1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 
26 /*
27  * backref_node, mapping_node and tree_block start with this
28  */
29 struct tree_entry {
30 	struct rb_node rb_node;
31 	u64 bytenr;
32 };
33 
34 /*
35  * present a tree block in the backref cache
36  */
37 struct backref_node {
38 	struct rb_node rb_node;
39 	u64 bytenr;
40 
41 	u64 new_bytenr;
42 	/* objectid of tree block owner, can be not uptodate */
43 	u64 owner;
44 	/* link to pending, changed or detached list */
45 	struct list_head list;
46 	/* list of upper level blocks reference this block */
47 	struct list_head upper;
48 	/* list of child blocks in the cache */
49 	struct list_head lower;
50 	/* NULL if this node is not tree root */
51 	struct btrfs_root *root;
52 	/* extent buffer got by COW the block */
53 	struct extent_buffer *eb;
54 	/* level of tree block */
55 	unsigned int level:8;
56 	/* is the block in non-reference counted tree */
57 	unsigned int cowonly:1;
58 	/* 1 if no child node in the cache */
59 	unsigned int lowest:1;
60 	/* is the extent buffer locked */
61 	unsigned int locked:1;
62 	/* has the block been processed */
63 	unsigned int processed:1;
64 	/* have backrefs of this block been checked */
65 	unsigned int checked:1;
66 	/*
67 	 * 1 if corresponding block has been cowed but some upper
68 	 * level block pointers may not point to the new location
69 	 */
70 	unsigned int pending:1;
71 	/*
72 	 * 1 if the backref node isn't connected to any other
73 	 * backref node.
74 	 */
75 	unsigned int detached:1;
76 };
77 
78 /*
79  * present a block pointer in the backref cache
80  */
81 struct backref_edge {
82 	struct list_head list[2];
83 	struct backref_node *node[2];
84 };
85 
86 #define LOWER	0
87 #define UPPER	1
88 #define RELOCATION_RESERVED_NODES	256
89 
90 struct backref_cache {
91 	/* red black tree of all backref nodes in the cache */
92 	struct rb_root rb_root;
93 	/* for passing backref nodes to btrfs_reloc_cow_block */
94 	struct backref_node *path[BTRFS_MAX_LEVEL];
95 	/*
96 	 * list of blocks that have been cowed but some block
97 	 * pointers in upper level blocks may not reflect the
98 	 * new location
99 	 */
100 	struct list_head pending[BTRFS_MAX_LEVEL];
101 	/* list of backref nodes with no child node */
102 	struct list_head leaves;
103 	/* list of blocks that have been cowed in current transaction */
104 	struct list_head changed;
105 	/* list of detached backref node. */
106 	struct list_head detached;
107 
108 	u64 last_trans;
109 
110 	int nr_nodes;
111 	int nr_edges;
112 };
113 
114 /*
115  * map address of tree root to tree
116  */
117 struct mapping_node {
118 	struct rb_node rb_node;
119 	u64 bytenr;
120 	void *data;
121 };
122 
123 struct mapping_tree {
124 	struct rb_root rb_root;
125 	spinlock_t lock;
126 };
127 
128 /*
129  * present a tree block to process
130  */
131 struct tree_block {
132 	struct rb_node rb_node;
133 	u64 bytenr;
134 	struct btrfs_key key;
135 	unsigned int level:8;
136 	unsigned int key_ready:1;
137 };
138 
139 #define MAX_EXTENTS 128
140 
141 struct file_extent_cluster {
142 	u64 start;
143 	u64 end;
144 	u64 boundary[MAX_EXTENTS];
145 	unsigned int nr;
146 };
147 
148 struct reloc_control {
149 	/* block group to relocate */
150 	struct btrfs_block_group_cache *block_group;
151 	/* extent tree */
152 	struct btrfs_root *extent_root;
153 	/* inode for moving data */
154 	struct inode *data_inode;
155 
156 	struct btrfs_block_rsv *block_rsv;
157 
158 	struct backref_cache backref_cache;
159 
160 	struct file_extent_cluster cluster;
161 	/* tree blocks have been processed */
162 	struct extent_io_tree processed_blocks;
163 	/* map start of tree root to corresponding reloc tree */
164 	struct mapping_tree reloc_root_tree;
165 	/* list of reloc trees */
166 	struct list_head reloc_roots;
167 	/* list of subvolume trees that get relocated */
168 	struct list_head dirty_subvol_roots;
169 	/* size of metadata reservation for merging reloc trees */
170 	u64 merging_rsv_size;
171 	/* size of relocated tree nodes */
172 	u64 nodes_relocated;
173 	/* reserved size for block group relocation*/
174 	u64 reserved_bytes;
175 
176 	u64 search_start;
177 	u64 extents_found;
178 
179 	unsigned int stage:8;
180 	unsigned int create_reloc_tree:1;
181 	unsigned int merge_reloc_tree:1;
182 	unsigned int found_file_extent:1;
183 };
184 
185 /* stages of data relocation */
186 #define MOVE_DATA_EXTENTS	0
187 #define UPDATE_DATA_PTRS	1
188 
189 static void remove_backref_node(struct backref_cache *cache,
190 				struct backref_node *node);
191 static void __mark_block_processed(struct reloc_control *rc,
192 				   struct backref_node *node);
193 
mapping_tree_init(struct mapping_tree * tree)194 static void mapping_tree_init(struct mapping_tree *tree)
195 {
196 	tree->rb_root = RB_ROOT;
197 	spin_lock_init(&tree->lock);
198 }
199 
backref_cache_init(struct backref_cache * cache)200 static void backref_cache_init(struct backref_cache *cache)
201 {
202 	int i;
203 	cache->rb_root = RB_ROOT;
204 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 		INIT_LIST_HEAD(&cache->pending[i]);
206 	INIT_LIST_HEAD(&cache->changed);
207 	INIT_LIST_HEAD(&cache->detached);
208 	INIT_LIST_HEAD(&cache->leaves);
209 }
210 
backref_cache_cleanup(struct backref_cache * cache)211 static void backref_cache_cleanup(struct backref_cache *cache)
212 {
213 	struct backref_node *node;
214 	int i;
215 
216 	while (!list_empty(&cache->detached)) {
217 		node = list_entry(cache->detached.next,
218 				  struct backref_node, list);
219 		remove_backref_node(cache, node);
220 	}
221 
222 	while (!list_empty(&cache->leaves)) {
223 		node = list_entry(cache->leaves.next,
224 				  struct backref_node, lower);
225 		remove_backref_node(cache, node);
226 	}
227 
228 	cache->last_trans = 0;
229 
230 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 		ASSERT(list_empty(&cache->pending[i]));
232 	ASSERT(list_empty(&cache->changed));
233 	ASSERT(list_empty(&cache->detached));
234 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 	ASSERT(!cache->nr_nodes);
236 	ASSERT(!cache->nr_edges);
237 }
238 
alloc_backref_node(struct backref_cache * cache)239 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240 {
241 	struct backref_node *node;
242 
243 	node = kzalloc(sizeof(*node), GFP_NOFS);
244 	if (node) {
245 		INIT_LIST_HEAD(&node->list);
246 		INIT_LIST_HEAD(&node->upper);
247 		INIT_LIST_HEAD(&node->lower);
248 		RB_CLEAR_NODE(&node->rb_node);
249 		cache->nr_nodes++;
250 	}
251 	return node;
252 }
253 
free_backref_node(struct backref_cache * cache,struct backref_node * node)254 static void free_backref_node(struct backref_cache *cache,
255 			      struct backref_node *node)
256 {
257 	if (node) {
258 		cache->nr_nodes--;
259 		kfree(node);
260 	}
261 }
262 
alloc_backref_edge(struct backref_cache * cache)263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264 {
265 	struct backref_edge *edge;
266 
267 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 	if (edge)
269 		cache->nr_edges++;
270 	return edge;
271 }
272 
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)273 static void free_backref_edge(struct backref_cache *cache,
274 			      struct backref_edge *edge)
275 {
276 	if (edge) {
277 		cache->nr_edges--;
278 		kfree(edge);
279 	}
280 }
281 
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 				   struct rb_node *node)
284 {
285 	struct rb_node **p = &root->rb_node;
286 	struct rb_node *parent = NULL;
287 	struct tree_entry *entry;
288 
289 	while (*p) {
290 		parent = *p;
291 		entry = rb_entry(parent, struct tree_entry, rb_node);
292 
293 		if (bytenr < entry->bytenr)
294 			p = &(*p)->rb_left;
295 		else if (bytenr > entry->bytenr)
296 			p = &(*p)->rb_right;
297 		else
298 			return parent;
299 	}
300 
301 	rb_link_node(node, parent, p);
302 	rb_insert_color(node, root);
303 	return NULL;
304 }
305 
tree_search(struct rb_root * root,u64 bytenr)306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307 {
308 	struct rb_node *n = root->rb_node;
309 	struct tree_entry *entry;
310 
311 	while (n) {
312 		entry = rb_entry(n, struct tree_entry, rb_node);
313 
314 		if (bytenr < entry->bytenr)
315 			n = n->rb_left;
316 		else if (bytenr > entry->bytenr)
317 			n = n->rb_right;
318 		else
319 			return n;
320 	}
321 	return NULL;
322 }
323 
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325 {
326 
327 	struct btrfs_fs_info *fs_info = NULL;
328 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 					      rb_node);
330 	if (bnode->root)
331 		fs_info = bnode->root->fs_info;
332 	btrfs_panic(fs_info, errno,
333 		    "Inconsistency in backref cache found at offset %llu",
334 		    bytenr);
335 }
336 
337 /*
338  * walk up backref nodes until reach node presents tree root
339  */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)340 static struct backref_node *walk_up_backref(struct backref_node *node,
341 					    struct backref_edge *edges[],
342 					    int *index)
343 {
344 	struct backref_edge *edge;
345 	int idx = *index;
346 
347 	while (!list_empty(&node->upper)) {
348 		edge = list_entry(node->upper.next,
349 				  struct backref_edge, list[LOWER]);
350 		edges[idx++] = edge;
351 		node = edge->node[UPPER];
352 	}
353 	BUG_ON(node->detached);
354 	*index = idx;
355 	return node;
356 }
357 
358 /*
359  * walk down backref nodes to find start of next reference path
360  */
walk_down_backref(struct backref_edge * edges[],int * index)361 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 					      int *index)
363 {
364 	struct backref_edge *edge;
365 	struct backref_node *lower;
366 	int idx = *index;
367 
368 	while (idx > 0) {
369 		edge = edges[idx - 1];
370 		lower = edge->node[LOWER];
371 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 			idx--;
373 			continue;
374 		}
375 		edge = list_entry(edge->list[LOWER].next,
376 				  struct backref_edge, list[LOWER]);
377 		edges[idx - 1] = edge;
378 		*index = idx;
379 		return edge->node[UPPER];
380 	}
381 	*index = 0;
382 	return NULL;
383 }
384 
unlock_node_buffer(struct backref_node * node)385 static void unlock_node_buffer(struct backref_node *node)
386 {
387 	if (node->locked) {
388 		btrfs_tree_unlock(node->eb);
389 		node->locked = 0;
390 	}
391 }
392 
drop_node_buffer(struct backref_node * node)393 static void drop_node_buffer(struct backref_node *node)
394 {
395 	if (node->eb) {
396 		unlock_node_buffer(node);
397 		free_extent_buffer(node->eb);
398 		node->eb = NULL;
399 	}
400 }
401 
drop_backref_node(struct backref_cache * tree,struct backref_node * node)402 static void drop_backref_node(struct backref_cache *tree,
403 			      struct backref_node *node)
404 {
405 	BUG_ON(!list_empty(&node->upper));
406 
407 	drop_node_buffer(node);
408 	list_del(&node->list);
409 	list_del(&node->lower);
410 	if (!RB_EMPTY_NODE(&node->rb_node))
411 		rb_erase(&node->rb_node, &tree->rb_root);
412 	free_backref_node(tree, node);
413 }
414 
415 /*
416  * remove a backref node from the backref cache
417  */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)418 static void remove_backref_node(struct backref_cache *cache,
419 				struct backref_node *node)
420 {
421 	struct backref_node *upper;
422 	struct backref_edge *edge;
423 
424 	if (!node)
425 		return;
426 
427 	BUG_ON(!node->lowest && !node->detached);
428 	while (!list_empty(&node->upper)) {
429 		edge = list_entry(node->upper.next, struct backref_edge,
430 				  list[LOWER]);
431 		upper = edge->node[UPPER];
432 		list_del(&edge->list[LOWER]);
433 		list_del(&edge->list[UPPER]);
434 		free_backref_edge(cache, edge);
435 
436 		if (RB_EMPTY_NODE(&upper->rb_node)) {
437 			BUG_ON(!list_empty(&node->upper));
438 			drop_backref_node(cache, node);
439 			node = upper;
440 			node->lowest = 1;
441 			continue;
442 		}
443 		/*
444 		 * add the node to leaf node list if no other
445 		 * child block cached.
446 		 */
447 		if (list_empty(&upper->lower)) {
448 			list_add_tail(&upper->lower, &cache->leaves);
449 			upper->lowest = 1;
450 		}
451 	}
452 
453 	drop_backref_node(cache, node);
454 }
455 
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)456 static void update_backref_node(struct backref_cache *cache,
457 				struct backref_node *node, u64 bytenr)
458 {
459 	struct rb_node *rb_node;
460 	rb_erase(&node->rb_node, &cache->rb_root);
461 	node->bytenr = bytenr;
462 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 	if (rb_node)
464 		backref_tree_panic(rb_node, -EEXIST, bytenr);
465 }
466 
467 /*
468  * update backref cache after a transaction commit
469  */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)470 static int update_backref_cache(struct btrfs_trans_handle *trans,
471 				struct backref_cache *cache)
472 {
473 	struct backref_node *node;
474 	int level = 0;
475 
476 	if (cache->last_trans == 0) {
477 		cache->last_trans = trans->transid;
478 		return 0;
479 	}
480 
481 	if (cache->last_trans == trans->transid)
482 		return 0;
483 
484 	/*
485 	 * detached nodes are used to avoid unnecessary backref
486 	 * lookup. transaction commit changes the extent tree.
487 	 * so the detached nodes are no longer useful.
488 	 */
489 	while (!list_empty(&cache->detached)) {
490 		node = list_entry(cache->detached.next,
491 				  struct backref_node, list);
492 		remove_backref_node(cache, node);
493 	}
494 
495 	while (!list_empty(&cache->changed)) {
496 		node = list_entry(cache->changed.next,
497 				  struct backref_node, list);
498 		list_del_init(&node->list);
499 		BUG_ON(node->pending);
500 		update_backref_node(cache, node, node->new_bytenr);
501 	}
502 
503 	/*
504 	 * some nodes can be left in the pending list if there were
505 	 * errors during processing the pending nodes.
506 	 */
507 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 		list_for_each_entry(node, &cache->pending[level], list) {
509 			BUG_ON(!node->pending);
510 			if (node->bytenr == node->new_bytenr)
511 				continue;
512 			update_backref_node(cache, node, node->new_bytenr);
513 		}
514 	}
515 
516 	cache->last_trans = 0;
517 	return 1;
518 }
519 
520 
should_ignore_root(struct btrfs_root * root)521 static int should_ignore_root(struct btrfs_root *root)
522 {
523 	struct btrfs_root *reloc_root;
524 
525 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
526 		return 0;
527 
528 	reloc_root = root->reloc_root;
529 	if (!reloc_root)
530 		return 0;
531 
532 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
533 	    root->fs_info->running_transaction->transid - 1)
534 		return 0;
535 	/*
536 	 * if there is reloc tree and it was created in previous
537 	 * transaction backref lookup can find the reloc tree,
538 	 * so backref node for the fs tree root is useless for
539 	 * relocation.
540 	 */
541 	return 1;
542 }
543 /*
544  * find reloc tree by address of tree root
545  */
find_reloc_root(struct reloc_control * rc,u64 bytenr)546 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
547 					  u64 bytenr)
548 {
549 	struct rb_node *rb_node;
550 	struct mapping_node *node;
551 	struct btrfs_root *root = NULL;
552 
553 	spin_lock(&rc->reloc_root_tree.lock);
554 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
555 	if (rb_node) {
556 		node = rb_entry(rb_node, struct mapping_node, rb_node);
557 		root = (struct btrfs_root *)node->data;
558 	}
559 	spin_unlock(&rc->reloc_root_tree.lock);
560 	return root;
561 }
562 
is_cowonly_root(u64 root_objectid)563 static int is_cowonly_root(u64 root_objectid)
564 {
565 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
566 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
568 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
570 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
574 		return 1;
575 	return 0;
576 }
577 
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)578 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
579 					u64 root_objectid)
580 {
581 	struct btrfs_key key;
582 
583 	key.objectid = root_objectid;
584 	key.type = BTRFS_ROOT_ITEM_KEY;
585 	if (is_cowonly_root(root_objectid))
586 		key.offset = 0;
587 	else
588 		key.offset = (u64)-1;
589 
590 	return btrfs_get_fs_root(fs_info, &key, false);
591 }
592 
593 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)594 int find_inline_backref(struct extent_buffer *leaf, int slot,
595 			unsigned long *ptr, unsigned long *end)
596 {
597 	struct btrfs_key key;
598 	struct btrfs_extent_item *ei;
599 	struct btrfs_tree_block_info *bi;
600 	u32 item_size;
601 
602 	btrfs_item_key_to_cpu(leaf, &key, slot);
603 
604 	item_size = btrfs_item_size_nr(leaf, slot);
605 	if (item_size < sizeof(*ei)) {
606 		btrfs_print_v0_err(leaf->fs_info);
607 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
608 		return 1;
609 	}
610 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
611 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
612 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
613 
614 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
615 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
616 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
617 		return 1;
618 	}
619 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
620 	    item_size <= sizeof(*ei)) {
621 		WARN_ON(item_size < sizeof(*ei));
622 		return 1;
623 	}
624 
625 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
626 		bi = (struct btrfs_tree_block_info *)(ei + 1);
627 		*ptr = (unsigned long)(bi + 1);
628 	} else {
629 		*ptr = (unsigned long)(ei + 1);
630 	}
631 	*end = (unsigned long)ei + item_size;
632 	return 0;
633 }
634 
635 /*
636  * build backref tree for a given tree block. root of the backref tree
637  * corresponds the tree block, leaves of the backref tree correspond
638  * roots of b-trees that reference the tree block.
639  *
640  * the basic idea of this function is check backrefs of a given block
641  * to find upper level blocks that reference the block, and then check
642  * backrefs of these upper level blocks recursively. the recursion stop
643  * when tree root is reached or backrefs for the block is cached.
644  *
645  * NOTE: if we find backrefs for a block are cached, we know backrefs
646  * for all upper level blocks that directly/indirectly reference the
647  * block are also cached.
648  */
649 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)650 struct backref_node *build_backref_tree(struct reloc_control *rc,
651 					struct btrfs_key *node_key,
652 					int level, u64 bytenr)
653 {
654 	struct backref_cache *cache = &rc->backref_cache;
655 	struct btrfs_path *path1; /* For searching extent root */
656 	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
657 	struct extent_buffer *eb;
658 	struct btrfs_root *root;
659 	struct backref_node *cur;
660 	struct backref_node *upper;
661 	struct backref_node *lower;
662 	struct backref_node *node = NULL;
663 	struct backref_node *exist = NULL;
664 	struct backref_edge *edge;
665 	struct rb_node *rb_node;
666 	struct btrfs_key key;
667 	unsigned long end;
668 	unsigned long ptr;
669 	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
670 	LIST_HEAD(useless);
671 	int cowonly;
672 	int ret;
673 	int err = 0;
674 	bool need_check = true;
675 
676 	path1 = btrfs_alloc_path();
677 	path2 = btrfs_alloc_path();
678 	if (!path1 || !path2) {
679 		err = -ENOMEM;
680 		goto out;
681 	}
682 	path1->reada = READA_FORWARD;
683 	path2->reada = READA_FORWARD;
684 
685 	node = alloc_backref_node(cache);
686 	if (!node) {
687 		err = -ENOMEM;
688 		goto out;
689 	}
690 
691 	node->bytenr = bytenr;
692 	node->level = level;
693 	node->lowest = 1;
694 	cur = node;
695 again:
696 	end = 0;
697 	ptr = 0;
698 	key.objectid = cur->bytenr;
699 	key.type = BTRFS_METADATA_ITEM_KEY;
700 	key.offset = (u64)-1;
701 
702 	path1->search_commit_root = 1;
703 	path1->skip_locking = 1;
704 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
705 				0, 0);
706 	if (ret < 0) {
707 		err = ret;
708 		goto out;
709 	}
710 	ASSERT(ret);
711 	ASSERT(path1->slots[0]);
712 
713 	path1->slots[0]--;
714 
715 	WARN_ON(cur->checked);
716 	if (!list_empty(&cur->upper)) {
717 		/*
718 		 * the backref was added previously when processing
719 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
720 		 */
721 		ASSERT(list_is_singular(&cur->upper));
722 		edge = list_entry(cur->upper.next, struct backref_edge,
723 				  list[LOWER]);
724 		ASSERT(list_empty(&edge->list[UPPER]));
725 		exist = edge->node[UPPER];
726 		/*
727 		 * add the upper level block to pending list if we need
728 		 * check its backrefs
729 		 */
730 		if (!exist->checked)
731 			list_add_tail(&edge->list[UPPER], &list);
732 	} else {
733 		exist = NULL;
734 	}
735 
736 	while (1) {
737 		cond_resched();
738 		eb = path1->nodes[0];
739 
740 		if (ptr >= end) {
741 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
742 				ret = btrfs_next_leaf(rc->extent_root, path1);
743 				if (ret < 0) {
744 					err = ret;
745 					goto out;
746 				}
747 				if (ret > 0)
748 					break;
749 				eb = path1->nodes[0];
750 			}
751 
752 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
753 			if (key.objectid != cur->bytenr) {
754 				WARN_ON(exist);
755 				break;
756 			}
757 
758 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
759 			    key.type == BTRFS_METADATA_ITEM_KEY) {
760 				ret = find_inline_backref(eb, path1->slots[0],
761 							  &ptr, &end);
762 				if (ret)
763 					goto next;
764 			}
765 		}
766 
767 		if (ptr < end) {
768 			/* update key for inline back ref */
769 			struct btrfs_extent_inline_ref *iref;
770 			int type;
771 			iref = (struct btrfs_extent_inline_ref *)ptr;
772 			type = btrfs_get_extent_inline_ref_type(eb, iref,
773 							BTRFS_REF_TYPE_BLOCK);
774 			if (type == BTRFS_REF_TYPE_INVALID) {
775 				err = -EUCLEAN;
776 				goto out;
777 			}
778 			key.type = type;
779 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
780 
781 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
782 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
783 		}
784 
785 		/*
786 		 * Parent node found and matches current inline ref, no need to
787 		 * rebuild this node for this inline ref.
788 		 */
789 		if (exist &&
790 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
791 		      exist->owner == key.offset) ||
792 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
793 		      exist->bytenr == key.offset))) {
794 			exist = NULL;
795 			goto next;
796 		}
797 
798 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
799 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
800 			if (key.objectid == key.offset) {
801 				/*
802 				 * Only root blocks of reloc trees use backref
803 				 * pointing to itself.
804 				 */
805 				root = find_reloc_root(rc, cur->bytenr);
806 				ASSERT(root);
807 				cur->root = root;
808 				break;
809 			}
810 
811 			edge = alloc_backref_edge(cache);
812 			if (!edge) {
813 				err = -ENOMEM;
814 				goto out;
815 			}
816 			rb_node = tree_search(&cache->rb_root, key.offset);
817 			if (!rb_node) {
818 				upper = alloc_backref_node(cache);
819 				if (!upper) {
820 					free_backref_edge(cache, edge);
821 					err = -ENOMEM;
822 					goto out;
823 				}
824 				upper->bytenr = key.offset;
825 				upper->level = cur->level + 1;
826 				/*
827 				 *  backrefs for the upper level block isn't
828 				 *  cached, add the block to pending list
829 				 */
830 				list_add_tail(&edge->list[UPPER], &list);
831 			} else {
832 				upper = rb_entry(rb_node, struct backref_node,
833 						 rb_node);
834 				ASSERT(upper->checked);
835 				INIT_LIST_HEAD(&edge->list[UPPER]);
836 			}
837 			list_add_tail(&edge->list[LOWER], &cur->upper);
838 			edge->node[LOWER] = cur;
839 			edge->node[UPPER] = upper;
840 
841 			goto next;
842 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
843 			err = -EINVAL;
844 			btrfs_print_v0_err(rc->extent_root->fs_info);
845 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
846 					      NULL);
847 			goto out;
848 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
849 			goto next;
850 		}
851 
852 		/*
853 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
854 		 * means the root objectid. We need to search the tree to get
855 		 * its parent bytenr.
856 		 */
857 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
858 		if (IS_ERR(root)) {
859 			err = PTR_ERR(root);
860 			goto out;
861 		}
862 
863 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
864 			cur->cowonly = 1;
865 
866 		if (btrfs_root_level(&root->root_item) == cur->level) {
867 			/* tree root */
868 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
869 			       cur->bytenr);
870 			if (should_ignore_root(root))
871 				list_add(&cur->list, &useless);
872 			else
873 				cur->root = root;
874 			break;
875 		}
876 
877 		level = cur->level + 1;
878 
879 		/* Search the tree to find parent blocks referring the block. */
880 		path2->search_commit_root = 1;
881 		path2->skip_locking = 1;
882 		path2->lowest_level = level;
883 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
884 		path2->lowest_level = 0;
885 		if (ret < 0) {
886 			err = ret;
887 			goto out;
888 		}
889 		if (ret > 0 && path2->slots[level] > 0)
890 			path2->slots[level]--;
891 
892 		eb = path2->nodes[level];
893 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
894 		    cur->bytenr) {
895 			btrfs_err(root->fs_info,
896 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
897 				  cur->bytenr, level - 1,
898 				  root->root_key.objectid,
899 				  node_key->objectid, node_key->type,
900 				  node_key->offset);
901 			err = -ENOENT;
902 			goto out;
903 		}
904 		lower = cur;
905 		need_check = true;
906 
907 		/* Add all nodes and edges in the path */
908 		for (; level < BTRFS_MAX_LEVEL; level++) {
909 			if (!path2->nodes[level]) {
910 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
911 				       lower->bytenr);
912 				if (should_ignore_root(root))
913 					list_add(&lower->list, &useless);
914 				else
915 					lower->root = root;
916 				break;
917 			}
918 
919 			edge = alloc_backref_edge(cache);
920 			if (!edge) {
921 				err = -ENOMEM;
922 				goto out;
923 			}
924 
925 			eb = path2->nodes[level];
926 			rb_node = tree_search(&cache->rb_root, eb->start);
927 			if (!rb_node) {
928 				upper = alloc_backref_node(cache);
929 				if (!upper) {
930 					free_backref_edge(cache, edge);
931 					err = -ENOMEM;
932 					goto out;
933 				}
934 				upper->bytenr = eb->start;
935 				upper->owner = btrfs_header_owner(eb);
936 				upper->level = lower->level + 1;
937 				if (!test_bit(BTRFS_ROOT_REF_COWS,
938 					      &root->state))
939 					upper->cowonly = 1;
940 
941 				/*
942 				 * if we know the block isn't shared
943 				 * we can void checking its backrefs.
944 				 */
945 				if (btrfs_block_can_be_shared(root, eb))
946 					upper->checked = 0;
947 				else
948 					upper->checked = 1;
949 
950 				/*
951 				 * add the block to pending list if we
952 				 * need check its backrefs, we only do this once
953 				 * while walking up a tree as we will catch
954 				 * anything else later on.
955 				 */
956 				if (!upper->checked && need_check) {
957 					need_check = false;
958 					list_add_tail(&edge->list[UPPER],
959 						      &list);
960 				} else {
961 					if (upper->checked)
962 						need_check = true;
963 					INIT_LIST_HEAD(&edge->list[UPPER]);
964 				}
965 			} else {
966 				upper = rb_entry(rb_node, struct backref_node,
967 						 rb_node);
968 				ASSERT(upper->checked);
969 				INIT_LIST_HEAD(&edge->list[UPPER]);
970 				if (!upper->owner)
971 					upper->owner = btrfs_header_owner(eb);
972 			}
973 			list_add_tail(&edge->list[LOWER], &lower->upper);
974 			edge->node[LOWER] = lower;
975 			edge->node[UPPER] = upper;
976 
977 			if (rb_node)
978 				break;
979 			lower = upper;
980 			upper = NULL;
981 		}
982 		btrfs_release_path(path2);
983 next:
984 		if (ptr < end) {
985 			ptr += btrfs_extent_inline_ref_size(key.type);
986 			if (ptr >= end) {
987 				WARN_ON(ptr > end);
988 				ptr = 0;
989 				end = 0;
990 			}
991 		}
992 		if (ptr >= end)
993 			path1->slots[0]++;
994 	}
995 	btrfs_release_path(path1);
996 
997 	cur->checked = 1;
998 	WARN_ON(exist);
999 
1000 	/* the pending list isn't empty, take the first block to process */
1001 	if (!list_empty(&list)) {
1002 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003 		list_del_init(&edge->list[UPPER]);
1004 		cur = edge->node[UPPER];
1005 		goto again;
1006 	}
1007 
1008 	/*
1009 	 * everything goes well, connect backref nodes and insert backref nodes
1010 	 * into the cache.
1011 	 */
1012 	ASSERT(node->checked);
1013 	cowonly = node->cowonly;
1014 	if (!cowonly) {
1015 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016 				      &node->rb_node);
1017 		if (rb_node)
1018 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019 		list_add_tail(&node->lower, &cache->leaves);
1020 	}
1021 
1022 	list_for_each_entry(edge, &node->upper, list[LOWER])
1023 		list_add_tail(&edge->list[UPPER], &list);
1024 
1025 	while (!list_empty(&list)) {
1026 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027 		list_del_init(&edge->list[UPPER]);
1028 		upper = edge->node[UPPER];
1029 		if (upper->detached) {
1030 			list_del(&edge->list[LOWER]);
1031 			lower = edge->node[LOWER];
1032 			free_backref_edge(cache, edge);
1033 			if (list_empty(&lower->upper))
1034 				list_add(&lower->list, &useless);
1035 			continue;
1036 		}
1037 
1038 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039 			if (upper->lowest) {
1040 				list_del_init(&upper->lower);
1041 				upper->lowest = 0;
1042 			}
1043 
1044 			list_add_tail(&edge->list[UPPER], &upper->lower);
1045 			continue;
1046 		}
1047 
1048 		if (!upper->checked) {
1049 			/*
1050 			 * Still want to blow up for developers since this is a
1051 			 * logic bug.
1052 			 */
1053 			ASSERT(0);
1054 			err = -EINVAL;
1055 			goto out;
1056 		}
1057 		if (cowonly != upper->cowonly) {
1058 			ASSERT(0);
1059 			err = -EINVAL;
1060 			goto out;
1061 		}
1062 
1063 		if (!cowonly) {
1064 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065 					      &upper->rb_node);
1066 			if (rb_node)
1067 				backref_tree_panic(rb_node, -EEXIST,
1068 						   upper->bytenr);
1069 		}
1070 
1071 		list_add_tail(&edge->list[UPPER], &upper->lower);
1072 
1073 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1074 			list_add_tail(&edge->list[UPPER], &list);
1075 	}
1076 	/*
1077 	 * process useless backref nodes. backref nodes for tree leaves
1078 	 * are deleted from the cache. backref nodes for upper level
1079 	 * tree blocks are left in the cache to avoid unnecessary backref
1080 	 * lookup.
1081 	 */
1082 	while (!list_empty(&useless)) {
1083 		upper = list_entry(useless.next, struct backref_node, list);
1084 		list_del_init(&upper->list);
1085 		ASSERT(list_empty(&upper->upper));
1086 		if (upper == node)
1087 			node = NULL;
1088 		if (upper->lowest) {
1089 			list_del_init(&upper->lower);
1090 			upper->lowest = 0;
1091 		}
1092 		while (!list_empty(&upper->lower)) {
1093 			edge = list_entry(upper->lower.next,
1094 					  struct backref_edge, list[UPPER]);
1095 			list_del(&edge->list[UPPER]);
1096 			list_del(&edge->list[LOWER]);
1097 			lower = edge->node[LOWER];
1098 			free_backref_edge(cache, edge);
1099 
1100 			if (list_empty(&lower->upper))
1101 				list_add(&lower->list, &useless);
1102 		}
1103 		__mark_block_processed(rc, upper);
1104 		if (upper->level > 0) {
1105 			list_add(&upper->list, &cache->detached);
1106 			upper->detached = 1;
1107 		} else {
1108 			rb_erase(&upper->rb_node, &cache->rb_root);
1109 			free_backref_node(cache, upper);
1110 		}
1111 	}
1112 out:
1113 	btrfs_free_path(path1);
1114 	btrfs_free_path(path2);
1115 	if (err) {
1116 		while (!list_empty(&useless)) {
1117 			lower = list_entry(useless.next,
1118 					   struct backref_node, list);
1119 			list_del_init(&lower->list);
1120 		}
1121 		while (!list_empty(&list)) {
1122 			edge = list_first_entry(&list, struct backref_edge,
1123 						list[UPPER]);
1124 			list_del(&edge->list[UPPER]);
1125 			list_del(&edge->list[LOWER]);
1126 			lower = edge->node[LOWER];
1127 			upper = edge->node[UPPER];
1128 			free_backref_edge(cache, edge);
1129 
1130 			/*
1131 			 * Lower is no longer linked to any upper backref nodes
1132 			 * and isn't in the cache, we can free it ourselves.
1133 			 */
1134 			if (list_empty(&lower->upper) &&
1135 			    RB_EMPTY_NODE(&lower->rb_node))
1136 				list_add(&lower->list, &useless);
1137 
1138 			if (!RB_EMPTY_NODE(&upper->rb_node))
1139 				continue;
1140 
1141 			/* Add this guy's upper edges to the list to process */
1142 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1143 				list_add_tail(&edge->list[UPPER], &list);
1144 			if (list_empty(&upper->upper))
1145 				list_add(&upper->list, &useless);
1146 		}
1147 
1148 		while (!list_empty(&useless)) {
1149 			lower = list_entry(useless.next,
1150 					   struct backref_node, list);
1151 			list_del_init(&lower->list);
1152 			if (lower == node)
1153 				node = NULL;
1154 			free_backref_node(cache, lower);
1155 		}
1156 
1157 		free_backref_node(cache, node);
1158 		return ERR_PTR(err);
1159 	}
1160 	ASSERT(!node || !node->detached);
1161 	return node;
1162 }
1163 
1164 /*
1165  * helper to add backref node for the newly created snapshot.
1166  * the backref node is created by cloning backref node that
1167  * corresponds to root of source tree
1168  */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)1169 static int clone_backref_node(struct btrfs_trans_handle *trans,
1170 			      struct reloc_control *rc,
1171 			      struct btrfs_root *src,
1172 			      struct btrfs_root *dest)
1173 {
1174 	struct btrfs_root *reloc_root = src->reloc_root;
1175 	struct backref_cache *cache = &rc->backref_cache;
1176 	struct backref_node *node = NULL;
1177 	struct backref_node *new_node;
1178 	struct backref_edge *edge;
1179 	struct backref_edge *new_edge;
1180 	struct rb_node *rb_node;
1181 
1182 	if (cache->last_trans > 0)
1183 		update_backref_cache(trans, cache);
1184 
1185 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186 	if (rb_node) {
1187 		node = rb_entry(rb_node, struct backref_node, rb_node);
1188 		if (node->detached)
1189 			node = NULL;
1190 		else
1191 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1192 	}
1193 
1194 	if (!node) {
1195 		rb_node = tree_search(&cache->rb_root,
1196 				      reloc_root->commit_root->start);
1197 		if (rb_node) {
1198 			node = rb_entry(rb_node, struct backref_node,
1199 					rb_node);
1200 			BUG_ON(node->detached);
1201 		}
1202 	}
1203 
1204 	if (!node)
1205 		return 0;
1206 
1207 	new_node = alloc_backref_node(cache);
1208 	if (!new_node)
1209 		return -ENOMEM;
1210 
1211 	new_node->bytenr = dest->node->start;
1212 	new_node->level = node->level;
1213 	new_node->lowest = node->lowest;
1214 	new_node->checked = 1;
1215 	new_node->root = dest;
1216 
1217 	if (!node->lowest) {
1218 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219 			new_edge = alloc_backref_edge(cache);
1220 			if (!new_edge)
1221 				goto fail;
1222 
1223 			new_edge->node[UPPER] = new_node;
1224 			new_edge->node[LOWER] = edge->node[LOWER];
1225 			list_add_tail(&new_edge->list[UPPER],
1226 				      &new_node->lower);
1227 		}
1228 	} else {
1229 		list_add_tail(&new_node->lower, &cache->leaves);
1230 	}
1231 
1232 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233 			      &new_node->rb_node);
1234 	if (rb_node)
1235 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236 
1237 	if (!new_node->lowest) {
1238 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239 			list_add_tail(&new_edge->list[LOWER],
1240 				      &new_edge->node[LOWER]->upper);
1241 		}
1242 	}
1243 	return 0;
1244 fail:
1245 	while (!list_empty(&new_node->lower)) {
1246 		new_edge = list_entry(new_node->lower.next,
1247 				      struct backref_edge, list[UPPER]);
1248 		list_del(&new_edge->list[UPPER]);
1249 		free_backref_edge(cache, new_edge);
1250 	}
1251 	free_backref_node(cache, new_node);
1252 	return -ENOMEM;
1253 }
1254 
1255 /*
1256  * helper to add 'address of tree root -> reloc tree' mapping
1257  */
__add_reloc_root(struct btrfs_root * root)1258 static int __must_check __add_reloc_root(struct btrfs_root *root)
1259 {
1260 	struct btrfs_fs_info *fs_info = root->fs_info;
1261 	struct rb_node *rb_node;
1262 	struct mapping_node *node;
1263 	struct reloc_control *rc = fs_info->reloc_ctl;
1264 
1265 	node = kmalloc(sizeof(*node), GFP_NOFS);
1266 	if (!node)
1267 		return -ENOMEM;
1268 
1269 	node->bytenr = root->node->start;
1270 	node->data = root;
1271 
1272 	spin_lock(&rc->reloc_root_tree.lock);
1273 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274 			      node->bytenr, &node->rb_node);
1275 	spin_unlock(&rc->reloc_root_tree.lock);
1276 	if (rb_node) {
1277 		btrfs_panic(fs_info, -EEXIST,
1278 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1279 			    node->bytenr);
1280 	}
1281 
1282 	list_add_tail(&root->root_list, &rc->reloc_roots);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * helper to delete the 'address of tree root -> reloc tree'
1288  * mapping
1289  */
__del_reloc_root(struct btrfs_root * root)1290 static void __del_reloc_root(struct btrfs_root *root)
1291 {
1292 	struct btrfs_fs_info *fs_info = root->fs_info;
1293 	struct rb_node *rb_node;
1294 	struct mapping_node *node = NULL;
1295 	struct reloc_control *rc = fs_info->reloc_ctl;
1296 
1297 	if (rc && root->node) {
1298 		spin_lock(&rc->reloc_root_tree.lock);
1299 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300 				      root->node->start);
1301 		if (rb_node) {
1302 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1303 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1304 		}
1305 		spin_unlock(&rc->reloc_root_tree.lock);
1306 		if (!node)
1307 			return;
1308 		BUG_ON((struct btrfs_root *)node->data != root);
1309 	}
1310 
1311 	spin_lock(&fs_info->trans_lock);
1312 	list_del_init(&root->root_list);
1313 	spin_unlock(&fs_info->trans_lock);
1314 	kfree(node);
1315 }
1316 
1317 /*
1318  * helper to update the 'address of tree root -> reloc tree'
1319  * mapping
1320  */
__update_reloc_root(struct btrfs_root * root,u64 new_bytenr)1321 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322 {
1323 	struct btrfs_fs_info *fs_info = root->fs_info;
1324 	struct rb_node *rb_node;
1325 	struct mapping_node *node = NULL;
1326 	struct reloc_control *rc = fs_info->reloc_ctl;
1327 
1328 	spin_lock(&rc->reloc_root_tree.lock);
1329 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 			      root->node->start);
1331 	if (rb_node) {
1332 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 	}
1335 	spin_unlock(&rc->reloc_root_tree.lock);
1336 
1337 	if (!node)
1338 		return 0;
1339 	BUG_ON((struct btrfs_root *)node->data != root);
1340 
1341 	spin_lock(&rc->reloc_root_tree.lock);
1342 	node->bytenr = new_bytenr;
1343 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344 			      node->bytenr, &node->rb_node);
1345 	spin_unlock(&rc->reloc_root_tree.lock);
1346 	if (rb_node)
1347 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348 	return 0;
1349 }
1350 
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)1351 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352 					struct btrfs_root *root, u64 objectid)
1353 {
1354 	struct btrfs_fs_info *fs_info = root->fs_info;
1355 	struct btrfs_root *reloc_root;
1356 	struct extent_buffer *eb;
1357 	struct btrfs_root_item *root_item;
1358 	struct btrfs_key root_key;
1359 	int ret;
1360 
1361 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362 	BUG_ON(!root_item);
1363 
1364 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1366 	root_key.offset = objectid;
1367 
1368 	if (root->root_key.objectid == objectid) {
1369 		u64 commit_root_gen;
1370 
1371 		/* called by btrfs_init_reloc_root */
1372 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373 				      BTRFS_TREE_RELOC_OBJECTID);
1374 		BUG_ON(ret);
1375 		/*
1376 		 * Set the last_snapshot field to the generation of the commit
1377 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378 		 * correctly (returns true) when the relocation root is created
1379 		 * either inside the critical section of a transaction commit
1380 		 * (through transaction.c:qgroup_account_snapshot()) and when
1381 		 * it's created before the transaction commit is started.
1382 		 */
1383 		commit_root_gen = btrfs_header_generation(root->commit_root);
1384 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385 	} else {
1386 		/*
1387 		 * called by btrfs_reloc_post_snapshot_hook.
1388 		 * the source tree is a reloc tree, all tree blocks
1389 		 * modified after it was created have RELOC flag
1390 		 * set in their headers. so it's OK to not update
1391 		 * the 'last_snapshot'.
1392 		 */
1393 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1394 				      BTRFS_TREE_RELOC_OBJECTID);
1395 		BUG_ON(ret);
1396 	}
1397 
1398 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1399 	btrfs_set_root_bytenr(root_item, eb->start);
1400 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401 	btrfs_set_root_generation(root_item, trans->transid);
1402 
1403 	if (root->root_key.objectid == objectid) {
1404 		btrfs_set_root_refs(root_item, 0);
1405 		memset(&root_item->drop_progress, 0,
1406 		       sizeof(struct btrfs_disk_key));
1407 		root_item->drop_level = 0;
1408 	}
1409 
1410 	btrfs_tree_unlock(eb);
1411 	free_extent_buffer(eb);
1412 
1413 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1414 				&root_key, root_item);
1415 	BUG_ON(ret);
1416 	kfree(root_item);
1417 
1418 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419 	BUG_ON(IS_ERR(reloc_root));
1420 	reloc_root->last_trans = trans->transid;
1421 	return reloc_root;
1422 }
1423 
1424 /*
1425  * create reloc tree for a given fs tree. reloc tree is just a
1426  * snapshot of the fs tree with special root objectid.
1427  */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1428 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429 			  struct btrfs_root *root)
1430 {
1431 	struct btrfs_fs_info *fs_info = root->fs_info;
1432 	struct btrfs_root *reloc_root;
1433 	struct reloc_control *rc = fs_info->reloc_ctl;
1434 	struct btrfs_block_rsv *rsv;
1435 	int clear_rsv = 0;
1436 	int ret;
1437 
1438 	/*
1439 	 * The subvolume has reloc tree but the swap is finished, no need to
1440 	 * create/update the dead reloc tree
1441 	 */
1442 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
1443 		return 0;
1444 
1445 	if (root->reloc_root) {
1446 		reloc_root = root->reloc_root;
1447 		reloc_root->last_trans = trans->transid;
1448 		return 0;
1449 	}
1450 
1451 	if (!rc || !rc->create_reloc_tree ||
1452 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1453 		return 0;
1454 
1455 	if (!trans->reloc_reserved) {
1456 		rsv = trans->block_rsv;
1457 		trans->block_rsv = rc->block_rsv;
1458 		clear_rsv = 1;
1459 	}
1460 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1461 	if (clear_rsv)
1462 		trans->block_rsv = rsv;
1463 
1464 	ret = __add_reloc_root(reloc_root);
1465 	BUG_ON(ret < 0);
1466 	root->reloc_root = reloc_root;
1467 	return 0;
1468 }
1469 
1470 /*
1471  * update root item of reloc tree
1472  */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1473 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1474 			    struct btrfs_root *root)
1475 {
1476 	struct btrfs_fs_info *fs_info = root->fs_info;
1477 	struct btrfs_root *reloc_root;
1478 	struct btrfs_root_item *root_item;
1479 	int ret;
1480 
1481 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1482 	    !root->reloc_root)
1483 		goto out;
1484 
1485 	reloc_root = root->reloc_root;
1486 	root_item = &reloc_root->root_item;
1487 
1488 	/* root->reloc_root will stay until current relocation finished */
1489 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1490 	    btrfs_root_refs(root_item) == 0) {
1491 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1492 		__del_reloc_root(reloc_root);
1493 	}
1494 
1495 	if (reloc_root->commit_root != reloc_root->node) {
1496 		btrfs_set_root_node(root_item, reloc_root->node);
1497 		free_extent_buffer(reloc_root->commit_root);
1498 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1499 	}
1500 
1501 	ret = btrfs_update_root(trans, fs_info->tree_root,
1502 				&reloc_root->root_key, root_item);
1503 	BUG_ON(ret);
1504 
1505 out:
1506 	return 0;
1507 }
1508 
1509 /*
1510  * helper to find first cached inode with inode number >= objectid
1511  * in a subvolume
1512  */
find_next_inode(struct btrfs_root * root,u64 objectid)1513 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1514 {
1515 	struct rb_node *node;
1516 	struct rb_node *prev;
1517 	struct btrfs_inode *entry;
1518 	struct inode *inode;
1519 
1520 	spin_lock(&root->inode_lock);
1521 again:
1522 	node = root->inode_tree.rb_node;
1523 	prev = NULL;
1524 	while (node) {
1525 		prev = node;
1526 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1527 
1528 		if (objectid < btrfs_ino(entry))
1529 			node = node->rb_left;
1530 		else if (objectid > btrfs_ino(entry))
1531 			node = node->rb_right;
1532 		else
1533 			break;
1534 	}
1535 	if (!node) {
1536 		while (prev) {
1537 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538 			if (objectid <= btrfs_ino(entry)) {
1539 				node = prev;
1540 				break;
1541 			}
1542 			prev = rb_next(prev);
1543 		}
1544 	}
1545 	while (node) {
1546 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1547 		inode = igrab(&entry->vfs_inode);
1548 		if (inode) {
1549 			spin_unlock(&root->inode_lock);
1550 			return inode;
1551 		}
1552 
1553 		objectid = btrfs_ino(entry) + 1;
1554 		if (cond_resched_lock(&root->inode_lock))
1555 			goto again;
1556 
1557 		node = rb_next(node);
1558 	}
1559 	spin_unlock(&root->inode_lock);
1560 	return NULL;
1561 }
1562 
in_block_group(u64 bytenr,struct btrfs_block_group_cache * block_group)1563 static int in_block_group(u64 bytenr,
1564 			  struct btrfs_block_group_cache *block_group)
1565 {
1566 	if (bytenr >= block_group->key.objectid &&
1567 	    bytenr < block_group->key.objectid + block_group->key.offset)
1568 		return 1;
1569 	return 0;
1570 }
1571 
1572 /*
1573  * get new location of data
1574  */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1575 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1576 			    u64 bytenr, u64 num_bytes)
1577 {
1578 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1579 	struct btrfs_path *path;
1580 	struct btrfs_file_extent_item *fi;
1581 	struct extent_buffer *leaf;
1582 	int ret;
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589 	ret = btrfs_lookup_file_extent(NULL, root, path,
1590 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591 	if (ret < 0)
1592 		goto out;
1593 	if (ret > 0) {
1594 		ret = -ENOENT;
1595 		goto out;
1596 	}
1597 
1598 	leaf = path->nodes[0];
1599 	fi = btrfs_item_ptr(leaf, path->slots[0],
1600 			    struct btrfs_file_extent_item);
1601 
1602 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1603 	       btrfs_file_extent_compression(leaf, fi) ||
1604 	       btrfs_file_extent_encryption(leaf, fi) ||
1605 	       btrfs_file_extent_other_encoding(leaf, fi));
1606 
1607 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608 		ret = -EINVAL;
1609 		goto out;
1610 	}
1611 
1612 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613 	ret = 0;
1614 out:
1615 	btrfs_free_path(path);
1616 	return ret;
1617 }
1618 
1619 /*
1620  * update file extent items in the tree leaf to point to
1621  * the new locations.
1622  */
1623 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1624 int replace_file_extents(struct btrfs_trans_handle *trans,
1625 			 struct reloc_control *rc,
1626 			 struct btrfs_root *root,
1627 			 struct extent_buffer *leaf)
1628 {
1629 	struct btrfs_fs_info *fs_info = root->fs_info;
1630 	struct btrfs_key key;
1631 	struct btrfs_file_extent_item *fi;
1632 	struct inode *inode = NULL;
1633 	u64 parent;
1634 	u64 bytenr;
1635 	u64 new_bytenr = 0;
1636 	u64 num_bytes;
1637 	u64 end;
1638 	u32 nritems;
1639 	u32 i;
1640 	int ret = 0;
1641 	int first = 1;
1642 	int dirty = 0;
1643 
1644 	if (rc->stage != UPDATE_DATA_PTRS)
1645 		return 0;
1646 
1647 	/* reloc trees always use full backref */
1648 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1649 		parent = leaf->start;
1650 	else
1651 		parent = 0;
1652 
1653 	nritems = btrfs_header_nritems(leaf);
1654 	for (i = 0; i < nritems; i++) {
1655 		struct btrfs_ref ref = { 0 };
1656 
1657 		cond_resched();
1658 		btrfs_item_key_to_cpu(leaf, &key, i);
1659 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 			continue;
1661 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 		if (btrfs_file_extent_type(leaf, fi) ==
1663 		    BTRFS_FILE_EXTENT_INLINE)
1664 			continue;
1665 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 		if (bytenr == 0)
1668 			continue;
1669 		if (!in_block_group(bytenr, rc->block_group))
1670 			continue;
1671 
1672 		/*
1673 		 * if we are modifying block in fs tree, wait for readpage
1674 		 * to complete and drop the extent cache
1675 		 */
1676 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 			if (first) {
1678 				inode = find_next_inode(root, key.objectid);
1679 				first = 0;
1680 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681 				btrfs_add_delayed_iput(inode);
1682 				inode = find_next_inode(root, key.objectid);
1683 			}
1684 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685 				end = key.offset +
1686 				      btrfs_file_extent_num_bytes(leaf, fi);
1687 				WARN_ON(!IS_ALIGNED(key.offset,
1688 						    fs_info->sectorsize));
1689 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690 				end--;
1691 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 						      key.offset, end);
1693 				if (!ret)
1694 					continue;
1695 
1696 				btrfs_drop_extent_cache(BTRFS_I(inode),
1697 						key.offset,	end, 1);
1698 				unlock_extent(&BTRFS_I(inode)->io_tree,
1699 					      key.offset, end);
1700 			}
1701 		}
1702 
1703 		ret = get_new_location(rc->data_inode, &new_bytenr,
1704 				       bytenr, num_bytes);
1705 		if (ret) {
1706 			/*
1707 			 * Don't have to abort since we've not changed anything
1708 			 * in the file extent yet.
1709 			 */
1710 			break;
1711 		}
1712 
1713 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 		dirty = 1;
1715 
1716 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1718 				       num_bytes, parent);
1719 		ref.real_root = root->root_key.objectid;
1720 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1721 				    key.objectid, key.offset);
1722 		ret = btrfs_inc_extent_ref(trans, &ref);
1723 		if (ret) {
1724 			btrfs_abort_transaction(trans, ret);
1725 			break;
1726 		}
1727 
1728 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1729 				       num_bytes, parent);
1730 		ref.real_root = root->root_key.objectid;
1731 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1732 				    key.objectid, key.offset);
1733 		ret = btrfs_free_extent(trans, &ref);
1734 		if (ret) {
1735 			btrfs_abort_transaction(trans, ret);
1736 			break;
1737 		}
1738 	}
1739 	if (dirty)
1740 		btrfs_mark_buffer_dirty(leaf);
1741 	if (inode)
1742 		btrfs_add_delayed_iput(inode);
1743 	return ret;
1744 }
1745 
1746 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1747 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748 		     struct btrfs_path *path, int level)
1749 {
1750 	struct btrfs_disk_key key1;
1751 	struct btrfs_disk_key key2;
1752 	btrfs_node_key(eb, &key1, slot);
1753 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754 	return memcmp(&key1, &key2, sizeof(key1));
1755 }
1756 
1757 /*
1758  * try to replace tree blocks in fs tree with the new blocks
1759  * in reloc tree. tree blocks haven't been modified since the
1760  * reloc tree was create can be replaced.
1761  *
1762  * if a block was replaced, level of the block + 1 is returned.
1763  * if no block got replaced, 0 is returned. if there are other
1764  * errors, a negative error number is returned.
1765  */
1766 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1767 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768 		 struct btrfs_root *dest, struct btrfs_root *src,
1769 		 struct btrfs_path *path, struct btrfs_key *next_key,
1770 		 int lowest_level, int max_level)
1771 {
1772 	struct btrfs_fs_info *fs_info = dest->fs_info;
1773 	struct extent_buffer *eb;
1774 	struct extent_buffer *parent;
1775 	struct btrfs_ref ref = { 0 };
1776 	struct btrfs_key key;
1777 	u64 old_bytenr;
1778 	u64 new_bytenr;
1779 	u64 old_ptr_gen;
1780 	u64 new_ptr_gen;
1781 	u64 last_snapshot;
1782 	u32 blocksize;
1783 	int cow = 0;
1784 	int level;
1785 	int ret;
1786 	int slot;
1787 
1788 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1789 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1790 
1791 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792 again:
1793 	slot = path->slots[lowest_level];
1794 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1795 
1796 	eb = btrfs_lock_root_node(dest);
1797 	btrfs_set_lock_blocking_write(eb);
1798 	level = btrfs_header_level(eb);
1799 
1800 	if (level < lowest_level) {
1801 		btrfs_tree_unlock(eb);
1802 		free_extent_buffer(eb);
1803 		return 0;
1804 	}
1805 
1806 	if (cow) {
1807 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1808 		BUG_ON(ret);
1809 	}
1810 	btrfs_set_lock_blocking_write(eb);
1811 
1812 	if (next_key) {
1813 		next_key->objectid = (u64)-1;
1814 		next_key->type = (u8)-1;
1815 		next_key->offset = (u64)-1;
1816 	}
1817 
1818 	parent = eb;
1819 	while (1) {
1820 		struct btrfs_key first_key;
1821 
1822 		level = btrfs_header_level(parent);
1823 		BUG_ON(level < lowest_level);
1824 
1825 		ret = btrfs_bin_search(parent, &key, level, &slot);
1826 		if (ret < 0)
1827 			break;
1828 		if (ret && slot > 0)
1829 			slot--;
1830 
1831 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1832 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1833 
1834 		old_bytenr = btrfs_node_blockptr(parent, slot);
1835 		blocksize = fs_info->nodesize;
1836 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1838 
1839 		if (level <= max_level) {
1840 			eb = path->nodes[level];
1841 			new_bytenr = btrfs_node_blockptr(eb,
1842 							path->slots[level]);
1843 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1844 							path->slots[level]);
1845 		} else {
1846 			new_bytenr = 0;
1847 			new_ptr_gen = 0;
1848 		}
1849 
1850 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851 			ret = level;
1852 			break;
1853 		}
1854 
1855 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1856 		    memcmp_node_keys(parent, slot, path, level)) {
1857 			if (level <= lowest_level) {
1858 				ret = 0;
1859 				break;
1860 			}
1861 
1862 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1863 					     level - 1, &first_key);
1864 			if (IS_ERR(eb)) {
1865 				ret = PTR_ERR(eb);
1866 				break;
1867 			} else if (!extent_buffer_uptodate(eb)) {
1868 				ret = -EIO;
1869 				free_extent_buffer(eb);
1870 				break;
1871 			}
1872 			btrfs_tree_lock(eb);
1873 			if (cow) {
1874 				ret = btrfs_cow_block(trans, dest, eb, parent,
1875 						      slot, &eb);
1876 				BUG_ON(ret);
1877 			}
1878 			btrfs_set_lock_blocking_write(eb);
1879 
1880 			btrfs_tree_unlock(parent);
1881 			free_extent_buffer(parent);
1882 
1883 			parent = eb;
1884 			continue;
1885 		}
1886 
1887 		if (!cow) {
1888 			btrfs_tree_unlock(parent);
1889 			free_extent_buffer(parent);
1890 			cow = 1;
1891 			goto again;
1892 		}
1893 
1894 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1895 				      path->slots[level]);
1896 		btrfs_release_path(path);
1897 
1898 		path->lowest_level = level;
1899 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900 		path->lowest_level = 0;
1901 		BUG_ON(ret);
1902 
1903 		/*
1904 		 * Info qgroup to trace both subtrees.
1905 		 *
1906 		 * We must trace both trees.
1907 		 * 1) Tree reloc subtree
1908 		 *    If not traced, we will leak data numbers
1909 		 * 2) Fs subtree
1910 		 *    If not traced, we will double count old data
1911 		 *
1912 		 * We don't scan the subtree right now, but only record
1913 		 * the swapped tree blocks.
1914 		 * The real subtree rescan is delayed until we have new
1915 		 * CoW on the subtree root node before transaction commit.
1916 		 */
1917 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1918 				rc->block_group, parent, slot,
1919 				path->nodes[level], path->slots[level],
1920 				last_snapshot);
1921 		if (ret < 0)
1922 			break;
1923 		/*
1924 		 * swap blocks in fs tree and reloc tree.
1925 		 */
1926 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1927 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1928 		btrfs_mark_buffer_dirty(parent);
1929 
1930 		btrfs_set_node_blockptr(path->nodes[level],
1931 					path->slots[level], old_bytenr);
1932 		btrfs_set_node_ptr_generation(path->nodes[level],
1933 					      path->slots[level], old_ptr_gen);
1934 		btrfs_mark_buffer_dirty(path->nodes[level]);
1935 
1936 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1937 				       blocksize, path->nodes[level]->start);
1938 		ref.skip_qgroup = true;
1939 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1940 		ret = btrfs_inc_extent_ref(trans, &ref);
1941 		BUG_ON(ret);
1942 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1943 				       blocksize, 0);
1944 		ref.skip_qgroup = true;
1945 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1946 		ret = btrfs_inc_extent_ref(trans, &ref);
1947 		BUG_ON(ret);
1948 
1949 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1950 				       blocksize, path->nodes[level]->start);
1951 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1952 		ref.skip_qgroup = true;
1953 		ret = btrfs_free_extent(trans, &ref);
1954 		BUG_ON(ret);
1955 
1956 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1957 				       blocksize, 0);
1958 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1959 		ref.skip_qgroup = true;
1960 		ret = btrfs_free_extent(trans, &ref);
1961 		BUG_ON(ret);
1962 
1963 		btrfs_unlock_up_safe(path, 0);
1964 
1965 		ret = level;
1966 		break;
1967 	}
1968 	btrfs_tree_unlock(parent);
1969 	free_extent_buffer(parent);
1970 	return ret;
1971 }
1972 
1973 /*
1974  * helper to find next relocated block in reloc tree
1975  */
1976 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1977 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978 		       int *level)
1979 {
1980 	struct extent_buffer *eb;
1981 	int i;
1982 	u64 last_snapshot;
1983 	u32 nritems;
1984 
1985 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1986 
1987 	for (i = 0; i < *level; i++) {
1988 		free_extent_buffer(path->nodes[i]);
1989 		path->nodes[i] = NULL;
1990 	}
1991 
1992 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1993 		eb = path->nodes[i];
1994 		nritems = btrfs_header_nritems(eb);
1995 		while (path->slots[i] + 1 < nritems) {
1996 			path->slots[i]++;
1997 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1998 			    last_snapshot)
1999 				continue;
2000 
2001 			*level = i;
2002 			return 0;
2003 		}
2004 		free_extent_buffer(path->nodes[i]);
2005 		path->nodes[i] = NULL;
2006 	}
2007 	return 1;
2008 }
2009 
2010 /*
2011  * walk down reloc tree to find relocated block of lowest level
2012  */
2013 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)2014 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2015 			 int *level)
2016 {
2017 	struct btrfs_fs_info *fs_info = root->fs_info;
2018 	struct extent_buffer *eb = NULL;
2019 	int i;
2020 	u64 bytenr;
2021 	u64 ptr_gen = 0;
2022 	u64 last_snapshot;
2023 	u32 nritems;
2024 
2025 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2026 
2027 	for (i = *level; i > 0; i--) {
2028 		struct btrfs_key first_key;
2029 
2030 		eb = path->nodes[i];
2031 		nritems = btrfs_header_nritems(eb);
2032 		while (path->slots[i] < nritems) {
2033 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2034 			if (ptr_gen > last_snapshot)
2035 				break;
2036 			path->slots[i]++;
2037 		}
2038 		if (path->slots[i] >= nritems) {
2039 			if (i == *level)
2040 				break;
2041 			*level = i + 1;
2042 			return 0;
2043 		}
2044 		if (i == 1) {
2045 			*level = i;
2046 			return 0;
2047 		}
2048 
2049 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2051 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2052 				     &first_key);
2053 		if (IS_ERR(eb)) {
2054 			return PTR_ERR(eb);
2055 		} else if (!extent_buffer_uptodate(eb)) {
2056 			free_extent_buffer(eb);
2057 			return -EIO;
2058 		}
2059 		BUG_ON(btrfs_header_level(eb) != i - 1);
2060 		path->nodes[i - 1] = eb;
2061 		path->slots[i - 1] = 0;
2062 	}
2063 	return 1;
2064 }
2065 
2066 /*
2067  * invalidate extent cache for file extents whose key in range of
2068  * [min_key, max_key)
2069  */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)2070 static int invalidate_extent_cache(struct btrfs_root *root,
2071 				   struct btrfs_key *min_key,
2072 				   struct btrfs_key *max_key)
2073 {
2074 	struct btrfs_fs_info *fs_info = root->fs_info;
2075 	struct inode *inode = NULL;
2076 	u64 objectid;
2077 	u64 start, end;
2078 	u64 ino;
2079 
2080 	objectid = min_key->objectid;
2081 	while (1) {
2082 		cond_resched();
2083 		iput(inode);
2084 
2085 		if (objectid > max_key->objectid)
2086 			break;
2087 
2088 		inode = find_next_inode(root, objectid);
2089 		if (!inode)
2090 			break;
2091 		ino = btrfs_ino(BTRFS_I(inode));
2092 
2093 		if (ino > max_key->objectid) {
2094 			iput(inode);
2095 			break;
2096 		}
2097 
2098 		objectid = ino + 1;
2099 		if (!S_ISREG(inode->i_mode))
2100 			continue;
2101 
2102 		if (unlikely(min_key->objectid == ino)) {
2103 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104 				continue;
2105 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106 				start = 0;
2107 			else {
2108 				start = min_key->offset;
2109 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 			}
2111 		} else {
2112 			start = 0;
2113 		}
2114 
2115 		if (unlikely(max_key->objectid == ino)) {
2116 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117 				continue;
2118 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119 				end = (u64)-1;
2120 			} else {
2121 				if (max_key->offset == 0)
2122 					continue;
2123 				end = max_key->offset;
2124 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 				end--;
2126 			}
2127 		} else {
2128 			end = (u64)-1;
2129 		}
2130 
2131 		/* the lock_extent waits for readpage to complete */
2132 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 	}
2136 	return 0;
2137 }
2138 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)2139 static int find_next_key(struct btrfs_path *path, int level,
2140 			 struct btrfs_key *key)
2141 
2142 {
2143 	while (level < BTRFS_MAX_LEVEL) {
2144 		if (!path->nodes[level])
2145 			break;
2146 		if (path->slots[level] + 1 <
2147 		    btrfs_header_nritems(path->nodes[level])) {
2148 			btrfs_node_key_to_cpu(path->nodes[level], key,
2149 					      path->slots[level] + 1);
2150 			return 0;
2151 		}
2152 		level++;
2153 	}
2154 	return 1;
2155 }
2156 
2157 /*
2158  * Insert current subvolume into reloc_control::dirty_subvol_roots
2159  */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)2160 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2161 				struct reloc_control *rc,
2162 				struct btrfs_root *root)
2163 {
2164 	struct btrfs_root *reloc_root = root->reloc_root;
2165 	struct btrfs_root_item *reloc_root_item;
2166 
2167 	/* @root must be a subvolume tree root with a valid reloc tree */
2168 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2169 	ASSERT(reloc_root);
2170 
2171 	reloc_root_item = &reloc_root->root_item;
2172 	memset(&reloc_root_item->drop_progress, 0,
2173 		sizeof(reloc_root_item->drop_progress));
2174 	reloc_root_item->drop_level = 0;
2175 	btrfs_set_root_refs(reloc_root_item, 0);
2176 	btrfs_update_reloc_root(trans, root);
2177 
2178 	if (list_empty(&root->reloc_dirty_list)) {
2179 		btrfs_grab_fs_root(root);
2180 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2181 	}
2182 }
2183 
clean_dirty_subvols(struct reloc_control * rc)2184 static int clean_dirty_subvols(struct reloc_control *rc)
2185 {
2186 	struct btrfs_root *root;
2187 	struct btrfs_root *next;
2188 	int ret = 0;
2189 	int ret2;
2190 
2191 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2192 				 reloc_dirty_list) {
2193 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2194 			/* Merged subvolume, cleanup its reloc root */
2195 			struct btrfs_root *reloc_root = root->reloc_root;
2196 
2197 			list_del_init(&root->reloc_dirty_list);
2198 			root->reloc_root = NULL;
2199 			if (reloc_root) {
2200 
2201 				ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2202 				if (ret2 < 0 && !ret)
2203 					ret = ret2;
2204 			}
2205 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206 			btrfs_put_fs_root(root);
2207 		} else {
2208 			/* Orphan reloc tree, just clean it up */
2209 			ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210 			if (ret2 < 0 && !ret)
2211 				ret = ret2;
2212 		}
2213 	}
2214 	return ret;
2215 }
2216 
2217 /*
2218  * merge the relocated tree blocks in reloc tree with corresponding
2219  * fs tree.
2220  */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)2221 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2222 					       struct btrfs_root *root)
2223 {
2224 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225 	struct btrfs_key key;
2226 	struct btrfs_key next_key;
2227 	struct btrfs_trans_handle *trans = NULL;
2228 	struct btrfs_root *reloc_root;
2229 	struct btrfs_root_item *root_item;
2230 	struct btrfs_path *path;
2231 	struct extent_buffer *leaf;
2232 	int level;
2233 	int max_level;
2234 	int replaced = 0;
2235 	int ret;
2236 	int err = 0;
2237 	u32 min_reserved;
2238 
2239 	path = btrfs_alloc_path();
2240 	if (!path)
2241 		return -ENOMEM;
2242 	path->reada = READA_FORWARD;
2243 
2244 	reloc_root = root->reloc_root;
2245 	root_item = &reloc_root->root_item;
2246 
2247 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2248 		level = btrfs_root_level(root_item);
2249 		extent_buffer_get(reloc_root->node);
2250 		path->nodes[level] = reloc_root->node;
2251 		path->slots[level] = 0;
2252 	} else {
2253 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2254 
2255 		level = root_item->drop_level;
2256 		BUG_ON(level == 0);
2257 		path->lowest_level = level;
2258 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259 		path->lowest_level = 0;
2260 		if (ret < 0) {
2261 			btrfs_free_path(path);
2262 			return ret;
2263 		}
2264 
2265 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2266 				      path->slots[level]);
2267 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2268 
2269 		btrfs_unlock_up_safe(path, 0);
2270 	}
2271 
2272 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2273 	memset(&next_key, 0, sizeof(next_key));
2274 
2275 	while (1) {
2276 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2277 					     BTRFS_RESERVE_FLUSH_ALL);
2278 		if (ret) {
2279 			err = ret;
2280 			goto out;
2281 		}
2282 		trans = btrfs_start_transaction(root, 0);
2283 		if (IS_ERR(trans)) {
2284 			err = PTR_ERR(trans);
2285 			trans = NULL;
2286 			goto out;
2287 		}
2288 		trans->block_rsv = rc->block_rsv;
2289 
2290 		replaced = 0;
2291 		max_level = level;
2292 
2293 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2294 		if (ret < 0) {
2295 			err = ret;
2296 			goto out;
2297 		}
2298 		if (ret > 0)
2299 			break;
2300 
2301 		if (!find_next_key(path, level, &key) &&
2302 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2303 			ret = 0;
2304 		} else {
2305 			ret = replace_path(trans, rc, root, reloc_root, path,
2306 					   &next_key, level, max_level);
2307 		}
2308 		if (ret < 0) {
2309 			err = ret;
2310 			goto out;
2311 		}
2312 
2313 		if (ret > 0) {
2314 			level = ret;
2315 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2316 					      path->slots[level]);
2317 			replaced = 1;
2318 		}
2319 
2320 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2321 		if (ret > 0)
2322 			break;
2323 
2324 		BUG_ON(level == 0);
2325 		/*
2326 		 * save the merging progress in the drop_progress.
2327 		 * this is OK since root refs == 1 in this case.
2328 		 */
2329 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2330 			       path->slots[level]);
2331 		root_item->drop_level = level;
2332 
2333 		btrfs_end_transaction_throttle(trans);
2334 		trans = NULL;
2335 
2336 		btrfs_btree_balance_dirty(fs_info);
2337 
2338 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2339 			invalidate_extent_cache(root, &key, &next_key);
2340 	}
2341 
2342 	/*
2343 	 * handle the case only one block in the fs tree need to be
2344 	 * relocated and the block is tree root.
2345 	 */
2346 	leaf = btrfs_lock_root_node(root);
2347 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2348 	btrfs_tree_unlock(leaf);
2349 	free_extent_buffer(leaf);
2350 	if (ret < 0)
2351 		err = ret;
2352 out:
2353 	btrfs_free_path(path);
2354 
2355 	if (err == 0)
2356 		insert_dirty_subvol(trans, rc, root);
2357 
2358 	if (trans)
2359 		btrfs_end_transaction_throttle(trans);
2360 
2361 	btrfs_btree_balance_dirty(fs_info);
2362 
2363 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2364 		invalidate_extent_cache(root, &key, &next_key);
2365 
2366 	return err;
2367 }
2368 
2369 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)2370 int prepare_to_merge(struct reloc_control *rc, int err)
2371 {
2372 	struct btrfs_root *root = rc->extent_root;
2373 	struct btrfs_fs_info *fs_info = root->fs_info;
2374 	struct btrfs_root *reloc_root;
2375 	struct btrfs_trans_handle *trans;
2376 	LIST_HEAD(reloc_roots);
2377 	u64 num_bytes = 0;
2378 	int ret;
2379 
2380 	mutex_lock(&fs_info->reloc_mutex);
2381 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2383 	mutex_unlock(&fs_info->reloc_mutex);
2384 
2385 again:
2386 	if (!err) {
2387 		num_bytes = rc->merging_rsv_size;
2388 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2389 					  BTRFS_RESERVE_FLUSH_ALL);
2390 		if (ret)
2391 			err = ret;
2392 	}
2393 
2394 	trans = btrfs_join_transaction(rc->extent_root);
2395 	if (IS_ERR(trans)) {
2396 		if (!err)
2397 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2398 						num_bytes);
2399 		return PTR_ERR(trans);
2400 	}
2401 
2402 	if (!err) {
2403 		if (num_bytes != rc->merging_rsv_size) {
2404 			btrfs_end_transaction(trans);
2405 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2406 						num_bytes);
2407 			goto again;
2408 		}
2409 	}
2410 
2411 	rc->merge_reloc_tree = 1;
2412 
2413 	while (!list_empty(&rc->reloc_roots)) {
2414 		reloc_root = list_entry(rc->reloc_roots.next,
2415 					struct btrfs_root, root_list);
2416 		list_del_init(&reloc_root->root_list);
2417 
2418 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2419 		BUG_ON(IS_ERR(root));
2420 		BUG_ON(root->reloc_root != reloc_root);
2421 
2422 		/*
2423 		 * set reference count to 1, so btrfs_recover_relocation
2424 		 * knows it should resumes merging
2425 		 */
2426 		if (!err)
2427 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2428 		btrfs_update_reloc_root(trans, root);
2429 
2430 		list_add(&reloc_root->root_list, &reloc_roots);
2431 	}
2432 
2433 	list_splice(&reloc_roots, &rc->reloc_roots);
2434 
2435 	if (!err)
2436 		btrfs_commit_transaction(trans);
2437 	else
2438 		btrfs_end_transaction(trans);
2439 	return err;
2440 }
2441 
2442 static noinline_for_stack
free_reloc_roots(struct list_head * list)2443 void free_reloc_roots(struct list_head *list)
2444 {
2445 	struct btrfs_root *reloc_root;
2446 
2447 	while (!list_empty(list)) {
2448 		reloc_root = list_entry(list->next, struct btrfs_root,
2449 					root_list);
2450 		__del_reloc_root(reloc_root);
2451 		free_extent_buffer(reloc_root->node);
2452 		free_extent_buffer(reloc_root->commit_root);
2453 		reloc_root->node = NULL;
2454 		reloc_root->commit_root = NULL;
2455 	}
2456 }
2457 
2458 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)2459 void merge_reloc_roots(struct reloc_control *rc)
2460 {
2461 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462 	struct btrfs_root *root;
2463 	struct btrfs_root *reloc_root;
2464 	LIST_HEAD(reloc_roots);
2465 	int found = 0;
2466 	int ret = 0;
2467 again:
2468 	root = rc->extent_root;
2469 
2470 	/*
2471 	 * this serializes us with btrfs_record_root_in_transaction,
2472 	 * we have to make sure nobody is in the middle of
2473 	 * adding their roots to the list while we are
2474 	 * doing this splice
2475 	 */
2476 	mutex_lock(&fs_info->reloc_mutex);
2477 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2478 	mutex_unlock(&fs_info->reloc_mutex);
2479 
2480 	while (!list_empty(&reloc_roots)) {
2481 		found = 1;
2482 		reloc_root = list_entry(reloc_roots.next,
2483 					struct btrfs_root, root_list);
2484 
2485 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486 			root = read_fs_root(fs_info,
2487 					    reloc_root->root_key.offset);
2488 			BUG_ON(IS_ERR(root));
2489 			BUG_ON(root->reloc_root != reloc_root);
2490 
2491 			ret = merge_reloc_root(rc, root);
2492 			if (ret) {
2493 				if (list_empty(&reloc_root->root_list))
2494 					list_add_tail(&reloc_root->root_list,
2495 						      &reloc_roots);
2496 				goto out;
2497 			}
2498 		} else {
2499 			list_del_init(&reloc_root->root_list);
2500 			/* Don't forget to queue this reloc root for cleanup */
2501 			list_add_tail(&reloc_root->reloc_dirty_list,
2502 				      &rc->dirty_subvol_roots);
2503 		}
2504 	}
2505 
2506 	if (found) {
2507 		found = 0;
2508 		goto again;
2509 	}
2510 out:
2511 	if (ret) {
2512 		btrfs_handle_fs_error(fs_info, ret, NULL);
2513 		if (!list_empty(&reloc_roots))
2514 			free_reloc_roots(&reloc_roots);
2515 
2516 		/* new reloc root may be added */
2517 		mutex_lock(&fs_info->reloc_mutex);
2518 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2519 		mutex_unlock(&fs_info->reloc_mutex);
2520 		if (!list_empty(&reloc_roots))
2521 			free_reloc_roots(&reloc_roots);
2522 	}
2523 
2524 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2525 }
2526 
free_block_list(struct rb_root * blocks)2527 static void free_block_list(struct rb_root *blocks)
2528 {
2529 	struct tree_block *block;
2530 	struct rb_node *rb_node;
2531 	while ((rb_node = rb_first(blocks))) {
2532 		block = rb_entry(rb_node, struct tree_block, rb_node);
2533 		rb_erase(rb_node, blocks);
2534 		kfree(block);
2535 	}
2536 }
2537 
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2538 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2539 				      struct btrfs_root *reloc_root)
2540 {
2541 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542 	struct btrfs_root *root;
2543 
2544 	if (reloc_root->last_trans == trans->transid)
2545 		return 0;
2546 
2547 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548 	BUG_ON(IS_ERR(root));
2549 	BUG_ON(root->reloc_root != reloc_root);
2550 
2551 	return btrfs_record_root_in_trans(trans, root);
2552 }
2553 
2554 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct backref_edge * edges[])2555 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2556 				     struct reloc_control *rc,
2557 				     struct backref_node *node,
2558 				     struct backref_edge *edges[])
2559 {
2560 	struct backref_node *next;
2561 	struct btrfs_root *root;
2562 	int index = 0;
2563 
2564 	next = node;
2565 	while (1) {
2566 		cond_resched();
2567 		next = walk_up_backref(next, edges, &index);
2568 		root = next->root;
2569 		BUG_ON(!root);
2570 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2571 
2572 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2573 			record_reloc_root_in_trans(trans, root);
2574 			break;
2575 		}
2576 
2577 		btrfs_record_root_in_trans(trans, root);
2578 		root = root->reloc_root;
2579 
2580 		if (next->new_bytenr != root->node->start) {
2581 			BUG_ON(next->new_bytenr);
2582 			BUG_ON(!list_empty(&next->list));
2583 			next->new_bytenr = root->node->start;
2584 			next->root = root;
2585 			list_add_tail(&next->list,
2586 				      &rc->backref_cache.changed);
2587 			__mark_block_processed(rc, next);
2588 			break;
2589 		}
2590 
2591 		WARN_ON(1);
2592 		root = NULL;
2593 		next = walk_down_backref(edges, &index);
2594 		if (!next || next->level <= node->level)
2595 			break;
2596 	}
2597 	if (!root)
2598 		return NULL;
2599 
2600 	next = node;
2601 	/* setup backref node path for btrfs_reloc_cow_block */
2602 	while (1) {
2603 		rc->backref_cache.path[next->level] = next;
2604 		if (--index < 0)
2605 			break;
2606 		next = edges[index]->node[UPPER];
2607 	}
2608 	return root;
2609 }
2610 
2611 /*
2612  * select a tree root for relocation. return NULL if the block
2613  * is reference counted. we should use do_relocation() in this
2614  * case. return a tree root pointer if the block isn't reference
2615  * counted. return -ENOENT if the block is root of reloc tree.
2616  */
2617 static noinline_for_stack
select_one_root(struct backref_node * node)2618 struct btrfs_root *select_one_root(struct backref_node *node)
2619 {
2620 	struct backref_node *next;
2621 	struct btrfs_root *root;
2622 	struct btrfs_root *fs_root = NULL;
2623 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624 	int index = 0;
2625 
2626 	next = node;
2627 	while (1) {
2628 		cond_resched();
2629 		next = walk_up_backref(next, edges, &index);
2630 		root = next->root;
2631 		BUG_ON(!root);
2632 
2633 		/* no other choice for non-references counted tree */
2634 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2635 			return root;
2636 
2637 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2638 			fs_root = root;
2639 
2640 		if (next != node)
2641 			return NULL;
2642 
2643 		next = walk_down_backref(edges, &index);
2644 		if (!next || next->level <= node->level)
2645 			break;
2646 	}
2647 
2648 	if (!fs_root)
2649 		return ERR_PTR(-ENOENT);
2650 	return fs_root;
2651 }
2652 
2653 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct backref_node * node,int reserve)2654 u64 calcu_metadata_size(struct reloc_control *rc,
2655 			struct backref_node *node, int reserve)
2656 {
2657 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658 	struct backref_node *next = node;
2659 	struct backref_edge *edge;
2660 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2661 	u64 num_bytes = 0;
2662 	int index = 0;
2663 
2664 	BUG_ON(reserve && node->processed);
2665 
2666 	while (next) {
2667 		cond_resched();
2668 		while (1) {
2669 			if (next->processed && (reserve || next != node))
2670 				break;
2671 
2672 			num_bytes += fs_info->nodesize;
2673 
2674 			if (list_empty(&next->upper))
2675 				break;
2676 
2677 			edge = list_entry(next->upper.next,
2678 					  struct backref_edge, list[LOWER]);
2679 			edges[index++] = edge;
2680 			next = edge->node[UPPER];
2681 		}
2682 		next = walk_down_backref(edges, &index);
2683 	}
2684 	return num_bytes;
2685 }
2686 
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node)2687 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2688 				  struct reloc_control *rc,
2689 				  struct backref_node *node)
2690 {
2691 	struct btrfs_root *root = rc->extent_root;
2692 	struct btrfs_fs_info *fs_info = root->fs_info;
2693 	u64 num_bytes;
2694 	int ret;
2695 	u64 tmp;
2696 
2697 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698 
2699 	trans->block_rsv = rc->block_rsv;
2700 	rc->reserved_bytes += num_bytes;
2701 
2702 	/*
2703 	 * We are under a transaction here so we can only do limited flushing.
2704 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2705 	 * transaction and try to refill when we can flush all the things.
2706 	 */
2707 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708 				BTRFS_RESERVE_FLUSH_LIMIT);
2709 	if (ret) {
2710 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711 		while (tmp <= rc->reserved_bytes)
2712 			tmp <<= 1;
2713 		/*
2714 		 * only one thread can access block_rsv at this point,
2715 		 * so we don't need hold lock to protect block_rsv.
2716 		 * we expand more reservation size here to allow enough
2717 		 * space for relocation and we will return earlier in
2718 		 * enospc case.
2719 		 */
2720 		rc->block_rsv->size = tmp + fs_info->nodesize *
2721 				      RELOCATION_RESERVED_NODES;
2722 		return -EAGAIN;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 /*
2729  * relocate a block tree, and then update pointers in upper level
2730  * blocks that reference the block to point to the new location.
2731  *
2732  * if called by link_to_upper, the block has already been relocated.
2733  * in that case this function just updates pointers.
2734  */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2735 static int do_relocation(struct btrfs_trans_handle *trans,
2736 			 struct reloc_control *rc,
2737 			 struct backref_node *node,
2738 			 struct btrfs_key *key,
2739 			 struct btrfs_path *path, int lowest)
2740 {
2741 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742 	struct backref_node *upper;
2743 	struct backref_edge *edge;
2744 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2745 	struct btrfs_root *root;
2746 	struct extent_buffer *eb;
2747 	u32 blocksize;
2748 	u64 bytenr;
2749 	u64 generation;
2750 	int slot;
2751 	int ret;
2752 	int err = 0;
2753 
2754 	BUG_ON(lowest && node->eb);
2755 
2756 	path->lowest_level = node->level + 1;
2757 	rc->backref_cache.path[node->level] = node;
2758 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759 		struct btrfs_key first_key;
2760 		struct btrfs_ref ref = { 0 };
2761 
2762 		cond_resched();
2763 
2764 		upper = edge->node[UPPER];
2765 		root = select_reloc_root(trans, rc, upper, edges);
2766 		BUG_ON(!root);
2767 
2768 		if (upper->eb && !upper->locked) {
2769 			if (!lowest) {
2770 				ret = btrfs_bin_search(upper->eb, key,
2771 						       upper->level, &slot);
2772 				if (ret < 0) {
2773 					err = ret;
2774 					goto next;
2775 				}
2776 				BUG_ON(ret);
2777 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2778 				if (node->eb->start == bytenr)
2779 					goto next;
2780 			}
2781 			drop_node_buffer(upper);
2782 		}
2783 
2784 		if (!upper->eb) {
2785 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786 			if (ret) {
2787 				if (ret < 0)
2788 					err = ret;
2789 				else
2790 					err = -ENOENT;
2791 
2792 				btrfs_release_path(path);
2793 				break;
2794 			}
2795 
2796 			if (!upper->eb) {
2797 				upper->eb = path->nodes[upper->level];
2798 				path->nodes[upper->level] = NULL;
2799 			} else {
2800 				BUG_ON(upper->eb != path->nodes[upper->level]);
2801 			}
2802 
2803 			upper->locked = 1;
2804 			path->locks[upper->level] = 0;
2805 
2806 			slot = path->slots[upper->level];
2807 			btrfs_release_path(path);
2808 		} else {
2809 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2810 					       &slot);
2811 			if (ret < 0) {
2812 				err = ret;
2813 				goto next;
2814 			}
2815 			BUG_ON(ret);
2816 		}
2817 
2818 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2819 		if (lowest) {
2820 			if (bytenr != node->bytenr) {
2821 				btrfs_err(root->fs_info,
2822 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2823 					  bytenr, node->bytenr, slot,
2824 					  upper->eb->start);
2825 				err = -EIO;
2826 				goto next;
2827 			}
2828 		} else {
2829 			if (node->eb->start == bytenr)
2830 				goto next;
2831 		}
2832 
2833 		blocksize = root->fs_info->nodesize;
2834 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2835 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2836 		eb = read_tree_block(fs_info, bytenr, generation,
2837 				     upper->level - 1, &first_key);
2838 		if (IS_ERR(eb)) {
2839 			err = PTR_ERR(eb);
2840 			goto next;
2841 		} else if (!extent_buffer_uptodate(eb)) {
2842 			free_extent_buffer(eb);
2843 			err = -EIO;
2844 			goto next;
2845 		}
2846 		btrfs_tree_lock(eb);
2847 		btrfs_set_lock_blocking_write(eb);
2848 
2849 		if (!node->eb) {
2850 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2851 					      slot, &eb);
2852 			btrfs_tree_unlock(eb);
2853 			free_extent_buffer(eb);
2854 			if (ret < 0) {
2855 				err = ret;
2856 				goto next;
2857 			}
2858 			BUG_ON(node->eb != eb);
2859 		} else {
2860 			btrfs_set_node_blockptr(upper->eb, slot,
2861 						node->eb->start);
2862 			btrfs_set_node_ptr_generation(upper->eb, slot,
2863 						      trans->transid);
2864 			btrfs_mark_buffer_dirty(upper->eb);
2865 
2866 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2867 					       node->eb->start, blocksize,
2868 					       upper->eb->start);
2869 			ref.real_root = root->root_key.objectid;
2870 			btrfs_init_tree_ref(&ref, node->level,
2871 					    btrfs_header_owner(upper->eb));
2872 			ret = btrfs_inc_extent_ref(trans, &ref);
2873 			BUG_ON(ret);
2874 
2875 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2876 			BUG_ON(ret);
2877 		}
2878 next:
2879 		if (!upper->pending)
2880 			drop_node_buffer(upper);
2881 		else
2882 			unlock_node_buffer(upper);
2883 		if (err)
2884 			break;
2885 	}
2886 
2887 	if (!err && node->pending) {
2888 		drop_node_buffer(node);
2889 		list_move_tail(&node->list, &rc->backref_cache.changed);
2890 		node->pending = 0;
2891 	}
2892 
2893 	path->lowest_level = 0;
2894 	BUG_ON(err == -ENOSPC);
2895 	return err;
2896 }
2897 
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_path * path)2898 static int link_to_upper(struct btrfs_trans_handle *trans,
2899 			 struct reloc_control *rc,
2900 			 struct backref_node *node,
2901 			 struct btrfs_path *path)
2902 {
2903 	struct btrfs_key key;
2904 
2905 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2906 	return do_relocation(trans, rc, node, &key, path, 0);
2907 }
2908 
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2909 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910 				struct reloc_control *rc,
2911 				struct btrfs_path *path, int err)
2912 {
2913 	LIST_HEAD(list);
2914 	struct backref_cache *cache = &rc->backref_cache;
2915 	struct backref_node *node;
2916 	int level;
2917 	int ret;
2918 
2919 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2920 		while (!list_empty(&cache->pending[level])) {
2921 			node = list_entry(cache->pending[level].next,
2922 					  struct backref_node, list);
2923 			list_move_tail(&node->list, &list);
2924 			BUG_ON(!node->pending);
2925 
2926 			if (!err) {
2927 				ret = link_to_upper(trans, rc, node, path);
2928 				if (ret < 0)
2929 					err = ret;
2930 			}
2931 		}
2932 		list_splice_init(&list, &cache->pending[level]);
2933 	}
2934 	return err;
2935 }
2936 
mark_block_processed(struct reloc_control * rc,u64 bytenr,u32 blocksize)2937 static void mark_block_processed(struct reloc_control *rc,
2938 				 u64 bytenr, u32 blocksize)
2939 {
2940 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941 			EXTENT_DIRTY);
2942 }
2943 
__mark_block_processed(struct reloc_control * rc,struct backref_node * node)2944 static void __mark_block_processed(struct reloc_control *rc,
2945 				   struct backref_node *node)
2946 {
2947 	u32 blocksize;
2948 	if (node->level == 0 ||
2949 	    in_block_group(node->bytenr, rc->block_group)) {
2950 		blocksize = rc->extent_root->fs_info->nodesize;
2951 		mark_block_processed(rc, node->bytenr, blocksize);
2952 	}
2953 	node->processed = 1;
2954 }
2955 
2956 /*
2957  * mark a block and all blocks directly/indirectly reference the block
2958  * as processed.
2959  */
update_processed_blocks(struct reloc_control * rc,struct backref_node * node)2960 static void update_processed_blocks(struct reloc_control *rc,
2961 				    struct backref_node *node)
2962 {
2963 	struct backref_node *next = node;
2964 	struct backref_edge *edge;
2965 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2966 	int index = 0;
2967 
2968 	while (next) {
2969 		cond_resched();
2970 		while (1) {
2971 			if (next->processed)
2972 				break;
2973 
2974 			__mark_block_processed(rc, next);
2975 
2976 			if (list_empty(&next->upper))
2977 				break;
2978 
2979 			edge = list_entry(next->upper.next,
2980 					  struct backref_edge, list[LOWER]);
2981 			edges[index++] = edge;
2982 			next = edge->node[UPPER];
2983 		}
2984 		next = walk_down_backref(edges, &index);
2985 	}
2986 }
2987 
tree_block_processed(u64 bytenr,struct reloc_control * rc)2988 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989 {
2990 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2991 
2992 	if (test_range_bit(&rc->processed_blocks, bytenr,
2993 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2994 		return 1;
2995 	return 0;
2996 }
2997 
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2998 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999 			      struct tree_block *block)
3000 {
3001 	struct extent_buffer *eb;
3002 
3003 	BUG_ON(block->key_ready);
3004 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3005 			     block->level, NULL);
3006 	if (IS_ERR(eb)) {
3007 		return PTR_ERR(eb);
3008 	} else if (!extent_buffer_uptodate(eb)) {
3009 		free_extent_buffer(eb);
3010 		return -EIO;
3011 	}
3012 	if (block->level == 0)
3013 		btrfs_item_key_to_cpu(eb, &block->key, 0);
3014 	else
3015 		btrfs_node_key_to_cpu(eb, &block->key, 0);
3016 	free_extent_buffer(eb);
3017 	block->key_ready = 1;
3018 	return 0;
3019 }
3020 
3021 /*
3022  * helper function to relocate a tree block
3023  */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path)3024 static int relocate_tree_block(struct btrfs_trans_handle *trans,
3025 				struct reloc_control *rc,
3026 				struct backref_node *node,
3027 				struct btrfs_key *key,
3028 				struct btrfs_path *path)
3029 {
3030 	struct btrfs_root *root;
3031 	int ret = 0;
3032 
3033 	if (!node)
3034 		return 0;
3035 
3036 	BUG_ON(node->processed);
3037 	root = select_one_root(node);
3038 	if (root == ERR_PTR(-ENOENT)) {
3039 		update_processed_blocks(rc, node);
3040 		goto out;
3041 	}
3042 
3043 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044 		ret = reserve_metadata_space(trans, rc, node);
3045 		if (ret)
3046 			goto out;
3047 	}
3048 
3049 	if (root) {
3050 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051 			BUG_ON(node->new_bytenr);
3052 			BUG_ON(!list_empty(&node->list));
3053 			btrfs_record_root_in_trans(trans, root);
3054 			root = root->reloc_root;
3055 			node->new_bytenr = root->node->start;
3056 			node->root = root;
3057 			list_add_tail(&node->list, &rc->backref_cache.changed);
3058 		} else {
3059 			path->lowest_level = node->level;
3060 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061 			btrfs_release_path(path);
3062 			if (ret > 0)
3063 				ret = 0;
3064 		}
3065 		if (!ret)
3066 			update_processed_blocks(rc, node);
3067 	} else {
3068 		ret = do_relocation(trans, rc, node, key, path, 1);
3069 	}
3070 out:
3071 	if (ret || node->level == 0 || node->cowonly)
3072 		remove_backref_node(&rc->backref_cache, node);
3073 	return ret;
3074 }
3075 
3076 /*
3077  * relocate a list of blocks
3078  */
3079 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)3080 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3081 			 struct reloc_control *rc, struct rb_root *blocks)
3082 {
3083 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084 	struct backref_node *node;
3085 	struct btrfs_path *path;
3086 	struct tree_block *block;
3087 	struct tree_block *next;
3088 	int ret;
3089 	int err = 0;
3090 
3091 	path = btrfs_alloc_path();
3092 	if (!path) {
3093 		err = -ENOMEM;
3094 		goto out_free_blocks;
3095 	}
3096 
3097 	/* Kick in readahead for tree blocks with missing keys */
3098 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099 		if (!block->key_ready)
3100 			readahead_tree_block(fs_info, block->bytenr);
3101 	}
3102 
3103 	/* Get first keys */
3104 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105 		if (!block->key_ready) {
3106 			err = get_tree_block_key(fs_info, block);
3107 			if (err)
3108 				goto out_free_path;
3109 		}
3110 	}
3111 
3112 	/* Do tree relocation */
3113 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114 		node = build_backref_tree(rc, &block->key,
3115 					  block->level, block->bytenr);
3116 		if (IS_ERR(node)) {
3117 			err = PTR_ERR(node);
3118 			goto out;
3119 		}
3120 
3121 		ret = relocate_tree_block(trans, rc, node, &block->key,
3122 					  path);
3123 		if (ret < 0) {
3124 			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125 				err = ret;
3126 			goto out;
3127 		}
3128 	}
3129 out:
3130 	err = finish_pending_nodes(trans, rc, path, err);
3131 
3132 out_free_path:
3133 	btrfs_free_path(path);
3134 out_free_blocks:
3135 	free_block_list(blocks);
3136 	return err;
3137 }
3138 
3139 static noinline_for_stack
prealloc_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3140 int prealloc_file_extent_cluster(struct inode *inode,
3141 				 struct file_extent_cluster *cluster)
3142 {
3143 	u64 alloc_hint = 0;
3144 	u64 start;
3145 	u64 end;
3146 	u64 offset = BTRFS_I(inode)->index_cnt;
3147 	u64 num_bytes;
3148 	int nr = 0;
3149 	int ret = 0;
3150 	u64 prealloc_start = cluster->start - offset;
3151 	u64 prealloc_end = cluster->end - offset;
3152 	u64 cur_offset;
3153 	struct extent_changeset *data_reserved = NULL;
3154 
3155 	BUG_ON(cluster->start != cluster->boundary[0]);
3156 	inode_lock(inode);
3157 
3158 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159 					  prealloc_end + 1 - prealloc_start);
3160 	if (ret)
3161 		goto out;
3162 
3163 	cur_offset = prealloc_start;
3164 	while (nr < cluster->nr) {
3165 		start = cluster->boundary[nr] - offset;
3166 		if (nr + 1 < cluster->nr)
3167 			end = cluster->boundary[nr + 1] - 1 - offset;
3168 		else
3169 			end = cluster->end - offset;
3170 
3171 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172 		num_bytes = end + 1 - start;
3173 		if (cur_offset < start)
3174 			btrfs_free_reserved_data_space(inode, data_reserved,
3175 					cur_offset, start - cur_offset);
3176 		ret = btrfs_prealloc_file_range(inode, 0, start,
3177 						num_bytes, num_bytes,
3178 						end + 1, &alloc_hint);
3179 		cur_offset = end + 1;
3180 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181 		if (ret)
3182 			break;
3183 		nr++;
3184 	}
3185 	if (cur_offset < prealloc_end)
3186 		btrfs_free_reserved_data_space(inode, data_reserved,
3187 				cur_offset, prealloc_end + 1 - cur_offset);
3188 out:
3189 	inode_unlock(inode);
3190 	extent_changeset_free(data_reserved);
3191 	return ret;
3192 }
3193 
3194 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)3195 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3196 			 u64 block_start)
3197 {
3198 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3200 	struct extent_map *em;
3201 	int ret = 0;
3202 
3203 	em = alloc_extent_map();
3204 	if (!em)
3205 		return -ENOMEM;
3206 
3207 	em->start = start;
3208 	em->len = end + 1 - start;
3209 	em->block_len = em->len;
3210 	em->block_start = block_start;
3211 	em->bdev = fs_info->fs_devices->latest_bdev;
3212 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3213 
3214 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215 	while (1) {
3216 		write_lock(&em_tree->lock);
3217 		ret = add_extent_mapping(em_tree, em, 0);
3218 		write_unlock(&em_tree->lock);
3219 		if (ret != -EEXIST) {
3220 			free_extent_map(em);
3221 			break;
3222 		}
3223 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224 	}
3225 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226 	return ret;
3227 }
3228 
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3229 static int relocate_file_extent_cluster(struct inode *inode,
3230 					struct file_extent_cluster *cluster)
3231 {
3232 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233 	u64 page_start;
3234 	u64 page_end;
3235 	u64 offset = BTRFS_I(inode)->index_cnt;
3236 	unsigned long index;
3237 	unsigned long last_index;
3238 	struct page *page;
3239 	struct file_ra_state *ra;
3240 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241 	int nr = 0;
3242 	int ret = 0;
3243 
3244 	if (!cluster->nr)
3245 		return 0;
3246 
3247 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3248 	if (!ra)
3249 		return -ENOMEM;
3250 
3251 	ret = prealloc_file_extent_cluster(inode, cluster);
3252 	if (ret)
3253 		goto out;
3254 
3255 	file_ra_state_init(ra, inode->i_mapping);
3256 
3257 	ret = setup_extent_mapping(inode, cluster->start - offset,
3258 				   cluster->end - offset, cluster->start);
3259 	if (ret)
3260 		goto out;
3261 
3262 	index = (cluster->start - offset) >> PAGE_SHIFT;
3263 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264 	while (index <= last_index) {
3265 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3266 				PAGE_SIZE);
3267 		if (ret)
3268 			goto out;
3269 
3270 		page = find_lock_page(inode->i_mapping, index);
3271 		if (!page) {
3272 			page_cache_sync_readahead(inode->i_mapping,
3273 						  ra, NULL, index,
3274 						  last_index + 1 - index);
3275 			page = find_or_create_page(inode->i_mapping, index,
3276 						   mask);
3277 			if (!page) {
3278 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279 							PAGE_SIZE, true);
3280 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3281 							PAGE_SIZE);
3282 				ret = -ENOMEM;
3283 				goto out;
3284 			}
3285 		}
3286 
3287 		if (PageReadahead(page)) {
3288 			page_cache_async_readahead(inode->i_mapping,
3289 						   ra, NULL, page, index,
3290 						   last_index + 1 - index);
3291 		}
3292 
3293 		if (!PageUptodate(page)) {
3294 			btrfs_readpage(NULL, page);
3295 			lock_page(page);
3296 			if (!PageUptodate(page)) {
3297 				unlock_page(page);
3298 				put_page(page);
3299 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3300 							PAGE_SIZE, true);
3301 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3302 							       PAGE_SIZE);
3303 				ret = -EIO;
3304 				goto out;
3305 			}
3306 		}
3307 
3308 		page_start = page_offset(page);
3309 		page_end = page_start + PAGE_SIZE - 1;
3310 
3311 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3312 
3313 		set_page_extent_mapped(page);
3314 
3315 		if (nr < cluster->nr &&
3316 		    page_start + offset == cluster->boundary[nr]) {
3317 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3318 					page_start, page_end,
3319 					EXTENT_BOUNDARY);
3320 			nr++;
3321 		}
3322 
3323 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3324 						NULL);
3325 		if (ret) {
3326 			unlock_page(page);
3327 			put_page(page);
3328 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3329 							 PAGE_SIZE, true);
3330 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3331 			                               PAGE_SIZE);
3332 
3333 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3334 					  page_start, page_end,
3335 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3336 			goto out;
3337 
3338 		}
3339 		set_page_dirty(page);
3340 
3341 		unlock_extent(&BTRFS_I(inode)->io_tree,
3342 			      page_start, page_end);
3343 		unlock_page(page);
3344 		put_page(page);
3345 
3346 		index++;
3347 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3348 		balance_dirty_pages_ratelimited(inode->i_mapping);
3349 		btrfs_throttle(fs_info);
3350 	}
3351 	WARN_ON(nr != cluster->nr);
3352 out:
3353 	kfree(ra);
3354 	return ret;
3355 }
3356 
3357 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3358 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3359 			 struct file_extent_cluster *cluster)
3360 {
3361 	int ret;
3362 
3363 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3364 		ret = relocate_file_extent_cluster(inode, cluster);
3365 		if (ret)
3366 			return ret;
3367 		cluster->nr = 0;
3368 	}
3369 
3370 	if (!cluster->nr)
3371 		cluster->start = extent_key->objectid;
3372 	else
3373 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3374 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3375 	cluster->boundary[cluster->nr] = extent_key->objectid;
3376 	cluster->nr++;
3377 
3378 	if (cluster->nr >= MAX_EXTENTS) {
3379 		ret = relocate_file_extent_cluster(inode, cluster);
3380 		if (ret)
3381 			return ret;
3382 		cluster->nr = 0;
3383 	}
3384 	return 0;
3385 }
3386 
3387 /*
3388  * helper to add a tree block to the list.
3389  * the major work is getting the generation and level of the block
3390  */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3391 static int add_tree_block(struct reloc_control *rc,
3392 			  struct btrfs_key *extent_key,
3393 			  struct btrfs_path *path,
3394 			  struct rb_root *blocks)
3395 {
3396 	struct extent_buffer *eb;
3397 	struct btrfs_extent_item *ei;
3398 	struct btrfs_tree_block_info *bi;
3399 	struct tree_block *block;
3400 	struct rb_node *rb_node;
3401 	u32 item_size;
3402 	int level = -1;
3403 	u64 generation;
3404 
3405 	eb =  path->nodes[0];
3406 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3407 
3408 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3409 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3410 		ei = btrfs_item_ptr(eb, path->slots[0],
3411 				struct btrfs_extent_item);
3412 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3413 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3414 			level = btrfs_tree_block_level(eb, bi);
3415 		} else {
3416 			level = (int)extent_key->offset;
3417 		}
3418 		generation = btrfs_extent_generation(eb, ei);
3419 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3420 		btrfs_print_v0_err(eb->fs_info);
3421 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3422 		return -EINVAL;
3423 	} else {
3424 		BUG();
3425 	}
3426 
3427 	btrfs_release_path(path);
3428 
3429 	BUG_ON(level == -1);
3430 
3431 	block = kmalloc(sizeof(*block), GFP_NOFS);
3432 	if (!block)
3433 		return -ENOMEM;
3434 
3435 	block->bytenr = extent_key->objectid;
3436 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3437 	block->key.offset = generation;
3438 	block->level = level;
3439 	block->key_ready = 0;
3440 
3441 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442 	if (rb_node)
3443 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3444 
3445 	return 0;
3446 }
3447 
3448 /*
3449  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450  */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3451 static int __add_tree_block(struct reloc_control *rc,
3452 			    u64 bytenr, u32 blocksize,
3453 			    struct rb_root *blocks)
3454 {
3455 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456 	struct btrfs_path *path;
3457 	struct btrfs_key key;
3458 	int ret;
3459 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460 
3461 	if (tree_block_processed(bytenr, rc))
3462 		return 0;
3463 
3464 	if (tree_search(blocks, bytenr))
3465 		return 0;
3466 
3467 	path = btrfs_alloc_path();
3468 	if (!path)
3469 		return -ENOMEM;
3470 again:
3471 	key.objectid = bytenr;
3472 	if (skinny) {
3473 		key.type = BTRFS_METADATA_ITEM_KEY;
3474 		key.offset = (u64)-1;
3475 	} else {
3476 		key.type = BTRFS_EXTENT_ITEM_KEY;
3477 		key.offset = blocksize;
3478 	}
3479 
3480 	path->search_commit_root = 1;
3481 	path->skip_locking = 1;
3482 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483 	if (ret < 0)
3484 		goto out;
3485 
3486 	if (ret > 0 && skinny) {
3487 		if (path->slots[0]) {
3488 			path->slots[0]--;
3489 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3490 					      path->slots[0]);
3491 			if (key.objectid == bytenr &&
3492 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3493 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494 			      key.offset == blocksize)))
3495 				ret = 0;
3496 		}
3497 
3498 		if (ret) {
3499 			skinny = false;
3500 			btrfs_release_path(path);
3501 			goto again;
3502 		}
3503 	}
3504 	if (ret) {
3505 		ASSERT(ret == 1);
3506 		btrfs_print_leaf(path->nodes[0]);
3507 		btrfs_err(fs_info,
3508 	     "tree block extent item (%llu) is not found in extent tree",
3509 		     bytenr);
3510 		WARN_ON(1);
3511 		ret = -EINVAL;
3512 		goto out;
3513 	}
3514 
3515 	ret = add_tree_block(rc, &key, path, blocks);
3516 out:
3517 	btrfs_free_path(path);
3518 	return ret;
3519 }
3520 
3521 /*
3522  * helper to check if the block use full backrefs for pointers in it
3523  */
block_use_full_backref(struct reloc_control * rc,struct extent_buffer * eb)3524 static int block_use_full_backref(struct reloc_control *rc,
3525 				  struct extent_buffer *eb)
3526 {
3527 	u64 flags;
3528 	int ret;
3529 
3530 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532 		return 1;
3533 
3534 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535 				       eb->start, btrfs_header_level(eb), 1,
3536 				       NULL, &flags);
3537 	BUG_ON(ret);
3538 
3539 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540 		ret = 1;
3541 	else
3542 		ret = 0;
3543 	return ret;
3544 }
3545 
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct inode * inode,u64 ino)3546 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547 				    struct btrfs_block_group_cache *block_group,
3548 				    struct inode *inode,
3549 				    u64 ino)
3550 {
3551 	struct btrfs_key key;
3552 	struct btrfs_root *root = fs_info->tree_root;
3553 	struct btrfs_trans_handle *trans;
3554 	int ret = 0;
3555 
3556 	if (inode)
3557 		goto truncate;
3558 
3559 	key.objectid = ino;
3560 	key.type = BTRFS_INODE_ITEM_KEY;
3561 	key.offset = 0;
3562 
3563 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564 	if (IS_ERR(inode))
3565 		return -ENOENT;
3566 
3567 truncate:
3568 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3569 						 &fs_info->global_block_rsv);
3570 	if (ret)
3571 		goto out;
3572 
3573 	trans = btrfs_join_transaction(root);
3574 	if (IS_ERR(trans)) {
3575 		ret = PTR_ERR(trans);
3576 		goto out;
3577 	}
3578 
3579 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3580 
3581 	btrfs_end_transaction(trans);
3582 	btrfs_btree_balance_dirty(fs_info);
3583 out:
3584 	iput(inode);
3585 	return ret;
3586 }
3587 
3588 /*
3589  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3590  * this function scans fs tree to find blocks reference the data extent
3591  */
find_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,struct rb_root * blocks)3592 static int find_data_references(struct reloc_control *rc,
3593 				struct btrfs_key *extent_key,
3594 				struct extent_buffer *leaf,
3595 				struct btrfs_extent_data_ref *ref,
3596 				struct rb_root *blocks)
3597 {
3598 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599 	struct btrfs_path *path;
3600 	struct tree_block *block;
3601 	struct btrfs_root *root;
3602 	struct btrfs_file_extent_item *fi;
3603 	struct rb_node *rb_node;
3604 	struct btrfs_key key;
3605 	u64 ref_root;
3606 	u64 ref_objectid;
3607 	u64 ref_offset;
3608 	u32 ref_count;
3609 	u32 nritems;
3610 	int err = 0;
3611 	int added = 0;
3612 	int counted;
3613 	int ret;
3614 
3615 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3616 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3617 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3618 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3619 
3620 	/*
3621 	 * This is an extent belonging to the free space cache, lets just delete
3622 	 * it and redo the search.
3623 	 */
3624 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3625 		ret = delete_block_group_cache(fs_info, rc->block_group,
3626 					       NULL, ref_objectid);
3627 		if (ret != -ENOENT)
3628 			return ret;
3629 		ret = 0;
3630 	}
3631 
3632 	path = btrfs_alloc_path();
3633 	if (!path)
3634 		return -ENOMEM;
3635 	path->reada = READA_FORWARD;
3636 
3637 	root = read_fs_root(fs_info, ref_root);
3638 	if (IS_ERR(root)) {
3639 		err = PTR_ERR(root);
3640 		goto out;
3641 	}
3642 
3643 	key.objectid = ref_objectid;
3644 	key.type = BTRFS_EXTENT_DATA_KEY;
3645 	if (ref_offset > ((u64)-1 << 32))
3646 		key.offset = 0;
3647 	else
3648 		key.offset = ref_offset;
3649 
3650 	path->search_commit_root = 1;
3651 	path->skip_locking = 1;
3652 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 	if (ret < 0) {
3654 		err = ret;
3655 		goto out;
3656 	}
3657 
3658 	leaf = path->nodes[0];
3659 	nritems = btrfs_header_nritems(leaf);
3660 	/*
3661 	 * the references in tree blocks that use full backrefs
3662 	 * are not counted in
3663 	 */
3664 	if (block_use_full_backref(rc, leaf))
3665 		counted = 0;
3666 	else
3667 		counted = 1;
3668 	rb_node = tree_search(blocks, leaf->start);
3669 	if (rb_node) {
3670 		if (counted)
3671 			added = 1;
3672 		else
3673 			path->slots[0] = nritems;
3674 	}
3675 
3676 	while (ref_count > 0) {
3677 		while (path->slots[0] >= nritems) {
3678 			ret = btrfs_next_leaf(root, path);
3679 			if (ret < 0) {
3680 				err = ret;
3681 				goto out;
3682 			}
3683 			if (WARN_ON(ret > 0))
3684 				goto out;
3685 
3686 			leaf = path->nodes[0];
3687 			nritems = btrfs_header_nritems(leaf);
3688 			added = 0;
3689 
3690 			if (block_use_full_backref(rc, leaf))
3691 				counted = 0;
3692 			else
3693 				counted = 1;
3694 			rb_node = tree_search(blocks, leaf->start);
3695 			if (rb_node) {
3696 				if (counted)
3697 					added = 1;
3698 				else
3699 					path->slots[0] = nritems;
3700 			}
3701 		}
3702 
3703 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3704 		if (WARN_ON(key.objectid != ref_objectid ||
3705 		    key.type != BTRFS_EXTENT_DATA_KEY))
3706 			break;
3707 
3708 		fi = btrfs_item_ptr(leaf, path->slots[0],
3709 				    struct btrfs_file_extent_item);
3710 
3711 		if (btrfs_file_extent_type(leaf, fi) ==
3712 		    BTRFS_FILE_EXTENT_INLINE)
3713 			goto next;
3714 
3715 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3716 		    extent_key->objectid)
3717 			goto next;
3718 
3719 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3720 		if (key.offset != ref_offset)
3721 			goto next;
3722 
3723 		if (counted)
3724 			ref_count--;
3725 		if (added)
3726 			goto next;
3727 
3728 		if (!tree_block_processed(leaf->start, rc)) {
3729 			block = kmalloc(sizeof(*block), GFP_NOFS);
3730 			if (!block) {
3731 				err = -ENOMEM;
3732 				break;
3733 			}
3734 			block->bytenr = leaf->start;
3735 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3736 			block->level = 0;
3737 			block->key_ready = 1;
3738 			rb_node = tree_insert(blocks, block->bytenr,
3739 					      &block->rb_node);
3740 			if (rb_node)
3741 				backref_tree_panic(rb_node, -EEXIST,
3742 						   block->bytenr);
3743 		}
3744 		if (counted)
3745 			added = 1;
3746 		else
3747 			path->slots[0] = nritems;
3748 next:
3749 		path->slots[0]++;
3750 
3751 	}
3752 out:
3753 	btrfs_free_path(path);
3754 	return err;
3755 }
3756 
3757 /*
3758  * helper to find all tree blocks that reference a given data extent
3759  */
3760 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3761 int add_data_references(struct reloc_control *rc,
3762 			struct btrfs_key *extent_key,
3763 			struct btrfs_path *path,
3764 			struct rb_root *blocks)
3765 {
3766 	struct btrfs_key key;
3767 	struct extent_buffer *eb;
3768 	struct btrfs_extent_data_ref *dref;
3769 	struct btrfs_extent_inline_ref *iref;
3770 	unsigned long ptr;
3771 	unsigned long end;
3772 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3773 	int ret = 0;
3774 	int err = 0;
3775 
3776 	eb = path->nodes[0];
3777 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3778 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3779 	ptr += sizeof(struct btrfs_extent_item);
3780 
3781 	while (ptr < end) {
3782 		iref = (struct btrfs_extent_inline_ref *)ptr;
3783 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3784 							BTRFS_REF_TYPE_DATA);
3785 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3787 			ret = __add_tree_block(rc, key.offset, blocksize,
3788 					       blocks);
3789 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3790 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3791 			ret = find_data_references(rc, extent_key,
3792 						   eb, dref, blocks);
3793 		} else {
3794 			ret = -EUCLEAN;
3795 			btrfs_err(rc->extent_root->fs_info,
3796 		     "extent %llu slot %d has an invalid inline ref type",
3797 			     eb->start, path->slots[0]);
3798 		}
3799 		if (ret) {
3800 			err = ret;
3801 			goto out;
3802 		}
3803 		ptr += btrfs_extent_inline_ref_size(key.type);
3804 	}
3805 	WARN_ON(ptr > end);
3806 
3807 	while (1) {
3808 		cond_resched();
3809 		eb = path->nodes[0];
3810 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3811 			ret = btrfs_next_leaf(rc->extent_root, path);
3812 			if (ret < 0) {
3813 				err = ret;
3814 				break;
3815 			}
3816 			if (ret > 0)
3817 				break;
3818 			eb = path->nodes[0];
3819 		}
3820 
3821 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3822 		if (key.objectid != extent_key->objectid)
3823 			break;
3824 
3825 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3826 			ret = __add_tree_block(rc, key.offset, blocksize,
3827 					       blocks);
3828 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3829 			dref = btrfs_item_ptr(eb, path->slots[0],
3830 					      struct btrfs_extent_data_ref);
3831 			ret = find_data_references(rc, extent_key,
3832 						   eb, dref, blocks);
3833 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3834 			btrfs_print_v0_err(eb->fs_info);
3835 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3836 			ret = -EINVAL;
3837 		} else {
3838 			ret = 0;
3839 		}
3840 		if (ret) {
3841 			err = ret;
3842 			break;
3843 		}
3844 		path->slots[0]++;
3845 	}
3846 out:
3847 	btrfs_release_path(path);
3848 	if (err)
3849 		free_block_list(blocks);
3850 	return err;
3851 }
3852 
3853 /*
3854  * helper to find next unprocessed extent
3855  */
3856 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3857 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3858 		     struct btrfs_key *extent_key)
3859 {
3860 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861 	struct btrfs_key key;
3862 	struct extent_buffer *leaf;
3863 	u64 start, end, last;
3864 	int ret;
3865 
3866 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3867 	while (1) {
3868 		cond_resched();
3869 		if (rc->search_start >= last) {
3870 			ret = 1;
3871 			break;
3872 		}
3873 
3874 		key.objectid = rc->search_start;
3875 		key.type = BTRFS_EXTENT_ITEM_KEY;
3876 		key.offset = 0;
3877 
3878 		path->search_commit_root = 1;
3879 		path->skip_locking = 1;
3880 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3881 					0, 0);
3882 		if (ret < 0)
3883 			break;
3884 next:
3885 		leaf = path->nodes[0];
3886 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3887 			ret = btrfs_next_leaf(rc->extent_root, path);
3888 			if (ret != 0)
3889 				break;
3890 			leaf = path->nodes[0];
3891 		}
3892 
3893 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3894 		if (key.objectid >= last) {
3895 			ret = 1;
3896 			break;
3897 		}
3898 
3899 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3900 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3901 			path->slots[0]++;
3902 			goto next;
3903 		}
3904 
3905 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3906 		    key.objectid + key.offset <= rc->search_start) {
3907 			path->slots[0]++;
3908 			goto next;
3909 		}
3910 
3911 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3912 		    key.objectid + fs_info->nodesize <=
3913 		    rc->search_start) {
3914 			path->slots[0]++;
3915 			goto next;
3916 		}
3917 
3918 		ret = find_first_extent_bit(&rc->processed_blocks,
3919 					    key.objectid, &start, &end,
3920 					    EXTENT_DIRTY, NULL);
3921 
3922 		if (ret == 0 && start <= key.objectid) {
3923 			btrfs_release_path(path);
3924 			rc->search_start = end + 1;
3925 		} else {
3926 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3927 				rc->search_start = key.objectid + key.offset;
3928 			else
3929 				rc->search_start = key.objectid +
3930 					fs_info->nodesize;
3931 			memcpy(extent_key, &key, sizeof(key));
3932 			return 0;
3933 		}
3934 	}
3935 	btrfs_release_path(path);
3936 	return ret;
3937 }
3938 
set_reloc_control(struct reloc_control * rc)3939 static void set_reloc_control(struct reloc_control *rc)
3940 {
3941 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3942 
3943 	mutex_lock(&fs_info->reloc_mutex);
3944 	fs_info->reloc_ctl = rc;
3945 	mutex_unlock(&fs_info->reloc_mutex);
3946 }
3947 
unset_reloc_control(struct reloc_control * rc)3948 static void unset_reloc_control(struct reloc_control *rc)
3949 {
3950 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3951 
3952 	mutex_lock(&fs_info->reloc_mutex);
3953 	fs_info->reloc_ctl = NULL;
3954 	mutex_unlock(&fs_info->reloc_mutex);
3955 }
3956 
check_extent_flags(u64 flags)3957 static int check_extent_flags(u64 flags)
3958 {
3959 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3960 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3961 		return 1;
3962 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3963 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3964 		return 1;
3965 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3966 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3967 		return 1;
3968 	return 0;
3969 }
3970 
3971 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3972 int prepare_to_relocate(struct reloc_control *rc)
3973 {
3974 	struct btrfs_trans_handle *trans;
3975 	int ret;
3976 
3977 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3978 					      BTRFS_BLOCK_RSV_TEMP);
3979 	if (!rc->block_rsv)
3980 		return -ENOMEM;
3981 
3982 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3983 	rc->search_start = rc->block_group->key.objectid;
3984 	rc->extents_found = 0;
3985 	rc->nodes_relocated = 0;
3986 	rc->merging_rsv_size = 0;
3987 	rc->reserved_bytes = 0;
3988 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3989 			      RELOCATION_RESERVED_NODES;
3990 	ret = btrfs_block_rsv_refill(rc->extent_root,
3991 				     rc->block_rsv, rc->block_rsv->size,
3992 				     BTRFS_RESERVE_FLUSH_ALL);
3993 	if (ret)
3994 		return ret;
3995 
3996 	rc->create_reloc_tree = 1;
3997 	set_reloc_control(rc);
3998 
3999 	trans = btrfs_join_transaction(rc->extent_root);
4000 	if (IS_ERR(trans)) {
4001 		unset_reloc_control(rc);
4002 		/*
4003 		 * extent tree is not a ref_cow tree and has no reloc_root to
4004 		 * cleanup.  And callers are responsible to free the above
4005 		 * block rsv.
4006 		 */
4007 		return PTR_ERR(trans);
4008 	}
4009 	btrfs_commit_transaction(trans);
4010 	return 0;
4011 }
4012 
relocate_block_group(struct reloc_control * rc)4013 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014 {
4015 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4016 	struct rb_root blocks = RB_ROOT;
4017 	struct btrfs_key key;
4018 	struct btrfs_trans_handle *trans = NULL;
4019 	struct btrfs_path *path;
4020 	struct btrfs_extent_item *ei;
4021 	u64 flags;
4022 	u32 item_size;
4023 	int ret;
4024 	int err = 0;
4025 	int progress = 0;
4026 
4027 	path = btrfs_alloc_path();
4028 	if (!path)
4029 		return -ENOMEM;
4030 	path->reada = READA_FORWARD;
4031 
4032 	ret = prepare_to_relocate(rc);
4033 	if (ret) {
4034 		err = ret;
4035 		goto out_free;
4036 	}
4037 
4038 	while (1) {
4039 		rc->reserved_bytes = 0;
4040 		ret = btrfs_block_rsv_refill(rc->extent_root,
4041 					rc->block_rsv, rc->block_rsv->size,
4042 					BTRFS_RESERVE_FLUSH_ALL);
4043 		if (ret) {
4044 			err = ret;
4045 			break;
4046 		}
4047 		progress++;
4048 		trans = btrfs_start_transaction(rc->extent_root, 0);
4049 		if (IS_ERR(trans)) {
4050 			err = PTR_ERR(trans);
4051 			trans = NULL;
4052 			break;
4053 		}
4054 restart:
4055 		if (update_backref_cache(trans, &rc->backref_cache)) {
4056 			btrfs_end_transaction(trans);
4057 			trans = NULL;
4058 			continue;
4059 		}
4060 
4061 		ret = find_next_extent(rc, path, &key);
4062 		if (ret < 0)
4063 			err = ret;
4064 		if (ret != 0)
4065 			break;
4066 
4067 		rc->extents_found++;
4068 
4069 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4070 				    struct btrfs_extent_item);
4071 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4072 		if (item_size >= sizeof(*ei)) {
4073 			flags = btrfs_extent_flags(path->nodes[0], ei);
4074 			ret = check_extent_flags(flags);
4075 			BUG_ON(ret);
4076 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4077 			err = -EINVAL;
4078 			btrfs_print_v0_err(trans->fs_info);
4079 			btrfs_abort_transaction(trans, err);
4080 			break;
4081 		} else {
4082 			BUG();
4083 		}
4084 
4085 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4086 			ret = add_tree_block(rc, &key, path, &blocks);
4087 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4088 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4089 			ret = add_data_references(rc, &key, path, &blocks);
4090 		} else {
4091 			btrfs_release_path(path);
4092 			ret = 0;
4093 		}
4094 		if (ret < 0) {
4095 			err = ret;
4096 			break;
4097 		}
4098 
4099 		if (!RB_EMPTY_ROOT(&blocks)) {
4100 			ret = relocate_tree_blocks(trans, rc, &blocks);
4101 			if (ret < 0) {
4102 				/*
4103 				 * if we fail to relocate tree blocks, force to update
4104 				 * backref cache when committing transaction.
4105 				 */
4106 				rc->backref_cache.last_trans = trans->transid - 1;
4107 
4108 				if (ret != -EAGAIN) {
4109 					err = ret;
4110 					break;
4111 				}
4112 				rc->extents_found--;
4113 				rc->search_start = key.objectid;
4114 			}
4115 		}
4116 
4117 		btrfs_end_transaction_throttle(trans);
4118 		btrfs_btree_balance_dirty(fs_info);
4119 		trans = NULL;
4120 
4121 		if (rc->stage == MOVE_DATA_EXTENTS &&
4122 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4123 			rc->found_file_extent = 1;
4124 			ret = relocate_data_extent(rc->data_inode,
4125 						   &key, &rc->cluster);
4126 			if (ret < 0) {
4127 				err = ret;
4128 				break;
4129 			}
4130 		}
4131 	}
4132 	if (trans && progress && err == -ENOSPC) {
4133 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4134 		if (ret == 1) {
4135 			err = 0;
4136 			progress = 0;
4137 			goto restart;
4138 		}
4139 	}
4140 
4141 	btrfs_release_path(path);
4142 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4143 
4144 	if (trans) {
4145 		btrfs_end_transaction_throttle(trans);
4146 		btrfs_btree_balance_dirty(fs_info);
4147 	}
4148 
4149 	if (!err) {
4150 		ret = relocate_file_extent_cluster(rc->data_inode,
4151 						   &rc->cluster);
4152 		if (ret < 0)
4153 			err = ret;
4154 	}
4155 
4156 	rc->create_reloc_tree = 0;
4157 	set_reloc_control(rc);
4158 
4159 	backref_cache_cleanup(&rc->backref_cache);
4160 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161 
4162 	err = prepare_to_merge(rc, err);
4163 
4164 	merge_reloc_roots(rc);
4165 
4166 	rc->merge_reloc_tree = 0;
4167 	unset_reloc_control(rc);
4168 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4169 
4170 	/* get rid of pinned extents */
4171 	trans = btrfs_join_transaction(rc->extent_root);
4172 	if (IS_ERR(trans)) {
4173 		err = PTR_ERR(trans);
4174 		goto out_free;
4175 	}
4176 	btrfs_commit_transaction(trans);
4177 	ret = clean_dirty_subvols(rc);
4178 	if (ret < 0 && !err)
4179 		err = ret;
4180 out_free:
4181 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4182 	btrfs_free_path(path);
4183 	return err;
4184 }
4185 
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)4186 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4187 				 struct btrfs_root *root, u64 objectid)
4188 {
4189 	struct btrfs_path *path;
4190 	struct btrfs_inode_item *item;
4191 	struct extent_buffer *leaf;
4192 	int ret;
4193 
4194 	path = btrfs_alloc_path();
4195 	if (!path)
4196 		return -ENOMEM;
4197 
4198 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4199 	if (ret)
4200 		goto out;
4201 
4202 	leaf = path->nodes[0];
4203 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4204 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4205 	btrfs_set_inode_generation(leaf, item, 1);
4206 	btrfs_set_inode_size(leaf, item, 0);
4207 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4208 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4209 					  BTRFS_INODE_PREALLOC);
4210 	btrfs_mark_buffer_dirty(leaf);
4211 out:
4212 	btrfs_free_path(path);
4213 	return ret;
4214 }
4215 
4216 /*
4217  * helper to create inode for data relocation.
4218  * the inode is in data relocation tree and its link count is 0
4219  */
4220 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * group)4221 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4222 				 struct btrfs_block_group_cache *group)
4223 {
4224 	struct inode *inode = NULL;
4225 	struct btrfs_trans_handle *trans;
4226 	struct btrfs_root *root;
4227 	struct btrfs_key key;
4228 	u64 objectid;
4229 	int err = 0;
4230 
4231 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4232 	if (IS_ERR(root))
4233 		return ERR_CAST(root);
4234 
4235 	trans = btrfs_start_transaction(root, 6);
4236 	if (IS_ERR(trans))
4237 		return ERR_CAST(trans);
4238 
4239 	err = btrfs_find_free_objectid(root, &objectid);
4240 	if (err)
4241 		goto out;
4242 
4243 	err = __insert_orphan_inode(trans, root, objectid);
4244 	BUG_ON(err);
4245 
4246 	key.objectid = objectid;
4247 	key.type = BTRFS_INODE_ITEM_KEY;
4248 	key.offset = 0;
4249 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4250 	BUG_ON(IS_ERR(inode));
4251 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4252 
4253 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4254 out:
4255 	btrfs_end_transaction(trans);
4256 	btrfs_btree_balance_dirty(fs_info);
4257 	if (err) {
4258 		if (inode)
4259 			iput(inode);
4260 		inode = ERR_PTR(err);
4261 	}
4262 	return inode;
4263 }
4264 
alloc_reloc_control(struct btrfs_fs_info * fs_info)4265 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4266 {
4267 	struct reloc_control *rc;
4268 
4269 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4270 	if (!rc)
4271 		return NULL;
4272 
4273 	INIT_LIST_HEAD(&rc->reloc_roots);
4274 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4275 	backref_cache_init(&rc->backref_cache);
4276 	mapping_tree_init(&rc->reloc_root_tree);
4277 	extent_io_tree_init(fs_info, &rc->processed_blocks,
4278 			    IO_TREE_RELOC_BLOCKS, NULL);
4279 	return rc;
4280 }
4281 
4282 /*
4283  * Print the block group being relocated
4284  */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)4285 static void describe_relocation(struct btrfs_fs_info *fs_info,
4286 				struct btrfs_block_group_cache *block_group)
4287 {
4288 	char buf[128] = {'\0'};
4289 
4290 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4291 
4292 	btrfs_info(fs_info,
4293 		   "relocating block group %llu flags %s",
4294 		   block_group->key.objectid, buf);
4295 }
4296 
4297 /*
4298  * function to relocate all extents in a block group.
4299  */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4300 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4301 {
4302 	struct btrfs_block_group_cache *bg;
4303 	struct btrfs_root *extent_root = fs_info->extent_root;
4304 	struct reloc_control *rc;
4305 	struct inode *inode;
4306 	struct btrfs_path *path;
4307 	int ret;
4308 	int rw = 0;
4309 	int err = 0;
4310 
4311 	bg = btrfs_lookup_block_group(fs_info, group_start);
4312 	if (!bg)
4313 		return -ENOENT;
4314 
4315 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4316 		btrfs_put_block_group(bg);
4317 		return -ETXTBSY;
4318 	}
4319 
4320 	rc = alloc_reloc_control(fs_info);
4321 	if (!rc) {
4322 		btrfs_put_block_group(bg);
4323 		return -ENOMEM;
4324 	}
4325 
4326 	rc->extent_root = extent_root;
4327 	rc->block_group = bg;
4328 
4329 	ret = btrfs_inc_block_group_ro(rc->block_group);
4330 	if (ret) {
4331 		err = ret;
4332 		goto out;
4333 	}
4334 	rw = 1;
4335 
4336 	path = btrfs_alloc_path();
4337 	if (!path) {
4338 		err = -ENOMEM;
4339 		goto out;
4340 	}
4341 
4342 	inode = lookup_free_space_inode(rc->block_group, path);
4343 	btrfs_free_path(path);
4344 
4345 	if (!IS_ERR(inode))
4346 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347 	else
4348 		ret = PTR_ERR(inode);
4349 
4350 	if (ret && ret != -ENOENT) {
4351 		err = ret;
4352 		goto out;
4353 	}
4354 
4355 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356 	if (IS_ERR(rc->data_inode)) {
4357 		err = PTR_ERR(rc->data_inode);
4358 		rc->data_inode = NULL;
4359 		goto out;
4360 	}
4361 
4362 	describe_relocation(fs_info, rc->block_group);
4363 
4364 	btrfs_wait_block_group_reservations(rc->block_group);
4365 	btrfs_wait_nocow_writers(rc->block_group);
4366 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4367 				 rc->block_group->key.objectid,
4368 				 rc->block_group->key.offset);
4369 
4370 	while (1) {
4371 		mutex_lock(&fs_info->cleaner_mutex);
4372 		ret = relocate_block_group(rc);
4373 		mutex_unlock(&fs_info->cleaner_mutex);
4374 		if (ret < 0)
4375 			err = ret;
4376 
4377 		/*
4378 		 * We may have gotten ENOSPC after we already dirtied some
4379 		 * extents.  If writeout happens while we're relocating a
4380 		 * different block group we could end up hitting the
4381 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4382 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4383 		 * properly so we don't trip over this problem, and then break
4384 		 * out of the loop if we hit an error.
4385 		 */
4386 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4387 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4388 						       (u64)-1);
4389 			if (ret)
4390 				err = ret;
4391 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4392 						 0, -1);
4393 			rc->stage = UPDATE_DATA_PTRS;
4394 		}
4395 
4396 		if (err < 0)
4397 			goto out;
4398 
4399 		if (rc->extents_found == 0)
4400 			break;
4401 
4402 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4403 
4404 	}
4405 
4406 	WARN_ON(rc->block_group->pinned > 0);
4407 	WARN_ON(rc->block_group->reserved > 0);
4408 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409 out:
4410 	if (err && rw)
4411 		btrfs_dec_block_group_ro(rc->block_group);
4412 	iput(rc->data_inode);
4413 	btrfs_put_block_group(rc->block_group);
4414 	kfree(rc);
4415 	return err;
4416 }
4417 
mark_garbage_root(struct btrfs_root * root)4418 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419 {
4420 	struct btrfs_fs_info *fs_info = root->fs_info;
4421 	struct btrfs_trans_handle *trans;
4422 	int ret, err;
4423 
4424 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425 	if (IS_ERR(trans))
4426 		return PTR_ERR(trans);
4427 
4428 	memset(&root->root_item.drop_progress, 0,
4429 		sizeof(root->root_item.drop_progress));
4430 	root->root_item.drop_level = 0;
4431 	btrfs_set_root_refs(&root->root_item, 0);
4432 	ret = btrfs_update_root(trans, fs_info->tree_root,
4433 				&root->root_key, &root->root_item);
4434 
4435 	err = btrfs_end_transaction(trans);
4436 	if (err)
4437 		return err;
4438 	return ret;
4439 }
4440 
4441 /*
4442  * recover relocation interrupted by system crash.
4443  *
4444  * this function resumes merging reloc trees with corresponding fs trees.
4445  * this is important for keeping the sharing of tree blocks
4446  */
btrfs_recover_relocation(struct btrfs_root * root)4447 int btrfs_recover_relocation(struct btrfs_root *root)
4448 {
4449 	struct btrfs_fs_info *fs_info = root->fs_info;
4450 	LIST_HEAD(reloc_roots);
4451 	struct btrfs_key key;
4452 	struct btrfs_root *fs_root;
4453 	struct btrfs_root *reloc_root;
4454 	struct btrfs_path *path;
4455 	struct extent_buffer *leaf;
4456 	struct reloc_control *rc = NULL;
4457 	struct btrfs_trans_handle *trans;
4458 	int ret;
4459 	int err = 0;
4460 
4461 	path = btrfs_alloc_path();
4462 	if (!path)
4463 		return -ENOMEM;
4464 	path->reada = READA_BACK;
4465 
4466 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467 	key.type = BTRFS_ROOT_ITEM_KEY;
4468 	key.offset = (u64)-1;
4469 
4470 	while (1) {
4471 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472 					path, 0, 0);
4473 		if (ret < 0) {
4474 			err = ret;
4475 			goto out;
4476 		}
4477 		if (ret > 0) {
4478 			if (path->slots[0] == 0)
4479 				break;
4480 			path->slots[0]--;
4481 		}
4482 		leaf = path->nodes[0];
4483 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484 		btrfs_release_path(path);
4485 
4486 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487 		    key.type != BTRFS_ROOT_ITEM_KEY)
4488 			break;
4489 
4490 		reloc_root = btrfs_read_fs_root(root, &key);
4491 		if (IS_ERR(reloc_root)) {
4492 			err = PTR_ERR(reloc_root);
4493 			goto out;
4494 		}
4495 
4496 		list_add(&reloc_root->root_list, &reloc_roots);
4497 
4498 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499 			fs_root = read_fs_root(fs_info,
4500 					       reloc_root->root_key.offset);
4501 			if (IS_ERR(fs_root)) {
4502 				ret = PTR_ERR(fs_root);
4503 				if (ret != -ENOENT) {
4504 					err = ret;
4505 					goto out;
4506 				}
4507 				ret = mark_garbage_root(reloc_root);
4508 				if (ret < 0) {
4509 					err = ret;
4510 					goto out;
4511 				}
4512 			}
4513 		}
4514 
4515 		if (key.offset == 0)
4516 			break;
4517 
4518 		key.offset--;
4519 	}
4520 	btrfs_release_path(path);
4521 
4522 	if (list_empty(&reloc_roots))
4523 		goto out;
4524 
4525 	rc = alloc_reloc_control(fs_info);
4526 	if (!rc) {
4527 		err = -ENOMEM;
4528 		goto out;
4529 	}
4530 
4531 	rc->extent_root = fs_info->extent_root;
4532 
4533 	set_reloc_control(rc);
4534 
4535 	trans = btrfs_join_transaction(rc->extent_root);
4536 	if (IS_ERR(trans)) {
4537 		unset_reloc_control(rc);
4538 		err = PTR_ERR(trans);
4539 		goto out_free;
4540 	}
4541 
4542 	rc->merge_reloc_tree = 1;
4543 
4544 	while (!list_empty(&reloc_roots)) {
4545 		reloc_root = list_entry(reloc_roots.next,
4546 					struct btrfs_root, root_list);
4547 		list_del(&reloc_root->root_list);
4548 
4549 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550 			list_add_tail(&reloc_root->root_list,
4551 				      &rc->reloc_roots);
4552 			continue;
4553 		}
4554 
4555 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4556 		if (IS_ERR(fs_root)) {
4557 			err = PTR_ERR(fs_root);
4558 			goto out_free;
4559 		}
4560 
4561 		err = __add_reloc_root(reloc_root);
4562 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563 		fs_root->reloc_root = reloc_root;
4564 	}
4565 
4566 	err = btrfs_commit_transaction(trans);
4567 	if (err)
4568 		goto out_free;
4569 
4570 	merge_reloc_roots(rc);
4571 
4572 	unset_reloc_control(rc);
4573 
4574 	trans = btrfs_join_transaction(rc->extent_root);
4575 	if (IS_ERR(trans)) {
4576 		err = PTR_ERR(trans);
4577 		goto out_free;
4578 	}
4579 	err = btrfs_commit_transaction(trans);
4580 
4581 	ret = clean_dirty_subvols(rc);
4582 	if (ret < 0 && !err)
4583 		err = ret;
4584 out_free:
4585 	kfree(rc);
4586 out:
4587 	if (!list_empty(&reloc_roots))
4588 		free_reloc_roots(&reloc_roots);
4589 
4590 	btrfs_free_path(path);
4591 
4592 	if (err == 0) {
4593 		/* cleanup orphan inode in data relocation tree */
4594 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4595 		if (IS_ERR(fs_root))
4596 			err = PTR_ERR(fs_root);
4597 		else
4598 			err = btrfs_orphan_cleanup(fs_root);
4599 	}
4600 	return err;
4601 }
4602 
4603 /*
4604  * helper to add ordered checksum for data relocation.
4605  *
4606  * cloning checksum properly handles the nodatasum extents.
4607  * it also saves CPU time to re-calculate the checksum.
4608  */
btrfs_reloc_clone_csums(struct inode * inode,u64 file_pos,u64 len)4609 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610 {
4611 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4612 	struct btrfs_ordered_sum *sums;
4613 	struct btrfs_ordered_extent *ordered;
4614 	int ret;
4615 	u64 disk_bytenr;
4616 	u64 new_bytenr;
4617 	LIST_HEAD(list);
4618 
4619 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621 
4622 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4624 				       disk_bytenr + len - 1, &list, 0);
4625 	if (ret)
4626 		goto out;
4627 
4628 	while (!list_empty(&list)) {
4629 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630 		list_del_init(&sums->list);
4631 
4632 		/*
4633 		 * We need to offset the new_bytenr based on where the csum is.
4634 		 * We need to do this because we will read in entire prealloc
4635 		 * extents but we may have written to say the middle of the
4636 		 * prealloc extent, so we need to make sure the csum goes with
4637 		 * the right disk offset.
4638 		 *
4639 		 * We can do this because the data reloc inode refers strictly
4640 		 * to the on disk bytes, so we don't have to worry about
4641 		 * disk_len vs real len like with real inodes since it's all
4642 		 * disk length.
4643 		 */
4644 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645 		sums->bytenr = new_bytenr;
4646 
4647 		btrfs_add_ordered_sum(ordered, sums);
4648 	}
4649 out:
4650 	btrfs_put_ordered_extent(ordered);
4651 	return ret;
4652 }
4653 
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4654 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655 			  struct btrfs_root *root, struct extent_buffer *buf,
4656 			  struct extent_buffer *cow)
4657 {
4658 	struct btrfs_fs_info *fs_info = root->fs_info;
4659 	struct reloc_control *rc;
4660 	struct backref_node *node;
4661 	int first_cow = 0;
4662 	int level;
4663 	int ret = 0;
4664 
4665 	rc = fs_info->reloc_ctl;
4666 	if (!rc)
4667 		return 0;
4668 
4669 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4670 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4671 
4672 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4673 		if (buf == root->node)
4674 			__update_reloc_root(root, cow->start);
4675 	}
4676 
4677 	level = btrfs_header_level(buf);
4678 	if (btrfs_header_generation(buf) <=
4679 	    btrfs_root_last_snapshot(&root->root_item))
4680 		first_cow = 1;
4681 
4682 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4683 	    rc->create_reloc_tree) {
4684 		WARN_ON(!first_cow && level == 0);
4685 
4686 		node = rc->backref_cache.path[level];
4687 		BUG_ON(node->bytenr != buf->start &&
4688 		       node->new_bytenr != buf->start);
4689 
4690 		drop_node_buffer(node);
4691 		extent_buffer_get(cow);
4692 		node->eb = cow;
4693 		node->new_bytenr = cow->start;
4694 
4695 		if (!node->pending) {
4696 			list_move_tail(&node->list,
4697 				       &rc->backref_cache.pending[level]);
4698 			node->pending = 1;
4699 		}
4700 
4701 		if (first_cow)
4702 			__mark_block_processed(rc, node);
4703 
4704 		if (first_cow && level > 0)
4705 			rc->nodes_relocated += buf->len;
4706 	}
4707 
4708 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4709 		ret = replace_file_extents(trans, rc, root, cow);
4710 	return ret;
4711 }
4712 
4713 /*
4714  * called before creating snapshot. it calculates metadata reservation
4715  * required for relocating tree blocks in the snapshot
4716  */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4717 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4718 			      u64 *bytes_to_reserve)
4719 {
4720 	struct btrfs_root *root = pending->root;
4721 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4722 
4723 	if (!root->reloc_root || !rc)
4724 		return;
4725 
4726 	if (!rc->merge_reloc_tree)
4727 		return;
4728 
4729 	root = root->reloc_root;
4730 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4731 	/*
4732 	 * relocation is in the stage of merging trees. the space
4733 	 * used by merging a reloc tree is twice the size of
4734 	 * relocated tree nodes in the worst case. half for cowing
4735 	 * the reloc tree, half for cowing the fs tree. the space
4736 	 * used by cowing the reloc tree will be freed after the
4737 	 * tree is dropped. if we create snapshot, cowing the fs
4738 	 * tree may use more space than it frees. so we need
4739 	 * reserve extra space.
4740 	 */
4741 	*bytes_to_reserve += rc->nodes_relocated;
4742 }
4743 
4744 /*
4745  * called after snapshot is created. migrate block reservation
4746  * and create reloc root for the newly created snapshot
4747  */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4748 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4749 			       struct btrfs_pending_snapshot *pending)
4750 {
4751 	struct btrfs_root *root = pending->root;
4752 	struct btrfs_root *reloc_root;
4753 	struct btrfs_root *new_root;
4754 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4755 	int ret;
4756 
4757 	if (!root->reloc_root || !rc)
4758 		return 0;
4759 
4760 	rc = root->fs_info->reloc_ctl;
4761 	rc->merging_rsv_size += rc->nodes_relocated;
4762 
4763 	if (rc->merge_reloc_tree) {
4764 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4765 					      rc->block_rsv,
4766 					      rc->nodes_relocated, true);
4767 		if (ret)
4768 			return ret;
4769 	}
4770 
4771 	new_root = pending->snap;
4772 	reloc_root = create_reloc_root(trans, root->reloc_root,
4773 				       new_root->root_key.objectid);
4774 	if (IS_ERR(reloc_root))
4775 		return PTR_ERR(reloc_root);
4776 
4777 	ret = __add_reloc_root(reloc_root);
4778 	BUG_ON(ret < 0);
4779 	new_root->reloc_root = reloc_root;
4780 
4781 	if (rc->create_reloc_tree)
4782 		ret = clone_backref_node(trans, rc, root, reloc_root);
4783 	return ret;
4784 }
4785