
6062 calc_load_update = jiffies + LOAD_FREQ;
6063
6064 #ifdef CONFIG_SMP
6065 idle_thread_set_boot_cpu();
6066 #endif
6067 init_sched_fair_class();
6068
6069 init_schedstats();
6070
6071 scheduler_running = 1;
6072 }
6073
6074 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)6075 static inline int preempt_count_equals(int preempt_offset)
6076 {
6077 int nested = preempt_count() + rcu_preempt_depth();
6078
6079 return (nested == preempt_offset);
6080 }
6081
__might_sleep(const char * file,int line,int preempt_offset)6082 void __might_sleep(const char *file, int line, int preempt_offset)
6083 {
6084 /*
6085 * Blocking primitives will set (and therefore destroy) current->state,
6086 * since we will exit with TASK_RUNNING make sure we enter with it,
6087 * otherwise we will destroy state.
6088 */
6089 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6090 "do not call blocking ops when !TASK_RUNNING; "
6091 "state=%lx set at [<%p>] %pS\n",
6092 current->state,
6093 (void *)current->task_state_change,
6094 (void *)current->task_state_change);
6095
6096 ___might_sleep(file, line, preempt_offset);
6097 }
6098 EXPORT_SYMBOL(__might_sleep);
6099
___might_sleep(const char * file,int line,int preempt_offset)6100 void ___might_sleep(const char *file, int line, int preempt_offset)
6101 {
6102 /* Ratelimiting timestamp: */
6103 static unsigned long prev_jiffy;
6104
6105 unsigned long preempt_disable_ip;
6106
6107 /* WARN_ON_ONCE() by default, no rate limit required: */
6108 rcu_sleep_check();
6109
6110 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6111 !is_idle_task(current)) ||
6112 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6113 oops_in_progress)
6114 return;
6115
6116 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6117 return;
6118 prev_jiffy = jiffies;
6119
6120 /* Save this before calling printk(), since that will clobber it: */
6121 preempt_disable_ip = get_preempt_disable_ip(current);
6122
6123 printk(KERN_ERR
6124 "BUG: sleeping function called from invalid context at %s:%d\n",
6125 file, line);
6126 printk(KERN_ERR
6127 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6128 in_atomic(), irqs_disabled(),
6129 current->pid, current->comm);
6130
6131 if (task_stack_end_corrupted(current))
6132 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6133
6134 debug_show_held_locks(current);
6135 if (irqs_disabled())
6136 print_irqtrace_events(current);
6137 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6138 && !preempt_count_equals(preempt_offset)) {
6139 pr_err("Preemption disabled at:");
6140 print_ip_sym(preempt_disable_ip);
6141 pr_cont("\n");
6142 }
6143 dump_stack();
6144 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6145 }
6146 EXPORT_SYMBOL(___might_sleep);
6147 #endif
6148
6149 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)6150 void normalize_rt_tasks(void)
6151 {
6152 struct task_struct *g, *p;
6153 struct sched_attr attr = {
6154 .sched_policy = SCHED_NORMAL,
6155 };
6156
6157 read_lock(&tasklist_lock);
6158 for_each_process_thread(g, p) {
6159 /*
6160 * Only normalize user tasks:
6161 */
6162 if (p->flags & PF_KTHREAD)
6163 continue;
6164
6165 p->se.exec_start = 0;
6166 schedstat_set(p->se.statistics.wait_start, 0);
6167 schedstat_set(p->se.statistics.sleep_start, 0);
6168 schedstat_set(p->se.statistics.block_start, 0);
6169
6170 if (!dl_task(p) && !rt_task(p)) {
6171 /*
6172 * Renice negative nice level userspace
6173 * tasks back to 0:
6174 */
6175 if (task_nice(p) < 0)
6176 set_user_nice(p, 0);
6177 continue;
6178 }
6179
6180 __sched_setscheduler(p, &attr, false, false);
6181 }
6182 read_unlock(&tasklist_lock);
6183 }
6184
6185 #endif /* CONFIG_MAGIC_SYSRQ */
6186
6187 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6188 /*
6189 * These functions are only useful for the IA64 MCA handling, or kdb.
6190 *
6191 * They can only be called when the whole system has been
6192 * stopped - every CPU needs to be quiescent, and no scheduling
6193 * activity can take place. Using them for anything else would
6194 * be a serious bug, and as a result, they aren't even visible
6195 * under any other configuration.
6196 */
6197
6198 /**
6199 * curr_task - return the current task for a given CPU.
6200 * @cpu: the processor in question.
6201 *
6202 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6203 *
6204 * Return: The current task for @cpu.
6205 */
curr_task(int cpu)6206 struct task_struct *curr_task(int cpu)
6207 {
6208 return cpu_curr(cpu);
6209 }
6210
6211 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6212
6213 #ifdef CONFIG_IA64
6214 /**
6215 * set_curr_task - set the current task for a given CPU.
6216 * @cpu: the processor in question.
6217 * @p: the task pointer to set.
6218 *
6219 * Description: This function must only be used when non-maskable interrupts
6220 * are serviced on a separate stack. It allows the architecture to switch the
6221 * notion of the current task on a CPU in a non-blocking manner. This function
6222 * must be called with all CPU's synchronized, and interrupts disabled, the
6223 * and caller must save the original value of the current task (see
6224 * curr_task() above) and restore that value before reenabling interrupts and
6225 * re-starting the system.
6226 *
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6228 */
ia64_set_curr_task(int cpu,struct task_struct * p)6229 void ia64_set_curr_task(int cpu, struct task_struct *p)
6230 {
6231 cpu_curr(cpu) = p;
6232 }
6233
6234 #endif
6235
6236 #ifdef CONFIG_CGROUP_SCHED
6237 /* task_group_lock serializes the addition/removal of task groups */
6238 static DEFINE_SPINLOCK(task_group_lock);
6239
sched_free_group(struct task_group * tg)6240 static void sched_free_group(struct task_group *tg)
6241 {
6242 free_fair_sched_group(tg);
6243 free_rt_sched_group(tg);
6244 autogroup_free(tg);
6245 kmem_cache_free(task_group_cache, tg);
6246 }
6247
6248 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)6249 struct task_group *sched_create_group(struct task_group *parent)
6250 {
6251 struct task_group *tg;
6252
6253 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6254 if (!tg)
6255 return ERR_PTR(-ENOMEM);
6256
6257 if (!alloc_fair_sched_group(tg, parent))
6258 goto err;
6259
6260 if (!alloc_rt_sched_group(tg, parent))
6261 goto err;
6262
6263 return tg;
6264
6265 err:
6266 sched_free_group(tg);
6267 return ERR_PTR(-ENOMEM);
6268 }
6269
sched_online_group(struct task_group * tg,struct task_group * parent)6270 void sched_online_group(struct task_group *tg, struct task_group *parent)
6271 {
6272 unsigned long flags;
6273
6274 spin_lock_irqsave(&task_group_lock, flags);
6275 list_add_rcu(&tg->list, &task_groups);
6276
6277 /* Root should already exist: */
6278 WARN_ON(!parent);
6279
6280 tg->parent = parent;
6281 INIT_LIST_HEAD(&tg->children);
6282 list_add_rcu(&tg->siblings, &parent->children);
6283 spin_unlock_irqrestore(&task_group_lock, flags);
6284
6285 online_fair_sched_group(tg);
6286 }
6287
6288 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)6289 static void sched_free_group_rcu(struct rcu_head *rhp)
6290 {
6291 /* Now it should be safe to free those cfs_rqs: */
6292 sched_free_group(container_of(rhp, struct task_group, rcu));
6293 }
6294
sched_destroy_group(struct task_group * tg)6295 void sched_destroy_group(struct task_group *tg)
6296 {
6297 /* Wait for possible concurrent references to cfs_rqs complete: */
6298 call_rcu(&tg->rcu, sched_free_group_rcu);
6299 }
6300
sched_offline_group(struct task_group * tg)6301 void sched_offline_group(struct task_group *tg)
6302 {
6303 unsigned long flags;
6304
6305 /* End participation in shares distribution: */
6306 unregister_fair_sched_group(tg);
6307
6308 spin_lock_irqsave(&task_group_lock, flags);
6309 list_del_rcu(&tg->list);
6310 list_del_rcu(&tg->siblings);
6311 spin_unlock_irqrestore(&task_group_lock, flags);
6312 }
6313
sched_change_group(struct task_struct * tsk,int type)6314 static void sched_change_group(struct task_struct *tsk, int type)
6315 {
6316 struct task_group *tg;
6317
6318 /*
6319 * All callers are synchronized by task_rq_lock(); we do not use RCU
6320 * which is pointless here. Thus, we pass "true" to task_css_check()
6321 * to prevent lockdep warnings.
6322 */
6323 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6324 struct task_group, css);
6325 tg = autogroup_task_group(tsk, tg);
6326 tsk->sched_task_group = tg;
6327
6328 #ifdef CONFIG_FAIR_GROUP_SCHED
6329 if (tsk->sched_class->task_change_group)
6330 tsk->sched_class->task_change_group(tsk, type);
6331 else
6332 #endif
6333 set_task_rq(tsk, task_cpu(tsk));
6334 }
6335
6336 /*
6337 * Change task's runqueue when it moves between groups.
6338 *
6339 * The caller of this function should have put the task in its new group by
6340 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6341 * its new group.
6342 */
sched_move_task(struct task_struct * tsk)6343 void sched_move_task(struct task_struct *tsk)
6344 {
6345 int queued, running, queue_flags =
6346 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6347 struct rq_flags rf;
6348 struct rq *rq;
6349
6350 rq = task_rq_lock(tsk, &rf);
6351 update_rq_clock(rq);
6352
6353 running = task_current(rq, tsk);
6354 queued = task_on_rq_queued(tsk);
6355
6356 if (queued)
6357 dequeue_task(rq, tsk, queue_flags);
6358 if (running)
6359 put_prev_task(rq, tsk);
6360
6361 sched_change_group(tsk, TASK_MOVE_GROUP);
6362
6363 if (queued)
6364 enqueue_task(rq, tsk, queue_flags);
6365 if (running)
6366 set_curr_task(rq, tsk);
6367
6368 task_rq_unlock(rq, tsk, &rf);
6369 }
6370
css_tg(struct cgroup_subsys_state * css)6371 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6372 {
6373 return css ? container_of(css, struct task_group, css) : NULL;
6374 }
6375
6376 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)6377 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6378 {
6379 struct task_group *parent = css_tg(parent_css);
6380 struct task_group *tg;
6381
6382 if (!parent) {
6383 /* This is early initialization for the top cgroup */
6384 return &root_task_group.css;
6385 }
6386
6387 tg = sched_create_group(parent);
6388 if (IS_ERR(tg))
6389 return ERR_PTR(-ENOMEM);
6390
6391 return &tg->css;
6392 }
6393
6394 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)6395 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6396 {
6397 struct task_group *tg = css_tg(css);
6398 struct task_group *parent = css_tg(css->parent);
6399
6400 if (parent)
6401 sched_online_group(tg, parent);
6402 return 0;
6403 }
6404
cpu_cgroup_css_released(struct cgroup_subsys_state * css)6405 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6406 {
6407 struct task_group *tg = css_tg(css);
6408
6409 sched_offline_group(tg);
6410 }
6411
cpu_cgroup_css_free(struct cgroup_subsys_state * css)6412 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6413 {
6414 struct task_group *tg = css_tg(css);
6415
6416 /*
6417 * Relies on the RCU grace period between css_released() and this.
6418 */
6419 sched_free_group(tg);
6420 }
6421
6422 /*
6423 * This is called before wake_up_new_task(), therefore we really only
6424 * have to set its group bits, all the other stuff does not apply.
6425 */
cpu_cgroup_fork(struct task_struct * task)6426 static void cpu_cgroup_fork(struct task_struct *task)
6427 {
6428 struct rq_flags rf;
6429 struct rq *rq;
6430
6431 rq = task_rq_lock(task, &rf);
6432
6433 update_rq_clock(rq);
6434 sched_change_group(task, TASK_SET_GROUP);
6435
6436 task_rq_unlock(rq, task, &rf);
6437 }
6438
cpu_cgroup_can_attach(struct cgroup_taskset * tset)6439 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6440 {
6441 struct task_struct *task;
6442 struct cgroup_subsys_state *css;
6443 int ret = 0;
6444
6445 cgroup_taskset_for_each(task, css, tset) {
6446 #ifdef CONFIG_RT_GROUP_SCHED
6447 if (!sched_rt_can_attach(css_tg(css), task))
6448 return -EINVAL;
6449 #else
6450 /* We don't support RT-tasks being in separate groups */
6451 if (task->sched_class != &fair_sched_class)
6452 return -EINVAL;
6453 #endif
6454 /*
6455 * Serialize against wake_up_new_task() such that if its
6456 * running, we're sure to observe its full state.
6457 */
6458 raw_spin_lock_irq(&task->pi_lock);
6459 /*
6460 * Avoid calling sched_move_task() before wake_up_new_task()
6461 * has happened. This would lead to problems with PELT, due to
6462 * move wanting to detach+attach while we're not attached yet.
6463 */
6464 if (task->state == TASK_NEW)
6465 ret = -EINVAL;
6466 raw_spin_unlock_irq(&task->pi_lock);
6467
6468 if (ret)
6469 break;
6470 }
6471 return ret;
6472 }
6473
cpu_cgroup_attach(struct cgroup_taskset * tset)6474 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6475 {
6476 struct task_struct *task;
6477 struct cgroup_subsys_state *css;
6478
6479 cgroup_taskset_for_each(task, css, tset)
6480 sched_move_task(task);
6481 }
6482
6483 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)6484 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6485 struct cftype *cftype, u64 shareval)
6486 {
6487 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6488 }
6489
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)6490 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6491 struct cftype *cft)
6492 {
6493 struct task_group *tg = css_tg(css);
6494
6495 return (u64) scale_load_down(tg->shares);
6496 }
6497
6498 #ifdef CONFIG_CFS_BANDWIDTH
6499 static DEFINE_MUTEX(cfs_constraints_mutex);
6500
6501 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6502 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6503
6504 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6505
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)6506 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6507 {
6508 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6509 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6510
6511 if (tg == &root_task_group)
6512 return -EINVAL;
6513
6514 /*
6515 * Ensure we have at some amount of bandwidth every period. This is
6516 * to prevent reaching a state of large arrears when throttled via
6517 * entity_tick() resulting in prolonged exit starvation.
6518 */
6519 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6520 return -EINVAL;
6521
6522 /*
6523 * Likewise, bound things on the otherside by preventing insane quota
6524 * periods. This also allows us to normalize in computing quota
6525 * feasibility.
6526 */
6527 if (period > max_cfs_quota_period)
6528 return -EINVAL;
6529
6530 /*
6531 * Prevent race between setting of cfs_rq->runtime_enabled and
6532 * unthrottle_offline_cfs_rqs().
6533 */
6534 get_online_cpus();
6535 mutex_lock(&cfs_constraints_mutex);
6536 ret = __cfs_schedulable(tg, period, quota);
6537 if (ret)
6538 goto out_unlock;
6539
6540 runtime_enabled = quota != RUNTIME_INF;
6541 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6542 /*
6543 * If we need to toggle cfs_bandwidth_used, off->on must occur
6544 * before making related changes, and on->off must occur afterwards
6545 */
6546 if (runtime_enabled && !runtime_was_enabled)
6547 cfs_bandwidth_usage_inc();
6548 raw_spin_lock_irq(&cfs_b->lock);
6549 cfs_b->period = ns_to_ktime(period);
6550 cfs_b->quota = quota;
6551
6552 __refill_cfs_bandwidth_runtime(cfs_b);
6553
6554 /* Restart the period timer (if active) to handle new period expiry: */
6555 if (runtime_enabled)
6556 start_cfs_bandwidth(cfs_b);
6557
6558 raw_spin_unlock_irq(&cfs_b->lock);
6559
6560 for_each_online_cpu(i) {
6561 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6562 struct rq *rq = cfs_rq->rq;
6563 struct rq_flags rf;
6564
6565 rq_lock_irq(rq, &rf);
6566 cfs_rq->runtime_enabled = runtime_enabled;
6567 cfs_rq->runtime_remaining = 0;
6568
6569 if (cfs_rq->throttled)
6570 unthrottle_cfs_rq(cfs_rq);
6571 rq_unlock_irq(rq, &rf);
6572 }
6573 if (runtime_was_enabled && !runtime_enabled)
6574 cfs_bandwidth_usage_dec();
6575 out_unlock:
6576 mutex_unlock(&cfs_constraints_mutex);
6577 put_online_cpus();
6578
6579 return ret;
6580 }
6581
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)6582 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6583 {
6584 u64 quota, period;
6585
6586 period = ktime_to_ns(tg->cfs_bandwidth.period);
6587 if (cfs_quota_us < 0)
6588 quota = RUNTIME_INF;
6589 else
6590 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6591
6592 return tg_set_cfs_bandwidth(tg, period, quota);
6593 }
6594
tg_get_cfs_quota(struct task_group * tg)6595 long tg_get_cfs_quota(struct task_group *tg)
6596 {
6597 u64 quota_us;
6598
6599 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6600 return -1;
6601
6602 quota_us = tg->cfs_bandwidth.quota;
6603 do_div(quota_us, NSEC_PER_USEC);
6604
6605 return quota_us;
6606 }
6607
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)6608 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6609 {
6610 u64 quota, period;
6611
6612 period = (u64)cfs_period_us * NSEC_PER_USEC;
6613 quota = tg->cfs_bandwidth.quota;
6614
6615 return tg_set_cfs_bandwidth(tg, period, quota);
6616 }
6617
tg_get_cfs_period(struct task_group * tg)6618 long tg_get_cfs_period(struct task_group *tg)
6619 {
6620 u64 cfs_period_us;
6621
6622 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6623 do_div(cfs_period_us, NSEC_PER_USEC);
6624
6625 return cfs_period_us;
6626 }
6627
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)6628 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6629 struct cftype *cft)
6630 {
6631 return tg_get_cfs_quota(css_tg(css));
6632 }
6633
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)6634 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6635 struct cftype *cftype, s64 cfs_quota_us)
6636 {
6637 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6638 }
6639
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)6640 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6641 struct cftype *cft)
6642 {
6643 return tg_get_cfs_period(css_tg(css));
6644 }
6645
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)6646 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6647 struct cftype *cftype, u64 cfs_period_us)
6648 {
6649 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6650 }
6651
6652 struct cfs_schedulable_data {
6653 struct task_group *tg;
6654 u64 period, quota;
6655 };
6656
6657 /*
6658 * normalize group quota/period to be quota/max_period
6659 * note: units are usecs
6660 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)6661 static u64 normalize_cfs_quota(struct task_group *tg,
6662 struct cfs_schedulable_data *d)
6663 {
6664 u64 quota, period;
6665
6666 if (tg == d->tg) {
6667 period = d->period;
6668 quota = d->quota;
6669 } else {
6670 period = tg_get_cfs_period(tg);
6671 quota = tg_get_cfs_quota(tg);
6672 }
6673
6674 /* note: these should typically be equivalent */
6675 if (quota == RUNTIME_INF || quota == -1)
6676 return RUNTIME_INF;
6677
6678 return to_ratio(period, quota);
6679 }
6680
tg_cfs_schedulable_down(struct task_group * tg,void * data)6681 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6682 {
6683 struct cfs_schedulable_data *d = data;
6684 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6685 s64 quota = 0, parent_quota = -1;
6686
6687 if (!tg->parent) {
6688 quota = RUNTIME_INF;
6689 } else {
6690 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6691
6692 quota = normalize_cfs_quota(tg, d);
6693 parent_quota = parent_b->hierarchical_quota;
6694
6695 /*
6696 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6697 * always take the min. On cgroup1, only inherit when no
6698 * limit is set:
6699 */
6700 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6701 quota = min(quota, parent_quota);
6702 } else {
6703 if (quota == RUNTIME_INF)
6704 quota = parent_quota;
6705 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6706 return -EINVAL;
6707 }
6708 }
6709 cfs_b->hierarchical_quota = quota;
6710
6711 return 0;
6712 }
6713
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)6714 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6715 {
6716 int ret;
6717 struct cfs_schedulable_data data = {
6718 .tg = tg,
6719 .period = period,
6720 .quota = quota,
6721 };
6722
6723 if (quota != RUNTIME_INF) {
6724 do_div(data.period, NSEC_PER_USEC);
6725 do_div(data.quota, NSEC_PER_USEC);
6726 }
6727
6728 rcu_read_lock();
6729 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6730 rcu_read_unlock();
6731
6732 return ret;
6733 }
6734
cpu_cfs_stat_show(struct seq_file * sf,void * v)6735 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6736 {
6737 struct task_group *tg = css_tg(seq_css(sf));
6738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6739
6740 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6741 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6742 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6743
6744 if (schedstat_enabled() && tg != &root_task_group) {
6745 u64 ws = 0;
6746 int i;
6747
6748 for_each_possible_cpu(i)
6749 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6750
6751 seq_printf(sf, "wait_sum %llu\n", ws);
6752 }
6753
6754 return 0;
6755 }
6756 #endif /* CONFIG_CFS_BANDWIDTH */
6757 #endif /* CONFIG_FAIR_GROUP_SCHED */
6758
6759 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)6760 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6761 struct cftype *cft, s64 val)
6762 {
6763 return sched_group_set_rt_runtime(css_tg(css), val);
6764 }
6765
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)6766 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6767 struct cftype *cft)
6768 {
6769 return sched_group_rt_runtime(css_tg(css));
6770 }
6771
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)6772 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6773 struct cftype *cftype, u64 rt_period_us)
6774 {
6775 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6776 }
6777
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)6778 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6779 struct cftype *cft)
6780 {
6781 return sched_group_rt_period(css_tg(css));
6782 }
6783 #endif /* CONFIG_RT_GROUP_SCHED */
6784
6785 static struct cftype cpu_legacy_files[] = {
6786 #ifdef CONFIG_FAIR_GROUP_SCHED
6787 {
6788 .name = "shares",
6789 .read_u64 = cpu_shares_read_u64,
6790 .write_u64 = cpu_shares_write_u64,
6791 },
6792 #endif
6793 #ifdef CONFIG_CFS_BANDWIDTH
6794 {
6795 .name = "cfs_quota_us",
6796 .read_s64 = cpu_cfs_quota_read_s64,
6797 .write_s64 = cpu_cfs_quota_write_s64,
6798 },
6799 {
6800 .name = "cfs_period_us",
6801 .read_u64 = cpu_cfs_period_read_u64,
6802 .write_u64 = cpu_cfs_period_write_u64,
6803 },
6804 {
6805 .name = "stat",
6806 .seq_show = cpu_cfs_stat_show,
6807 },
6808 #endif
6809 #ifdef CONFIG_RT_GROUP_SCHED
6810 {
6811 .name = "rt_runtime_us",
6812 .read_s64 = cpu_rt_runtime_read,
6813 .write_s64 = cpu_rt_runtime_write,
6814 },
6815 {
6816 .name = "rt_period_us",
6817 .read_u64 = cpu_rt_period_read_uint,
6818 .write_u64 = cpu_rt_period_write_uint,
6819 },
6820 #endif
6821 { } /* Terminate */
6822 };
6823
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)6824 static int cpu_extra_stat_show(struct seq_file *sf,
6825 struct cgroup_subsys_state *css)
6826 {
6827 #ifdef CONFIG_CFS_BANDWIDTH
6828 {
6829 struct task_group *tg = css_tg(css);
6830 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6831 u64 throttled_usec;
6832
6833 throttled_usec = cfs_b->throttled_time;
6834 do_div(throttled_usec, NSEC_PER_USEC);
6835
6836 seq_printf(sf, "nr_periods %d\n"
6837 "nr_throttled %d\n"
6838 "throttled_usec %llu\n",
6839 cfs_b->nr_periods, cfs_b->nr_throttled,
6840 throttled_usec);
6841 }
6842 #endif
6843 return 0;
6844 }
6845
6846 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)6847 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6848 struct cftype *cft)
6849 {
6850 struct task_group *tg = css_tg(css);
6851 u64 weight = scale_load_down(tg->shares);
6852
6853 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6854 }
6855
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)6856 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6857 struct cftype *cft, u64 weight)
6858 {
6859 /*
6860 * cgroup weight knobs should use the common MIN, DFL and MAX
6861 * values which are 1, 100 and 10000 respectively. While it loses
6862 * a bit of range on both ends, it maps pretty well onto the shares
6863 * value used by scheduler and the round-trip conversions preserve
6864 * the original value over the entire range.
6865 */
6866 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6867 return -ERANGE;
6868
6869 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6870
6871 return sched_group_set_shares(css_tg(css), scale_load(weight));
6872 }
6873
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)6874 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6875 struct cftype *cft)
6876 {
6877 unsigned long weight = scale_load_down(css_tg(css)->shares);
6878 int last_delta = INT_MAX;
6879 int prio, delta;
6880
6881 /* find the closest nice value to the current weight */
6882 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6883 delta = abs(sched_prio_to_weight[prio] - weight);
6884 if (delta >= last_delta)
6885 break;
6886 last_delta = delta;
6887 }
6888
6889 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6890 }
6891
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)6892 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6893 struct cftype *cft, s64 nice)
6894 {
6895 unsigned long weight;
6896 int idx;
6897
6898 if (nice < MIN_NICE || nice > MAX_NICE)
6899 return -ERANGE;
6900
6901 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6902 idx = array_index_nospec(idx, 40);
6903 weight = sched_prio_to_weight[idx];
6904
6905 return sched_group_set_shares(css_tg(css), scale_load(weight));
6906 }
6907 #endif
6908
cpu_period_quota_print(struct seq_file * sf,long period,long quota)6909 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6910 long period, long quota)
6911 {
6912 if (quota < 0)
6913 seq_puts(sf, "max");
6914 else
6915 seq_printf(sf, "%ld", quota);
6916
6917 seq_printf(sf, " %ld\n", period);
6918 }
6919
6920 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)6921 static int __maybe_unused cpu_period_quota_parse(char *buf,
6922 u64 *periodp, u64 *quotap)
6923 {
6924 char tok[21]; /* U64_MAX */
6925
6926 if (!sscanf(buf, "%s %llu", tok, periodp))
6927 return -EINVAL;
6928
6929 *periodp *= NSEC_PER_USEC;
6930
6931 if (sscanf(tok, "%llu", quotap))
6932 *quotap *= NSEC_PER_USEC;
6933 else if (!strcmp(tok, "max"))
6934 *quotap = RUNTIME_INF;
6935 else
6936 return -EINVAL;
6937
6938 return 0;
6939 }
6940
6941 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)6942 static int cpu_max_show(struct seq_file *sf, void *v)
6943 {
6944 struct task_group *tg = css_tg(seq_css(sf));
6945
6946 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6947 return 0;
6948 }
6949
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6950 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6951 char *buf, size_t nbytes, loff_t off)
6952 {
6953 struct task_group *tg = css_tg(of_css(of));
6954 u64 period = tg_get_cfs_period(tg);
6955 u64 quota;
6956 int ret;
6957
6958 ret = cpu_period_quota_parse(buf, &period, "a);
6959 if (!ret)
6960 ret = tg_set_cfs_bandwidth(tg, period, quota);
6961 return ret ?: nbytes;
6962 }
6963 #endif
6964
6965 static struct cftype cpu_files[] = {
6966 #ifdef CONFIG_FAIR_GROUP_SCHED
6967 {
6968 .name = "weight",
6969 .flags = CFTYPE_NOT_ON_ROOT,
6970 .read_u64 = cpu_weight_read_u64,
6971 .write_u64 = cpu_weight_write_u64,
6972 },
6973 {
6974 .name = "weight.nice",
6975 .flags = CFTYPE_NOT_ON_ROOT,
6976 .read_s64 = cpu_weight_nice_read_s64,
6977 .write_s64 = cpu_weight_nice_write_s64,
6978 },
6979 #endif
6980 #ifdef CONFIG_CFS_BANDWIDTH
6981 {
6982 .name = "max",
6983 .flags = CFTYPE_NOT_ON_ROOT,
6984 .seq_show = cpu_max_show,
6985 .write = cpu_max_write,
6986 },
6987 #endif
6988 { } /* terminate */
6989 };
6990
6991 struct cgroup_subsys cpu_cgrp_subsys = {
6992 .css_alloc = cpu_cgroup_css_alloc,
6993 .css_online = cpu_cgroup_css_online,
6994 .css_released = cpu_cgroup_css_released,
6995 .css_free = cpu_cgroup_css_free,
6996 .css_extra_stat_show = cpu_extra_stat_show,
6997 .fork = cpu_cgroup_fork,
6998 .can_attach = cpu_cgroup_can_attach,
6999 .attach = cpu_cgroup_attach,
7000 .legacy_cftypes = cpu_legacy_files,
7001 .dfl_cftypes = cpu_files,
7002 .early_init = true,
7003 .threaded = true,
7004 };
7005
7006 #endif /* CONFIG_CGROUP_SCHED */
7007
dump_cpu_task(int cpu)7008 void dump_cpu_task(int cpu)
7009 {
7010 pr_info("Task dump for CPU %d:\n", cpu);
7011 sched_show_task(cpu_curr(cpu));
7012 }
7013
7014 /*
7015 * Nice levels are multiplicative, with a gentle 10% change for every
7016 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7017 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7018 * that remained on nice 0.
7019 *
7020 * The "10% effect" is relative and cumulative: from _any_ nice level,
7021 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7022 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7023 * If a task goes up by ~10% and another task goes down by ~10% then
7024 * the relative distance between them is ~25%.)
7025 */
7026 const int sched_prio_to_weight[40] = {
7027 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7028 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7029 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7030 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7031 /* 0 */ 1024, 820, 655, 526, 423,
7032 /* 5 */ 335, 272, 215, 172, 137,
7033 /* 10 */ 110, 87, 70, 56, 45,
7034 /* 15 */ 36, 29, 23, 18, 15,
7035 };
7036
7037 /*
7038 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7039 *
7040 * In cases where the weight does not change often, we can use the
7041 * precalculated inverse to speed up arithmetics by turning divisions
7042 * into multiplications:
7043 */
7044 const u32 sched_prio_to_wmult[40] = {
7045 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7046 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7047 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7048 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7049 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7050 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7051 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7052 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7053 };
7054
7055 #undef CREATE_TRACE_POINTS
7056