1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
38
39 #define DRV_NAME "vrf"
40 #define DRV_VERSION "1.1"
41
42 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
43
44 #define HT_MAP_BITS 4
45 #define HASH_INITVAL ((u32)0xcafef00d)
46
47 struct vrf_map {
48 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 spinlock_t vmap_lock;
50
51 /* shared_tables:
52 * count how many distinct tables do not comply with the strict mode
53 * requirement.
54 * shared_tables value must be 0 in order to enable the strict mode.
55 *
56 * example of the evolution of shared_tables:
57 * | time
58 * add vrf0 --> table 100 shared_tables = 0 | t0
59 * add vrf1 --> table 101 shared_tables = 0 | t1
60 * add vrf2 --> table 100 shared_tables = 1 | t2
61 * add vrf3 --> table 100 shared_tables = 1 | t3
62 * add vrf4 --> table 101 shared_tables = 2 v t4
63 *
64 * shared_tables is a "step function" (or "staircase function")
65 * and it is increased by one when the second vrf is associated to a
66 * table.
67 *
68 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 *
70 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 * value of shared_tables is still 1.
72 * This means that no matter how many new vrfs will register on the
73 * table 100, the shared_tables will not increase (considering only
74 * table 100).
75 *
76 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 *
78 * Looking at the value of shared_tables we can immediately know if
79 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 * can be enforced iff shared_tables = 0.
81 *
82 * Conversely, shared_tables is decreased when a vrf is de-associated
83 * from a table with exactly two associated vrfs.
84 */
85 u32 shared_tables;
86
87 bool strict_mode;
88 };
89
90 struct vrf_map_elem {
91 struct hlist_node hnode;
92 struct list_head vrf_list; /* VRFs registered to this table */
93
94 u32 table_id;
95 int users;
96 int ifindex;
97 };
98
99 static unsigned int vrf_net_id;
100
101 /* per netns vrf data */
102 struct netns_vrf {
103 /* protected by rtnl lock */
104 bool add_fib_rules;
105
106 struct vrf_map vmap;
107 struct ctl_table_header *ctl_hdr;
108 };
109
110 struct net_vrf {
111 struct rtable __rcu *rth;
112 struct rt6_info __rcu *rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 struct fib6_table *fib6_table;
115 #endif
116 u32 tb_id;
117
118 struct list_head me_list; /* entry in vrf_map_elem */
119 int ifindex;
120 };
121
122 struct pcpu_dstats {
123 u64 tx_pkts;
124 u64 tx_bytes;
125 u64 tx_drps;
126 u64 rx_pkts;
127 u64 rx_bytes;
128 u64 rx_drps;
129 struct u64_stats_sync syncp;
130 };
131
vrf_rx_stats(struct net_device * dev,int len)132 static void vrf_rx_stats(struct net_device *dev, int len)
133 {
134 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135
136 u64_stats_update_begin(&dstats->syncp);
137 dstats->rx_pkts++;
138 dstats->rx_bytes += len;
139 u64_stats_update_end(&dstats->syncp);
140 }
141
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 {
144 vrf_dev->stats.tx_errors++;
145 kfree_skb(skb);
146 }
147
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)148 static void vrf_get_stats64(struct net_device *dev,
149 struct rtnl_link_stats64 *stats)
150 {
151 int i;
152
153 for_each_possible_cpu(i) {
154 const struct pcpu_dstats *dstats;
155 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 unsigned int start;
157
158 dstats = per_cpu_ptr(dev->dstats, i);
159 do {
160 start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 tbytes = dstats->tx_bytes;
162 tpkts = dstats->tx_pkts;
163 tdrops = dstats->tx_drps;
164 rbytes = dstats->rx_bytes;
165 rpkts = dstats->rx_pkts;
166 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 stats->tx_bytes += tbytes;
168 stats->tx_packets += tpkts;
169 stats->tx_dropped += tdrops;
170 stats->rx_bytes += rbytes;
171 stats->rx_packets += rpkts;
172 }
173 }
174
netns_vrf_map(struct net * net)175 static struct vrf_map *netns_vrf_map(struct net *net)
176 {
177 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178
179 return &nn_vrf->vmap;
180 }
181
netns_vrf_map_by_dev(struct net_device * dev)182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 {
184 return netns_vrf_map(dev_net(dev));
185 }
186
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 {
189 struct list_head *me_head = &me->vrf_list;
190 struct net_vrf *vrf;
191
192 if (list_empty(me_head))
193 return -ENODEV;
194
195 vrf = list_first_entry(me_head, struct net_vrf, me_list);
196
197 return vrf->ifindex;
198 }
199
vrf_map_elem_alloc(gfp_t flags)200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 {
202 struct vrf_map_elem *me;
203
204 me = kmalloc(sizeof(*me), flags);
205 if (!me)
206 return NULL;
207
208 return me;
209 }
210
vrf_map_elem_free(struct vrf_map_elem * me)211 static void vrf_map_elem_free(struct vrf_map_elem *me)
212 {
213 kfree(me);
214 }
215
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 int ifindex, int users)
218 {
219 me->table_id = table_id;
220 me->ifindex = ifindex;
221 me->users = users;
222 INIT_LIST_HEAD(&me->vrf_list);
223 }
224
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 u32 table_id)
227 {
228 struct vrf_map_elem *me;
229 u32 key;
230
231 key = jhash_1word(table_id, HASH_INITVAL);
232 hash_for_each_possible(vmap->ht, me, hnode, key) {
233 if (me->table_id == table_id)
234 return me;
235 }
236
237 return NULL;
238 }
239
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 {
242 u32 table_id = me->table_id;
243 u32 key;
244
245 key = jhash_1word(table_id, HASH_INITVAL);
246 hash_add(vmap->ht, &me->hnode, key);
247 }
248
vrf_map_del_elem(struct vrf_map_elem * me)249 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 {
251 hash_del(&me->hnode);
252 }
253
vrf_map_lock(struct vrf_map * vmap)254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 {
256 spin_lock(&vmap->vmap_lock);
257 }
258
vrf_map_unlock(struct vrf_map * vmap)259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 {
261 spin_unlock(&vmap->vmap_lock);
262 }
263
264 /* called with rtnl lock held */
265 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 {
268 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 struct net_vrf *vrf = netdev_priv(dev);
270 struct vrf_map_elem *new_me, *me;
271 u32 table_id = vrf->tb_id;
272 bool free_new_me = false;
273 int users;
274 int res;
275
276 /* we pre-allocate elements used in the spin-locked section (so that we
277 * keep the spinlock as short as possible).
278 */
279 new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 if (!new_me)
281 return -ENOMEM;
282
283 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284
285 vrf_map_lock(vmap);
286
287 me = vrf_map_lookup_elem(vmap, table_id);
288 if (!me) {
289 me = new_me;
290 vrf_map_add_elem(vmap, me);
291 goto link_vrf;
292 }
293
294 /* we already have an entry in the vrf_map, so it means there is (at
295 * least) a vrf registered on the specific table.
296 */
297 free_new_me = true;
298 if (vmap->strict_mode) {
299 /* vrfs cannot share the same table */
300 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 res = -EBUSY;
302 goto unlock;
303 }
304
305 link_vrf:
306 users = ++me->users;
307 if (users == 2)
308 ++vmap->shared_tables;
309
310 list_add(&vrf->me_list, &me->vrf_list);
311
312 res = 0;
313
314 unlock:
315 vrf_map_unlock(vmap);
316
317 /* clean-up, if needed */
318 if (free_new_me)
319 vrf_map_elem_free(new_me);
320
321 return res;
322 }
323
324 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)325 static void vrf_map_unregister_dev(struct net_device *dev)
326 {
327 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 struct net_vrf *vrf = netdev_priv(dev);
329 u32 table_id = vrf->tb_id;
330 struct vrf_map_elem *me;
331 int users;
332
333 vrf_map_lock(vmap);
334
335 me = vrf_map_lookup_elem(vmap, table_id);
336 if (!me)
337 goto unlock;
338
339 list_del(&vrf->me_list);
340
341 users = --me->users;
342 if (users == 1) {
343 --vmap->shared_tables;
344 } else if (users == 0) {
345 vrf_map_del_elem(me);
346
347 /* no one will refer to this element anymore */
348 vrf_map_elem_free(me);
349 }
350
351 unlock:
352 vrf_map_unlock(vmap);
353 }
354
355 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 {
358 struct vrf_map *vmap = netns_vrf_map(net);
359 struct vrf_map_elem *me;
360 int ifindex;
361
362 vrf_map_lock(vmap);
363
364 if (!vmap->strict_mode) {
365 ifindex = -EPERM;
366 goto unlock;
367 }
368
369 me = vrf_map_lookup_elem(vmap, table_id);
370 if (!me) {
371 ifindex = -ENODEV;
372 goto unlock;
373 }
374
375 ifindex = vrf_map_elem_get_vrf_ifindex(me);
376
377 unlock:
378 vrf_map_unlock(vmap);
379
380 return ifindex;
381 }
382
383 /* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
385 */
qdisc_tx_is_default(const struct net_device * dev)386 static bool qdisc_tx_is_default(const struct net_device *dev)
387 {
388 struct netdev_queue *txq;
389 struct Qdisc *qdisc;
390
391 if (dev->num_tx_queues > 1)
392 return false;
393
394 txq = netdev_get_tx_queue(dev, 0);
395 qdisc = rcu_access_pointer(txq->qdisc);
396
397 return !qdisc->enqueue;
398 }
399
400 /* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
402 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 struct dst_entry *dst)
405 {
406 int len = skb->len;
407
408 skb_orphan(skb);
409
410 skb_dst_set(skb, dst);
411
412 /* set pkt_type to avoid skb hitting packet taps twice -
413 * once on Tx and again in Rx processing
414 */
415 skb->pkt_type = PACKET_LOOPBACK;
416
417 skb->protocol = eth_type_trans(skb, dev);
418
419 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 vrf_rx_stats(dev, len);
421 else
422 this_cpu_inc(dev->dstats->rx_drps);
423
424 return NETDEV_TX_OK;
425 }
426
427 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)428 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
429 struct sk_buff *skb)
430 {
431 int err;
432
433 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435
436 if (likely(err == 1))
437 err = dst_output(net, sk, skb);
438
439 return err;
440 }
441
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)442 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 struct net_device *dev)
444 {
445 const struct ipv6hdr *iph;
446 struct net *net = dev_net(skb->dev);
447 struct flowi6 fl6;
448 int ret = NET_XMIT_DROP;
449 struct dst_entry *dst;
450 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451
452 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
453 goto err;
454
455 iph = ipv6_hdr(skb);
456
457 memset(&fl6, 0, sizeof(fl6));
458 /* needed to match OIF rule */
459 fl6.flowi6_oif = dev->ifindex;
460 fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 fl6.daddr = iph->daddr;
462 fl6.saddr = iph->saddr;
463 fl6.flowlabel = ip6_flowinfo(iph);
464 fl6.flowi6_mark = skb->mark;
465 fl6.flowi6_proto = iph->nexthdr;
466 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467
468 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 if (IS_ERR(dst) || dst == dst_null)
470 goto err;
471
472 skb_dst_drop(skb);
473
474 /* if dst.dev is the VRF device again this is locally originated traffic
475 * destined to a local address. Short circuit to Rx path.
476 */
477 if (dst->dev == dev)
478 return vrf_local_xmit(skb, dev, dst);
479
480 skb_dst_set(skb, dst);
481
482 /* strip the ethernet header added for pass through VRF device */
483 __skb_pull(skb, skb_network_offset(skb));
484
485 ret = vrf_ip6_local_out(net, skb->sk, skb);
486 if (unlikely(net_xmit_eval(ret)))
487 dev->stats.tx_errors++;
488 else
489 ret = NET_XMIT_SUCCESS;
490
491 return ret;
492 err:
493 vrf_tx_error(dev, skb);
494 return NET_XMIT_DROP;
495 }
496 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 struct net_device *dev)
499 {
500 vrf_tx_error(dev, skb);
501 return NET_XMIT_DROP;
502 }
503 #endif
504
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
507 struct sk_buff *skb)
508 {
509 int err;
510
511 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 skb, NULL, skb_dst(skb)->dev, dst_output);
513 if (likely(err == 1))
514 err = dst_output(net, sk, skb);
515
516 return err;
517 }
518
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 struct net_device *vrf_dev)
521 {
522 struct iphdr *ip4h;
523 int ret = NET_XMIT_DROP;
524 struct flowi4 fl4;
525 struct net *net = dev_net(vrf_dev);
526 struct rtable *rt;
527
528 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
529 goto err;
530
531 ip4h = ip_hdr(skb);
532
533 memset(&fl4, 0, sizeof(fl4));
534 /* needed to match OIF rule */
535 fl4.flowi4_oif = vrf_dev->ifindex;
536 fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 fl4.flowi4_proto = ip4h->protocol;
540 fl4.daddr = ip4h->daddr;
541 fl4.saddr = ip4h->saddr;
542
543 rt = ip_route_output_flow(net, &fl4, NULL);
544 if (IS_ERR(rt))
545 goto err;
546
547 skb_dst_drop(skb);
548
549 /* if dst.dev is the VRF device again this is locally originated traffic
550 * destined to a local address. Short circuit to Rx path.
551 */
552 if (rt->dst.dev == vrf_dev)
553 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
554
555 skb_dst_set(skb, &rt->dst);
556
557 /* strip the ethernet header added for pass through VRF device */
558 __skb_pull(skb, skb_network_offset(skb));
559
560 if (!ip4h->saddr) {
561 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
562 RT_SCOPE_LINK);
563 }
564
565 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
566 if (unlikely(net_xmit_eval(ret)))
567 vrf_dev->stats.tx_errors++;
568 else
569 ret = NET_XMIT_SUCCESS;
570
571 out:
572 return ret;
573 err:
574 vrf_tx_error(vrf_dev, skb);
575 goto out;
576 }
577
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)578 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
579 {
580 switch (skb->protocol) {
581 case htons(ETH_P_IP):
582 return vrf_process_v4_outbound(skb, dev);
583 case htons(ETH_P_IPV6):
584 return vrf_process_v6_outbound(skb, dev);
585 default:
586 vrf_tx_error(dev, skb);
587 return NET_XMIT_DROP;
588 }
589 }
590
vrf_xmit(struct sk_buff * skb,struct net_device * dev)591 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
592 {
593 int len = skb->len;
594 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
595
596 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
597 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
598
599 u64_stats_update_begin(&dstats->syncp);
600 dstats->tx_pkts++;
601 dstats->tx_bytes += len;
602 u64_stats_update_end(&dstats->syncp);
603 } else {
604 this_cpu_inc(dev->dstats->tx_drps);
605 }
606
607 return ret;
608 }
609
vrf_finish_direct(struct sk_buff * skb)610 static void vrf_finish_direct(struct sk_buff *skb)
611 {
612 struct net_device *vrf_dev = skb->dev;
613
614 if (!list_empty(&vrf_dev->ptype_all) &&
615 likely(skb_headroom(skb) >= ETH_HLEN)) {
616 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
617
618 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
619 eth_zero_addr(eth->h_dest);
620 eth->h_proto = skb->protocol;
621
622 rcu_read_lock_bh();
623 dev_queue_xmit_nit(skb, vrf_dev);
624 rcu_read_unlock_bh();
625
626 skb_pull(skb, ETH_HLEN);
627 }
628
629 /* reset skb device */
630 nf_reset_ct(skb);
631 }
632
633 #if IS_ENABLED(CONFIG_IPV6)
634 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)635 static int vrf_finish_output6(struct net *net, struct sock *sk,
636 struct sk_buff *skb)
637 {
638 struct dst_entry *dst = skb_dst(skb);
639 struct net_device *dev = dst->dev;
640 const struct in6_addr *nexthop;
641 struct neighbour *neigh;
642 int ret;
643
644 nf_reset_ct(skb);
645
646 skb->protocol = htons(ETH_P_IPV6);
647 skb->dev = dev;
648
649 rcu_read_lock_bh();
650 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
651 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
652 if (unlikely(!neigh))
653 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
654 if (!IS_ERR(neigh)) {
655 sock_confirm_neigh(skb, neigh);
656 ret = neigh_output(neigh, skb, false);
657 rcu_read_unlock_bh();
658 return ret;
659 }
660 rcu_read_unlock_bh();
661
662 IP6_INC_STATS(dev_net(dst->dev),
663 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
664 kfree_skb(skb);
665 return -EINVAL;
666 }
667
668 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)669 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
670 {
671 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
672 net, sk, skb, NULL, skb_dst(skb)->dev,
673 vrf_finish_output6,
674 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
675 }
676
677 /* set dst on skb to send packet to us via dev_xmit path. Allows
678 * packet to go through device based features such as qdisc, netfilter
679 * hooks and packet sockets with skb->dev set to vrf device.
680 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)681 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
682 struct sk_buff *skb)
683 {
684 struct net_vrf *vrf = netdev_priv(vrf_dev);
685 struct dst_entry *dst = NULL;
686 struct rt6_info *rt6;
687
688 rcu_read_lock();
689
690 rt6 = rcu_dereference(vrf->rt6);
691 if (likely(rt6)) {
692 dst = &rt6->dst;
693 dst_hold(dst);
694 }
695
696 rcu_read_unlock();
697
698 if (unlikely(!dst)) {
699 vrf_tx_error(vrf_dev, skb);
700 return NULL;
701 }
702
703 skb_dst_drop(skb);
704 skb_dst_set(skb, dst);
705
706 return skb;
707 }
708
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)709 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
710 struct sk_buff *skb)
711 {
712 vrf_finish_direct(skb);
713
714 return vrf_ip6_local_out(net, sk, skb);
715 }
716
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)717 static int vrf_output6_direct(struct net *net, struct sock *sk,
718 struct sk_buff *skb)
719 {
720 int err = 1;
721
722 skb->protocol = htons(ETH_P_IPV6);
723
724 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
725 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
726 NULL, skb->dev, vrf_output6_direct_finish);
727
728 if (likely(err == 1))
729 vrf_finish_direct(skb);
730
731 return err;
732 }
733
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)734 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
735 struct sk_buff *skb)
736 {
737 int err;
738
739 err = vrf_output6_direct(net, sk, skb);
740 if (likely(err == 1))
741 err = vrf_ip6_local_out(net, sk, skb);
742
743 return err;
744 }
745
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)746 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
747 struct sock *sk,
748 struct sk_buff *skb)
749 {
750 struct net *net = dev_net(vrf_dev);
751 int err;
752
753 skb->dev = vrf_dev;
754
755 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
756 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
757
758 if (likely(err == 1))
759 err = vrf_output6_direct(net, sk, skb);
760
761 if (likely(err == 1))
762 return skb;
763
764 return NULL;
765 }
766
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)767 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
768 struct sock *sk,
769 struct sk_buff *skb)
770 {
771 /* don't divert link scope packets */
772 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
773 return skb;
774
775 if (qdisc_tx_is_default(vrf_dev) ||
776 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
777 return vrf_ip6_out_direct(vrf_dev, sk, skb);
778
779 return vrf_ip6_out_redirect(vrf_dev, skb);
780 }
781
782 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)783 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
784 {
785 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
786 struct net *net = dev_net(dev);
787 struct dst_entry *dst;
788
789 RCU_INIT_POINTER(vrf->rt6, NULL);
790 synchronize_rcu();
791
792 /* move dev in dst's to loopback so this VRF device can be deleted
793 * - based on dst_ifdown
794 */
795 if (rt6) {
796 dst = &rt6->dst;
797 dev_put(dst->dev);
798 dst->dev = net->loopback_dev;
799 dev_hold(dst->dev);
800 dst_release(dst);
801 }
802 }
803
vrf_rt6_create(struct net_device * dev)804 static int vrf_rt6_create(struct net_device *dev)
805 {
806 int flags = DST_NOPOLICY | DST_NOXFRM;
807 struct net_vrf *vrf = netdev_priv(dev);
808 struct net *net = dev_net(dev);
809 struct rt6_info *rt6;
810 int rc = -ENOMEM;
811
812 /* IPv6 can be CONFIG enabled and then disabled runtime */
813 if (!ipv6_mod_enabled())
814 return 0;
815
816 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
817 if (!vrf->fib6_table)
818 goto out;
819
820 /* create a dst for routing packets out a VRF device */
821 rt6 = ip6_dst_alloc(net, dev, flags);
822 if (!rt6)
823 goto out;
824
825 rt6->dst.output = vrf_output6;
826
827 rcu_assign_pointer(vrf->rt6, rt6);
828
829 rc = 0;
830 out:
831 return rc;
832 }
833 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)834 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
835 struct sock *sk,
836 struct sk_buff *skb)
837 {
838 return skb;
839 }
840
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)841 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
842 {
843 }
844
vrf_rt6_create(struct net_device * dev)845 static int vrf_rt6_create(struct net_device *dev)
846 {
847 return 0;
848 }
849 #endif
850
851 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)852 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
853 {
854 struct dst_entry *dst = skb_dst(skb);
855 struct rtable *rt = (struct rtable *)dst;
856 struct net_device *dev = dst->dev;
857 unsigned int hh_len = LL_RESERVED_SPACE(dev);
858 struct neighbour *neigh;
859 bool is_v6gw = false;
860
861 nf_reset_ct(skb);
862
863 /* Be paranoid, rather than too clever. */
864 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
865 skb = skb_expand_head(skb, hh_len);
866 if (!skb) {
867 dev->stats.tx_errors++;
868 return -ENOMEM;
869 }
870 }
871
872 rcu_read_lock_bh();
873
874 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
875 if (!IS_ERR(neigh)) {
876 int ret;
877
878 sock_confirm_neigh(skb, neigh);
879 /* if crossing protocols, can not use the cached header */
880 ret = neigh_output(neigh, skb, is_v6gw);
881 rcu_read_unlock_bh();
882 return ret;
883 }
884
885 rcu_read_unlock_bh();
886 vrf_tx_error(skb->dev, skb);
887 return -EINVAL;
888 }
889
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)890 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
891 {
892 struct net_device *dev = skb_dst(skb)->dev;
893
894 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
895
896 skb->dev = dev;
897 skb->protocol = htons(ETH_P_IP);
898
899 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
900 net, sk, skb, NULL, dev,
901 vrf_finish_output,
902 !(IPCB(skb)->flags & IPSKB_REROUTED));
903 }
904
905 /* set dst on skb to send packet to us via dev_xmit path. Allows
906 * packet to go through device based features such as qdisc, netfilter
907 * hooks and packet sockets with skb->dev set to vrf device.
908 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)909 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
910 struct sk_buff *skb)
911 {
912 struct net_vrf *vrf = netdev_priv(vrf_dev);
913 struct dst_entry *dst = NULL;
914 struct rtable *rth;
915
916 rcu_read_lock();
917
918 rth = rcu_dereference(vrf->rth);
919 if (likely(rth)) {
920 dst = &rth->dst;
921 dst_hold(dst);
922 }
923
924 rcu_read_unlock();
925
926 if (unlikely(!dst)) {
927 vrf_tx_error(vrf_dev, skb);
928 return NULL;
929 }
930
931 skb_dst_drop(skb);
932 skb_dst_set(skb, dst);
933
934 return skb;
935 }
936
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)937 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
938 struct sk_buff *skb)
939 {
940 vrf_finish_direct(skb);
941
942 return vrf_ip_local_out(net, sk, skb);
943 }
944
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)945 static int vrf_output_direct(struct net *net, struct sock *sk,
946 struct sk_buff *skb)
947 {
948 int err = 1;
949
950 skb->protocol = htons(ETH_P_IP);
951
952 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
953 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
954 NULL, skb->dev, vrf_output_direct_finish);
955
956 if (likely(err == 1))
957 vrf_finish_direct(skb);
958
959 return err;
960 }
961
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)962 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
963 struct sk_buff *skb)
964 {
965 int err;
966
967 err = vrf_output_direct(net, sk, skb);
968 if (likely(err == 1))
969 err = vrf_ip_local_out(net, sk, skb);
970
971 return err;
972 }
973
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)974 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
975 struct sock *sk,
976 struct sk_buff *skb)
977 {
978 struct net *net = dev_net(vrf_dev);
979 int err;
980
981 skb->dev = vrf_dev;
982
983 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
984 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
985
986 if (likely(err == 1))
987 err = vrf_output_direct(net, sk, skb);
988
989 if (likely(err == 1))
990 return skb;
991
992 return NULL;
993 }
994
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)995 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
996 struct sock *sk,
997 struct sk_buff *skb)
998 {
999 /* don't divert multicast or local broadcast */
1000 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1001 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1002 return skb;
1003
1004 if (qdisc_tx_is_default(vrf_dev) ||
1005 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1006 return vrf_ip_out_direct(vrf_dev, sk, skb);
1007
1008 return vrf_ip_out_redirect(vrf_dev, skb);
1009 }
1010
1011 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)1012 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1013 struct sock *sk,
1014 struct sk_buff *skb,
1015 u16 proto)
1016 {
1017 switch (proto) {
1018 case AF_INET:
1019 return vrf_ip_out(vrf_dev, sk, skb);
1020 case AF_INET6:
1021 return vrf_ip6_out(vrf_dev, sk, skb);
1022 }
1023
1024 return skb;
1025 }
1026
1027 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1028 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1029 {
1030 struct rtable *rth = rtnl_dereference(vrf->rth);
1031 struct net *net = dev_net(dev);
1032 struct dst_entry *dst;
1033
1034 RCU_INIT_POINTER(vrf->rth, NULL);
1035 synchronize_rcu();
1036
1037 /* move dev in dst's to loopback so this VRF device can be deleted
1038 * - based on dst_ifdown
1039 */
1040 if (rth) {
1041 dst = &rth->dst;
1042 dev_put(dst->dev);
1043 dst->dev = net->loopback_dev;
1044 dev_hold(dst->dev);
1045 dst_release(dst);
1046 }
1047 }
1048
vrf_rtable_create(struct net_device * dev)1049 static int vrf_rtable_create(struct net_device *dev)
1050 {
1051 struct net_vrf *vrf = netdev_priv(dev);
1052 struct rtable *rth;
1053
1054 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1055 return -ENOMEM;
1056
1057 /* create a dst for routing packets out through a VRF device */
1058 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1059 if (!rth)
1060 return -ENOMEM;
1061
1062 rth->dst.output = vrf_output;
1063
1064 rcu_assign_pointer(vrf->rth, rth);
1065
1066 return 0;
1067 }
1068
1069 /**************************** device handling ********************/
1070
1071 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1072 static void cycle_netdev(struct net_device *dev,
1073 struct netlink_ext_ack *extack)
1074 {
1075 unsigned int flags = dev->flags;
1076 int ret;
1077
1078 if (!netif_running(dev))
1079 return;
1080
1081 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1082 if (ret >= 0)
1083 ret = dev_change_flags(dev, flags, extack);
1084
1085 if (ret < 0) {
1086 netdev_err(dev,
1087 "Failed to cycle device %s; route tables might be wrong!\n",
1088 dev->name);
1089 }
1090 }
1091
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1092 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1093 struct netlink_ext_ack *extack)
1094 {
1095 int ret;
1096
1097 /* do not allow loopback device to be enslaved to a VRF.
1098 * The vrf device acts as the loopback for the vrf.
1099 */
1100 if (port_dev == dev_net(dev)->loopback_dev) {
1101 NL_SET_ERR_MSG(extack,
1102 "Can not enslave loopback device to a VRF");
1103 return -EOPNOTSUPP;
1104 }
1105
1106 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1107 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1108 if (ret < 0)
1109 goto err;
1110
1111 cycle_netdev(port_dev, extack);
1112
1113 return 0;
1114
1115 err:
1116 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1117 return ret;
1118 }
1119
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1120 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1121 struct netlink_ext_ack *extack)
1122 {
1123 if (netif_is_l3_master(port_dev)) {
1124 NL_SET_ERR_MSG(extack,
1125 "Can not enslave an L3 master device to a VRF");
1126 return -EINVAL;
1127 }
1128
1129 if (netif_is_l3_slave(port_dev))
1130 return -EINVAL;
1131
1132 return do_vrf_add_slave(dev, port_dev, extack);
1133 }
1134
1135 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1136 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1137 {
1138 netdev_upper_dev_unlink(port_dev, dev);
1139 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1140
1141 cycle_netdev(port_dev, NULL);
1142
1143 return 0;
1144 }
1145
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1146 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147 {
1148 return do_vrf_del_slave(dev, port_dev);
1149 }
1150
vrf_dev_uninit(struct net_device * dev)1151 static void vrf_dev_uninit(struct net_device *dev)
1152 {
1153 struct net_vrf *vrf = netdev_priv(dev);
1154
1155 vrf_rtable_release(dev, vrf);
1156 vrf_rt6_release(dev, vrf);
1157
1158 free_percpu(dev->dstats);
1159 dev->dstats = NULL;
1160 }
1161
vrf_dev_init(struct net_device * dev)1162 static int vrf_dev_init(struct net_device *dev)
1163 {
1164 struct net_vrf *vrf = netdev_priv(dev);
1165
1166 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1167 if (!dev->dstats)
1168 goto out_nomem;
1169
1170 /* create the default dst which points back to us */
1171 if (vrf_rtable_create(dev) != 0)
1172 goto out_stats;
1173
1174 if (vrf_rt6_create(dev) != 0)
1175 goto out_rth;
1176
1177 dev->flags = IFF_MASTER | IFF_NOARP;
1178
1179 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1180 dev->operstate = IF_OPER_UP;
1181 netdev_lockdep_set_classes(dev);
1182 return 0;
1183
1184 out_rth:
1185 vrf_rtable_release(dev, vrf);
1186 out_stats:
1187 free_percpu(dev->dstats);
1188 dev->dstats = NULL;
1189 out_nomem:
1190 return -ENOMEM;
1191 }
1192
1193 static const struct net_device_ops vrf_netdev_ops = {
1194 .ndo_init = vrf_dev_init,
1195 .ndo_uninit = vrf_dev_uninit,
1196 .ndo_start_xmit = vrf_xmit,
1197 .ndo_set_mac_address = eth_mac_addr,
1198 .ndo_get_stats64 = vrf_get_stats64,
1199 .ndo_add_slave = vrf_add_slave,
1200 .ndo_del_slave = vrf_del_slave,
1201 };
1202
vrf_fib_table(const struct net_device * dev)1203 static u32 vrf_fib_table(const struct net_device *dev)
1204 {
1205 struct net_vrf *vrf = netdev_priv(dev);
1206
1207 return vrf->tb_id;
1208 }
1209
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1210 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1211 {
1212 kfree_skb(skb);
1213 return 0;
1214 }
1215
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1216 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217 struct sk_buff *skb,
1218 struct net_device *dev)
1219 {
1220 struct net *net = dev_net(dev);
1221
1222 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223 skb = NULL; /* kfree_skb(skb) handled by nf code */
1224
1225 return skb;
1226 }
1227
vrf_prepare_mac_header(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1228 static int vrf_prepare_mac_header(struct sk_buff *skb,
1229 struct net_device *vrf_dev, u16 proto)
1230 {
1231 struct ethhdr *eth;
1232 int err;
1233
1234 /* in general, we do not know if there is enough space in the head of
1235 * the packet for hosting the mac header.
1236 */
1237 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1238 if (unlikely(err))
1239 /* no space in the skb head */
1240 return -ENOBUFS;
1241
1242 __skb_push(skb, ETH_HLEN);
1243 eth = (struct ethhdr *)skb->data;
1244
1245 skb_reset_mac_header(skb);
1246
1247 /* we set the ethernet destination and the source addresses to the
1248 * address of the VRF device.
1249 */
1250 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1251 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1252 eth->h_proto = htons(proto);
1253
1254 /* the destination address of the Ethernet frame corresponds to the
1255 * address set on the VRF interface; therefore, the packet is intended
1256 * to be processed locally.
1257 */
1258 skb->protocol = eth->h_proto;
1259 skb->pkt_type = PACKET_HOST;
1260
1261 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1262
1263 skb_pull_inline(skb, ETH_HLEN);
1264
1265 return 0;
1266 }
1267
1268 /* prepare and add the mac header to the packet if it was not set previously.
1269 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1270 * If the mac header was already set, the original mac header is left
1271 * untouched and the function returns immediately.
1272 */
vrf_add_mac_header_if_unset(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1273 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1274 struct net_device *vrf_dev,
1275 u16 proto)
1276 {
1277 if (skb_mac_header_was_set(skb))
1278 return 0;
1279
1280 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1281 }
1282
1283 #if IS_ENABLED(CONFIG_IPV6)
1284 /* neighbor handling is done with actual device; do not want
1285 * to flip skb->dev for those ndisc packets. This really fails
1286 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1287 * a start.
1288 */
ipv6_ndisc_frame(const struct sk_buff * skb)1289 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1290 {
1291 const struct ipv6hdr *iph = ipv6_hdr(skb);
1292 bool rc = false;
1293
1294 if (iph->nexthdr == NEXTHDR_ICMP) {
1295 const struct icmp6hdr *icmph;
1296 struct icmp6hdr _icmph;
1297
1298 icmph = skb_header_pointer(skb, sizeof(*iph),
1299 sizeof(_icmph), &_icmph);
1300 if (!icmph)
1301 goto out;
1302
1303 switch (icmph->icmp6_type) {
1304 case NDISC_ROUTER_SOLICITATION:
1305 case NDISC_ROUTER_ADVERTISEMENT:
1306 case NDISC_NEIGHBOUR_SOLICITATION:
1307 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1308 case NDISC_REDIRECT:
1309 rc = true;
1310 break;
1311 }
1312 }
1313
1314 out:
1315 return rc;
1316 }
1317
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1318 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1319 const struct net_device *dev,
1320 struct flowi6 *fl6,
1321 int ifindex,
1322 const struct sk_buff *skb,
1323 int flags)
1324 {
1325 struct net_vrf *vrf = netdev_priv(dev);
1326
1327 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1328 }
1329
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1330 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1331 int ifindex)
1332 {
1333 const struct ipv6hdr *iph = ipv6_hdr(skb);
1334 struct flowi6 fl6 = {
1335 .flowi6_iif = ifindex,
1336 .flowi6_mark = skb->mark,
1337 .flowi6_proto = iph->nexthdr,
1338 .daddr = iph->daddr,
1339 .saddr = iph->saddr,
1340 .flowlabel = ip6_flowinfo(iph),
1341 };
1342 struct net *net = dev_net(vrf_dev);
1343 struct rt6_info *rt6;
1344
1345 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1346 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1347 if (unlikely(!rt6))
1348 return;
1349
1350 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1351 return;
1352
1353 skb_dst_set(skb, &rt6->dst);
1354 }
1355
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1356 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1357 struct sk_buff *skb)
1358 {
1359 int orig_iif = skb->skb_iif;
1360 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1361 bool is_ndisc = ipv6_ndisc_frame(skb);
1362
1363 /* loopback, multicast & non-ND link-local traffic; do not push through
1364 * packet taps again. Reset pkt_type for upper layers to process skb.
1365 * For strict packets with a source LLA, determine the dst using the
1366 * original ifindex.
1367 */
1368 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1369 skb->dev = vrf_dev;
1370 skb->skb_iif = vrf_dev->ifindex;
1371 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1372
1373 if (skb->pkt_type == PACKET_LOOPBACK)
1374 skb->pkt_type = PACKET_HOST;
1375 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1376 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1377
1378 goto out;
1379 }
1380
1381 /* if packet is NDISC then keep the ingress interface */
1382 if (!is_ndisc) {
1383 vrf_rx_stats(vrf_dev, skb->len);
1384 skb->dev = vrf_dev;
1385 skb->skb_iif = vrf_dev->ifindex;
1386
1387 if (!list_empty(&vrf_dev->ptype_all)) {
1388 int err;
1389
1390 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1391 ETH_P_IPV6);
1392 if (likely(!err)) {
1393 skb_push(skb, skb->mac_len);
1394 dev_queue_xmit_nit(skb, vrf_dev);
1395 skb_pull(skb, skb->mac_len);
1396 }
1397 }
1398
1399 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1400 }
1401
1402 if (need_strict)
1403 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1404
1405 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1406 out:
1407 return skb;
1408 }
1409
1410 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1411 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1412 struct sk_buff *skb)
1413 {
1414 return skb;
1415 }
1416 #endif
1417
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1418 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1419 struct sk_buff *skb)
1420 {
1421 skb->dev = vrf_dev;
1422 skb->skb_iif = vrf_dev->ifindex;
1423 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1424
1425 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1426 goto out;
1427
1428 /* loopback traffic; do not push through packet taps again.
1429 * Reset pkt_type for upper layers to process skb
1430 */
1431 if (skb->pkt_type == PACKET_LOOPBACK) {
1432 skb->pkt_type = PACKET_HOST;
1433 goto out;
1434 }
1435
1436 vrf_rx_stats(vrf_dev, skb->len);
1437
1438 if (!list_empty(&vrf_dev->ptype_all)) {
1439 int err;
1440
1441 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1442 if (likely(!err)) {
1443 skb_push(skb, skb->mac_len);
1444 dev_queue_xmit_nit(skb, vrf_dev);
1445 skb_pull(skb, skb->mac_len);
1446 }
1447 }
1448
1449 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1450 out:
1451 return skb;
1452 }
1453
1454 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1455 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1456 struct sk_buff *skb,
1457 u16 proto)
1458 {
1459 switch (proto) {
1460 case AF_INET:
1461 return vrf_ip_rcv(vrf_dev, skb);
1462 case AF_INET6:
1463 return vrf_ip6_rcv(vrf_dev, skb);
1464 }
1465
1466 return skb;
1467 }
1468
1469 #if IS_ENABLED(CONFIG_IPV6)
1470 /* send to link-local or multicast address via interface enslaved to
1471 * VRF device. Force lookup to VRF table without changing flow struct
1472 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1473 * is taken on the dst by this function.
1474 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1475 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1476 struct flowi6 *fl6)
1477 {
1478 struct net *net = dev_net(dev);
1479 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1480 struct dst_entry *dst = NULL;
1481 struct rt6_info *rt;
1482
1483 /* VRF device does not have a link-local address and
1484 * sending packets to link-local or mcast addresses over
1485 * a VRF device does not make sense
1486 */
1487 if (fl6->flowi6_oif == dev->ifindex) {
1488 dst = &net->ipv6.ip6_null_entry->dst;
1489 return dst;
1490 }
1491
1492 if (!ipv6_addr_any(&fl6->saddr))
1493 flags |= RT6_LOOKUP_F_HAS_SADDR;
1494
1495 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1496 if (rt)
1497 dst = &rt->dst;
1498
1499 return dst;
1500 }
1501 #endif
1502
1503 static const struct l3mdev_ops vrf_l3mdev_ops = {
1504 .l3mdev_fib_table = vrf_fib_table,
1505 .l3mdev_l3_rcv = vrf_l3_rcv,
1506 .l3mdev_l3_out = vrf_l3_out,
1507 #if IS_ENABLED(CONFIG_IPV6)
1508 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1509 #endif
1510 };
1511
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1512 static void vrf_get_drvinfo(struct net_device *dev,
1513 struct ethtool_drvinfo *info)
1514 {
1515 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1516 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1517 }
1518
1519 static const struct ethtool_ops vrf_ethtool_ops = {
1520 .get_drvinfo = vrf_get_drvinfo,
1521 };
1522
vrf_fib_rule_nl_size(void)1523 static inline size_t vrf_fib_rule_nl_size(void)
1524 {
1525 size_t sz;
1526
1527 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1528 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1529 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1530 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1531
1532 return sz;
1533 }
1534
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1535 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1536 {
1537 struct fib_rule_hdr *frh;
1538 struct nlmsghdr *nlh;
1539 struct sk_buff *skb;
1540 int err;
1541
1542 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1543 !ipv6_mod_enabled())
1544 return 0;
1545
1546 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1547 if (!skb)
1548 return -ENOMEM;
1549
1550 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1551 if (!nlh)
1552 goto nla_put_failure;
1553
1554 /* rule only needs to appear once */
1555 nlh->nlmsg_flags |= NLM_F_EXCL;
1556
1557 frh = nlmsg_data(nlh);
1558 memset(frh, 0, sizeof(*frh));
1559 frh->family = family;
1560 frh->action = FR_ACT_TO_TBL;
1561
1562 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1563 goto nla_put_failure;
1564
1565 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1566 goto nla_put_failure;
1567
1568 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1569 goto nla_put_failure;
1570
1571 nlmsg_end(skb, nlh);
1572
1573 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1574 skb->sk = dev_net(dev)->rtnl;
1575 if (add_it) {
1576 err = fib_nl_newrule(skb, nlh, NULL);
1577 if (err == -EEXIST)
1578 err = 0;
1579 } else {
1580 err = fib_nl_delrule(skb, nlh, NULL);
1581 if (err == -ENOENT)
1582 err = 0;
1583 }
1584 nlmsg_free(skb);
1585
1586 return err;
1587
1588 nla_put_failure:
1589 nlmsg_free(skb);
1590
1591 return -EMSGSIZE;
1592 }
1593
vrf_add_fib_rules(const struct net_device * dev)1594 static int vrf_add_fib_rules(const struct net_device *dev)
1595 {
1596 int err;
1597
1598 err = vrf_fib_rule(dev, AF_INET, true);
1599 if (err < 0)
1600 goto out_err;
1601
1602 err = vrf_fib_rule(dev, AF_INET6, true);
1603 if (err < 0)
1604 goto ipv6_err;
1605
1606 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1607 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1608 if (err < 0)
1609 goto ipmr_err;
1610 #endif
1611
1612 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1613 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1614 if (err < 0)
1615 goto ip6mr_err;
1616 #endif
1617
1618 return 0;
1619
1620 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1621 ip6mr_err:
1622 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1623 #endif
1624
1625 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1626 ipmr_err:
1627 vrf_fib_rule(dev, AF_INET6, false);
1628 #endif
1629
1630 ipv6_err:
1631 vrf_fib_rule(dev, AF_INET, false);
1632
1633 out_err:
1634 netdev_err(dev, "Failed to add FIB rules.\n");
1635 return err;
1636 }
1637
vrf_setup(struct net_device * dev)1638 static void vrf_setup(struct net_device *dev)
1639 {
1640 ether_setup(dev);
1641
1642 /* Initialize the device structure. */
1643 dev->netdev_ops = &vrf_netdev_ops;
1644 dev->l3mdev_ops = &vrf_l3mdev_ops;
1645 dev->ethtool_ops = &vrf_ethtool_ops;
1646 dev->needs_free_netdev = true;
1647
1648 /* Fill in device structure with ethernet-generic values. */
1649 eth_hw_addr_random(dev);
1650
1651 /* don't acquire vrf device's netif_tx_lock when transmitting */
1652 dev->features |= NETIF_F_LLTX;
1653
1654 /* don't allow vrf devices to change network namespaces. */
1655 dev->features |= NETIF_F_NETNS_LOCAL;
1656
1657 /* does not make sense for a VLAN to be added to a vrf device */
1658 dev->features |= NETIF_F_VLAN_CHALLENGED;
1659
1660 /* enable offload features */
1661 dev->features |= NETIF_F_GSO_SOFTWARE;
1662 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1663 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1664
1665 dev->hw_features = dev->features;
1666 dev->hw_enc_features = dev->features;
1667
1668 /* default to no qdisc; user can add if desired */
1669 dev->priv_flags |= IFF_NO_QUEUE;
1670 dev->priv_flags |= IFF_NO_RX_HANDLER;
1671 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1672
1673 /* VRF devices do not care about MTU, but if the MTU is set
1674 * too low then the ipv4 and ipv6 protocols are disabled
1675 * which breaks networking.
1676 */
1677 dev->min_mtu = IPV6_MIN_MTU;
1678 dev->max_mtu = IP6_MAX_MTU;
1679 dev->mtu = dev->max_mtu;
1680 }
1681
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1682 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1683 struct netlink_ext_ack *extack)
1684 {
1685 if (tb[IFLA_ADDRESS]) {
1686 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1687 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1688 return -EINVAL;
1689 }
1690 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1691 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1692 return -EADDRNOTAVAIL;
1693 }
1694 }
1695 return 0;
1696 }
1697
vrf_dellink(struct net_device * dev,struct list_head * head)1698 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1699 {
1700 struct net_device *port_dev;
1701 struct list_head *iter;
1702
1703 netdev_for_each_lower_dev(dev, port_dev, iter)
1704 vrf_del_slave(dev, port_dev);
1705
1706 vrf_map_unregister_dev(dev);
1707
1708 unregister_netdevice_queue(dev, head);
1709 }
1710
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1711 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1712 struct nlattr *tb[], struct nlattr *data[],
1713 struct netlink_ext_ack *extack)
1714 {
1715 struct net_vrf *vrf = netdev_priv(dev);
1716 struct netns_vrf *nn_vrf;
1717 bool *add_fib_rules;
1718 struct net *net;
1719 int err;
1720
1721 if (!data || !data[IFLA_VRF_TABLE]) {
1722 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1723 return -EINVAL;
1724 }
1725
1726 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1727 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1728 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1729 "Invalid VRF table id");
1730 return -EINVAL;
1731 }
1732
1733 dev->priv_flags |= IFF_L3MDEV_MASTER;
1734
1735 err = register_netdevice(dev);
1736 if (err)
1737 goto out;
1738
1739 /* mapping between table_id and vrf;
1740 * note: such binding could not be done in the dev init function
1741 * because dev->ifindex id is not available yet.
1742 */
1743 vrf->ifindex = dev->ifindex;
1744
1745 err = vrf_map_register_dev(dev, extack);
1746 if (err) {
1747 unregister_netdevice(dev);
1748 goto out;
1749 }
1750
1751 net = dev_net(dev);
1752 nn_vrf = net_generic(net, vrf_net_id);
1753
1754 add_fib_rules = &nn_vrf->add_fib_rules;
1755 if (*add_fib_rules) {
1756 err = vrf_add_fib_rules(dev);
1757 if (err) {
1758 vrf_map_unregister_dev(dev);
1759 unregister_netdevice(dev);
1760 goto out;
1761 }
1762 *add_fib_rules = false;
1763 }
1764
1765 out:
1766 return err;
1767 }
1768
vrf_nl_getsize(const struct net_device * dev)1769 static size_t vrf_nl_getsize(const struct net_device *dev)
1770 {
1771 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1772 }
1773
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1774 static int vrf_fillinfo(struct sk_buff *skb,
1775 const struct net_device *dev)
1776 {
1777 struct net_vrf *vrf = netdev_priv(dev);
1778
1779 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1780 }
1781
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1782 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1783 const struct net_device *slave_dev)
1784 {
1785 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1786 }
1787
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1788 static int vrf_fill_slave_info(struct sk_buff *skb,
1789 const struct net_device *vrf_dev,
1790 const struct net_device *slave_dev)
1791 {
1792 struct net_vrf *vrf = netdev_priv(vrf_dev);
1793
1794 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1795 return -EMSGSIZE;
1796
1797 return 0;
1798 }
1799
1800 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1801 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1802 };
1803
1804 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1805 .kind = DRV_NAME,
1806 .priv_size = sizeof(struct net_vrf),
1807
1808 .get_size = vrf_nl_getsize,
1809 .policy = vrf_nl_policy,
1810 .validate = vrf_validate,
1811 .fill_info = vrf_fillinfo,
1812
1813 .get_slave_size = vrf_get_slave_size,
1814 .fill_slave_info = vrf_fill_slave_info,
1815
1816 .newlink = vrf_newlink,
1817 .dellink = vrf_dellink,
1818 .setup = vrf_setup,
1819 .maxtype = IFLA_VRF_MAX,
1820 };
1821
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1822 static int vrf_device_event(struct notifier_block *unused,
1823 unsigned long event, void *ptr)
1824 {
1825 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1826
1827 /* only care about unregister events to drop slave references */
1828 if (event == NETDEV_UNREGISTER) {
1829 struct net_device *vrf_dev;
1830
1831 if (!netif_is_l3_slave(dev))
1832 goto out;
1833
1834 vrf_dev = netdev_master_upper_dev_get(dev);
1835 vrf_del_slave(vrf_dev, dev);
1836 }
1837 out:
1838 return NOTIFY_DONE;
1839 }
1840
1841 static struct notifier_block vrf_notifier_block __read_mostly = {
1842 .notifier_call = vrf_device_event,
1843 };
1844
vrf_map_init(struct vrf_map * vmap)1845 static int vrf_map_init(struct vrf_map *vmap)
1846 {
1847 spin_lock_init(&vmap->vmap_lock);
1848 hash_init(vmap->ht);
1849
1850 vmap->strict_mode = false;
1851
1852 return 0;
1853 }
1854
1855 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1856 static bool vrf_strict_mode(struct vrf_map *vmap)
1857 {
1858 bool strict_mode;
1859
1860 vrf_map_lock(vmap);
1861 strict_mode = vmap->strict_mode;
1862 vrf_map_unlock(vmap);
1863
1864 return strict_mode;
1865 }
1866
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1867 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1868 {
1869 bool *cur_mode;
1870 int res = 0;
1871
1872 vrf_map_lock(vmap);
1873
1874 cur_mode = &vmap->strict_mode;
1875 if (*cur_mode == new_mode)
1876 goto unlock;
1877
1878 if (*cur_mode) {
1879 /* disable strict mode */
1880 *cur_mode = false;
1881 } else {
1882 if (vmap->shared_tables) {
1883 /* we cannot allow strict_mode because there are some
1884 * vrfs that share one or more tables.
1885 */
1886 res = -EBUSY;
1887 goto unlock;
1888 }
1889
1890 /* no tables are shared among vrfs, so we can go back
1891 * to 1:1 association between a vrf with its table.
1892 */
1893 *cur_mode = true;
1894 }
1895
1896 unlock:
1897 vrf_map_unlock(vmap);
1898
1899 return res;
1900 }
1901
vrf_shared_table_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1902 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1903 void *buffer, size_t *lenp, loff_t *ppos)
1904 {
1905 struct net *net = (struct net *)table->extra1;
1906 struct vrf_map *vmap = netns_vrf_map(net);
1907 int proc_strict_mode = 0;
1908 struct ctl_table tmp = {
1909 .procname = table->procname,
1910 .data = &proc_strict_mode,
1911 .maxlen = sizeof(int),
1912 .mode = table->mode,
1913 .extra1 = SYSCTL_ZERO,
1914 .extra2 = SYSCTL_ONE,
1915 };
1916 int ret;
1917
1918 if (!write)
1919 proc_strict_mode = vrf_strict_mode(vmap);
1920
1921 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1922
1923 if (write && ret == 0)
1924 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1925
1926 return ret;
1927 }
1928
1929 static const struct ctl_table vrf_table[] = {
1930 {
1931 .procname = "strict_mode",
1932 .data = NULL,
1933 .maxlen = sizeof(int),
1934 .mode = 0644,
1935 .proc_handler = vrf_shared_table_handler,
1936 /* set by the vrf_netns_init */
1937 .extra1 = NULL,
1938 },
1939 { },
1940 };
1941
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1942 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1943 {
1944 struct ctl_table *table;
1945
1946 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1947 if (!table)
1948 return -ENOMEM;
1949
1950 /* init the extra1 parameter with the reference to current netns */
1951 table[0].extra1 = net;
1952
1953 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1954 if (!nn_vrf->ctl_hdr) {
1955 kfree(table);
1956 return -ENOMEM;
1957 }
1958
1959 return 0;
1960 }
1961
vrf_netns_exit_sysctl(struct net * net)1962 static void vrf_netns_exit_sysctl(struct net *net)
1963 {
1964 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1965 struct ctl_table *table;
1966
1967 table = nn_vrf->ctl_hdr->ctl_table_arg;
1968 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1969 kfree(table);
1970 }
1971 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1972 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1973 {
1974 return 0;
1975 }
1976
vrf_netns_exit_sysctl(struct net * net)1977 static void vrf_netns_exit_sysctl(struct net *net)
1978 {
1979 }
1980 #endif
1981
1982 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1983 static int __net_init vrf_netns_init(struct net *net)
1984 {
1985 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1986
1987 nn_vrf->add_fib_rules = true;
1988 vrf_map_init(&nn_vrf->vmap);
1989
1990 return vrf_netns_init_sysctl(net, nn_vrf);
1991 }
1992
vrf_netns_exit(struct net * net)1993 static void __net_exit vrf_netns_exit(struct net *net)
1994 {
1995 vrf_netns_exit_sysctl(net);
1996 }
1997
1998 static struct pernet_operations vrf_net_ops __net_initdata = {
1999 .init = vrf_netns_init,
2000 .exit = vrf_netns_exit,
2001 .id = &vrf_net_id,
2002 .size = sizeof(struct netns_vrf),
2003 };
2004
vrf_init_module(void)2005 static int __init vrf_init_module(void)
2006 {
2007 int rc;
2008
2009 register_netdevice_notifier(&vrf_notifier_block);
2010
2011 rc = register_pernet_subsys(&vrf_net_ops);
2012 if (rc < 0)
2013 goto error;
2014
2015 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2016 vrf_ifindex_lookup_by_table_id);
2017 if (rc < 0)
2018 goto unreg_pernet;
2019
2020 rc = rtnl_link_register(&vrf_link_ops);
2021 if (rc < 0)
2022 goto table_lookup_unreg;
2023
2024 return 0;
2025
2026 table_lookup_unreg:
2027 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2028 vrf_ifindex_lookup_by_table_id);
2029
2030 unreg_pernet:
2031 unregister_pernet_subsys(&vrf_net_ops);
2032
2033 error:
2034 unregister_netdevice_notifier(&vrf_notifier_block);
2035 return rc;
2036 }
2037
2038 module_init(vrf_init_module);
2039 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2040 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2041 MODULE_LICENSE("GPL");
2042 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2043 MODULE_VERSION(DRV_VERSION);
2044