1 /*
2 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 Module: rt2x00
21 Abstract: rt2x00 queue datastructures and routines
22 */
23
24 #ifndef RT2X00QUEUE_H
25 #define RT2X00QUEUE_H
26
27 #include <linux/prefetch.h>
28
29 /**
30 * DOC: Entry frame size
31 *
32 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
33 * for USB devices this restriction does not apply, but the value of
34 * 2432 makes sense since it is big enough to contain the maximum fragment
35 * size according to the ieee802.11 specs.
36 * The aggregation size depends on support from the driver, but should
37 * be something around 3840 bytes.
38 */
39 #define DATA_FRAME_SIZE 2432
40 #define MGMT_FRAME_SIZE 256
41 #define AGGREGATION_SIZE 3840
42
43 /**
44 * enum data_queue_qid: Queue identification
45 *
46 * @QID_AC_VO: AC VO queue
47 * @QID_AC_VI: AC VI queue
48 * @QID_AC_BE: AC BE queue
49 * @QID_AC_BK: AC BK queue
50 * @QID_HCCA: HCCA queue
51 * @QID_MGMT: MGMT queue (prio queue)
52 * @QID_RX: RX queue
53 * @QID_OTHER: None of the above (don't use, only present for completeness)
54 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
55 * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
56 */
57 enum data_queue_qid {
58 QID_AC_VO = 0,
59 QID_AC_VI = 1,
60 QID_AC_BE = 2,
61 QID_AC_BK = 3,
62 QID_HCCA = 4,
63 QID_MGMT = 13,
64 QID_RX = 14,
65 QID_OTHER = 15,
66 QID_BEACON,
67 QID_ATIM,
68 };
69
70 /**
71 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
72 *
73 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
74 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
75 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
76 * mac80211 but was stripped for processing by the driver.
77 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
78 * don't try to pass it back.
79 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
80 * skb, instead of in the desc field.
81 */
82 enum skb_frame_desc_flags {
83 SKBDESC_DMA_MAPPED_RX = 1 << 0,
84 SKBDESC_DMA_MAPPED_TX = 1 << 1,
85 SKBDESC_IV_STRIPPED = 1 << 2,
86 SKBDESC_NOT_MAC80211 = 1 << 3,
87 SKBDESC_DESC_IN_SKB = 1 << 4,
88 };
89
90 /**
91 * struct skb_frame_desc: Descriptor information for the skb buffer
92 *
93 * This structure is placed over the driver_data array, this means that
94 * this structure should not exceed the size of that array (40 bytes).
95 *
96 * @flags: Frame flags, see &enum skb_frame_desc_flags.
97 * @desc_len: Length of the frame descriptor.
98 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
99 * @tx_rate_flags: the TX rate flags, used for TX status reporting
100 * @desc: Pointer to descriptor part of the frame.
101 * Note that this pointer could point to something outside
102 * of the scope of the skb->data pointer.
103 * @iv: IV/EIV data used during encryption/decryption.
104 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
105 * @sta: The station where sk buffer was sent.
106 */
107 struct skb_frame_desc {
108 u8 flags;
109
110 u8 desc_len;
111 u8 tx_rate_idx;
112 u8 tx_rate_flags;
113
114 void *desc;
115
116 __le32 iv[2];
117
118 dma_addr_t skb_dma;
119 struct ieee80211_sta *sta;
120 };
121
122 /**
123 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
124 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
125 */
get_skb_frame_desc(struct sk_buff * skb)126 static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb)
127 {
128 BUILD_BUG_ON(sizeof(struct skb_frame_desc) >
129 IEEE80211_TX_INFO_DRIVER_DATA_SIZE);
130 return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data;
131 }
132
133 /**
134 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
135 *
136 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
137 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
138 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
139 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
140 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
141 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
142 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
143 */
144 enum rxdone_entry_desc_flags {
145 RXDONE_SIGNAL_PLCP = BIT(0),
146 RXDONE_SIGNAL_BITRATE = BIT(1),
147 RXDONE_SIGNAL_MCS = BIT(2),
148 RXDONE_MY_BSS = BIT(3),
149 RXDONE_CRYPTO_IV = BIT(4),
150 RXDONE_CRYPTO_ICV = BIT(5),
151 RXDONE_L2PAD = BIT(6),
152 };
153
154 /**
155 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
156 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
157 * from &rxdone_entry_desc to a signal value type.
158 */
159 #define RXDONE_SIGNAL_MASK \
160 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
161
162 /**
163 * struct rxdone_entry_desc: RX Entry descriptor
164 *
165 * Summary of information that has been read from the RX frame descriptor.
166 *
167 * @timestamp: RX Timestamp
168 * @signal: Signal of the received frame.
169 * @rssi: RSSI of the received frame.
170 * @size: Data size of the received frame.
171 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
172 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
173 * @rate_mode: Rate mode (See @enum rate_modulation).
174 * @cipher: Cipher type used during decryption.
175 * @cipher_status: Decryption status.
176 * @iv: IV/EIV data used during decryption.
177 * @icv: ICV data used during decryption.
178 */
179 struct rxdone_entry_desc {
180 u64 timestamp;
181 int signal;
182 int rssi;
183 int size;
184 int flags;
185 int dev_flags;
186 u16 rate_mode;
187 u16 enc_flags;
188 enum mac80211_rx_encoding encoding;
189 enum rate_info_bw bw;
190 u8 cipher;
191 u8 cipher_status;
192
193 __le32 iv[2];
194 __le32 icv;
195 };
196
197 /**
198 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
199 *
200 * Every txdone report has to contain the basic result of the
201 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
202 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
203 * conjunction with all of these flags but should only be set
204 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
205 * in conjunction with &TXDONE_FAILURE.
206 *
207 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
208 * @TXDONE_SUCCESS: Frame was successfully send
209 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
210 * @TXDONE_FAILURE: Frame was not successfully send
211 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
212 * frame transmission failed due to excessive retries.
213 */
214 enum txdone_entry_desc_flags {
215 TXDONE_UNKNOWN,
216 TXDONE_SUCCESS,
217 TXDONE_FALLBACK,
218 TXDONE_FAILURE,
219 TXDONE_EXCESSIVE_RETRY,
220 TXDONE_AMPDU,
221 TXDONE_NO_ACK_REQ,
222 };
223
224 /**
225 * struct txdone_entry_desc: TX done entry descriptor
226 *
227 * Summary of information that has been read from the TX frame descriptor
228 * after the device is done with transmission.
229 *
230 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
231 * @retry: Retry count.
232 */
233 struct txdone_entry_desc {
234 unsigned long flags;
235 int retry;
236 };
237
238 /**
239 * enum txentry_desc_flags: Status flags for TX entry descriptor
240 *
241 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
242 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
243 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
244 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
245 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
246 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
247 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
248 * @ENTRY_TXD_ACK: An ACK is required for this frame.
249 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
250 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
251 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
252 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
253 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
254 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
255 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
256 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
257 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
258 */
259 enum txentry_desc_flags {
260 ENTRY_TXD_RTS_FRAME,
261 ENTRY_TXD_CTS_FRAME,
262 ENTRY_TXD_GENERATE_SEQ,
263 ENTRY_TXD_FIRST_FRAGMENT,
264 ENTRY_TXD_MORE_FRAG,
265 ENTRY_TXD_REQ_TIMESTAMP,
266 ENTRY_TXD_BURST,
267 ENTRY_TXD_ACK,
268 ENTRY_TXD_RETRY_MODE,
269 ENTRY_TXD_ENCRYPT,
270 ENTRY_TXD_ENCRYPT_PAIRWISE,
271 ENTRY_TXD_ENCRYPT_IV,
272 ENTRY_TXD_ENCRYPT_MMIC,
273 ENTRY_TXD_HT_AMPDU,
274 ENTRY_TXD_HT_BW_40,
275 ENTRY_TXD_HT_SHORT_GI,
276 ENTRY_TXD_HT_MIMO_PS,
277 };
278
279 /**
280 * struct txentry_desc: TX Entry descriptor
281 *
282 * Summary of information for the frame descriptor before sending a TX frame.
283 *
284 * @flags: Descriptor flags (See &enum queue_entry_flags).
285 * @length: Length of the entire frame.
286 * @header_length: Length of 802.11 header.
287 * @length_high: PLCP length high word.
288 * @length_low: PLCP length low word.
289 * @signal: PLCP signal.
290 * @service: PLCP service.
291 * @msc: MCS.
292 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
293 * @ba_size: Size of the recepients RX reorder buffer - 1.
294 * @rate_mode: Rate mode (See @enum rate_modulation).
295 * @mpdu_density: MDPU density.
296 * @retry_limit: Max number of retries.
297 * @ifs: IFS value.
298 * @txop: IFS value for 11n capable chips.
299 * @cipher: Cipher type used for encryption.
300 * @key_idx: Key index used for encryption.
301 * @iv_offset: Position where IV should be inserted by hardware.
302 * @iv_len: Length of IV data.
303 */
304 struct txentry_desc {
305 unsigned long flags;
306
307 u16 length;
308 u16 header_length;
309
310 union {
311 struct {
312 u16 length_high;
313 u16 length_low;
314 u16 signal;
315 u16 service;
316 enum ifs ifs;
317 } plcp;
318
319 struct {
320 u16 mcs;
321 u8 stbc;
322 u8 ba_size;
323 u8 mpdu_density;
324 enum txop txop;
325 int wcid;
326 } ht;
327 } u;
328
329 enum rate_modulation rate_mode;
330
331 short retry_limit;
332
333 enum cipher cipher;
334 u16 key_idx;
335 u16 iv_offset;
336 u16 iv_len;
337 };
338
339 /**
340 * enum queue_entry_flags: Status flags for queue entry
341 *
342 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
343 * As long as this bit is set, this entry may only be touched
344 * through the interface structure.
345 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
346 * transfer (either TX or RX depending on the queue). The entry should
347 * only be touched after the device has signaled it is done with it.
348 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
349 * for the signal to start sending.
350 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
351 * while transferring the data to the hardware. No TX status report will
352 * be expected from the hardware.
353 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
354 * returned. It is now waiting for the status reporting before the
355 * entry can be reused again.
356 */
357 enum queue_entry_flags {
358 ENTRY_BCN_ASSIGNED,
359 ENTRY_BCN_ENABLED,
360 ENTRY_OWNER_DEVICE_DATA,
361 ENTRY_DATA_PENDING,
362 ENTRY_DATA_IO_FAILED,
363 ENTRY_DATA_STATUS_PENDING,
364 ENTRY_DATA_STATUS_SET,
365 };
366
367 /**
368 * struct queue_entry: Entry inside the &struct data_queue
369 *
370 * @flags: Entry flags, see &enum queue_entry_flags.
371 * @last_action: Timestamp of last change.
372 * @queue: The data queue (&struct data_queue) to which this entry belongs.
373 * @skb: The buffer which is currently being transmitted (for TX queue),
374 * or used to directly receive data in (for RX queue).
375 * @entry_idx: The entry index number.
376 * @priv_data: Private data belonging to this queue entry. The pointer
377 * points to data specific to a particular driver and queue type.
378 * @status: Device specific status
379 */
380 struct queue_entry {
381 unsigned long flags;
382 unsigned long last_action;
383
384 struct data_queue *queue;
385
386 struct sk_buff *skb;
387
388 unsigned int entry_idx;
389
390 u32 status;
391
392 void *priv_data;
393 };
394
395 /**
396 * enum queue_index: Queue index type
397 *
398 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
399 * owned by the hardware then the queue is considered to be full.
400 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
401 * transferred to the hardware.
402 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
403 * the hardware and for which we need to run the txdone handler. If this
404 * entry is not owned by the hardware the queue is considered to be empty.
405 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
406 * of the index array.
407 */
408 enum queue_index {
409 Q_INDEX,
410 Q_INDEX_DMA_DONE,
411 Q_INDEX_DONE,
412 Q_INDEX_MAX,
413 };
414
415 /**
416 * enum data_queue_flags: Status flags for data queues
417 *
418 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
419 * device might be DMA'ing skbuffers. TX queues will accept skbuffers to
420 * be transmitted and beacon queues will start beaconing the configured
421 * beacons.
422 * @QUEUE_PAUSED: The queue has been started but is currently paused.
423 * When this bit is set, the queue has been stopped in mac80211,
424 * preventing new frames to be enqueued. However, a few frames
425 * might still appear shortly after the pausing...
426 */
427 enum data_queue_flags {
428 QUEUE_STARTED,
429 QUEUE_PAUSED,
430 };
431
432 /**
433 * struct data_queue: Data queue
434 *
435 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
436 * @entries: Base address of the &struct queue_entry which are
437 * part of this queue.
438 * @qid: The queue identification, see &enum data_queue_qid.
439 * @flags: Entry flags, see &enum queue_entry_flags.
440 * @status_lock: The mutex for protecting the start/stop/flush
441 * handling on this queue.
442 * @tx_lock: Spinlock to serialize tx operations on this queue.
443 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
444 * @index_crypt needs to be changed this lock should be grabbed to prevent
445 * index corruption due to concurrency.
446 * @count: Number of frames handled in the queue.
447 * @limit: Maximum number of entries in the queue.
448 * @threshold: Minimum number of free entries before queue is kicked by force.
449 * @length: Number of frames in queue.
450 * @index: Index pointers to entry positions in the queue,
451 * use &enum queue_index to get a specific index field.
452 * @txop: maximum burst time.
453 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
454 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
455 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
456 * @data_size: Maximum data size for the frames in this queue.
457 * @desc_size: Hardware descriptor size for the data in this queue.
458 * @priv_size: Size of per-queue_entry private data.
459 * @usb_endpoint: Device endpoint used for communication (USB only)
460 * @usb_maxpacket: Max packet size for given endpoint (USB only)
461 */
462 struct data_queue {
463 struct rt2x00_dev *rt2x00dev;
464 struct queue_entry *entries;
465
466 enum data_queue_qid qid;
467 unsigned long flags;
468
469 struct mutex status_lock;
470 spinlock_t tx_lock;
471 spinlock_t index_lock;
472
473 unsigned int count;
474 unsigned short limit;
475 unsigned short threshold;
476 unsigned short length;
477 unsigned short index[Q_INDEX_MAX];
478
479 unsigned short txop;
480 unsigned short aifs;
481 unsigned short cw_min;
482 unsigned short cw_max;
483
484 unsigned short data_size;
485 unsigned char desc_size;
486 unsigned char winfo_size;
487 unsigned short priv_size;
488
489 unsigned short usb_endpoint;
490 unsigned short usb_maxpacket;
491 };
492
493 /**
494 * queue_end - Return pointer to the last queue (HELPER MACRO).
495 * @__dev: Pointer to &struct rt2x00_dev
496 *
497 * Using the base rx pointer and the maximum number of available queues,
498 * this macro will return the address of 1 position beyond the end of the
499 * queues array.
500 */
501 #define queue_end(__dev) \
502 &(__dev)->rx[(__dev)->data_queues]
503
504 /**
505 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
506 * @__dev: Pointer to &struct rt2x00_dev
507 *
508 * Using the base tx pointer and the maximum number of available TX
509 * queues, this macro will return the address of 1 position beyond
510 * the end of the TX queue array.
511 */
512 #define tx_queue_end(__dev) \
513 &(__dev)->tx[(__dev)->ops->tx_queues]
514
515 /**
516 * queue_next - Return pointer to next queue in list (HELPER MACRO).
517 * @__queue: Current queue for which we need the next queue
518 *
519 * Using the current queue address we take the address directly
520 * after the queue to take the next queue. Note that this macro
521 * should be used carefully since it does not protect against
522 * moving past the end of the list. (See macros &queue_end and
523 * &tx_queue_end for determining the end of the queue).
524 */
525 #define queue_next(__queue) \
526 &(__queue)[1]
527
528 /**
529 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
530 * @__entry: Pointer where the current queue entry will be stored in.
531 * @__start: Start queue pointer.
532 * @__end: End queue pointer.
533 *
534 * This macro will loop through all queues between &__start and &__end.
535 */
536 #define queue_loop(__entry, __start, __end) \
537 for ((__entry) = (__start); \
538 prefetch(queue_next(__entry)), (__entry) != (__end);\
539 (__entry) = queue_next(__entry))
540
541 /**
542 * queue_for_each - Loop through all queues
543 * @__dev: Pointer to &struct rt2x00_dev
544 * @__entry: Pointer where the current queue entry will be stored in.
545 *
546 * This macro will loop through all available queues.
547 */
548 #define queue_for_each(__dev, __entry) \
549 queue_loop(__entry, (__dev)->rx, queue_end(__dev))
550
551 /**
552 * tx_queue_for_each - Loop through the TX queues
553 * @__dev: Pointer to &struct rt2x00_dev
554 * @__entry: Pointer where the current queue entry will be stored in.
555 *
556 * This macro will loop through all TX related queues excluding
557 * the Beacon and Atim queues.
558 */
559 #define tx_queue_for_each(__dev, __entry) \
560 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
561
562 /**
563 * txall_queue_for_each - Loop through all TX related queues
564 * @__dev: Pointer to &struct rt2x00_dev
565 * @__entry: Pointer where the current queue entry will be stored in.
566 *
567 * This macro will loop through all TX related queues including
568 * the Beacon and Atim queues.
569 */
570 #define txall_queue_for_each(__dev, __entry) \
571 queue_loop(__entry, (__dev)->tx, queue_end(__dev))
572
573 /**
574 * rt2x00queue_for_each_entry - Loop through all entries in the queue
575 * @queue: Pointer to @data_queue
576 * @start: &enum queue_index Pointer to start index
577 * @end: &enum queue_index Pointer to end index
578 * @data: Data to pass to the callback function
579 * @fn: The function to call for each &struct queue_entry
580 *
581 * This will walk through all entries in the queue, in chronological
582 * order. This means it will start at the current @start pointer
583 * and will walk through the queue until it reaches the @end pointer.
584 *
585 * If fn returns true for an entry rt2x00queue_for_each_entry will stop
586 * processing and return true as well.
587 */
588 bool rt2x00queue_for_each_entry(struct data_queue *queue,
589 enum queue_index start,
590 enum queue_index end,
591 void *data,
592 bool (*fn)(struct queue_entry *entry,
593 void *data));
594
595 /**
596 * rt2x00queue_empty - Check if the queue is empty.
597 * @queue: Queue to check if empty.
598 */
rt2x00queue_empty(struct data_queue * queue)599 static inline int rt2x00queue_empty(struct data_queue *queue)
600 {
601 return queue->length == 0;
602 }
603
604 /**
605 * rt2x00queue_full - Check if the queue is full.
606 * @queue: Queue to check if full.
607 */
rt2x00queue_full(struct data_queue * queue)608 static inline int rt2x00queue_full(struct data_queue *queue)
609 {
610 return queue->length == queue->limit;
611 }
612
613 /**
614 * rt2x00queue_free - Check the number of available entries in queue.
615 * @queue: Queue to check.
616 */
rt2x00queue_available(struct data_queue * queue)617 static inline int rt2x00queue_available(struct data_queue *queue)
618 {
619 return queue->limit - queue->length;
620 }
621
622 /**
623 * rt2x00queue_threshold - Check if the queue is below threshold
624 * @queue: Queue to check.
625 */
rt2x00queue_threshold(struct data_queue * queue)626 static inline int rt2x00queue_threshold(struct data_queue *queue)
627 {
628 return rt2x00queue_available(queue) < queue->threshold;
629 }
630 /**
631 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
632 * @entry: Queue entry to check.
633 */
rt2x00queue_dma_timeout(struct queue_entry * entry)634 static inline int rt2x00queue_dma_timeout(struct queue_entry *entry)
635 {
636 if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
637 return false;
638 return time_after(jiffies, entry->last_action + msecs_to_jiffies(100));
639 }
640
641 /**
642 * _rt2x00_desc_read - Read a word from the hardware descriptor.
643 * @desc: Base descriptor address
644 * @word: Word index from where the descriptor should be read.
645 */
_rt2x00_desc_read(__le32 * desc,const u8 word)646 static inline __le32 _rt2x00_desc_read(__le32 *desc, const u8 word)
647 {
648 return desc[word];
649 }
650
651 /**
652 * rt2x00_desc_read - Read a word from the hardware descriptor, this
653 * function will take care of the byte ordering.
654 * @desc: Base descriptor address
655 * @word: Word index from where the descriptor should be read.
656 */
rt2x00_desc_read(__le32 * desc,const u8 word)657 static inline u32 rt2x00_desc_read(__le32 *desc, const u8 word)
658 {
659 return le32_to_cpu(_rt2x00_desc_read(desc, word));
660 }
661
662 /**
663 * rt2x00_desc_write - write a word to the hardware descriptor, this
664 * function will take care of the byte ordering.
665 * @desc: Base descriptor address
666 * @word: Word index from where the descriptor should be written.
667 * @value: Value that should be written into the descriptor.
668 */
_rt2x00_desc_write(__le32 * desc,const u8 word,__le32 value)669 static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value)
670 {
671 desc[word] = value;
672 }
673
674 /**
675 * rt2x00_desc_write - write a word to the hardware descriptor.
676 * @desc: Base descriptor address
677 * @word: Word index from where the descriptor should be written.
678 * @value: Value that should be written into the descriptor.
679 */
rt2x00_desc_write(__le32 * desc,const u8 word,u32 value)680 static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value)
681 {
682 _rt2x00_desc_write(desc, word, cpu_to_le32(value));
683 }
684
685 #endif /* RT2X00QUEUE_H */
686