1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25
26 /*
27 * backref_node, mapping_node and tree_block start with this
28 */
29 struct tree_entry {
30 struct rb_node rb_node;
31 u64 bytenr;
32 };
33
34 /*
35 * present a tree block in the backref cache
36 */
37 struct backref_node {
38 struct rb_node rb_node;
39 u64 bytenr;
40
41 u64 new_bytenr;
42 /* objectid of tree block owner, can be not uptodate */
43 u64 owner;
44 /* link to pending, changed or detached list */
45 struct list_head list;
46 /* list of upper level blocks reference this block */
47 struct list_head upper;
48 /* list of child blocks in the cache */
49 struct list_head lower;
50 /* NULL if this node is not tree root */
51 struct btrfs_root *root;
52 /* extent buffer got by COW the block */
53 struct extent_buffer *eb;
54 /* level of tree block */
55 unsigned int level:8;
56 /* is the block in non-reference counted tree */
57 unsigned int cowonly:1;
58 /* 1 if no child node in the cache */
59 unsigned int lowest:1;
60 /* is the extent buffer locked */
61 unsigned int locked:1;
62 /* has the block been processed */
63 unsigned int processed:1;
64 /* have backrefs of this block been checked */
65 unsigned int checked:1;
66 /*
67 * 1 if corresponding block has been cowed but some upper
68 * level block pointers may not point to the new location
69 */
70 unsigned int pending:1;
71 /*
72 * 1 if the backref node isn't connected to any other
73 * backref node.
74 */
75 unsigned int detached:1;
76 };
77
78 /*
79 * present a block pointer in the backref cache
80 */
81 struct backref_edge {
82 struct list_head list[2];
83 struct backref_node *node[2];
84 };
85
86 #define LOWER 0
87 #define UPPER 1
88 #define RELOCATION_RESERVED_NODES 256
89
90 struct backref_cache {
91 /* red black tree of all backref nodes in the cache */
92 struct rb_root rb_root;
93 /* for passing backref nodes to btrfs_reloc_cow_block */
94 struct backref_node *path[BTRFS_MAX_LEVEL];
95 /*
96 * list of blocks that have been cowed but some block
97 * pointers in upper level blocks may not reflect the
98 * new location
99 */
100 struct list_head pending[BTRFS_MAX_LEVEL];
101 /* list of backref nodes with no child node */
102 struct list_head leaves;
103 /* list of blocks that have been cowed in current transaction */
104 struct list_head changed;
105 /* list of detached backref node. */
106 struct list_head detached;
107
108 u64 last_trans;
109
110 int nr_nodes;
111 int nr_edges;
112 };
113
114 /*
115 * map address of tree root to tree
116 */
117 struct mapping_node {
118 struct rb_node rb_node;
119 u64 bytenr;
120 void *data;
121 };
122
123 struct mapping_tree {
124 struct rb_root rb_root;
125 spinlock_t lock;
126 };
127
128 /*
129 * present a tree block to process
130 */
131 struct tree_block {
132 struct rb_node rb_node;
133 u64 bytenr;
134 struct btrfs_key key;
135 unsigned int level:8;
136 unsigned int key_ready:1;
137 };
138
139 #define MAX_EXTENTS 128
140
141 struct file_extent_cluster {
142 u64 start;
143 u64 end;
144 u64 boundary[MAX_EXTENTS];
145 unsigned int nr;
146 };
147
148 struct reloc_control {
149 /* block group to relocate */
150 struct btrfs_block_group_cache *block_group;
151 /* extent tree */
152 struct btrfs_root *extent_root;
153 /* inode for moving data */
154 struct inode *data_inode;
155
156 struct btrfs_block_rsv *block_rsv;
157
158 struct backref_cache backref_cache;
159
160 struct file_extent_cluster cluster;
161 /* tree blocks have been processed */
162 struct extent_io_tree processed_blocks;
163 /* map start of tree root to corresponding reloc tree */
164 struct mapping_tree reloc_root_tree;
165 /* list of reloc trees */
166 struct list_head reloc_roots;
167 /* list of subvolume trees that get relocated */
168 struct list_head dirty_subvol_roots;
169 /* size of metadata reservation for merging reloc trees */
170 u64 merging_rsv_size;
171 /* size of relocated tree nodes */
172 u64 nodes_relocated;
173 /* reserved size for block group relocation*/
174 u64 reserved_bytes;
175
176 u64 search_start;
177 u64 extents_found;
178
179 unsigned int stage:8;
180 unsigned int create_reloc_tree:1;
181 unsigned int merge_reloc_tree:1;
182 unsigned int found_file_extent:1;
183 };
184
185 /* stages of data relocation */
186 #define MOVE_DATA_EXTENTS 0
187 #define UPDATE_DATA_PTRS 1
188
189 static void remove_backref_node(struct backref_cache *cache,
190 struct backref_node *node);
191 static void __mark_block_processed(struct reloc_control *rc,
192 struct backref_node *node);
193
mapping_tree_init(struct mapping_tree * tree)194 static void mapping_tree_init(struct mapping_tree *tree)
195 {
196 tree->rb_root = RB_ROOT;
197 spin_lock_init(&tree->lock);
198 }
199
backref_cache_init(struct backref_cache * cache)200 static void backref_cache_init(struct backref_cache *cache)
201 {
202 int i;
203 cache->rb_root = RB_ROOT;
204 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 INIT_LIST_HEAD(&cache->pending[i]);
206 INIT_LIST_HEAD(&cache->changed);
207 INIT_LIST_HEAD(&cache->detached);
208 INIT_LIST_HEAD(&cache->leaves);
209 }
210
backref_cache_cleanup(struct backref_cache * cache)211 static void backref_cache_cleanup(struct backref_cache *cache)
212 {
213 struct backref_node *node;
214 int i;
215
216 while (!list_empty(&cache->detached)) {
217 node = list_entry(cache->detached.next,
218 struct backref_node, list);
219 remove_backref_node(cache, node);
220 }
221
222 while (!list_empty(&cache->leaves)) {
223 node = list_entry(cache->leaves.next,
224 struct backref_node, lower);
225 remove_backref_node(cache, node);
226 }
227
228 cache->last_trans = 0;
229
230 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 ASSERT(list_empty(&cache->pending[i]));
232 ASSERT(list_empty(&cache->changed));
233 ASSERT(list_empty(&cache->detached));
234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 ASSERT(!cache->nr_nodes);
236 ASSERT(!cache->nr_edges);
237 }
238
alloc_backref_node(struct backref_cache * cache)239 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240 {
241 struct backref_node *node;
242
243 node = kzalloc(sizeof(*node), GFP_NOFS);
244 if (node) {
245 INIT_LIST_HEAD(&node->list);
246 INIT_LIST_HEAD(&node->upper);
247 INIT_LIST_HEAD(&node->lower);
248 RB_CLEAR_NODE(&node->rb_node);
249 cache->nr_nodes++;
250 }
251 return node;
252 }
253
free_backref_node(struct backref_cache * cache,struct backref_node * node)254 static void free_backref_node(struct backref_cache *cache,
255 struct backref_node *node)
256 {
257 if (node) {
258 cache->nr_nodes--;
259 kfree(node);
260 }
261 }
262
alloc_backref_edge(struct backref_cache * cache)263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264 {
265 struct backref_edge *edge;
266
267 edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 if (edge)
269 cache->nr_edges++;
270 return edge;
271 }
272
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)273 static void free_backref_edge(struct backref_cache *cache,
274 struct backref_edge *edge)
275 {
276 if (edge) {
277 cache->nr_edges--;
278 kfree(edge);
279 }
280 }
281
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 struct rb_node *node)
284 {
285 struct rb_node **p = &root->rb_node;
286 struct rb_node *parent = NULL;
287 struct tree_entry *entry;
288
289 while (*p) {
290 parent = *p;
291 entry = rb_entry(parent, struct tree_entry, rb_node);
292
293 if (bytenr < entry->bytenr)
294 p = &(*p)->rb_left;
295 else if (bytenr > entry->bytenr)
296 p = &(*p)->rb_right;
297 else
298 return parent;
299 }
300
301 rb_link_node(node, parent, p);
302 rb_insert_color(node, root);
303 return NULL;
304 }
305
tree_search(struct rb_root * root,u64 bytenr)306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307 {
308 struct rb_node *n = root->rb_node;
309 struct tree_entry *entry;
310
311 while (n) {
312 entry = rb_entry(n, struct tree_entry, rb_node);
313
314 if (bytenr < entry->bytenr)
315 n = n->rb_left;
316 else if (bytenr > entry->bytenr)
317 n = n->rb_right;
318 else
319 return n;
320 }
321 return NULL;
322 }
323
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325 {
326
327 struct btrfs_fs_info *fs_info = NULL;
328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 rb_node);
330 if (bnode->root)
331 fs_info = bnode->root->fs_info;
332 btrfs_panic(fs_info, errno,
333 "Inconsistency in backref cache found at offset %llu",
334 bytenr);
335 }
336
337 /*
338 * walk up backref nodes until reach node presents tree root
339 */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)340 static struct backref_node *walk_up_backref(struct backref_node *node,
341 struct backref_edge *edges[],
342 int *index)
343 {
344 struct backref_edge *edge;
345 int idx = *index;
346
347 while (!list_empty(&node->upper)) {
348 edge = list_entry(node->upper.next,
349 struct backref_edge, list[LOWER]);
350 edges[idx++] = edge;
351 node = edge->node[UPPER];
352 }
353 BUG_ON(node->detached);
354 *index = idx;
355 return node;
356 }
357
358 /*
359 * walk down backref nodes to find start of next reference path
360 */
walk_down_backref(struct backref_edge * edges[],int * index)361 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 int *index)
363 {
364 struct backref_edge *edge;
365 struct backref_node *lower;
366 int idx = *index;
367
368 while (idx > 0) {
369 edge = edges[idx - 1];
370 lower = edge->node[LOWER];
371 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 idx--;
373 continue;
374 }
375 edge = list_entry(edge->list[LOWER].next,
376 struct backref_edge, list[LOWER]);
377 edges[idx - 1] = edge;
378 *index = idx;
379 return edge->node[UPPER];
380 }
381 *index = 0;
382 return NULL;
383 }
384
unlock_node_buffer(struct backref_node * node)385 static void unlock_node_buffer(struct backref_node *node)
386 {
387 if (node->locked) {
388 btrfs_tree_unlock(node->eb);
389 node->locked = 0;
390 }
391 }
392
drop_node_buffer(struct backref_node * node)393 static void drop_node_buffer(struct backref_node *node)
394 {
395 if (node->eb) {
396 unlock_node_buffer(node);
397 free_extent_buffer(node->eb);
398 node->eb = NULL;
399 }
400 }
401
drop_backref_node(struct backref_cache * tree,struct backref_node * node)402 static void drop_backref_node(struct backref_cache *tree,
403 struct backref_node *node)
404 {
405 BUG_ON(!list_empty(&node->upper));
406
407 drop_node_buffer(node);
408 list_del(&node->list);
409 list_del(&node->lower);
410 if (!RB_EMPTY_NODE(&node->rb_node))
411 rb_erase(&node->rb_node, &tree->rb_root);
412 free_backref_node(tree, node);
413 }
414
415 /*
416 * remove a backref node from the backref cache
417 */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)418 static void remove_backref_node(struct backref_cache *cache,
419 struct backref_node *node)
420 {
421 struct backref_node *upper;
422 struct backref_edge *edge;
423
424 if (!node)
425 return;
426
427 BUG_ON(!node->lowest && !node->detached);
428 while (!list_empty(&node->upper)) {
429 edge = list_entry(node->upper.next, struct backref_edge,
430 list[LOWER]);
431 upper = edge->node[UPPER];
432 list_del(&edge->list[LOWER]);
433 list_del(&edge->list[UPPER]);
434 free_backref_edge(cache, edge);
435
436 if (RB_EMPTY_NODE(&upper->rb_node)) {
437 BUG_ON(!list_empty(&node->upper));
438 drop_backref_node(cache, node);
439 node = upper;
440 node->lowest = 1;
441 continue;
442 }
443 /*
444 * add the node to leaf node list if no other
445 * child block cached.
446 */
447 if (list_empty(&upper->lower)) {
448 list_add_tail(&upper->lower, &cache->leaves);
449 upper->lowest = 1;
450 }
451 }
452
453 drop_backref_node(cache, node);
454 }
455
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)456 static void update_backref_node(struct backref_cache *cache,
457 struct backref_node *node, u64 bytenr)
458 {
459 struct rb_node *rb_node;
460 rb_erase(&node->rb_node, &cache->rb_root);
461 node->bytenr = bytenr;
462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 if (rb_node)
464 backref_tree_panic(rb_node, -EEXIST, bytenr);
465 }
466
467 /*
468 * update backref cache after a transaction commit
469 */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)470 static int update_backref_cache(struct btrfs_trans_handle *trans,
471 struct backref_cache *cache)
472 {
473 struct backref_node *node;
474 int level = 0;
475
476 if (cache->last_trans == 0) {
477 cache->last_trans = trans->transid;
478 return 0;
479 }
480
481 if (cache->last_trans == trans->transid)
482 return 0;
483
484 /*
485 * detached nodes are used to avoid unnecessary backref
486 * lookup. transaction commit changes the extent tree.
487 * so the detached nodes are no longer useful.
488 */
489 while (!list_empty(&cache->detached)) {
490 node = list_entry(cache->detached.next,
491 struct backref_node, list);
492 remove_backref_node(cache, node);
493 }
494
495 while (!list_empty(&cache->changed)) {
496 node = list_entry(cache->changed.next,
497 struct backref_node, list);
498 list_del_init(&node->list);
499 BUG_ON(node->pending);
500 update_backref_node(cache, node, node->new_bytenr);
501 }
502
503 /*
504 * some nodes can be left in the pending list if there were
505 * errors during processing the pending nodes.
506 */
507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 list_for_each_entry(node, &cache->pending[level], list) {
509 BUG_ON(!node->pending);
510 if (node->bytenr == node->new_bytenr)
511 continue;
512 update_backref_node(cache, node, node->new_bytenr);
513 }
514 }
515
516 cache->last_trans = 0;
517 return 1;
518 }
519
520
should_ignore_root(struct btrfs_root * root)521 static int should_ignore_root(struct btrfs_root *root)
522 {
523 struct btrfs_root *reloc_root;
524
525 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
526 return 0;
527
528 reloc_root = root->reloc_root;
529 if (!reloc_root)
530 return 0;
531
532 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
533 root->fs_info->running_transaction->transid - 1)
534 return 0;
535 /*
536 * if there is reloc tree and it was created in previous
537 * transaction backref lookup can find the reloc tree,
538 * so backref node for the fs tree root is useless for
539 * relocation.
540 */
541 return 1;
542 }
543 /*
544 * find reloc tree by address of tree root
545 */
find_reloc_root(struct reloc_control * rc,u64 bytenr)546 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
547 u64 bytenr)
548 {
549 struct rb_node *rb_node;
550 struct mapping_node *node;
551 struct btrfs_root *root = NULL;
552
553 spin_lock(&rc->reloc_root_tree.lock);
554 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
555 if (rb_node) {
556 node = rb_entry(rb_node, struct mapping_node, rb_node);
557 root = (struct btrfs_root *)node->data;
558 }
559 spin_unlock(&rc->reloc_root_tree.lock);
560 return root;
561 }
562
is_cowonly_root(u64 root_objectid)563 static int is_cowonly_root(u64 root_objectid)
564 {
565 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
566 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
567 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
568 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
569 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
570 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
571 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
572 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
573 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
574 return 1;
575 return 0;
576 }
577
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)578 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
579 u64 root_objectid)
580 {
581 struct btrfs_key key;
582
583 key.objectid = root_objectid;
584 key.type = BTRFS_ROOT_ITEM_KEY;
585 if (is_cowonly_root(root_objectid))
586 key.offset = 0;
587 else
588 key.offset = (u64)-1;
589
590 return btrfs_get_fs_root(fs_info, &key, false);
591 }
592
593 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)594 int find_inline_backref(struct extent_buffer *leaf, int slot,
595 unsigned long *ptr, unsigned long *end)
596 {
597 struct btrfs_key key;
598 struct btrfs_extent_item *ei;
599 struct btrfs_tree_block_info *bi;
600 u32 item_size;
601
602 btrfs_item_key_to_cpu(leaf, &key, slot);
603
604 item_size = btrfs_item_size_nr(leaf, slot);
605 if (item_size < sizeof(*ei)) {
606 btrfs_print_v0_err(leaf->fs_info);
607 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
608 return 1;
609 }
610 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
611 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
612 BTRFS_EXTENT_FLAG_TREE_BLOCK));
613
614 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
615 item_size <= sizeof(*ei) + sizeof(*bi)) {
616 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
617 return 1;
618 }
619 if (key.type == BTRFS_METADATA_ITEM_KEY &&
620 item_size <= sizeof(*ei)) {
621 WARN_ON(item_size < sizeof(*ei));
622 return 1;
623 }
624
625 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
626 bi = (struct btrfs_tree_block_info *)(ei + 1);
627 *ptr = (unsigned long)(bi + 1);
628 } else {
629 *ptr = (unsigned long)(ei + 1);
630 }
631 *end = (unsigned long)ei + item_size;
632 return 0;
633 }
634
635 /*
636 * build backref tree for a given tree block. root of the backref tree
637 * corresponds the tree block, leaves of the backref tree correspond
638 * roots of b-trees that reference the tree block.
639 *
640 * the basic idea of this function is check backrefs of a given block
641 * to find upper level blocks that reference the block, and then check
642 * backrefs of these upper level blocks recursively. the recursion stop
643 * when tree root is reached or backrefs for the block is cached.
644 *
645 * NOTE: if we find backrefs for a block are cached, we know backrefs
646 * for all upper level blocks that directly/indirectly reference the
647 * block are also cached.
648 */
649 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)650 struct backref_node *build_backref_tree(struct reloc_control *rc,
651 struct btrfs_key *node_key,
652 int level, u64 bytenr)
653 {
654 struct backref_cache *cache = &rc->backref_cache;
655 struct btrfs_path *path1; /* For searching extent root */
656 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
657 struct extent_buffer *eb;
658 struct btrfs_root *root;
659 struct backref_node *cur;
660 struct backref_node *upper;
661 struct backref_node *lower;
662 struct backref_node *node = NULL;
663 struct backref_node *exist = NULL;
664 struct backref_edge *edge;
665 struct rb_node *rb_node;
666 struct btrfs_key key;
667 unsigned long end;
668 unsigned long ptr;
669 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
670 LIST_HEAD(useless);
671 int cowonly;
672 int ret;
673 int err = 0;
674 bool need_check = true;
675
676 path1 = btrfs_alloc_path();
677 path2 = btrfs_alloc_path();
678 if (!path1 || !path2) {
679 err = -ENOMEM;
680 goto out;
681 }
682 path1->reada = READA_FORWARD;
683 path2->reada = READA_FORWARD;
684
685 node = alloc_backref_node(cache);
686 if (!node) {
687 err = -ENOMEM;
688 goto out;
689 }
690
691 node->bytenr = bytenr;
692 node->level = level;
693 node->lowest = 1;
694 cur = node;
695 again:
696 end = 0;
697 ptr = 0;
698 key.objectid = cur->bytenr;
699 key.type = BTRFS_METADATA_ITEM_KEY;
700 key.offset = (u64)-1;
701
702 path1->search_commit_root = 1;
703 path1->skip_locking = 1;
704 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
705 0, 0);
706 if (ret < 0) {
707 err = ret;
708 goto out;
709 }
710 ASSERT(ret);
711 ASSERT(path1->slots[0]);
712
713 path1->slots[0]--;
714
715 WARN_ON(cur->checked);
716 if (!list_empty(&cur->upper)) {
717 /*
718 * the backref was added previously when processing
719 * backref of type BTRFS_TREE_BLOCK_REF_KEY
720 */
721 ASSERT(list_is_singular(&cur->upper));
722 edge = list_entry(cur->upper.next, struct backref_edge,
723 list[LOWER]);
724 ASSERT(list_empty(&edge->list[UPPER]));
725 exist = edge->node[UPPER];
726 /*
727 * add the upper level block to pending list if we need
728 * check its backrefs
729 */
730 if (!exist->checked)
731 list_add_tail(&edge->list[UPPER], &list);
732 } else {
733 exist = NULL;
734 }
735
736 while (1) {
737 cond_resched();
738 eb = path1->nodes[0];
739
740 if (ptr >= end) {
741 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
742 ret = btrfs_next_leaf(rc->extent_root, path1);
743 if (ret < 0) {
744 err = ret;
745 goto out;
746 }
747 if (ret > 0)
748 break;
749 eb = path1->nodes[0];
750 }
751
752 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
753 if (key.objectid != cur->bytenr) {
754 WARN_ON(exist);
755 break;
756 }
757
758 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
759 key.type == BTRFS_METADATA_ITEM_KEY) {
760 ret = find_inline_backref(eb, path1->slots[0],
761 &ptr, &end);
762 if (ret)
763 goto next;
764 }
765 }
766
767 if (ptr < end) {
768 /* update key for inline back ref */
769 struct btrfs_extent_inline_ref *iref;
770 int type;
771 iref = (struct btrfs_extent_inline_ref *)ptr;
772 type = btrfs_get_extent_inline_ref_type(eb, iref,
773 BTRFS_REF_TYPE_BLOCK);
774 if (type == BTRFS_REF_TYPE_INVALID) {
775 err = -EUCLEAN;
776 goto out;
777 }
778 key.type = type;
779 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
780
781 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
782 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
783 }
784
785 /*
786 * Parent node found and matches current inline ref, no need to
787 * rebuild this node for this inline ref.
788 */
789 if (exist &&
790 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
791 exist->owner == key.offset) ||
792 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
793 exist->bytenr == key.offset))) {
794 exist = NULL;
795 goto next;
796 }
797
798 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
799 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
800 if (key.objectid == key.offset) {
801 /*
802 * Only root blocks of reloc trees use backref
803 * pointing to itself.
804 */
805 root = find_reloc_root(rc, cur->bytenr);
806 ASSERT(root);
807 cur->root = root;
808 break;
809 }
810
811 edge = alloc_backref_edge(cache);
812 if (!edge) {
813 err = -ENOMEM;
814 goto out;
815 }
816 rb_node = tree_search(&cache->rb_root, key.offset);
817 if (!rb_node) {
818 upper = alloc_backref_node(cache);
819 if (!upper) {
820 free_backref_edge(cache, edge);
821 err = -ENOMEM;
822 goto out;
823 }
824 upper->bytenr = key.offset;
825 upper->level = cur->level + 1;
826 /*
827 * backrefs for the upper level block isn't
828 * cached, add the block to pending list
829 */
830 list_add_tail(&edge->list[UPPER], &list);
831 } else {
832 upper = rb_entry(rb_node, struct backref_node,
833 rb_node);
834 ASSERT(upper->checked);
835 INIT_LIST_HEAD(&edge->list[UPPER]);
836 }
837 list_add_tail(&edge->list[LOWER], &cur->upper);
838 edge->node[LOWER] = cur;
839 edge->node[UPPER] = upper;
840
841 goto next;
842 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
843 err = -EINVAL;
844 btrfs_print_v0_err(rc->extent_root->fs_info);
845 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
846 NULL);
847 goto out;
848 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
849 goto next;
850 }
851
852 /*
853 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
854 * means the root objectid. We need to search the tree to get
855 * its parent bytenr.
856 */
857 root = read_fs_root(rc->extent_root->fs_info, key.offset);
858 if (IS_ERR(root)) {
859 err = PTR_ERR(root);
860 goto out;
861 }
862
863 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
864 cur->cowonly = 1;
865
866 if (btrfs_root_level(&root->root_item) == cur->level) {
867 /* tree root */
868 ASSERT(btrfs_root_bytenr(&root->root_item) ==
869 cur->bytenr);
870 if (should_ignore_root(root))
871 list_add(&cur->list, &useless);
872 else
873 cur->root = root;
874 break;
875 }
876
877 level = cur->level + 1;
878
879 /* Search the tree to find parent blocks referring the block. */
880 path2->search_commit_root = 1;
881 path2->skip_locking = 1;
882 path2->lowest_level = level;
883 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
884 path2->lowest_level = 0;
885 if (ret < 0) {
886 err = ret;
887 goto out;
888 }
889 if (ret > 0 && path2->slots[level] > 0)
890 path2->slots[level]--;
891
892 eb = path2->nodes[level];
893 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
894 cur->bytenr) {
895 btrfs_err(root->fs_info,
896 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
897 cur->bytenr, level - 1,
898 root->root_key.objectid,
899 node_key->objectid, node_key->type,
900 node_key->offset);
901 err = -ENOENT;
902 goto out;
903 }
904 lower = cur;
905 need_check = true;
906
907 /* Add all nodes and edges in the path */
908 for (; level < BTRFS_MAX_LEVEL; level++) {
909 if (!path2->nodes[level]) {
910 ASSERT(btrfs_root_bytenr(&root->root_item) ==
911 lower->bytenr);
912 if (should_ignore_root(root))
913 list_add(&lower->list, &useless);
914 else
915 lower->root = root;
916 break;
917 }
918
919 edge = alloc_backref_edge(cache);
920 if (!edge) {
921 err = -ENOMEM;
922 goto out;
923 }
924
925 eb = path2->nodes[level];
926 rb_node = tree_search(&cache->rb_root, eb->start);
927 if (!rb_node) {
928 upper = alloc_backref_node(cache);
929 if (!upper) {
930 free_backref_edge(cache, edge);
931 err = -ENOMEM;
932 goto out;
933 }
934 upper->bytenr = eb->start;
935 upper->owner = btrfs_header_owner(eb);
936 upper->level = lower->level + 1;
937 if (!test_bit(BTRFS_ROOT_REF_COWS,
938 &root->state))
939 upper->cowonly = 1;
940
941 /*
942 * if we know the block isn't shared
943 * we can void checking its backrefs.
944 */
945 if (btrfs_block_can_be_shared(root, eb))
946 upper->checked = 0;
947 else
948 upper->checked = 1;
949
950 /*
951 * add the block to pending list if we
952 * need check its backrefs, we only do this once
953 * while walking up a tree as we will catch
954 * anything else later on.
955 */
956 if (!upper->checked && need_check) {
957 need_check = false;
958 list_add_tail(&edge->list[UPPER],
959 &list);
960 } else {
961 if (upper->checked)
962 need_check = true;
963 INIT_LIST_HEAD(&edge->list[UPPER]);
964 }
965 } else {
966 upper = rb_entry(rb_node, struct backref_node,
967 rb_node);
968 ASSERT(upper->checked);
969 INIT_LIST_HEAD(&edge->list[UPPER]);
970 if (!upper->owner)
971 upper->owner = btrfs_header_owner(eb);
972 }
973 list_add_tail(&edge->list[LOWER], &lower->upper);
974 edge->node[LOWER] = lower;
975 edge->node[UPPER] = upper;
976
977 if (rb_node)
978 break;
979 lower = upper;
980 upper = NULL;
981 }
982 btrfs_release_path(path2);
983 next:
984 if (ptr < end) {
985 ptr += btrfs_extent_inline_ref_size(key.type);
986 if (ptr >= end) {
987 WARN_ON(ptr > end);
988 ptr = 0;
989 end = 0;
990 }
991 }
992 if (ptr >= end)
993 path1->slots[0]++;
994 }
995 btrfs_release_path(path1);
996
997 cur->checked = 1;
998 WARN_ON(exist);
999
1000 /* the pending list isn't empty, take the first block to process */
1001 if (!list_empty(&list)) {
1002 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003 list_del_init(&edge->list[UPPER]);
1004 cur = edge->node[UPPER];
1005 goto again;
1006 }
1007
1008 /*
1009 * everything goes well, connect backref nodes and insert backref nodes
1010 * into the cache.
1011 */
1012 ASSERT(node->checked);
1013 cowonly = node->cowonly;
1014 if (!cowonly) {
1015 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016 &node->rb_node);
1017 if (rb_node)
1018 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019 list_add_tail(&node->lower, &cache->leaves);
1020 }
1021
1022 list_for_each_entry(edge, &node->upper, list[LOWER])
1023 list_add_tail(&edge->list[UPPER], &list);
1024
1025 while (!list_empty(&list)) {
1026 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027 list_del_init(&edge->list[UPPER]);
1028 upper = edge->node[UPPER];
1029 if (upper->detached) {
1030 list_del(&edge->list[LOWER]);
1031 lower = edge->node[LOWER];
1032 free_backref_edge(cache, edge);
1033 if (list_empty(&lower->upper))
1034 list_add(&lower->list, &useless);
1035 continue;
1036 }
1037
1038 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039 if (upper->lowest) {
1040 list_del_init(&upper->lower);
1041 upper->lowest = 0;
1042 }
1043
1044 list_add_tail(&edge->list[UPPER], &upper->lower);
1045 continue;
1046 }
1047
1048 if (!upper->checked) {
1049 /*
1050 * Still want to blow up for developers since this is a
1051 * logic bug.
1052 */
1053 ASSERT(0);
1054 err = -EINVAL;
1055 goto out;
1056 }
1057 if (cowonly != upper->cowonly) {
1058 ASSERT(0);
1059 err = -EINVAL;
1060 goto out;
1061 }
1062
1063 if (!cowonly) {
1064 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065 &upper->rb_node);
1066 if (rb_node)
1067 backref_tree_panic(rb_node, -EEXIST,
1068 upper->bytenr);
1069 }
1070
1071 list_add_tail(&edge->list[UPPER], &upper->lower);
1072
1073 list_for_each_entry(edge, &upper->upper, list[LOWER])
1074 list_add_tail(&edge->list[UPPER], &list);
1075 }
1076 /*
1077 * process useless backref nodes. backref nodes for tree leaves
1078 * are deleted from the cache. backref nodes for upper level
1079 * tree blocks are left in the cache to avoid unnecessary backref
1080 * lookup.
1081 */
1082 while (!list_empty(&useless)) {
1083 upper = list_entry(useless.next, struct backref_node, list);
1084 list_del_init(&upper->list);
1085 ASSERT(list_empty(&upper->upper));
1086 if (upper == node)
1087 node = NULL;
1088 if (upper->lowest) {
1089 list_del_init(&upper->lower);
1090 upper->lowest = 0;
1091 }
1092 while (!list_empty(&upper->lower)) {
1093 edge = list_entry(upper->lower.next,
1094 struct backref_edge, list[UPPER]);
1095 list_del(&edge->list[UPPER]);
1096 list_del(&edge->list[LOWER]);
1097 lower = edge->node[LOWER];
1098 free_backref_edge(cache, edge);
1099
1100 if (list_empty(&lower->upper))
1101 list_add(&lower->list, &useless);
1102 }
1103 __mark_block_processed(rc, upper);
1104 if (upper->level > 0) {
1105 list_add(&upper->list, &cache->detached);
1106 upper->detached = 1;
1107 } else {
1108 rb_erase(&upper->rb_node, &cache->rb_root);
1109 free_backref_node(cache, upper);
1110 }
1111 }
1112 out:
1113 btrfs_free_path(path1);
1114 btrfs_free_path(path2);
1115 if (err) {
1116 while (!list_empty(&useless)) {
1117 lower = list_entry(useless.next,
1118 struct backref_node, list);
1119 list_del_init(&lower->list);
1120 }
1121 while (!list_empty(&list)) {
1122 edge = list_first_entry(&list, struct backref_edge,
1123 list[UPPER]);
1124 list_del(&edge->list[UPPER]);
1125 list_del(&edge->list[LOWER]);
1126 lower = edge->node[LOWER];
1127 upper = edge->node[UPPER];
1128 free_backref_edge(cache, edge);
1129
1130 /*
1131 * Lower is no longer linked to any upper backref nodes
1132 * and isn't in the cache, we can free it ourselves.
1133 */
1134 if (list_empty(&lower->upper) &&
1135 RB_EMPTY_NODE(&lower->rb_node))
1136 list_add(&lower->list, &useless);
1137
1138 if (!RB_EMPTY_NODE(&upper->rb_node))
1139 continue;
1140
1141 /* Add this guy's upper edges to the list to process */
1142 list_for_each_entry(edge, &upper->upper, list[LOWER])
1143 list_add_tail(&edge->list[UPPER], &list);
1144 if (list_empty(&upper->upper))
1145 list_add(&upper->list, &useless);
1146 }
1147
1148 while (!list_empty(&useless)) {
1149 lower = list_entry(useless.next,
1150 struct backref_node, list);
1151 list_del_init(&lower->list);
1152 if (lower == node)
1153 node = NULL;
1154 free_backref_node(cache, lower);
1155 }
1156
1157 free_backref_node(cache, node);
1158 return ERR_PTR(err);
1159 }
1160 ASSERT(!node || !node->detached);
1161 return node;
1162 }
1163
1164 /*
1165 * helper to add backref node for the newly created snapshot.
1166 * the backref node is created by cloning backref node that
1167 * corresponds to root of source tree
1168 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)1169 static int clone_backref_node(struct btrfs_trans_handle *trans,
1170 struct reloc_control *rc,
1171 struct btrfs_root *src,
1172 struct btrfs_root *dest)
1173 {
1174 struct btrfs_root *reloc_root = src->reloc_root;
1175 struct backref_cache *cache = &rc->backref_cache;
1176 struct backref_node *node = NULL;
1177 struct backref_node *new_node;
1178 struct backref_edge *edge;
1179 struct backref_edge *new_edge;
1180 struct rb_node *rb_node;
1181
1182 if (cache->last_trans > 0)
1183 update_backref_cache(trans, cache);
1184
1185 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186 if (rb_node) {
1187 node = rb_entry(rb_node, struct backref_node, rb_node);
1188 if (node->detached)
1189 node = NULL;
1190 else
1191 BUG_ON(node->new_bytenr != reloc_root->node->start);
1192 }
1193
1194 if (!node) {
1195 rb_node = tree_search(&cache->rb_root,
1196 reloc_root->commit_root->start);
1197 if (rb_node) {
1198 node = rb_entry(rb_node, struct backref_node,
1199 rb_node);
1200 BUG_ON(node->detached);
1201 }
1202 }
1203
1204 if (!node)
1205 return 0;
1206
1207 new_node = alloc_backref_node(cache);
1208 if (!new_node)
1209 return -ENOMEM;
1210
1211 new_node->bytenr = dest->node->start;
1212 new_node->level = node->level;
1213 new_node->lowest = node->lowest;
1214 new_node->checked = 1;
1215 new_node->root = dest;
1216
1217 if (!node->lowest) {
1218 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219 new_edge = alloc_backref_edge(cache);
1220 if (!new_edge)
1221 goto fail;
1222
1223 new_edge->node[UPPER] = new_node;
1224 new_edge->node[LOWER] = edge->node[LOWER];
1225 list_add_tail(&new_edge->list[UPPER],
1226 &new_node->lower);
1227 }
1228 } else {
1229 list_add_tail(&new_node->lower, &cache->leaves);
1230 }
1231
1232 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233 &new_node->rb_node);
1234 if (rb_node)
1235 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236
1237 if (!new_node->lowest) {
1238 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239 list_add_tail(&new_edge->list[LOWER],
1240 &new_edge->node[LOWER]->upper);
1241 }
1242 }
1243 return 0;
1244 fail:
1245 while (!list_empty(&new_node->lower)) {
1246 new_edge = list_entry(new_node->lower.next,
1247 struct backref_edge, list[UPPER]);
1248 list_del(&new_edge->list[UPPER]);
1249 free_backref_edge(cache, new_edge);
1250 }
1251 free_backref_node(cache, new_node);
1252 return -ENOMEM;
1253 }
1254
1255 /*
1256 * helper to add 'address of tree root -> reloc tree' mapping
1257 */
__add_reloc_root(struct btrfs_root * root)1258 static int __must_check __add_reloc_root(struct btrfs_root *root)
1259 {
1260 struct btrfs_fs_info *fs_info = root->fs_info;
1261 struct rb_node *rb_node;
1262 struct mapping_node *node;
1263 struct reloc_control *rc = fs_info->reloc_ctl;
1264
1265 node = kmalloc(sizeof(*node), GFP_NOFS);
1266 if (!node)
1267 return -ENOMEM;
1268
1269 node->bytenr = root->node->start;
1270 node->data = root;
1271
1272 spin_lock(&rc->reloc_root_tree.lock);
1273 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274 node->bytenr, &node->rb_node);
1275 spin_unlock(&rc->reloc_root_tree.lock);
1276 if (rb_node) {
1277 btrfs_panic(fs_info, -EEXIST,
1278 "Duplicate root found for start=%llu while inserting into relocation tree",
1279 node->bytenr);
1280 }
1281
1282 list_add_tail(&root->root_list, &rc->reloc_roots);
1283 return 0;
1284 }
1285
1286 /*
1287 * helper to delete the 'address of tree root -> reloc tree'
1288 * mapping
1289 */
__del_reloc_root(struct btrfs_root * root)1290 static void __del_reloc_root(struct btrfs_root *root)
1291 {
1292 struct btrfs_fs_info *fs_info = root->fs_info;
1293 struct rb_node *rb_node;
1294 struct mapping_node *node = NULL;
1295 struct reloc_control *rc = fs_info->reloc_ctl;
1296
1297 if (rc && root->node) {
1298 spin_lock(&rc->reloc_root_tree.lock);
1299 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300 root->node->start);
1301 if (rb_node) {
1302 node = rb_entry(rb_node, struct mapping_node, rb_node);
1303 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1304 }
1305 spin_unlock(&rc->reloc_root_tree.lock);
1306 if (!node)
1307 return;
1308 BUG_ON((struct btrfs_root *)node->data != root);
1309 }
1310
1311 spin_lock(&fs_info->trans_lock);
1312 list_del_init(&root->root_list);
1313 spin_unlock(&fs_info->trans_lock);
1314 kfree(node);
1315 }
1316
1317 /*
1318 * helper to update the 'address of tree root -> reloc tree'
1319 * mapping
1320 */
__update_reloc_root(struct btrfs_root * root,u64 new_bytenr)1321 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322 {
1323 struct btrfs_fs_info *fs_info = root->fs_info;
1324 struct rb_node *rb_node;
1325 struct mapping_node *node = NULL;
1326 struct reloc_control *rc = fs_info->reloc_ctl;
1327
1328 spin_lock(&rc->reloc_root_tree.lock);
1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 root->node->start);
1331 if (rb_node) {
1332 node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 }
1335 spin_unlock(&rc->reloc_root_tree.lock);
1336
1337 if (!node)
1338 return 0;
1339 BUG_ON((struct btrfs_root *)node->data != root);
1340
1341 spin_lock(&rc->reloc_root_tree.lock);
1342 node->bytenr = new_bytenr;
1343 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344 node->bytenr, &node->rb_node);
1345 spin_unlock(&rc->reloc_root_tree.lock);
1346 if (rb_node)
1347 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348 return 0;
1349 }
1350
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)1351 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *root, u64 objectid)
1353 {
1354 struct btrfs_fs_info *fs_info = root->fs_info;
1355 struct btrfs_root *reloc_root;
1356 struct extent_buffer *eb;
1357 struct btrfs_root_item *root_item;
1358 struct btrfs_key root_key;
1359 int ret;
1360
1361 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362 BUG_ON(!root_item);
1363
1364 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365 root_key.type = BTRFS_ROOT_ITEM_KEY;
1366 root_key.offset = objectid;
1367
1368 if (root->root_key.objectid == objectid) {
1369 u64 commit_root_gen;
1370
1371 /* called by btrfs_init_reloc_root */
1372 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373 BTRFS_TREE_RELOC_OBJECTID);
1374 BUG_ON(ret);
1375 /*
1376 * Set the last_snapshot field to the generation of the commit
1377 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378 * correctly (returns true) when the relocation root is created
1379 * either inside the critical section of a transaction commit
1380 * (through transaction.c:qgroup_account_snapshot()) and when
1381 * it's created before the transaction commit is started.
1382 */
1383 commit_root_gen = btrfs_header_generation(root->commit_root);
1384 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385 } else {
1386 /*
1387 * called by btrfs_reloc_post_snapshot_hook.
1388 * the source tree is a reloc tree, all tree blocks
1389 * modified after it was created have RELOC flag
1390 * set in their headers. so it's OK to not update
1391 * the 'last_snapshot'.
1392 */
1393 ret = btrfs_copy_root(trans, root, root->node, &eb,
1394 BTRFS_TREE_RELOC_OBJECTID);
1395 BUG_ON(ret);
1396 }
1397
1398 memcpy(root_item, &root->root_item, sizeof(*root_item));
1399 btrfs_set_root_bytenr(root_item, eb->start);
1400 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401 btrfs_set_root_generation(root_item, trans->transid);
1402
1403 if (root->root_key.objectid == objectid) {
1404 btrfs_set_root_refs(root_item, 0);
1405 memset(&root_item->drop_progress, 0,
1406 sizeof(struct btrfs_disk_key));
1407 root_item->drop_level = 0;
1408 }
1409
1410 btrfs_tree_unlock(eb);
1411 free_extent_buffer(eb);
1412
1413 ret = btrfs_insert_root(trans, fs_info->tree_root,
1414 &root_key, root_item);
1415 BUG_ON(ret);
1416 kfree(root_item);
1417
1418 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419 BUG_ON(IS_ERR(reloc_root));
1420 reloc_root->last_trans = trans->transid;
1421 return reloc_root;
1422 }
1423
1424 /*
1425 * create reloc tree for a given fs tree. reloc tree is just a
1426 * snapshot of the fs tree with special root objectid.
1427 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1428 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429 struct btrfs_root *root)
1430 {
1431 struct btrfs_fs_info *fs_info = root->fs_info;
1432 struct btrfs_root *reloc_root;
1433 struct reloc_control *rc = fs_info->reloc_ctl;
1434 struct btrfs_block_rsv *rsv;
1435 int clear_rsv = 0;
1436 int ret;
1437
1438 /*
1439 * The subvolume has reloc tree but the swap is finished, no need to
1440 * create/update the dead reloc tree
1441 */
1442 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
1443 return 0;
1444
1445 if (root->reloc_root) {
1446 reloc_root = root->reloc_root;
1447 reloc_root->last_trans = trans->transid;
1448 return 0;
1449 }
1450
1451 if (!rc || !rc->create_reloc_tree ||
1452 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1453 return 0;
1454
1455 if (!trans->reloc_reserved) {
1456 rsv = trans->block_rsv;
1457 trans->block_rsv = rc->block_rsv;
1458 clear_rsv = 1;
1459 }
1460 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1461 if (clear_rsv)
1462 trans->block_rsv = rsv;
1463
1464 ret = __add_reloc_root(reloc_root);
1465 BUG_ON(ret < 0);
1466 root->reloc_root = reloc_root;
1467 return 0;
1468 }
1469
1470 /*
1471 * update root item of reloc tree
1472 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1473 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root)
1475 {
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct btrfs_root *reloc_root;
1478 struct btrfs_root_item *root_item;
1479 int ret;
1480
1481 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1482 !root->reloc_root)
1483 goto out;
1484
1485 reloc_root = root->reloc_root;
1486 root_item = &reloc_root->root_item;
1487
1488 /* root->reloc_root will stay until current relocation finished */
1489 if (fs_info->reloc_ctl->merge_reloc_tree &&
1490 btrfs_root_refs(root_item) == 0) {
1491 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1492 __del_reloc_root(reloc_root);
1493 }
1494
1495 if (reloc_root->commit_root != reloc_root->node) {
1496 btrfs_set_root_node(root_item, reloc_root->node);
1497 free_extent_buffer(reloc_root->commit_root);
1498 reloc_root->commit_root = btrfs_root_node(reloc_root);
1499 }
1500
1501 ret = btrfs_update_root(trans, fs_info->tree_root,
1502 &reloc_root->root_key, root_item);
1503 BUG_ON(ret);
1504
1505 out:
1506 return 0;
1507 }
1508
1509 /*
1510 * helper to find first cached inode with inode number >= objectid
1511 * in a subvolume
1512 */
find_next_inode(struct btrfs_root * root,u64 objectid)1513 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1514 {
1515 struct rb_node *node;
1516 struct rb_node *prev;
1517 struct btrfs_inode *entry;
1518 struct inode *inode;
1519
1520 spin_lock(&root->inode_lock);
1521 again:
1522 node = root->inode_tree.rb_node;
1523 prev = NULL;
1524 while (node) {
1525 prev = node;
1526 entry = rb_entry(node, struct btrfs_inode, rb_node);
1527
1528 if (objectid < btrfs_ino(entry))
1529 node = node->rb_left;
1530 else if (objectid > btrfs_ino(entry))
1531 node = node->rb_right;
1532 else
1533 break;
1534 }
1535 if (!node) {
1536 while (prev) {
1537 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538 if (objectid <= btrfs_ino(entry)) {
1539 node = prev;
1540 break;
1541 }
1542 prev = rb_next(prev);
1543 }
1544 }
1545 while (node) {
1546 entry = rb_entry(node, struct btrfs_inode, rb_node);
1547 inode = igrab(&entry->vfs_inode);
1548 if (inode) {
1549 spin_unlock(&root->inode_lock);
1550 return inode;
1551 }
1552
1553 objectid = btrfs_ino(entry) + 1;
1554 if (cond_resched_lock(&root->inode_lock))
1555 goto again;
1556
1557 node = rb_next(node);
1558 }
1559 spin_unlock(&root->inode_lock);
1560 return NULL;
1561 }
1562
in_block_group(u64 bytenr,struct btrfs_block_group_cache * block_group)1563 static int in_block_group(u64 bytenr,
1564 struct btrfs_block_group_cache *block_group)
1565 {
1566 if (bytenr >= block_group->key.objectid &&
1567 bytenr < block_group->key.objectid + block_group->key.offset)
1568 return 1;
1569 return 0;
1570 }
1571
1572 /*
1573 * get new location of data
1574 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1575 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1576 u64 bytenr, u64 num_bytes)
1577 {
1578 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1579 struct btrfs_path *path;
1580 struct btrfs_file_extent_item *fi;
1581 struct extent_buffer *leaf;
1582 int ret;
1583
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
1588 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589 ret = btrfs_lookup_file_extent(NULL, root, path,
1590 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591 if (ret < 0)
1592 goto out;
1593 if (ret > 0) {
1594 ret = -ENOENT;
1595 goto out;
1596 }
1597
1598 leaf = path->nodes[0];
1599 fi = btrfs_item_ptr(leaf, path->slots[0],
1600 struct btrfs_file_extent_item);
1601
1602 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1603 btrfs_file_extent_compression(leaf, fi) ||
1604 btrfs_file_extent_encryption(leaf, fi) ||
1605 btrfs_file_extent_other_encoding(leaf, fi));
1606
1607 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608 ret = -EINVAL;
1609 goto out;
1610 }
1611
1612 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613 ret = 0;
1614 out:
1615 btrfs_free_path(path);
1616 return ret;
1617 }
1618
1619 /*
1620 * update file extent items in the tree leaf to point to
1621 * the new locations.
1622 */
1623 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1624 int replace_file_extents(struct btrfs_trans_handle *trans,
1625 struct reloc_control *rc,
1626 struct btrfs_root *root,
1627 struct extent_buffer *leaf)
1628 {
1629 struct btrfs_fs_info *fs_info = root->fs_info;
1630 struct btrfs_key key;
1631 struct btrfs_file_extent_item *fi;
1632 struct inode *inode = NULL;
1633 u64 parent;
1634 u64 bytenr;
1635 u64 new_bytenr = 0;
1636 u64 num_bytes;
1637 u64 end;
1638 u32 nritems;
1639 u32 i;
1640 int ret = 0;
1641 int first = 1;
1642 int dirty = 0;
1643
1644 if (rc->stage != UPDATE_DATA_PTRS)
1645 return 0;
1646
1647 /* reloc trees always use full backref */
1648 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1649 parent = leaf->start;
1650 else
1651 parent = 0;
1652
1653 nritems = btrfs_header_nritems(leaf);
1654 for (i = 0; i < nritems; i++) {
1655 struct btrfs_ref ref = { 0 };
1656
1657 cond_resched();
1658 btrfs_item_key_to_cpu(leaf, &key, i);
1659 if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 continue;
1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 if (btrfs_file_extent_type(leaf, fi) ==
1663 BTRFS_FILE_EXTENT_INLINE)
1664 continue;
1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 if (bytenr == 0)
1668 continue;
1669 if (!in_block_group(bytenr, rc->block_group))
1670 continue;
1671
1672 /*
1673 * if we are modifying block in fs tree, wait for readpage
1674 * to complete and drop the extent cache
1675 */
1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 if (first) {
1678 inode = find_next_inode(root, key.objectid);
1679 first = 0;
1680 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681 btrfs_add_delayed_iput(inode);
1682 inode = find_next_inode(root, key.objectid);
1683 }
1684 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685 end = key.offset +
1686 btrfs_file_extent_num_bytes(leaf, fi);
1687 WARN_ON(!IS_ALIGNED(key.offset,
1688 fs_info->sectorsize));
1689 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690 end--;
1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 key.offset, end);
1693 if (!ret)
1694 continue;
1695
1696 btrfs_drop_extent_cache(BTRFS_I(inode),
1697 key.offset, end, 1);
1698 unlock_extent(&BTRFS_I(inode)->io_tree,
1699 key.offset, end);
1700 }
1701 }
1702
1703 ret = get_new_location(rc->data_inode, &new_bytenr,
1704 bytenr, num_bytes);
1705 if (ret) {
1706 /*
1707 * Don't have to abort since we've not changed anything
1708 * in the file extent yet.
1709 */
1710 break;
1711 }
1712
1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 dirty = 1;
1715
1716 key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1718 num_bytes, parent);
1719 ref.real_root = root->root_key.objectid;
1720 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1721 key.objectid, key.offset);
1722 ret = btrfs_inc_extent_ref(trans, &ref);
1723 if (ret) {
1724 btrfs_abort_transaction(trans, ret);
1725 break;
1726 }
1727
1728 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1729 num_bytes, parent);
1730 ref.real_root = root->root_key.objectid;
1731 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1732 key.objectid, key.offset);
1733 ret = btrfs_free_extent(trans, &ref);
1734 if (ret) {
1735 btrfs_abort_transaction(trans, ret);
1736 break;
1737 }
1738 }
1739 if (dirty)
1740 btrfs_mark_buffer_dirty(leaf);
1741 if (inode)
1742 btrfs_add_delayed_iput(inode);
1743 return ret;
1744 }
1745
1746 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1747 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748 struct btrfs_path *path, int level)
1749 {
1750 struct btrfs_disk_key key1;
1751 struct btrfs_disk_key key2;
1752 btrfs_node_key(eb, &key1, slot);
1753 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754 return memcmp(&key1, &key2, sizeof(key1));
1755 }
1756
1757 /*
1758 * try to replace tree blocks in fs tree with the new blocks
1759 * in reloc tree. tree blocks haven't been modified since the
1760 * reloc tree was create can be replaced.
1761 *
1762 * if a block was replaced, level of the block + 1 is returned.
1763 * if no block got replaced, 0 is returned. if there are other
1764 * errors, a negative error number is returned.
1765 */
1766 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1767 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768 struct btrfs_root *dest, struct btrfs_root *src,
1769 struct btrfs_path *path, struct btrfs_key *next_key,
1770 int lowest_level, int max_level)
1771 {
1772 struct btrfs_fs_info *fs_info = dest->fs_info;
1773 struct extent_buffer *eb;
1774 struct extent_buffer *parent;
1775 struct btrfs_ref ref = { 0 };
1776 struct btrfs_key key;
1777 u64 old_bytenr;
1778 u64 new_bytenr;
1779 u64 old_ptr_gen;
1780 u64 new_ptr_gen;
1781 u64 last_snapshot;
1782 u32 blocksize;
1783 int cow = 0;
1784 int level;
1785 int ret;
1786 int slot;
1787
1788 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1789 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1790
1791 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792 again:
1793 slot = path->slots[lowest_level];
1794 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1795
1796 eb = btrfs_lock_root_node(dest);
1797 btrfs_set_lock_blocking_write(eb);
1798 level = btrfs_header_level(eb);
1799
1800 if (level < lowest_level) {
1801 btrfs_tree_unlock(eb);
1802 free_extent_buffer(eb);
1803 return 0;
1804 }
1805
1806 if (cow) {
1807 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1808 BUG_ON(ret);
1809 }
1810 btrfs_set_lock_blocking_write(eb);
1811
1812 if (next_key) {
1813 next_key->objectid = (u64)-1;
1814 next_key->type = (u8)-1;
1815 next_key->offset = (u64)-1;
1816 }
1817
1818 parent = eb;
1819 while (1) {
1820 struct btrfs_key first_key;
1821
1822 level = btrfs_header_level(parent);
1823 BUG_ON(level < lowest_level);
1824
1825 ret = btrfs_bin_search(parent, &key, level, &slot);
1826 if (ret < 0)
1827 break;
1828 if (ret && slot > 0)
1829 slot--;
1830
1831 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1832 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1833
1834 old_bytenr = btrfs_node_blockptr(parent, slot);
1835 blocksize = fs_info->nodesize;
1836 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837 btrfs_node_key_to_cpu(parent, &first_key, slot);
1838
1839 if (level <= max_level) {
1840 eb = path->nodes[level];
1841 new_bytenr = btrfs_node_blockptr(eb,
1842 path->slots[level]);
1843 new_ptr_gen = btrfs_node_ptr_generation(eb,
1844 path->slots[level]);
1845 } else {
1846 new_bytenr = 0;
1847 new_ptr_gen = 0;
1848 }
1849
1850 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851 ret = level;
1852 break;
1853 }
1854
1855 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1856 memcmp_node_keys(parent, slot, path, level)) {
1857 if (level <= lowest_level) {
1858 ret = 0;
1859 break;
1860 }
1861
1862 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1863 level - 1, &first_key);
1864 if (IS_ERR(eb)) {
1865 ret = PTR_ERR(eb);
1866 break;
1867 } else if (!extent_buffer_uptodate(eb)) {
1868 ret = -EIO;
1869 free_extent_buffer(eb);
1870 break;
1871 }
1872 btrfs_tree_lock(eb);
1873 if (cow) {
1874 ret = btrfs_cow_block(trans, dest, eb, parent,
1875 slot, &eb);
1876 BUG_ON(ret);
1877 }
1878 btrfs_set_lock_blocking_write(eb);
1879
1880 btrfs_tree_unlock(parent);
1881 free_extent_buffer(parent);
1882
1883 parent = eb;
1884 continue;
1885 }
1886
1887 if (!cow) {
1888 btrfs_tree_unlock(parent);
1889 free_extent_buffer(parent);
1890 cow = 1;
1891 goto again;
1892 }
1893
1894 btrfs_node_key_to_cpu(path->nodes[level], &key,
1895 path->slots[level]);
1896 btrfs_release_path(path);
1897
1898 path->lowest_level = level;
1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900 path->lowest_level = 0;
1901 BUG_ON(ret);
1902
1903 /*
1904 * Info qgroup to trace both subtrees.
1905 *
1906 * We must trace both trees.
1907 * 1) Tree reloc subtree
1908 * If not traced, we will leak data numbers
1909 * 2) Fs subtree
1910 * If not traced, we will double count old data
1911 *
1912 * We don't scan the subtree right now, but only record
1913 * the swapped tree blocks.
1914 * The real subtree rescan is delayed until we have new
1915 * CoW on the subtree root node before transaction commit.
1916 */
1917 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1918 rc->block_group, parent, slot,
1919 path->nodes[level], path->slots[level],
1920 last_snapshot);
1921 if (ret < 0)
1922 break;
1923 /*
1924 * swap blocks in fs tree and reloc tree.
1925 */
1926 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1927 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1928 btrfs_mark_buffer_dirty(parent);
1929
1930 btrfs_set_node_blockptr(path->nodes[level],
1931 path->slots[level], old_bytenr);
1932 btrfs_set_node_ptr_generation(path->nodes[level],
1933 path->slots[level], old_ptr_gen);
1934 btrfs_mark_buffer_dirty(path->nodes[level]);
1935
1936 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1937 blocksize, path->nodes[level]->start);
1938 ref.skip_qgroup = true;
1939 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1940 ret = btrfs_inc_extent_ref(trans, &ref);
1941 BUG_ON(ret);
1942 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1943 blocksize, 0);
1944 ref.skip_qgroup = true;
1945 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1946 ret = btrfs_inc_extent_ref(trans, &ref);
1947 BUG_ON(ret);
1948
1949 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1950 blocksize, path->nodes[level]->start);
1951 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1952 ref.skip_qgroup = true;
1953 ret = btrfs_free_extent(trans, &ref);
1954 BUG_ON(ret);
1955
1956 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1957 blocksize, 0);
1958 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1959 ref.skip_qgroup = true;
1960 ret = btrfs_free_extent(trans, &ref);
1961 BUG_ON(ret);
1962
1963 btrfs_unlock_up_safe(path, 0);
1964
1965 ret = level;
1966 break;
1967 }
1968 btrfs_tree_unlock(parent);
1969 free_extent_buffer(parent);
1970 return ret;
1971 }
1972
1973 /*
1974 * helper to find next relocated block in reloc tree
1975 */
1976 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1977 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978 int *level)
1979 {
1980 struct extent_buffer *eb;
1981 int i;
1982 u64 last_snapshot;
1983 u32 nritems;
1984
1985 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1986
1987 for (i = 0; i < *level; i++) {
1988 free_extent_buffer(path->nodes[i]);
1989 path->nodes[i] = NULL;
1990 }
1991
1992 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1993 eb = path->nodes[i];
1994 nritems = btrfs_header_nritems(eb);
1995 while (path->slots[i] + 1 < nritems) {
1996 path->slots[i]++;
1997 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1998 last_snapshot)
1999 continue;
2000
2001 *level = i;
2002 return 0;
2003 }
2004 free_extent_buffer(path->nodes[i]);
2005 path->nodes[i] = NULL;
2006 }
2007 return 1;
2008 }
2009
2010 /*
2011 * walk down reloc tree to find relocated block of lowest level
2012 */
2013 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)2014 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2015 int *level)
2016 {
2017 struct btrfs_fs_info *fs_info = root->fs_info;
2018 struct extent_buffer *eb = NULL;
2019 int i;
2020 u64 bytenr;
2021 u64 ptr_gen = 0;
2022 u64 last_snapshot;
2023 u32 nritems;
2024
2025 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2026
2027 for (i = *level; i > 0; i--) {
2028 struct btrfs_key first_key;
2029
2030 eb = path->nodes[i];
2031 nritems = btrfs_header_nritems(eb);
2032 while (path->slots[i] < nritems) {
2033 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2034 if (ptr_gen > last_snapshot)
2035 break;
2036 path->slots[i]++;
2037 }
2038 if (path->slots[i] >= nritems) {
2039 if (i == *level)
2040 break;
2041 *level = i + 1;
2042 return 0;
2043 }
2044 if (i == 1) {
2045 *level = i;
2046 return 0;
2047 }
2048
2049 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2051 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2052 &first_key);
2053 if (IS_ERR(eb)) {
2054 return PTR_ERR(eb);
2055 } else if (!extent_buffer_uptodate(eb)) {
2056 free_extent_buffer(eb);
2057 return -EIO;
2058 }
2059 BUG_ON(btrfs_header_level(eb) != i - 1);
2060 path->nodes[i - 1] = eb;
2061 path->slots[i - 1] = 0;
2062 }
2063 return 1;
2064 }
2065
2066 /*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)2070 static int invalidate_extent_cache(struct btrfs_root *root,
2071 struct btrfs_key *min_key,
2072 struct btrfs_key *max_key)
2073 {
2074 struct btrfs_fs_info *fs_info = root->fs_info;
2075 struct inode *inode = NULL;
2076 u64 objectid;
2077 u64 start, end;
2078 u64 ino;
2079
2080 objectid = min_key->objectid;
2081 while (1) {
2082 cond_resched();
2083 iput(inode);
2084
2085 if (objectid > max_key->objectid)
2086 break;
2087
2088 inode = find_next_inode(root, objectid);
2089 if (!inode)
2090 break;
2091 ino = btrfs_ino(BTRFS_I(inode));
2092
2093 if (ino > max_key->objectid) {
2094 iput(inode);
2095 break;
2096 }
2097
2098 objectid = ino + 1;
2099 if (!S_ISREG(inode->i_mode))
2100 continue;
2101
2102 if (unlikely(min_key->objectid == ino)) {
2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104 continue;
2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106 start = 0;
2107 else {
2108 start = min_key->offset;
2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 }
2111 } else {
2112 start = 0;
2113 }
2114
2115 if (unlikely(max_key->objectid == ino)) {
2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117 continue;
2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119 end = (u64)-1;
2120 } else {
2121 if (max_key->offset == 0)
2122 continue;
2123 end = max_key->offset;
2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 end--;
2126 }
2127 } else {
2128 end = (u64)-1;
2129 }
2130
2131 /* the lock_extent waits for readpage to complete */
2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 }
2136 return 0;
2137 }
2138
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)2139 static int find_next_key(struct btrfs_path *path, int level,
2140 struct btrfs_key *key)
2141
2142 {
2143 while (level < BTRFS_MAX_LEVEL) {
2144 if (!path->nodes[level])
2145 break;
2146 if (path->slots[level] + 1 <
2147 btrfs_header_nritems(path->nodes[level])) {
2148 btrfs_node_key_to_cpu(path->nodes[level], key,
2149 path->slots[level] + 1);
2150 return 0;
2151 }
2152 level++;
2153 }
2154 return 1;
2155 }
2156
2157 /*
2158 * Insert current subvolume into reloc_control::dirty_subvol_roots
2159 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)2160 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2161 struct reloc_control *rc,
2162 struct btrfs_root *root)
2163 {
2164 struct btrfs_root *reloc_root = root->reloc_root;
2165 struct btrfs_root_item *reloc_root_item;
2166
2167 /* @root must be a subvolume tree root with a valid reloc tree */
2168 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2169 ASSERT(reloc_root);
2170
2171 reloc_root_item = &reloc_root->root_item;
2172 memset(&reloc_root_item->drop_progress, 0,
2173 sizeof(reloc_root_item->drop_progress));
2174 reloc_root_item->drop_level = 0;
2175 btrfs_set_root_refs(reloc_root_item, 0);
2176 btrfs_update_reloc_root(trans, root);
2177
2178 if (list_empty(&root->reloc_dirty_list)) {
2179 btrfs_grab_fs_root(root);
2180 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2181 }
2182 }
2183
clean_dirty_subvols(struct reloc_control * rc)2184 static int clean_dirty_subvols(struct reloc_control *rc)
2185 {
2186 struct btrfs_root *root;
2187 struct btrfs_root *next;
2188 int ret = 0;
2189 int ret2;
2190
2191 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2192 reloc_dirty_list) {
2193 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2194 /* Merged subvolume, cleanup its reloc root */
2195 struct btrfs_root *reloc_root = root->reloc_root;
2196
2197 list_del_init(&root->reloc_dirty_list);
2198 root->reloc_root = NULL;
2199 if (reloc_root) {
2200
2201 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2202 if (ret2 < 0 && !ret)
2203 ret = ret2;
2204 }
2205 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206 btrfs_put_fs_root(root);
2207 } else {
2208 /* Orphan reloc tree, just clean it up */
2209 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210 if (ret2 < 0 && !ret)
2211 ret = ret2;
2212 }
2213 }
2214 return ret;
2215 }
2216
2217 /*
2218 * merge the relocated tree blocks in reloc tree with corresponding
2219 * fs tree.
2220 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)2221 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2222 struct btrfs_root *root)
2223 {
2224 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225 struct btrfs_key key;
2226 struct btrfs_key next_key;
2227 struct btrfs_trans_handle *trans = NULL;
2228 struct btrfs_root *reloc_root;
2229 struct btrfs_root_item *root_item;
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 int level;
2233 int max_level;
2234 int replaced = 0;
2235 int ret;
2236 int err = 0;
2237 u32 min_reserved;
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242 path->reada = READA_FORWARD;
2243
2244 reloc_root = root->reloc_root;
2245 root_item = &reloc_root->root_item;
2246
2247 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2248 level = btrfs_root_level(root_item);
2249 extent_buffer_get(reloc_root->node);
2250 path->nodes[level] = reloc_root->node;
2251 path->slots[level] = 0;
2252 } else {
2253 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2254
2255 level = root_item->drop_level;
2256 BUG_ON(level == 0);
2257 path->lowest_level = level;
2258 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259 path->lowest_level = 0;
2260 if (ret < 0) {
2261 btrfs_free_path(path);
2262 return ret;
2263 }
2264
2265 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2266 path->slots[level]);
2267 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2268
2269 btrfs_unlock_up_safe(path, 0);
2270 }
2271
2272 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2273 memset(&next_key, 0, sizeof(next_key));
2274
2275 while (1) {
2276 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2277 BTRFS_RESERVE_FLUSH_ALL);
2278 if (ret) {
2279 err = ret;
2280 goto out;
2281 }
2282 trans = btrfs_start_transaction(root, 0);
2283 if (IS_ERR(trans)) {
2284 err = PTR_ERR(trans);
2285 trans = NULL;
2286 goto out;
2287 }
2288 trans->block_rsv = rc->block_rsv;
2289
2290 replaced = 0;
2291 max_level = level;
2292
2293 ret = walk_down_reloc_tree(reloc_root, path, &level);
2294 if (ret < 0) {
2295 err = ret;
2296 goto out;
2297 }
2298 if (ret > 0)
2299 break;
2300
2301 if (!find_next_key(path, level, &key) &&
2302 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2303 ret = 0;
2304 } else {
2305 ret = replace_path(trans, rc, root, reloc_root, path,
2306 &next_key, level, max_level);
2307 }
2308 if (ret < 0) {
2309 err = ret;
2310 goto out;
2311 }
2312
2313 if (ret > 0) {
2314 level = ret;
2315 btrfs_node_key_to_cpu(path->nodes[level], &key,
2316 path->slots[level]);
2317 replaced = 1;
2318 }
2319
2320 ret = walk_up_reloc_tree(reloc_root, path, &level);
2321 if (ret > 0)
2322 break;
2323
2324 BUG_ON(level == 0);
2325 /*
2326 * save the merging progress in the drop_progress.
2327 * this is OK since root refs == 1 in this case.
2328 */
2329 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2330 path->slots[level]);
2331 root_item->drop_level = level;
2332
2333 btrfs_end_transaction_throttle(trans);
2334 trans = NULL;
2335
2336 btrfs_btree_balance_dirty(fs_info);
2337
2338 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2339 invalidate_extent_cache(root, &key, &next_key);
2340 }
2341
2342 /*
2343 * handle the case only one block in the fs tree need to be
2344 * relocated and the block is tree root.
2345 */
2346 leaf = btrfs_lock_root_node(root);
2347 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2348 btrfs_tree_unlock(leaf);
2349 free_extent_buffer(leaf);
2350 if (ret < 0)
2351 err = ret;
2352 out:
2353 btrfs_free_path(path);
2354
2355 if (err == 0)
2356 insert_dirty_subvol(trans, rc, root);
2357
2358 if (trans)
2359 btrfs_end_transaction_throttle(trans);
2360
2361 btrfs_btree_balance_dirty(fs_info);
2362
2363 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2364 invalidate_extent_cache(root, &key, &next_key);
2365
2366 return err;
2367 }
2368
2369 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)2370 int prepare_to_merge(struct reloc_control *rc, int err)
2371 {
2372 struct btrfs_root *root = rc->extent_root;
2373 struct btrfs_fs_info *fs_info = root->fs_info;
2374 struct btrfs_root *reloc_root;
2375 struct btrfs_trans_handle *trans;
2376 LIST_HEAD(reloc_roots);
2377 u64 num_bytes = 0;
2378 int ret;
2379
2380 mutex_lock(&fs_info->reloc_mutex);
2381 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382 rc->merging_rsv_size += rc->nodes_relocated * 2;
2383 mutex_unlock(&fs_info->reloc_mutex);
2384
2385 again:
2386 if (!err) {
2387 num_bytes = rc->merging_rsv_size;
2388 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2389 BTRFS_RESERVE_FLUSH_ALL);
2390 if (ret)
2391 err = ret;
2392 }
2393
2394 trans = btrfs_join_transaction(rc->extent_root);
2395 if (IS_ERR(trans)) {
2396 if (!err)
2397 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2398 num_bytes);
2399 return PTR_ERR(trans);
2400 }
2401
2402 if (!err) {
2403 if (num_bytes != rc->merging_rsv_size) {
2404 btrfs_end_transaction(trans);
2405 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2406 num_bytes);
2407 goto again;
2408 }
2409 }
2410
2411 rc->merge_reloc_tree = 1;
2412
2413 while (!list_empty(&rc->reloc_roots)) {
2414 reloc_root = list_entry(rc->reloc_roots.next,
2415 struct btrfs_root, root_list);
2416 list_del_init(&reloc_root->root_list);
2417
2418 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2419 BUG_ON(IS_ERR(root));
2420 BUG_ON(root->reloc_root != reloc_root);
2421
2422 /*
2423 * set reference count to 1, so btrfs_recover_relocation
2424 * knows it should resumes merging
2425 */
2426 if (!err)
2427 btrfs_set_root_refs(&reloc_root->root_item, 1);
2428 btrfs_update_reloc_root(trans, root);
2429
2430 list_add(&reloc_root->root_list, &reloc_roots);
2431 }
2432
2433 list_splice(&reloc_roots, &rc->reloc_roots);
2434
2435 if (!err)
2436 btrfs_commit_transaction(trans);
2437 else
2438 btrfs_end_transaction(trans);
2439 return err;
2440 }
2441
2442 static noinline_for_stack
free_reloc_roots(struct list_head * list)2443 void free_reloc_roots(struct list_head *list)
2444 {
2445 struct btrfs_root *reloc_root;
2446
2447 while (!list_empty(list)) {
2448 reloc_root = list_entry(list->next, struct btrfs_root,
2449 root_list);
2450 __del_reloc_root(reloc_root);
2451 free_extent_buffer(reloc_root->node);
2452 free_extent_buffer(reloc_root->commit_root);
2453 reloc_root->node = NULL;
2454 reloc_root->commit_root = NULL;
2455 }
2456 }
2457
2458 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)2459 void merge_reloc_roots(struct reloc_control *rc)
2460 {
2461 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462 struct btrfs_root *root;
2463 struct btrfs_root *reloc_root;
2464 LIST_HEAD(reloc_roots);
2465 int found = 0;
2466 int ret = 0;
2467 again:
2468 root = rc->extent_root;
2469
2470 /*
2471 * this serializes us with btrfs_record_root_in_transaction,
2472 * we have to make sure nobody is in the middle of
2473 * adding their roots to the list while we are
2474 * doing this splice
2475 */
2476 mutex_lock(&fs_info->reloc_mutex);
2477 list_splice_init(&rc->reloc_roots, &reloc_roots);
2478 mutex_unlock(&fs_info->reloc_mutex);
2479
2480 while (!list_empty(&reloc_roots)) {
2481 found = 1;
2482 reloc_root = list_entry(reloc_roots.next,
2483 struct btrfs_root, root_list);
2484
2485 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486 root = read_fs_root(fs_info,
2487 reloc_root->root_key.offset);
2488 BUG_ON(IS_ERR(root));
2489 BUG_ON(root->reloc_root != reloc_root);
2490
2491 ret = merge_reloc_root(rc, root);
2492 if (ret) {
2493 if (list_empty(&reloc_root->root_list))
2494 list_add_tail(&reloc_root->root_list,
2495 &reloc_roots);
2496 goto out;
2497 }
2498 } else {
2499 list_del_init(&reloc_root->root_list);
2500 /* Don't forget to queue this reloc root for cleanup */
2501 list_add_tail(&reloc_root->reloc_dirty_list,
2502 &rc->dirty_subvol_roots);
2503 }
2504 }
2505
2506 if (found) {
2507 found = 0;
2508 goto again;
2509 }
2510 out:
2511 if (ret) {
2512 btrfs_handle_fs_error(fs_info, ret, NULL);
2513 if (!list_empty(&reloc_roots))
2514 free_reloc_roots(&reloc_roots);
2515
2516 /* new reloc root may be added */
2517 mutex_lock(&fs_info->reloc_mutex);
2518 list_splice_init(&rc->reloc_roots, &reloc_roots);
2519 mutex_unlock(&fs_info->reloc_mutex);
2520 if (!list_empty(&reloc_roots))
2521 free_reloc_roots(&reloc_roots);
2522 }
2523
2524 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2525 }
2526
free_block_list(struct rb_root * blocks)2527 static void free_block_list(struct rb_root *blocks)
2528 {
2529 struct tree_block *block;
2530 struct rb_node *rb_node;
2531 while ((rb_node = rb_first(blocks))) {
2532 block = rb_entry(rb_node, struct tree_block, rb_node);
2533 rb_erase(rb_node, blocks);
2534 kfree(block);
2535 }
2536 }
2537
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2538 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *reloc_root)
2540 {
2541 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542 struct btrfs_root *root;
2543
2544 if (reloc_root->last_trans == trans->transid)
2545 return 0;
2546
2547 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548 BUG_ON(IS_ERR(root));
2549 BUG_ON(root->reloc_root != reloc_root);
2550
2551 return btrfs_record_root_in_trans(trans, root);
2552 }
2553
2554 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct backref_edge * edges[])2555 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2556 struct reloc_control *rc,
2557 struct backref_node *node,
2558 struct backref_edge *edges[])
2559 {
2560 struct backref_node *next;
2561 struct btrfs_root *root;
2562 int index = 0;
2563
2564 next = node;
2565 while (1) {
2566 cond_resched();
2567 next = walk_up_backref(next, edges, &index);
2568 root = next->root;
2569 BUG_ON(!root);
2570 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2571
2572 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2573 record_reloc_root_in_trans(trans, root);
2574 break;
2575 }
2576
2577 btrfs_record_root_in_trans(trans, root);
2578 root = root->reloc_root;
2579
2580 if (next->new_bytenr != root->node->start) {
2581 BUG_ON(next->new_bytenr);
2582 BUG_ON(!list_empty(&next->list));
2583 next->new_bytenr = root->node->start;
2584 next->root = root;
2585 list_add_tail(&next->list,
2586 &rc->backref_cache.changed);
2587 __mark_block_processed(rc, next);
2588 break;
2589 }
2590
2591 WARN_ON(1);
2592 root = NULL;
2593 next = walk_down_backref(edges, &index);
2594 if (!next || next->level <= node->level)
2595 break;
2596 }
2597 if (!root)
2598 return NULL;
2599
2600 next = node;
2601 /* setup backref node path for btrfs_reloc_cow_block */
2602 while (1) {
2603 rc->backref_cache.path[next->level] = next;
2604 if (--index < 0)
2605 break;
2606 next = edges[index]->node[UPPER];
2607 }
2608 return root;
2609 }
2610
2611 /*
2612 * select a tree root for relocation. return NULL if the block
2613 * is reference counted. we should use do_relocation() in this
2614 * case. return a tree root pointer if the block isn't reference
2615 * counted. return -ENOENT if the block is root of reloc tree.
2616 */
2617 static noinline_for_stack
select_one_root(struct backref_node * node)2618 struct btrfs_root *select_one_root(struct backref_node *node)
2619 {
2620 struct backref_node *next;
2621 struct btrfs_root *root;
2622 struct btrfs_root *fs_root = NULL;
2623 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624 int index = 0;
2625
2626 next = node;
2627 while (1) {
2628 cond_resched();
2629 next = walk_up_backref(next, edges, &index);
2630 root = next->root;
2631 BUG_ON(!root);
2632
2633 /* no other choice for non-references counted tree */
2634 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2635 return root;
2636
2637 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2638 fs_root = root;
2639
2640 if (next != node)
2641 return NULL;
2642
2643 next = walk_down_backref(edges, &index);
2644 if (!next || next->level <= node->level)
2645 break;
2646 }
2647
2648 if (!fs_root)
2649 return ERR_PTR(-ENOENT);
2650 return fs_root;
2651 }
2652
2653 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct backref_node * node,int reserve)2654 u64 calcu_metadata_size(struct reloc_control *rc,
2655 struct backref_node *node, int reserve)
2656 {
2657 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658 struct backref_node *next = node;
2659 struct backref_edge *edge;
2660 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2661 u64 num_bytes = 0;
2662 int index = 0;
2663
2664 BUG_ON(reserve && node->processed);
2665
2666 while (next) {
2667 cond_resched();
2668 while (1) {
2669 if (next->processed && (reserve || next != node))
2670 break;
2671
2672 num_bytes += fs_info->nodesize;
2673
2674 if (list_empty(&next->upper))
2675 break;
2676
2677 edge = list_entry(next->upper.next,
2678 struct backref_edge, list[LOWER]);
2679 edges[index++] = edge;
2680 next = edge->node[UPPER];
2681 }
2682 next = walk_down_backref(edges, &index);
2683 }
2684 return num_bytes;
2685 }
2686
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node)2687 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2688 struct reloc_control *rc,
2689 struct backref_node *node)
2690 {
2691 struct btrfs_root *root = rc->extent_root;
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 num_bytes;
2694 int ret;
2695 u64 tmp;
2696
2697 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698
2699 trans->block_rsv = rc->block_rsv;
2700 rc->reserved_bytes += num_bytes;
2701
2702 /*
2703 * We are under a transaction here so we can only do limited flushing.
2704 * If we get an enospc just kick back -EAGAIN so we know to drop the
2705 * transaction and try to refill when we can flush all the things.
2706 */
2707 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708 BTRFS_RESERVE_FLUSH_LIMIT);
2709 if (ret) {
2710 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711 while (tmp <= rc->reserved_bytes)
2712 tmp <<= 1;
2713 /*
2714 * only one thread can access block_rsv at this point,
2715 * so we don't need hold lock to protect block_rsv.
2716 * we expand more reservation size here to allow enough
2717 * space for relocation and we will return earlier in
2718 * enospc case.
2719 */
2720 rc->block_rsv->size = tmp + fs_info->nodesize *
2721 RELOCATION_RESERVED_NODES;
2722 return -EAGAIN;
2723 }
2724
2725 return 0;
2726 }
2727
2728 /*
2729 * relocate a block tree, and then update pointers in upper level
2730 * blocks that reference the block to point to the new location.
2731 *
2732 * if called by link_to_upper, the block has already been relocated.
2733 * in that case this function just updates pointers.
2734 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2735 static int do_relocation(struct btrfs_trans_handle *trans,
2736 struct reloc_control *rc,
2737 struct backref_node *node,
2738 struct btrfs_key *key,
2739 struct btrfs_path *path, int lowest)
2740 {
2741 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742 struct backref_node *upper;
2743 struct backref_edge *edge;
2744 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2745 struct btrfs_root *root;
2746 struct extent_buffer *eb;
2747 u32 blocksize;
2748 u64 bytenr;
2749 u64 generation;
2750 int slot;
2751 int ret;
2752 int err = 0;
2753
2754 BUG_ON(lowest && node->eb);
2755
2756 path->lowest_level = node->level + 1;
2757 rc->backref_cache.path[node->level] = node;
2758 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759 struct btrfs_key first_key;
2760 struct btrfs_ref ref = { 0 };
2761
2762 cond_resched();
2763
2764 upper = edge->node[UPPER];
2765 root = select_reloc_root(trans, rc, upper, edges);
2766 BUG_ON(!root);
2767
2768 if (upper->eb && !upper->locked) {
2769 if (!lowest) {
2770 ret = btrfs_bin_search(upper->eb, key,
2771 upper->level, &slot);
2772 if (ret < 0) {
2773 err = ret;
2774 goto next;
2775 }
2776 BUG_ON(ret);
2777 bytenr = btrfs_node_blockptr(upper->eb, slot);
2778 if (node->eb->start == bytenr)
2779 goto next;
2780 }
2781 drop_node_buffer(upper);
2782 }
2783
2784 if (!upper->eb) {
2785 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786 if (ret) {
2787 if (ret < 0)
2788 err = ret;
2789 else
2790 err = -ENOENT;
2791
2792 btrfs_release_path(path);
2793 break;
2794 }
2795
2796 if (!upper->eb) {
2797 upper->eb = path->nodes[upper->level];
2798 path->nodes[upper->level] = NULL;
2799 } else {
2800 BUG_ON(upper->eb != path->nodes[upper->level]);
2801 }
2802
2803 upper->locked = 1;
2804 path->locks[upper->level] = 0;
2805
2806 slot = path->slots[upper->level];
2807 btrfs_release_path(path);
2808 } else {
2809 ret = btrfs_bin_search(upper->eb, key, upper->level,
2810 &slot);
2811 if (ret < 0) {
2812 err = ret;
2813 goto next;
2814 }
2815 BUG_ON(ret);
2816 }
2817
2818 bytenr = btrfs_node_blockptr(upper->eb, slot);
2819 if (lowest) {
2820 if (bytenr != node->bytenr) {
2821 btrfs_err(root->fs_info,
2822 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2823 bytenr, node->bytenr, slot,
2824 upper->eb->start);
2825 err = -EIO;
2826 goto next;
2827 }
2828 } else {
2829 if (node->eb->start == bytenr)
2830 goto next;
2831 }
2832
2833 blocksize = root->fs_info->nodesize;
2834 generation = btrfs_node_ptr_generation(upper->eb, slot);
2835 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2836 eb = read_tree_block(fs_info, bytenr, generation,
2837 upper->level - 1, &first_key);
2838 if (IS_ERR(eb)) {
2839 err = PTR_ERR(eb);
2840 goto next;
2841 } else if (!extent_buffer_uptodate(eb)) {
2842 free_extent_buffer(eb);
2843 err = -EIO;
2844 goto next;
2845 }
2846 btrfs_tree_lock(eb);
2847 btrfs_set_lock_blocking_write(eb);
2848
2849 if (!node->eb) {
2850 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2851 slot, &eb);
2852 btrfs_tree_unlock(eb);
2853 free_extent_buffer(eb);
2854 if (ret < 0) {
2855 err = ret;
2856 goto next;
2857 }
2858 BUG_ON(node->eb != eb);
2859 } else {
2860 btrfs_set_node_blockptr(upper->eb, slot,
2861 node->eb->start);
2862 btrfs_set_node_ptr_generation(upper->eb, slot,
2863 trans->transid);
2864 btrfs_mark_buffer_dirty(upper->eb);
2865
2866 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2867 node->eb->start, blocksize,
2868 upper->eb->start);
2869 ref.real_root = root->root_key.objectid;
2870 btrfs_init_tree_ref(&ref, node->level,
2871 btrfs_header_owner(upper->eb));
2872 ret = btrfs_inc_extent_ref(trans, &ref);
2873 BUG_ON(ret);
2874
2875 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2876 BUG_ON(ret);
2877 }
2878 next:
2879 if (!upper->pending)
2880 drop_node_buffer(upper);
2881 else
2882 unlock_node_buffer(upper);
2883 if (err)
2884 break;
2885 }
2886
2887 if (!err && node->pending) {
2888 drop_node_buffer(node);
2889 list_move_tail(&node->list, &rc->backref_cache.changed);
2890 node->pending = 0;
2891 }
2892
2893 path->lowest_level = 0;
2894 BUG_ON(err == -ENOSPC);
2895 return err;
2896 }
2897
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_path * path)2898 static int link_to_upper(struct btrfs_trans_handle *trans,
2899 struct reloc_control *rc,
2900 struct backref_node *node,
2901 struct btrfs_path *path)
2902 {
2903 struct btrfs_key key;
2904
2905 btrfs_node_key_to_cpu(node->eb, &key, 0);
2906 return do_relocation(trans, rc, node, &key, path, 0);
2907 }
2908
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2909 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910 struct reloc_control *rc,
2911 struct btrfs_path *path, int err)
2912 {
2913 LIST_HEAD(list);
2914 struct backref_cache *cache = &rc->backref_cache;
2915 struct backref_node *node;
2916 int level;
2917 int ret;
2918
2919 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2920 while (!list_empty(&cache->pending[level])) {
2921 node = list_entry(cache->pending[level].next,
2922 struct backref_node, list);
2923 list_move_tail(&node->list, &list);
2924 BUG_ON(!node->pending);
2925
2926 if (!err) {
2927 ret = link_to_upper(trans, rc, node, path);
2928 if (ret < 0)
2929 err = ret;
2930 }
2931 }
2932 list_splice_init(&list, &cache->pending[level]);
2933 }
2934 return err;
2935 }
2936
mark_block_processed(struct reloc_control * rc,u64 bytenr,u32 blocksize)2937 static void mark_block_processed(struct reloc_control *rc,
2938 u64 bytenr, u32 blocksize)
2939 {
2940 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941 EXTENT_DIRTY);
2942 }
2943
__mark_block_processed(struct reloc_control * rc,struct backref_node * node)2944 static void __mark_block_processed(struct reloc_control *rc,
2945 struct backref_node *node)
2946 {
2947 u32 blocksize;
2948 if (node->level == 0 ||
2949 in_block_group(node->bytenr, rc->block_group)) {
2950 blocksize = rc->extent_root->fs_info->nodesize;
2951 mark_block_processed(rc, node->bytenr, blocksize);
2952 }
2953 node->processed = 1;
2954 }
2955
2956 /*
2957 * mark a block and all blocks directly/indirectly reference the block
2958 * as processed.
2959 */
update_processed_blocks(struct reloc_control * rc,struct backref_node * node)2960 static void update_processed_blocks(struct reloc_control *rc,
2961 struct backref_node *node)
2962 {
2963 struct backref_node *next = node;
2964 struct backref_edge *edge;
2965 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2966 int index = 0;
2967
2968 while (next) {
2969 cond_resched();
2970 while (1) {
2971 if (next->processed)
2972 break;
2973
2974 __mark_block_processed(rc, next);
2975
2976 if (list_empty(&next->upper))
2977 break;
2978
2979 edge = list_entry(next->upper.next,
2980 struct backref_edge, list[LOWER]);
2981 edges[index++] = edge;
2982 next = edge->node[UPPER];
2983 }
2984 next = walk_down_backref(edges, &index);
2985 }
2986 }
2987
tree_block_processed(u64 bytenr,struct reloc_control * rc)2988 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989 {
2990 u32 blocksize = rc->extent_root->fs_info->nodesize;
2991
2992 if (test_range_bit(&rc->processed_blocks, bytenr,
2993 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2994 return 1;
2995 return 0;
2996 }
2997
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2998 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999 struct tree_block *block)
3000 {
3001 struct extent_buffer *eb;
3002
3003 BUG_ON(block->key_ready);
3004 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3005 block->level, NULL);
3006 if (IS_ERR(eb)) {
3007 return PTR_ERR(eb);
3008 } else if (!extent_buffer_uptodate(eb)) {
3009 free_extent_buffer(eb);
3010 return -EIO;
3011 }
3012 if (block->level == 0)
3013 btrfs_item_key_to_cpu(eb, &block->key, 0);
3014 else
3015 btrfs_node_key_to_cpu(eb, &block->key, 0);
3016 free_extent_buffer(eb);
3017 block->key_ready = 1;
3018 return 0;
3019 }
3020
3021 /*
3022 * helper function to relocate a tree block
3023 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path)3024 static int relocate_tree_block(struct btrfs_trans_handle *trans,
3025 struct reloc_control *rc,
3026 struct backref_node *node,
3027 struct btrfs_key *key,
3028 struct btrfs_path *path)
3029 {
3030 struct btrfs_root *root;
3031 int ret = 0;
3032
3033 if (!node)
3034 return 0;
3035
3036 BUG_ON(node->processed);
3037 root = select_one_root(node);
3038 if (root == ERR_PTR(-ENOENT)) {
3039 update_processed_blocks(rc, node);
3040 goto out;
3041 }
3042
3043 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044 ret = reserve_metadata_space(trans, rc, node);
3045 if (ret)
3046 goto out;
3047 }
3048
3049 if (root) {
3050 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051 BUG_ON(node->new_bytenr);
3052 BUG_ON(!list_empty(&node->list));
3053 btrfs_record_root_in_trans(trans, root);
3054 root = root->reloc_root;
3055 node->new_bytenr = root->node->start;
3056 node->root = root;
3057 list_add_tail(&node->list, &rc->backref_cache.changed);
3058 } else {
3059 path->lowest_level = node->level;
3060 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061 btrfs_release_path(path);
3062 if (ret > 0)
3063 ret = 0;
3064 }
3065 if (!ret)
3066 update_processed_blocks(rc, node);
3067 } else {
3068 ret = do_relocation(trans, rc, node, key, path, 1);
3069 }
3070 out:
3071 if (ret || node->level == 0 || node->cowonly)
3072 remove_backref_node(&rc->backref_cache, node);
3073 return ret;
3074 }
3075
3076 /*
3077 * relocate a list of blocks
3078 */
3079 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)3080 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3081 struct reloc_control *rc, struct rb_root *blocks)
3082 {
3083 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084 struct backref_node *node;
3085 struct btrfs_path *path;
3086 struct tree_block *block;
3087 struct tree_block *next;
3088 int ret;
3089 int err = 0;
3090
3091 path = btrfs_alloc_path();
3092 if (!path) {
3093 err = -ENOMEM;
3094 goto out_free_blocks;
3095 }
3096
3097 /* Kick in readahead for tree blocks with missing keys */
3098 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099 if (!block->key_ready)
3100 readahead_tree_block(fs_info, block->bytenr);
3101 }
3102
3103 /* Get first keys */
3104 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105 if (!block->key_ready) {
3106 err = get_tree_block_key(fs_info, block);
3107 if (err)
3108 goto out_free_path;
3109 }
3110 }
3111
3112 /* Do tree relocation */
3113 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114 node = build_backref_tree(rc, &block->key,
3115 block->level, block->bytenr);
3116 if (IS_ERR(node)) {
3117 err = PTR_ERR(node);
3118 goto out;
3119 }
3120
3121 ret = relocate_tree_block(trans, rc, node, &block->key,
3122 path);
3123 if (ret < 0) {
3124 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125 err = ret;
3126 goto out;
3127 }
3128 }
3129 out:
3130 err = finish_pending_nodes(trans, rc, path, err);
3131
3132 out_free_path:
3133 btrfs_free_path(path);
3134 out_free_blocks:
3135 free_block_list(blocks);
3136 return err;
3137 }
3138
3139 static noinline_for_stack
prealloc_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3140 int prealloc_file_extent_cluster(struct inode *inode,
3141 struct file_extent_cluster *cluster)
3142 {
3143 u64 alloc_hint = 0;
3144 u64 start;
3145 u64 end;
3146 u64 offset = BTRFS_I(inode)->index_cnt;
3147 u64 num_bytes;
3148 int nr = 0;
3149 int ret = 0;
3150 u64 prealloc_start = cluster->start - offset;
3151 u64 prealloc_end = cluster->end - offset;
3152 u64 cur_offset;
3153 struct extent_changeset *data_reserved = NULL;
3154
3155 BUG_ON(cluster->start != cluster->boundary[0]);
3156 inode_lock(inode);
3157
3158 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159 prealloc_end + 1 - prealloc_start);
3160 if (ret)
3161 goto out;
3162
3163 cur_offset = prealloc_start;
3164 while (nr < cluster->nr) {
3165 start = cluster->boundary[nr] - offset;
3166 if (nr + 1 < cluster->nr)
3167 end = cluster->boundary[nr + 1] - 1 - offset;
3168 else
3169 end = cluster->end - offset;
3170
3171 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172 num_bytes = end + 1 - start;
3173 if (cur_offset < start)
3174 btrfs_free_reserved_data_space(inode, data_reserved,
3175 cur_offset, start - cur_offset);
3176 ret = btrfs_prealloc_file_range(inode, 0, start,
3177 num_bytes, num_bytes,
3178 end + 1, &alloc_hint);
3179 cur_offset = end + 1;
3180 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181 if (ret)
3182 break;
3183 nr++;
3184 }
3185 if (cur_offset < prealloc_end)
3186 btrfs_free_reserved_data_space(inode, data_reserved,
3187 cur_offset, prealloc_end + 1 - cur_offset);
3188 out:
3189 inode_unlock(inode);
3190 extent_changeset_free(data_reserved);
3191 return ret;
3192 }
3193
3194 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)3195 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3196 u64 block_start)
3197 {
3198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3200 struct extent_map *em;
3201 int ret = 0;
3202
3203 em = alloc_extent_map();
3204 if (!em)
3205 return -ENOMEM;
3206
3207 em->start = start;
3208 em->len = end + 1 - start;
3209 em->block_len = em->len;
3210 em->block_start = block_start;
3211 em->bdev = fs_info->fs_devices->latest_bdev;
3212 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3213
3214 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215 while (1) {
3216 write_lock(&em_tree->lock);
3217 ret = add_extent_mapping(em_tree, em, 0);
3218 write_unlock(&em_tree->lock);
3219 if (ret != -EEXIST) {
3220 free_extent_map(em);
3221 break;
3222 }
3223 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224 }
3225 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226 return ret;
3227 }
3228
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3229 static int relocate_file_extent_cluster(struct inode *inode,
3230 struct file_extent_cluster *cluster)
3231 {
3232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233 u64 page_start;
3234 u64 page_end;
3235 u64 offset = BTRFS_I(inode)->index_cnt;
3236 unsigned long index;
3237 unsigned long last_index;
3238 struct page *page;
3239 struct file_ra_state *ra;
3240 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241 int nr = 0;
3242 int ret = 0;
3243
3244 if (!cluster->nr)
3245 return 0;
3246
3247 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3248 if (!ra)
3249 return -ENOMEM;
3250
3251 ret = prealloc_file_extent_cluster(inode, cluster);
3252 if (ret)
3253 goto out;
3254
3255 file_ra_state_init(ra, inode->i_mapping);
3256
3257 ret = setup_extent_mapping(inode, cluster->start - offset,
3258 cluster->end - offset, cluster->start);
3259 if (ret)
3260 goto out;
3261
3262 index = (cluster->start - offset) >> PAGE_SHIFT;
3263 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264 while (index <= last_index) {
3265 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3266 PAGE_SIZE);
3267 if (ret)
3268 goto out;
3269
3270 page = find_lock_page(inode->i_mapping, index);
3271 if (!page) {
3272 page_cache_sync_readahead(inode->i_mapping,
3273 ra, NULL, index,
3274 last_index + 1 - index);
3275 page = find_or_create_page(inode->i_mapping, index,
3276 mask);
3277 if (!page) {
3278 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279 PAGE_SIZE, true);
3280 btrfs_delalloc_release_extents(BTRFS_I(inode),
3281 PAGE_SIZE);
3282 ret = -ENOMEM;
3283 goto out;
3284 }
3285 }
3286
3287 if (PageReadahead(page)) {
3288 page_cache_async_readahead(inode->i_mapping,
3289 ra, NULL, page, index,
3290 last_index + 1 - index);
3291 }
3292
3293 if (!PageUptodate(page)) {
3294 btrfs_readpage(NULL, page);
3295 lock_page(page);
3296 if (!PageUptodate(page)) {
3297 unlock_page(page);
3298 put_page(page);
3299 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3300 PAGE_SIZE, true);
3301 btrfs_delalloc_release_extents(BTRFS_I(inode),
3302 PAGE_SIZE);
3303 ret = -EIO;
3304 goto out;
3305 }
3306 }
3307
3308 page_start = page_offset(page);
3309 page_end = page_start + PAGE_SIZE - 1;
3310
3311 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3312
3313 set_page_extent_mapped(page);
3314
3315 if (nr < cluster->nr &&
3316 page_start + offset == cluster->boundary[nr]) {
3317 set_extent_bits(&BTRFS_I(inode)->io_tree,
3318 page_start, page_end,
3319 EXTENT_BOUNDARY);
3320 nr++;
3321 }
3322
3323 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3324 NULL);
3325 if (ret) {
3326 unlock_page(page);
3327 put_page(page);
3328 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3329 PAGE_SIZE, true);
3330 btrfs_delalloc_release_extents(BTRFS_I(inode),
3331 PAGE_SIZE);
3332
3333 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3334 page_start, page_end,
3335 EXTENT_LOCKED | EXTENT_BOUNDARY);
3336 goto out;
3337
3338 }
3339 set_page_dirty(page);
3340
3341 unlock_extent(&BTRFS_I(inode)->io_tree,
3342 page_start, page_end);
3343 unlock_page(page);
3344 put_page(page);
3345
3346 index++;
3347 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3348 balance_dirty_pages_ratelimited(inode->i_mapping);
3349 btrfs_throttle(fs_info);
3350 }
3351 WARN_ON(nr != cluster->nr);
3352 out:
3353 kfree(ra);
3354 return ret;
3355 }
3356
3357 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3358 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3359 struct file_extent_cluster *cluster)
3360 {
3361 int ret;
3362
3363 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3364 ret = relocate_file_extent_cluster(inode, cluster);
3365 if (ret)
3366 return ret;
3367 cluster->nr = 0;
3368 }
3369
3370 if (!cluster->nr)
3371 cluster->start = extent_key->objectid;
3372 else
3373 BUG_ON(cluster->nr >= MAX_EXTENTS);
3374 cluster->end = extent_key->objectid + extent_key->offset - 1;
3375 cluster->boundary[cluster->nr] = extent_key->objectid;
3376 cluster->nr++;
3377
3378 if (cluster->nr >= MAX_EXTENTS) {
3379 ret = relocate_file_extent_cluster(inode, cluster);
3380 if (ret)
3381 return ret;
3382 cluster->nr = 0;
3383 }
3384 return 0;
3385 }
3386
3387 /*
3388 * helper to add a tree block to the list.
3389 * the major work is getting the generation and level of the block
3390 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3391 static int add_tree_block(struct reloc_control *rc,
3392 struct btrfs_key *extent_key,
3393 struct btrfs_path *path,
3394 struct rb_root *blocks)
3395 {
3396 struct extent_buffer *eb;
3397 struct btrfs_extent_item *ei;
3398 struct btrfs_tree_block_info *bi;
3399 struct tree_block *block;
3400 struct rb_node *rb_node;
3401 u32 item_size;
3402 int level = -1;
3403 u64 generation;
3404
3405 eb = path->nodes[0];
3406 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3407
3408 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3409 item_size >= sizeof(*ei) + sizeof(*bi)) {
3410 ei = btrfs_item_ptr(eb, path->slots[0],
3411 struct btrfs_extent_item);
3412 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3413 bi = (struct btrfs_tree_block_info *)(ei + 1);
3414 level = btrfs_tree_block_level(eb, bi);
3415 } else {
3416 level = (int)extent_key->offset;
3417 }
3418 generation = btrfs_extent_generation(eb, ei);
3419 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3420 btrfs_print_v0_err(eb->fs_info);
3421 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3422 return -EINVAL;
3423 } else {
3424 BUG();
3425 }
3426
3427 btrfs_release_path(path);
3428
3429 BUG_ON(level == -1);
3430
3431 block = kmalloc(sizeof(*block), GFP_NOFS);
3432 if (!block)
3433 return -ENOMEM;
3434
3435 block->bytenr = extent_key->objectid;
3436 block->key.objectid = rc->extent_root->fs_info->nodesize;
3437 block->key.offset = generation;
3438 block->level = level;
3439 block->key_ready = 0;
3440
3441 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442 if (rb_node)
3443 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3444
3445 return 0;
3446 }
3447
3448 /*
3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3451 static int __add_tree_block(struct reloc_control *rc,
3452 u64 bytenr, u32 blocksize,
3453 struct rb_root *blocks)
3454 {
3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456 struct btrfs_path *path;
3457 struct btrfs_key key;
3458 int ret;
3459 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460
3461 if (tree_block_processed(bytenr, rc))
3462 return 0;
3463
3464 if (tree_search(blocks, bytenr))
3465 return 0;
3466
3467 path = btrfs_alloc_path();
3468 if (!path)
3469 return -ENOMEM;
3470 again:
3471 key.objectid = bytenr;
3472 if (skinny) {
3473 key.type = BTRFS_METADATA_ITEM_KEY;
3474 key.offset = (u64)-1;
3475 } else {
3476 key.type = BTRFS_EXTENT_ITEM_KEY;
3477 key.offset = blocksize;
3478 }
3479
3480 path->search_commit_root = 1;
3481 path->skip_locking = 1;
3482 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483 if (ret < 0)
3484 goto out;
3485
3486 if (ret > 0 && skinny) {
3487 if (path->slots[0]) {
3488 path->slots[0]--;
3489 btrfs_item_key_to_cpu(path->nodes[0], &key,
3490 path->slots[0]);
3491 if (key.objectid == bytenr &&
3492 (key.type == BTRFS_METADATA_ITEM_KEY ||
3493 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494 key.offset == blocksize)))
3495 ret = 0;
3496 }
3497
3498 if (ret) {
3499 skinny = false;
3500 btrfs_release_path(path);
3501 goto again;
3502 }
3503 }
3504 if (ret) {
3505 ASSERT(ret == 1);
3506 btrfs_print_leaf(path->nodes[0]);
3507 btrfs_err(fs_info,
3508 "tree block extent item (%llu) is not found in extent tree",
3509 bytenr);
3510 WARN_ON(1);
3511 ret = -EINVAL;
3512 goto out;
3513 }
3514
3515 ret = add_tree_block(rc, &key, path, blocks);
3516 out:
3517 btrfs_free_path(path);
3518 return ret;
3519 }
3520
3521 /*
3522 * helper to check if the block use full backrefs for pointers in it
3523 */
block_use_full_backref(struct reloc_control * rc,struct extent_buffer * eb)3524 static int block_use_full_backref(struct reloc_control *rc,
3525 struct extent_buffer *eb)
3526 {
3527 u64 flags;
3528 int ret;
3529
3530 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532 return 1;
3533
3534 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535 eb->start, btrfs_header_level(eb), 1,
3536 NULL, &flags);
3537 BUG_ON(ret);
3538
3539 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540 ret = 1;
3541 else
3542 ret = 0;
3543 return ret;
3544 }
3545
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct inode * inode,u64 ino)3546 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547 struct btrfs_block_group_cache *block_group,
3548 struct inode *inode,
3549 u64 ino)
3550 {
3551 struct btrfs_key key;
3552 struct btrfs_root *root = fs_info->tree_root;
3553 struct btrfs_trans_handle *trans;
3554 int ret = 0;
3555
3556 if (inode)
3557 goto truncate;
3558
3559 key.objectid = ino;
3560 key.type = BTRFS_INODE_ITEM_KEY;
3561 key.offset = 0;
3562
3563 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564 if (IS_ERR(inode))
3565 return -ENOENT;
3566
3567 truncate:
3568 ret = btrfs_check_trunc_cache_free_space(fs_info,
3569 &fs_info->global_block_rsv);
3570 if (ret)
3571 goto out;
3572
3573 trans = btrfs_join_transaction(root);
3574 if (IS_ERR(trans)) {
3575 ret = PTR_ERR(trans);
3576 goto out;
3577 }
3578
3579 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3580
3581 btrfs_end_transaction(trans);
3582 btrfs_btree_balance_dirty(fs_info);
3583 out:
3584 iput(inode);
3585 return ret;
3586 }
3587
3588 /*
3589 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3590 * this function scans fs tree to find blocks reference the data extent
3591 */
find_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,struct rb_root * blocks)3592 static int find_data_references(struct reloc_control *rc,
3593 struct btrfs_key *extent_key,
3594 struct extent_buffer *leaf,
3595 struct btrfs_extent_data_ref *ref,
3596 struct rb_root *blocks)
3597 {
3598 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599 struct btrfs_path *path;
3600 struct tree_block *block;
3601 struct btrfs_root *root;
3602 struct btrfs_file_extent_item *fi;
3603 struct rb_node *rb_node;
3604 struct btrfs_key key;
3605 u64 ref_root;
3606 u64 ref_objectid;
3607 u64 ref_offset;
3608 u32 ref_count;
3609 u32 nritems;
3610 int err = 0;
3611 int added = 0;
3612 int counted;
3613 int ret;
3614
3615 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3616 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3617 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3618 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3619
3620 /*
3621 * This is an extent belonging to the free space cache, lets just delete
3622 * it and redo the search.
3623 */
3624 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3625 ret = delete_block_group_cache(fs_info, rc->block_group,
3626 NULL, ref_objectid);
3627 if (ret != -ENOENT)
3628 return ret;
3629 ret = 0;
3630 }
3631
3632 path = btrfs_alloc_path();
3633 if (!path)
3634 return -ENOMEM;
3635 path->reada = READA_FORWARD;
3636
3637 root = read_fs_root(fs_info, ref_root);
3638 if (IS_ERR(root)) {
3639 err = PTR_ERR(root);
3640 goto out;
3641 }
3642
3643 key.objectid = ref_objectid;
3644 key.type = BTRFS_EXTENT_DATA_KEY;
3645 if (ref_offset > ((u64)-1 << 32))
3646 key.offset = 0;
3647 else
3648 key.offset = ref_offset;
3649
3650 path->search_commit_root = 1;
3651 path->skip_locking = 1;
3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 if (ret < 0) {
3654 err = ret;
3655 goto out;
3656 }
3657
3658 leaf = path->nodes[0];
3659 nritems = btrfs_header_nritems(leaf);
3660 /*
3661 * the references in tree blocks that use full backrefs
3662 * are not counted in
3663 */
3664 if (block_use_full_backref(rc, leaf))
3665 counted = 0;
3666 else
3667 counted = 1;
3668 rb_node = tree_search(blocks, leaf->start);
3669 if (rb_node) {
3670 if (counted)
3671 added = 1;
3672 else
3673 path->slots[0] = nritems;
3674 }
3675
3676 while (ref_count > 0) {
3677 while (path->slots[0] >= nritems) {
3678 ret = btrfs_next_leaf(root, path);
3679 if (ret < 0) {
3680 err = ret;
3681 goto out;
3682 }
3683 if (WARN_ON(ret > 0))
3684 goto out;
3685
3686 leaf = path->nodes[0];
3687 nritems = btrfs_header_nritems(leaf);
3688 added = 0;
3689
3690 if (block_use_full_backref(rc, leaf))
3691 counted = 0;
3692 else
3693 counted = 1;
3694 rb_node = tree_search(blocks, leaf->start);
3695 if (rb_node) {
3696 if (counted)
3697 added = 1;
3698 else
3699 path->slots[0] = nritems;
3700 }
3701 }
3702
3703 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3704 if (WARN_ON(key.objectid != ref_objectid ||
3705 key.type != BTRFS_EXTENT_DATA_KEY))
3706 break;
3707
3708 fi = btrfs_item_ptr(leaf, path->slots[0],
3709 struct btrfs_file_extent_item);
3710
3711 if (btrfs_file_extent_type(leaf, fi) ==
3712 BTRFS_FILE_EXTENT_INLINE)
3713 goto next;
3714
3715 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3716 extent_key->objectid)
3717 goto next;
3718
3719 key.offset -= btrfs_file_extent_offset(leaf, fi);
3720 if (key.offset != ref_offset)
3721 goto next;
3722
3723 if (counted)
3724 ref_count--;
3725 if (added)
3726 goto next;
3727
3728 if (!tree_block_processed(leaf->start, rc)) {
3729 block = kmalloc(sizeof(*block), GFP_NOFS);
3730 if (!block) {
3731 err = -ENOMEM;
3732 break;
3733 }
3734 block->bytenr = leaf->start;
3735 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3736 block->level = 0;
3737 block->key_ready = 1;
3738 rb_node = tree_insert(blocks, block->bytenr,
3739 &block->rb_node);
3740 if (rb_node)
3741 backref_tree_panic(rb_node, -EEXIST,
3742 block->bytenr);
3743 }
3744 if (counted)
3745 added = 1;
3746 else
3747 path->slots[0] = nritems;
3748 next:
3749 path->slots[0]++;
3750
3751 }
3752 out:
3753 btrfs_free_path(path);
3754 return err;
3755 }
3756
3757 /*
3758 * helper to find all tree blocks that reference a given data extent
3759 */
3760 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3761 int add_data_references(struct reloc_control *rc,
3762 struct btrfs_key *extent_key,
3763 struct btrfs_path *path,
3764 struct rb_root *blocks)
3765 {
3766 struct btrfs_key key;
3767 struct extent_buffer *eb;
3768 struct btrfs_extent_data_ref *dref;
3769 struct btrfs_extent_inline_ref *iref;
3770 unsigned long ptr;
3771 unsigned long end;
3772 u32 blocksize = rc->extent_root->fs_info->nodesize;
3773 int ret = 0;
3774 int err = 0;
3775
3776 eb = path->nodes[0];
3777 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3778 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3779 ptr += sizeof(struct btrfs_extent_item);
3780
3781 while (ptr < end) {
3782 iref = (struct btrfs_extent_inline_ref *)ptr;
3783 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3784 BTRFS_REF_TYPE_DATA);
3785 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3787 ret = __add_tree_block(rc, key.offset, blocksize,
3788 blocks);
3789 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3791 ret = find_data_references(rc, extent_key,
3792 eb, dref, blocks);
3793 } else {
3794 ret = -EUCLEAN;
3795 btrfs_err(rc->extent_root->fs_info,
3796 "extent %llu slot %d has an invalid inline ref type",
3797 eb->start, path->slots[0]);
3798 }
3799 if (ret) {
3800 err = ret;
3801 goto out;
3802 }
3803 ptr += btrfs_extent_inline_ref_size(key.type);
3804 }
3805 WARN_ON(ptr > end);
3806
3807 while (1) {
3808 cond_resched();
3809 eb = path->nodes[0];
3810 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3811 ret = btrfs_next_leaf(rc->extent_root, path);
3812 if (ret < 0) {
3813 err = ret;
3814 break;
3815 }
3816 if (ret > 0)
3817 break;
3818 eb = path->nodes[0];
3819 }
3820
3821 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3822 if (key.objectid != extent_key->objectid)
3823 break;
3824
3825 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3826 ret = __add_tree_block(rc, key.offset, blocksize,
3827 blocks);
3828 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3829 dref = btrfs_item_ptr(eb, path->slots[0],
3830 struct btrfs_extent_data_ref);
3831 ret = find_data_references(rc, extent_key,
3832 eb, dref, blocks);
3833 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3834 btrfs_print_v0_err(eb->fs_info);
3835 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3836 ret = -EINVAL;
3837 } else {
3838 ret = 0;
3839 }
3840 if (ret) {
3841 err = ret;
3842 break;
3843 }
3844 path->slots[0]++;
3845 }
3846 out:
3847 btrfs_release_path(path);
3848 if (err)
3849 free_block_list(blocks);
3850 return err;
3851 }
3852
3853 /*
3854 * helper to find next unprocessed extent
3855 */
3856 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3857 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3858 struct btrfs_key *extent_key)
3859 {
3860 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861 struct btrfs_key key;
3862 struct extent_buffer *leaf;
3863 u64 start, end, last;
3864 int ret;
3865
3866 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3867 while (1) {
3868 cond_resched();
3869 if (rc->search_start >= last) {
3870 ret = 1;
3871 break;
3872 }
3873
3874 key.objectid = rc->search_start;
3875 key.type = BTRFS_EXTENT_ITEM_KEY;
3876 key.offset = 0;
3877
3878 path->search_commit_root = 1;
3879 path->skip_locking = 1;
3880 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3881 0, 0);
3882 if (ret < 0)
3883 break;
3884 next:
3885 leaf = path->nodes[0];
3886 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3887 ret = btrfs_next_leaf(rc->extent_root, path);
3888 if (ret != 0)
3889 break;
3890 leaf = path->nodes[0];
3891 }
3892
3893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3894 if (key.objectid >= last) {
3895 ret = 1;
3896 break;
3897 }
3898
3899 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3900 key.type != BTRFS_METADATA_ITEM_KEY) {
3901 path->slots[0]++;
3902 goto next;
3903 }
3904
3905 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3906 key.objectid + key.offset <= rc->search_start) {
3907 path->slots[0]++;
3908 goto next;
3909 }
3910
3911 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3912 key.objectid + fs_info->nodesize <=
3913 rc->search_start) {
3914 path->slots[0]++;
3915 goto next;
3916 }
3917
3918 ret = find_first_extent_bit(&rc->processed_blocks,
3919 key.objectid, &start, &end,
3920 EXTENT_DIRTY, NULL);
3921
3922 if (ret == 0 && start <= key.objectid) {
3923 btrfs_release_path(path);
3924 rc->search_start = end + 1;
3925 } else {
3926 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3927 rc->search_start = key.objectid + key.offset;
3928 else
3929 rc->search_start = key.objectid +
3930 fs_info->nodesize;
3931 memcpy(extent_key, &key, sizeof(key));
3932 return 0;
3933 }
3934 }
3935 btrfs_release_path(path);
3936 return ret;
3937 }
3938
set_reloc_control(struct reloc_control * rc)3939 static void set_reloc_control(struct reloc_control *rc)
3940 {
3941 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3942
3943 mutex_lock(&fs_info->reloc_mutex);
3944 fs_info->reloc_ctl = rc;
3945 mutex_unlock(&fs_info->reloc_mutex);
3946 }
3947
unset_reloc_control(struct reloc_control * rc)3948 static void unset_reloc_control(struct reloc_control *rc)
3949 {
3950 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3951
3952 mutex_lock(&fs_info->reloc_mutex);
3953 fs_info->reloc_ctl = NULL;
3954 mutex_unlock(&fs_info->reloc_mutex);
3955 }
3956
check_extent_flags(u64 flags)3957 static int check_extent_flags(u64 flags)
3958 {
3959 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3960 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3961 return 1;
3962 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3963 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3964 return 1;
3965 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3966 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3967 return 1;
3968 return 0;
3969 }
3970
3971 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3972 int prepare_to_relocate(struct reloc_control *rc)
3973 {
3974 struct btrfs_trans_handle *trans;
3975 int ret;
3976
3977 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3978 BTRFS_BLOCK_RSV_TEMP);
3979 if (!rc->block_rsv)
3980 return -ENOMEM;
3981
3982 memset(&rc->cluster, 0, sizeof(rc->cluster));
3983 rc->search_start = rc->block_group->key.objectid;
3984 rc->extents_found = 0;
3985 rc->nodes_relocated = 0;
3986 rc->merging_rsv_size = 0;
3987 rc->reserved_bytes = 0;
3988 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3989 RELOCATION_RESERVED_NODES;
3990 ret = btrfs_block_rsv_refill(rc->extent_root,
3991 rc->block_rsv, rc->block_rsv->size,
3992 BTRFS_RESERVE_FLUSH_ALL);
3993 if (ret)
3994 return ret;
3995
3996 rc->create_reloc_tree = 1;
3997 set_reloc_control(rc);
3998
3999 trans = btrfs_join_transaction(rc->extent_root);
4000 if (IS_ERR(trans)) {
4001 unset_reloc_control(rc);
4002 /*
4003 * extent tree is not a ref_cow tree and has no reloc_root to
4004 * cleanup. And callers are responsible to free the above
4005 * block rsv.
4006 */
4007 return PTR_ERR(trans);
4008 }
4009 btrfs_commit_transaction(trans);
4010 return 0;
4011 }
4012
relocate_block_group(struct reloc_control * rc)4013 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014 {
4015 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4016 struct rb_root blocks = RB_ROOT;
4017 struct btrfs_key key;
4018 struct btrfs_trans_handle *trans = NULL;
4019 struct btrfs_path *path;
4020 struct btrfs_extent_item *ei;
4021 u64 flags;
4022 u32 item_size;
4023 int ret;
4024 int err = 0;
4025 int progress = 0;
4026
4027 path = btrfs_alloc_path();
4028 if (!path)
4029 return -ENOMEM;
4030 path->reada = READA_FORWARD;
4031
4032 ret = prepare_to_relocate(rc);
4033 if (ret) {
4034 err = ret;
4035 goto out_free;
4036 }
4037
4038 while (1) {
4039 rc->reserved_bytes = 0;
4040 ret = btrfs_block_rsv_refill(rc->extent_root,
4041 rc->block_rsv, rc->block_rsv->size,
4042 BTRFS_RESERVE_FLUSH_ALL);
4043 if (ret) {
4044 err = ret;
4045 break;
4046 }
4047 progress++;
4048 trans = btrfs_start_transaction(rc->extent_root, 0);
4049 if (IS_ERR(trans)) {
4050 err = PTR_ERR(trans);
4051 trans = NULL;
4052 break;
4053 }
4054 restart:
4055 if (update_backref_cache(trans, &rc->backref_cache)) {
4056 btrfs_end_transaction(trans);
4057 trans = NULL;
4058 continue;
4059 }
4060
4061 ret = find_next_extent(rc, path, &key);
4062 if (ret < 0)
4063 err = ret;
4064 if (ret != 0)
4065 break;
4066
4067 rc->extents_found++;
4068
4069 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4070 struct btrfs_extent_item);
4071 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4072 if (item_size >= sizeof(*ei)) {
4073 flags = btrfs_extent_flags(path->nodes[0], ei);
4074 ret = check_extent_flags(flags);
4075 BUG_ON(ret);
4076 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4077 err = -EINVAL;
4078 btrfs_print_v0_err(trans->fs_info);
4079 btrfs_abort_transaction(trans, err);
4080 break;
4081 } else {
4082 BUG();
4083 }
4084
4085 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4086 ret = add_tree_block(rc, &key, path, &blocks);
4087 } else if (rc->stage == UPDATE_DATA_PTRS &&
4088 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4089 ret = add_data_references(rc, &key, path, &blocks);
4090 } else {
4091 btrfs_release_path(path);
4092 ret = 0;
4093 }
4094 if (ret < 0) {
4095 err = ret;
4096 break;
4097 }
4098
4099 if (!RB_EMPTY_ROOT(&blocks)) {
4100 ret = relocate_tree_blocks(trans, rc, &blocks);
4101 if (ret < 0) {
4102 /*
4103 * if we fail to relocate tree blocks, force to update
4104 * backref cache when committing transaction.
4105 */
4106 rc->backref_cache.last_trans = trans->transid - 1;
4107
4108 if (ret != -EAGAIN) {
4109 err = ret;
4110 break;
4111 }
4112 rc->extents_found--;
4113 rc->search_start = key.objectid;
4114 }
4115 }
4116
4117 btrfs_end_transaction_throttle(trans);
4118 btrfs_btree_balance_dirty(fs_info);
4119 trans = NULL;
4120
4121 if (rc->stage == MOVE_DATA_EXTENTS &&
4122 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4123 rc->found_file_extent = 1;
4124 ret = relocate_data_extent(rc->data_inode,
4125 &key, &rc->cluster);
4126 if (ret < 0) {
4127 err = ret;
4128 break;
4129 }
4130 }
4131 }
4132 if (trans && progress && err == -ENOSPC) {
4133 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4134 if (ret == 1) {
4135 err = 0;
4136 progress = 0;
4137 goto restart;
4138 }
4139 }
4140
4141 btrfs_release_path(path);
4142 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4143
4144 if (trans) {
4145 btrfs_end_transaction_throttle(trans);
4146 btrfs_btree_balance_dirty(fs_info);
4147 }
4148
4149 if (!err) {
4150 ret = relocate_file_extent_cluster(rc->data_inode,
4151 &rc->cluster);
4152 if (ret < 0)
4153 err = ret;
4154 }
4155
4156 rc->create_reloc_tree = 0;
4157 set_reloc_control(rc);
4158
4159 backref_cache_cleanup(&rc->backref_cache);
4160 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161
4162 err = prepare_to_merge(rc, err);
4163
4164 merge_reloc_roots(rc);
4165
4166 rc->merge_reloc_tree = 0;
4167 unset_reloc_control(rc);
4168 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4169
4170 /* get rid of pinned extents */
4171 trans = btrfs_join_transaction(rc->extent_root);
4172 if (IS_ERR(trans)) {
4173 err = PTR_ERR(trans);
4174 goto out_free;
4175 }
4176 btrfs_commit_transaction(trans);
4177 ret = clean_dirty_subvols(rc);
4178 if (ret < 0 && !err)
4179 err = ret;
4180 out_free:
4181 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4182 btrfs_free_path(path);
4183 return err;
4184 }
4185
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)4186 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4187 struct btrfs_root *root, u64 objectid)
4188 {
4189 struct btrfs_path *path;
4190 struct btrfs_inode_item *item;
4191 struct extent_buffer *leaf;
4192 int ret;
4193
4194 path = btrfs_alloc_path();
4195 if (!path)
4196 return -ENOMEM;
4197
4198 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4199 if (ret)
4200 goto out;
4201
4202 leaf = path->nodes[0];
4203 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4204 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4205 btrfs_set_inode_generation(leaf, item, 1);
4206 btrfs_set_inode_size(leaf, item, 0);
4207 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4208 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4209 BTRFS_INODE_PREALLOC);
4210 btrfs_mark_buffer_dirty(leaf);
4211 out:
4212 btrfs_free_path(path);
4213 return ret;
4214 }
4215
4216 /*
4217 * helper to create inode for data relocation.
4218 * the inode is in data relocation tree and its link count is 0
4219 */
4220 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * group)4221 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4222 struct btrfs_block_group_cache *group)
4223 {
4224 struct inode *inode = NULL;
4225 struct btrfs_trans_handle *trans;
4226 struct btrfs_root *root;
4227 struct btrfs_key key;
4228 u64 objectid;
4229 int err = 0;
4230
4231 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4232 if (IS_ERR(root))
4233 return ERR_CAST(root);
4234
4235 trans = btrfs_start_transaction(root, 6);
4236 if (IS_ERR(trans))
4237 return ERR_CAST(trans);
4238
4239 err = btrfs_find_free_objectid(root, &objectid);
4240 if (err)
4241 goto out;
4242
4243 err = __insert_orphan_inode(trans, root, objectid);
4244 BUG_ON(err);
4245
4246 key.objectid = objectid;
4247 key.type = BTRFS_INODE_ITEM_KEY;
4248 key.offset = 0;
4249 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4250 BUG_ON(IS_ERR(inode));
4251 BTRFS_I(inode)->index_cnt = group->key.objectid;
4252
4253 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4254 out:
4255 btrfs_end_transaction(trans);
4256 btrfs_btree_balance_dirty(fs_info);
4257 if (err) {
4258 if (inode)
4259 iput(inode);
4260 inode = ERR_PTR(err);
4261 }
4262 return inode;
4263 }
4264
alloc_reloc_control(struct btrfs_fs_info * fs_info)4265 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4266 {
4267 struct reloc_control *rc;
4268
4269 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4270 if (!rc)
4271 return NULL;
4272
4273 INIT_LIST_HEAD(&rc->reloc_roots);
4274 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4275 backref_cache_init(&rc->backref_cache);
4276 mapping_tree_init(&rc->reloc_root_tree);
4277 extent_io_tree_init(fs_info, &rc->processed_blocks,
4278 IO_TREE_RELOC_BLOCKS, NULL);
4279 return rc;
4280 }
4281
4282 /*
4283 * Print the block group being relocated
4284 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)4285 static void describe_relocation(struct btrfs_fs_info *fs_info,
4286 struct btrfs_block_group_cache *block_group)
4287 {
4288 char buf[128] = {'\0'};
4289
4290 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4291
4292 btrfs_info(fs_info,
4293 "relocating block group %llu flags %s",
4294 block_group->key.objectid, buf);
4295 }
4296
4297 /*
4298 * function to relocate all extents in a block group.
4299 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4300 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4301 {
4302 struct btrfs_block_group_cache *bg;
4303 struct btrfs_root *extent_root = fs_info->extent_root;
4304 struct reloc_control *rc;
4305 struct inode *inode;
4306 struct btrfs_path *path;
4307 int ret;
4308 int rw = 0;
4309 int err = 0;
4310
4311 bg = btrfs_lookup_block_group(fs_info, group_start);
4312 if (!bg)
4313 return -ENOENT;
4314
4315 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4316 btrfs_put_block_group(bg);
4317 return -ETXTBSY;
4318 }
4319
4320 rc = alloc_reloc_control(fs_info);
4321 if (!rc) {
4322 btrfs_put_block_group(bg);
4323 return -ENOMEM;
4324 }
4325
4326 rc->extent_root = extent_root;
4327 rc->block_group = bg;
4328
4329 ret = btrfs_inc_block_group_ro(rc->block_group);
4330 if (ret) {
4331 err = ret;
4332 goto out;
4333 }
4334 rw = 1;
4335
4336 path = btrfs_alloc_path();
4337 if (!path) {
4338 err = -ENOMEM;
4339 goto out;
4340 }
4341
4342 inode = lookup_free_space_inode(rc->block_group, path);
4343 btrfs_free_path(path);
4344
4345 if (!IS_ERR(inode))
4346 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347 else
4348 ret = PTR_ERR(inode);
4349
4350 if (ret && ret != -ENOENT) {
4351 err = ret;
4352 goto out;
4353 }
4354
4355 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356 if (IS_ERR(rc->data_inode)) {
4357 err = PTR_ERR(rc->data_inode);
4358 rc->data_inode = NULL;
4359 goto out;
4360 }
4361
4362 describe_relocation(fs_info, rc->block_group);
4363
4364 btrfs_wait_block_group_reservations(rc->block_group);
4365 btrfs_wait_nocow_writers(rc->block_group);
4366 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4367 rc->block_group->key.objectid,
4368 rc->block_group->key.offset);
4369
4370 while (1) {
4371 mutex_lock(&fs_info->cleaner_mutex);
4372 ret = relocate_block_group(rc);
4373 mutex_unlock(&fs_info->cleaner_mutex);
4374 if (ret < 0)
4375 err = ret;
4376
4377 /*
4378 * We may have gotten ENOSPC after we already dirtied some
4379 * extents. If writeout happens while we're relocating a
4380 * different block group we could end up hitting the
4381 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4382 * btrfs_reloc_cow_block. Make sure we write everything out
4383 * properly so we don't trip over this problem, and then break
4384 * out of the loop if we hit an error.
4385 */
4386 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4387 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4388 (u64)-1);
4389 if (ret)
4390 err = ret;
4391 invalidate_mapping_pages(rc->data_inode->i_mapping,
4392 0, -1);
4393 rc->stage = UPDATE_DATA_PTRS;
4394 }
4395
4396 if (err < 0)
4397 goto out;
4398
4399 if (rc->extents_found == 0)
4400 break;
4401
4402 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4403
4404 }
4405
4406 WARN_ON(rc->block_group->pinned > 0);
4407 WARN_ON(rc->block_group->reserved > 0);
4408 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409 out:
4410 if (err && rw)
4411 btrfs_dec_block_group_ro(rc->block_group);
4412 iput(rc->data_inode);
4413 btrfs_put_block_group(rc->block_group);
4414 kfree(rc);
4415 return err;
4416 }
4417
mark_garbage_root(struct btrfs_root * root)4418 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419 {
4420 struct btrfs_fs_info *fs_info = root->fs_info;
4421 struct btrfs_trans_handle *trans;
4422 int ret, err;
4423
4424 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425 if (IS_ERR(trans))
4426 return PTR_ERR(trans);
4427
4428 memset(&root->root_item.drop_progress, 0,
4429 sizeof(root->root_item.drop_progress));
4430 root->root_item.drop_level = 0;
4431 btrfs_set_root_refs(&root->root_item, 0);
4432 ret = btrfs_update_root(trans, fs_info->tree_root,
4433 &root->root_key, &root->root_item);
4434
4435 err = btrfs_end_transaction(trans);
4436 if (err)
4437 return err;
4438 return ret;
4439 }
4440
4441 /*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
btrfs_recover_relocation(struct btrfs_root * root)4447 int btrfs_recover_relocation(struct btrfs_root *root)
4448 {
4449 struct btrfs_fs_info *fs_info = root->fs_info;
4450 LIST_HEAD(reloc_roots);
4451 struct btrfs_key key;
4452 struct btrfs_root *fs_root;
4453 struct btrfs_root *reloc_root;
4454 struct btrfs_path *path;
4455 struct extent_buffer *leaf;
4456 struct reloc_control *rc = NULL;
4457 struct btrfs_trans_handle *trans;
4458 int ret;
4459 int err = 0;
4460
4461 path = btrfs_alloc_path();
4462 if (!path)
4463 return -ENOMEM;
4464 path->reada = READA_BACK;
4465
4466 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467 key.type = BTRFS_ROOT_ITEM_KEY;
4468 key.offset = (u64)-1;
4469
4470 while (1) {
4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472 path, 0, 0);
4473 if (ret < 0) {
4474 err = ret;
4475 goto out;
4476 }
4477 if (ret > 0) {
4478 if (path->slots[0] == 0)
4479 break;
4480 path->slots[0]--;
4481 }
4482 leaf = path->nodes[0];
4483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484 btrfs_release_path(path);
4485
4486 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487 key.type != BTRFS_ROOT_ITEM_KEY)
4488 break;
4489
4490 reloc_root = btrfs_read_fs_root(root, &key);
4491 if (IS_ERR(reloc_root)) {
4492 err = PTR_ERR(reloc_root);
4493 goto out;
4494 }
4495
4496 list_add(&reloc_root->root_list, &reloc_roots);
4497
4498 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499 fs_root = read_fs_root(fs_info,
4500 reloc_root->root_key.offset);
4501 if (IS_ERR(fs_root)) {
4502 ret = PTR_ERR(fs_root);
4503 if (ret != -ENOENT) {
4504 err = ret;
4505 goto out;
4506 }
4507 ret = mark_garbage_root(reloc_root);
4508 if (ret < 0) {
4509 err = ret;
4510 goto out;
4511 }
4512 }
4513 }
4514
4515 if (key.offset == 0)
4516 break;
4517
4518 key.offset--;
4519 }
4520 btrfs_release_path(path);
4521
4522 if (list_empty(&reloc_roots))
4523 goto out;
4524
4525 rc = alloc_reloc_control(fs_info);
4526 if (!rc) {
4527 err = -ENOMEM;
4528 goto out;
4529 }
4530
4531 rc->extent_root = fs_info->extent_root;
4532
4533 set_reloc_control(rc);
4534
4535 trans = btrfs_join_transaction(rc->extent_root);
4536 if (IS_ERR(trans)) {
4537 unset_reloc_control(rc);
4538 err = PTR_ERR(trans);
4539 goto out_free;
4540 }
4541
4542 rc->merge_reloc_tree = 1;
4543
4544 while (!list_empty(&reloc_roots)) {
4545 reloc_root = list_entry(reloc_roots.next,
4546 struct btrfs_root, root_list);
4547 list_del(&reloc_root->root_list);
4548
4549 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550 list_add_tail(&reloc_root->root_list,
4551 &rc->reloc_roots);
4552 continue;
4553 }
4554
4555 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4556 if (IS_ERR(fs_root)) {
4557 err = PTR_ERR(fs_root);
4558 goto out_free;
4559 }
4560
4561 err = __add_reloc_root(reloc_root);
4562 BUG_ON(err < 0); /* -ENOMEM or logic error */
4563 fs_root->reloc_root = reloc_root;
4564 }
4565
4566 err = btrfs_commit_transaction(trans);
4567 if (err)
4568 goto out_free;
4569
4570 merge_reloc_roots(rc);
4571
4572 unset_reloc_control(rc);
4573
4574 trans = btrfs_join_transaction(rc->extent_root);
4575 if (IS_ERR(trans)) {
4576 err = PTR_ERR(trans);
4577 goto out_free;
4578 }
4579 err = btrfs_commit_transaction(trans);
4580
4581 ret = clean_dirty_subvols(rc);
4582 if (ret < 0 && !err)
4583 err = ret;
4584 out_free:
4585 kfree(rc);
4586 out:
4587 if (!list_empty(&reloc_roots))
4588 free_reloc_roots(&reloc_roots);
4589
4590 btrfs_free_path(path);
4591
4592 if (err == 0) {
4593 /* cleanup orphan inode in data relocation tree */
4594 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4595 if (IS_ERR(fs_root))
4596 err = PTR_ERR(fs_root);
4597 else
4598 err = btrfs_orphan_cleanup(fs_root);
4599 }
4600 return err;
4601 }
4602
4603 /*
4604 * helper to add ordered checksum for data relocation.
4605 *
4606 * cloning checksum properly handles the nodatasum extents.
4607 * it also saves CPU time to re-calculate the checksum.
4608 */
btrfs_reloc_clone_csums(struct inode * inode,u64 file_pos,u64 len)4609 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610 {
4611 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4612 struct btrfs_ordered_sum *sums;
4613 struct btrfs_ordered_extent *ordered;
4614 int ret;
4615 u64 disk_bytenr;
4616 u64 new_bytenr;
4617 LIST_HEAD(list);
4618
4619 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621
4622 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4624 disk_bytenr + len - 1, &list, 0);
4625 if (ret)
4626 goto out;
4627
4628 while (!list_empty(&list)) {
4629 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630 list_del_init(&sums->list);
4631
4632 /*
4633 * We need to offset the new_bytenr based on where the csum is.
4634 * We need to do this because we will read in entire prealloc
4635 * extents but we may have written to say the middle of the
4636 * prealloc extent, so we need to make sure the csum goes with
4637 * the right disk offset.
4638 *
4639 * We can do this because the data reloc inode refers strictly
4640 * to the on disk bytes, so we don't have to worry about
4641 * disk_len vs real len like with real inodes since it's all
4642 * disk length.
4643 */
4644 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645 sums->bytenr = new_bytenr;
4646
4647 btrfs_add_ordered_sum(ordered, sums);
4648 }
4649 out:
4650 btrfs_put_ordered_extent(ordered);
4651 return ret;
4652 }
4653
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4654 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655 struct btrfs_root *root, struct extent_buffer *buf,
4656 struct extent_buffer *cow)
4657 {
4658 struct btrfs_fs_info *fs_info = root->fs_info;
4659 struct reloc_control *rc;
4660 struct backref_node *node;
4661 int first_cow = 0;
4662 int level;
4663 int ret = 0;
4664
4665 rc = fs_info->reloc_ctl;
4666 if (!rc)
4667 return 0;
4668
4669 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4670 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4671
4672 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4673 if (buf == root->node)
4674 __update_reloc_root(root, cow->start);
4675 }
4676
4677 level = btrfs_header_level(buf);
4678 if (btrfs_header_generation(buf) <=
4679 btrfs_root_last_snapshot(&root->root_item))
4680 first_cow = 1;
4681
4682 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4683 rc->create_reloc_tree) {
4684 WARN_ON(!first_cow && level == 0);
4685
4686 node = rc->backref_cache.path[level];
4687 BUG_ON(node->bytenr != buf->start &&
4688 node->new_bytenr != buf->start);
4689
4690 drop_node_buffer(node);
4691 extent_buffer_get(cow);
4692 node->eb = cow;
4693 node->new_bytenr = cow->start;
4694
4695 if (!node->pending) {
4696 list_move_tail(&node->list,
4697 &rc->backref_cache.pending[level]);
4698 node->pending = 1;
4699 }
4700
4701 if (first_cow)
4702 __mark_block_processed(rc, node);
4703
4704 if (first_cow && level > 0)
4705 rc->nodes_relocated += buf->len;
4706 }
4707
4708 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4709 ret = replace_file_extents(trans, rc, root, cow);
4710 return ret;
4711 }
4712
4713 /*
4714 * called before creating snapshot. it calculates metadata reservation
4715 * required for relocating tree blocks in the snapshot
4716 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4717 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4718 u64 *bytes_to_reserve)
4719 {
4720 struct btrfs_root *root = pending->root;
4721 struct reloc_control *rc = root->fs_info->reloc_ctl;
4722
4723 if (!root->reloc_root || !rc)
4724 return;
4725
4726 if (!rc->merge_reloc_tree)
4727 return;
4728
4729 root = root->reloc_root;
4730 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4731 /*
4732 * relocation is in the stage of merging trees. the space
4733 * used by merging a reloc tree is twice the size of
4734 * relocated tree nodes in the worst case. half for cowing
4735 * the reloc tree, half for cowing the fs tree. the space
4736 * used by cowing the reloc tree will be freed after the
4737 * tree is dropped. if we create snapshot, cowing the fs
4738 * tree may use more space than it frees. so we need
4739 * reserve extra space.
4740 */
4741 *bytes_to_reserve += rc->nodes_relocated;
4742 }
4743
4744 /*
4745 * called after snapshot is created. migrate block reservation
4746 * and create reloc root for the newly created snapshot
4747 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4748 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4749 struct btrfs_pending_snapshot *pending)
4750 {
4751 struct btrfs_root *root = pending->root;
4752 struct btrfs_root *reloc_root;
4753 struct btrfs_root *new_root;
4754 struct reloc_control *rc = root->fs_info->reloc_ctl;
4755 int ret;
4756
4757 if (!root->reloc_root || !rc)
4758 return 0;
4759
4760 rc = root->fs_info->reloc_ctl;
4761 rc->merging_rsv_size += rc->nodes_relocated;
4762
4763 if (rc->merge_reloc_tree) {
4764 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4765 rc->block_rsv,
4766 rc->nodes_relocated, true);
4767 if (ret)
4768 return ret;
4769 }
4770
4771 new_root = pending->snap;
4772 reloc_root = create_reloc_root(trans, root->reloc_root,
4773 new_root->root_key.objectid);
4774 if (IS_ERR(reloc_root))
4775 return PTR_ERR(reloc_root);
4776
4777 ret = __add_reloc_root(reloc_root);
4778 BUG_ON(ret < 0);
4779 new_root->reloc_root = reloc_root;
4780
4781 if (rc->create_reloc_tree)
4782 ret = clone_backref_node(trans, rc, root, reloc_root);
4783 return ret;
4784 }
4785