1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
70 #include <net/tcp.h>
71 #include <net/flow_dissector.h>
72
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
75 #endif
76
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
82
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
89 */
90 struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
96 };
97
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
106 */
107 struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
115 };
116
117 enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
123 };
124
125 struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136 }; /* please try to keep this structure <= 64 bytes */
137
138 struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
141 u16 srchost_bulk_flow_count;
142 u16 dsthost_bulk_flow_count;
143 };
144
145 struct cake_heap_entry {
146 u16 t:3, b:10;
147 };
148
149 struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
156
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
163
164 u32 max_skblen;
165
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
169
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
175
176 u16 tin_quantum;
177 s32 tin_deficit;
178 u32 tin_backlog;
179 u32 tin_dropped;
180 u32 tin_ecn_mark;
181
182 u32 packets;
183 u64 bytes;
184
185 u32 ack_drops;
186
187 /* moving averages */
188 u64 avge_delay;
189 u64 peak_delay;
190 u64 base_delay;
191
192 /* hash function stats */
193 u32 way_directs;
194 u32 way_hits;
195 u32 way_misses;
196 u32 way_collisions;
197 }; /* number of tins is small, so size of this struct doesn't matter much */
198
199 struct cake_sched_data {
200 struct tcf_proto __rcu *filter_list; /* optional external classifier */
201 struct tcf_block *block;
202 struct cake_tin_data *tins;
203
204 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
205 u16 overflow_timeout;
206
207 u16 tin_cnt;
208 u8 tin_mode;
209 u8 flow_mode;
210 u8 ack_filter;
211 u8 atm_mode;
212
213 u32 fwmark_mask;
214 u16 fwmark_shft;
215
216 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
217 u16 rate_shft;
218 ktime_t time_next_packet;
219 ktime_t failsafe_next_packet;
220 u64 rate_ns;
221 u64 rate_bps;
222 u16 rate_flags;
223 s16 rate_overhead;
224 u16 rate_mpu;
225 u64 interval;
226 u64 target;
227
228 /* resource tracking */
229 u32 buffer_used;
230 u32 buffer_max_used;
231 u32 buffer_limit;
232 u32 buffer_config_limit;
233
234 /* indices for dequeue */
235 u16 cur_tin;
236 u16 cur_flow;
237
238 struct qdisc_watchdog watchdog;
239 const u8 *tin_index;
240 const u8 *tin_order;
241
242 /* bandwidth capacity estimate */
243 ktime_t last_packet_time;
244 ktime_t avg_window_begin;
245 u64 avg_packet_interval;
246 u64 avg_window_bytes;
247 u64 avg_peak_bandwidth;
248 ktime_t last_reconfig_time;
249
250 /* packet length stats */
251 u32 avg_netoff;
252 u16 max_netlen;
253 u16 max_adjlen;
254 u16 min_netlen;
255 u16 min_adjlen;
256 };
257
258 enum {
259 CAKE_FLAG_OVERHEAD = BIT(0),
260 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
261 CAKE_FLAG_INGRESS = BIT(2),
262 CAKE_FLAG_WASH = BIT(3),
263 CAKE_FLAG_SPLIT_GSO = BIT(4)
264 };
265
266 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
267 * obtain the best features of each. Codel is excellent on flows which
268 * respond to congestion signals in a TCP-like way. BLUE is more effective on
269 * unresponsive flows.
270 */
271
272 struct cobalt_skb_cb {
273 ktime_t enqueue_time;
274 u32 adjusted_len;
275 };
276
us_to_ns(u64 us)277 static u64 us_to_ns(u64 us)
278 {
279 return us * NSEC_PER_USEC;
280 }
281
get_cobalt_cb(const struct sk_buff * skb)282 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
283 {
284 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
285 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
286 }
287
cobalt_get_enqueue_time(const struct sk_buff * skb)288 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
289 {
290 return get_cobalt_cb(skb)->enqueue_time;
291 }
292
cobalt_set_enqueue_time(struct sk_buff * skb,ktime_t now)293 static void cobalt_set_enqueue_time(struct sk_buff *skb,
294 ktime_t now)
295 {
296 get_cobalt_cb(skb)->enqueue_time = now;
297 }
298
299 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
300
301 /* Diffserv lookup tables */
302
303 static const u8 precedence[] = {
304 0, 0, 0, 0, 0, 0, 0, 0,
305 1, 1, 1, 1, 1, 1, 1, 1,
306 2, 2, 2, 2, 2, 2, 2, 2,
307 3, 3, 3, 3, 3, 3, 3, 3,
308 4, 4, 4, 4, 4, 4, 4, 4,
309 5, 5, 5, 5, 5, 5, 5, 5,
310 6, 6, 6, 6, 6, 6, 6, 6,
311 7, 7, 7, 7, 7, 7, 7, 7,
312 };
313
314 static const u8 diffserv8[] = {
315 2, 0, 1, 2, 4, 2, 2, 2,
316 1, 2, 1, 2, 1, 2, 1, 2,
317 5, 2, 4, 2, 4, 2, 4, 2,
318 3, 2, 3, 2, 3, 2, 3, 2,
319 6, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 2, 2, 6, 2, 6, 2,
321 7, 2, 2, 2, 2, 2, 2, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 };
324
325 static const u8 diffserv4[] = {
326 0, 1, 0, 0, 2, 0, 0, 0,
327 1, 0, 0, 0, 0, 0, 0, 0,
328 2, 0, 2, 0, 2, 0, 2, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 3, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 0, 0, 3, 0, 3, 0,
332 3, 0, 0, 0, 0, 0, 0, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 };
335
336 static const u8 diffserv3[] = {
337 0, 1, 0, 0, 2, 0, 0, 0,
338 1, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 2, 0, 2, 0,
343 2, 0, 0, 0, 0, 0, 0, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 };
346
347 static const u8 besteffort[] = {
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 };
357
358 /* tin priority order for stats dumping */
359
360 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
361 static const u8 bulk_order[] = {1, 0, 2, 3};
362
363 #define REC_INV_SQRT_CACHE (16)
364 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
365
366 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
367 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
368 *
369 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
370 */
371
cobalt_newton_step(struct cobalt_vars * vars)372 static void cobalt_newton_step(struct cobalt_vars *vars)
373 {
374 u32 invsqrt, invsqrt2;
375 u64 val;
376
377 invsqrt = vars->rec_inv_sqrt;
378 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
379 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
380
381 val >>= 2; /* avoid overflow in following multiply */
382 val = (val * invsqrt) >> (32 - 2 + 1);
383
384 vars->rec_inv_sqrt = val;
385 }
386
cobalt_invsqrt(struct cobalt_vars * vars)387 static void cobalt_invsqrt(struct cobalt_vars *vars)
388 {
389 if (vars->count < REC_INV_SQRT_CACHE)
390 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
391 else
392 cobalt_newton_step(vars);
393 }
394
395 /* There is a big difference in timing between the accurate values placed in
396 * the cache and the approximations given by a single Newton step for small
397 * count values, particularly when stepping from count 1 to 2 or vice versa.
398 * Above 16, a single Newton step gives sufficient accuracy in either
399 * direction, given the precision stored.
400 *
401 * The magnitude of the error when stepping up to count 2 is such as to give
402 * the value that *should* have been produced at count 4.
403 */
404
cobalt_cache_init(void)405 static void cobalt_cache_init(void)
406 {
407 struct cobalt_vars v;
408
409 memset(&v, 0, sizeof(v));
410 v.rec_inv_sqrt = ~0U;
411 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
412
413 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
414 cobalt_newton_step(&v);
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
418
419 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
420 }
421 }
422
cobalt_vars_init(struct cobalt_vars * vars)423 static void cobalt_vars_init(struct cobalt_vars *vars)
424 {
425 memset(vars, 0, sizeof(*vars));
426
427 if (!cobalt_rec_inv_sqrt_cache[0]) {
428 cobalt_cache_init();
429 cobalt_rec_inv_sqrt_cache[0] = ~0;
430 }
431 }
432
433 /* CoDel control_law is t + interval/sqrt(count)
434 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
435 * both sqrt() and divide operation.
436 */
cobalt_control(ktime_t t,u64 interval,u32 rec_inv_sqrt)437 static ktime_t cobalt_control(ktime_t t,
438 u64 interval,
439 u32 rec_inv_sqrt)
440 {
441 return ktime_add_ns(t, reciprocal_scale(interval,
442 rec_inv_sqrt));
443 }
444
445 /* Call this when a packet had to be dropped due to queue overflow. Returns
446 * true if the BLUE state was quiescent before but active after this call.
447 */
cobalt_queue_full(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)448 static bool cobalt_queue_full(struct cobalt_vars *vars,
449 struct cobalt_params *p,
450 ktime_t now)
451 {
452 bool up = false;
453
454 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
455 up = !vars->p_drop;
456 vars->p_drop += p->p_inc;
457 if (vars->p_drop < p->p_inc)
458 vars->p_drop = ~0;
459 vars->blue_timer = now;
460 }
461 vars->dropping = true;
462 vars->drop_next = now;
463 if (!vars->count)
464 vars->count = 1;
465
466 return up;
467 }
468
469 /* Call this when the queue was serviced but turned out to be empty. Returns
470 * true if the BLUE state was active before but quiescent after this call.
471 */
cobalt_queue_empty(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)472 static bool cobalt_queue_empty(struct cobalt_vars *vars,
473 struct cobalt_params *p,
474 ktime_t now)
475 {
476 bool down = false;
477
478 if (vars->p_drop &&
479 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
480 if (vars->p_drop < p->p_dec)
481 vars->p_drop = 0;
482 else
483 vars->p_drop -= p->p_dec;
484 vars->blue_timer = now;
485 down = !vars->p_drop;
486 }
487 vars->dropping = false;
488
489 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
490 vars->count--;
491 cobalt_invsqrt(vars);
492 vars->drop_next = cobalt_control(vars->drop_next,
493 p->interval,
494 vars->rec_inv_sqrt);
495 }
496
497 return down;
498 }
499
500 /* Call this with a freshly dequeued packet for possible congestion marking.
501 * Returns true as an instruction to drop the packet, false for delivery.
502 */
cobalt_should_drop(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now,struct sk_buff * skb,u32 bulk_flows)503 static bool cobalt_should_drop(struct cobalt_vars *vars,
504 struct cobalt_params *p,
505 ktime_t now,
506 struct sk_buff *skb,
507 u32 bulk_flows)
508 {
509 bool next_due, over_target, drop = false;
510 ktime_t schedule;
511 u64 sojourn;
512
513 /* The 'schedule' variable records, in its sign, whether 'now' is before or
514 * after 'drop_next'. This allows 'drop_next' to be updated before the next
515 * scheduling decision is actually branched, without destroying that
516 * information. Similarly, the first 'schedule' value calculated is preserved
517 * in the boolean 'next_due'.
518 *
519 * As for 'drop_next', we take advantage of the fact that 'interval' is both
520 * the delay between first exceeding 'target' and the first signalling event,
521 * *and* the scaling factor for the signalling frequency. It's therefore very
522 * natural to use a single mechanism for both purposes, and eliminates a
523 * significant amount of reference Codel's spaghetti code. To help with this,
524 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
525 * as possible to 1.0 in fixed-point.
526 */
527
528 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
529 schedule = ktime_sub(now, vars->drop_next);
530 over_target = sojourn > p->target &&
531 sojourn > p->mtu_time * bulk_flows * 2 &&
532 sojourn > p->mtu_time * 4;
533 next_due = vars->count && ktime_to_ns(schedule) >= 0;
534
535 vars->ecn_marked = false;
536
537 if (over_target) {
538 if (!vars->dropping) {
539 vars->dropping = true;
540 vars->drop_next = cobalt_control(now,
541 p->interval,
542 vars->rec_inv_sqrt);
543 }
544 if (!vars->count)
545 vars->count = 1;
546 } else if (vars->dropping) {
547 vars->dropping = false;
548 }
549
550 if (next_due && vars->dropping) {
551 /* Use ECN mark if possible, otherwise drop */
552 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
553
554 vars->count++;
555 if (!vars->count)
556 vars->count--;
557 cobalt_invsqrt(vars);
558 vars->drop_next = cobalt_control(vars->drop_next,
559 p->interval,
560 vars->rec_inv_sqrt);
561 schedule = ktime_sub(now, vars->drop_next);
562 } else {
563 while (next_due) {
564 vars->count--;
565 cobalt_invsqrt(vars);
566 vars->drop_next = cobalt_control(vars->drop_next,
567 p->interval,
568 vars->rec_inv_sqrt);
569 schedule = ktime_sub(now, vars->drop_next);
570 next_due = vars->count && ktime_to_ns(schedule) >= 0;
571 }
572 }
573
574 /* Simple BLUE implementation. Lack of ECN is deliberate. */
575 if (vars->p_drop)
576 drop |= (get_random_u32() < vars->p_drop);
577
578 /* Overload the drop_next field as an activity timeout */
579 if (!vars->count)
580 vars->drop_next = ktime_add_ns(now, p->interval);
581 else if (ktime_to_ns(schedule) > 0 && !drop)
582 vars->drop_next = now;
583
584 return drop;
585 }
586
cake_update_flowkeys(struct flow_keys * keys,const struct sk_buff * skb)587 static bool cake_update_flowkeys(struct flow_keys *keys,
588 const struct sk_buff *skb)
589 {
590 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
591 struct nf_conntrack_tuple tuple = {};
592 bool rev = !skb->_nfct, upd = false;
593 __be32 ip;
594
595 if (skb_protocol(skb, true) != htons(ETH_P_IP))
596 return false;
597
598 if (!nf_ct_get_tuple_skb(&tuple, skb))
599 return false;
600
601 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
602 if (ip != keys->addrs.v4addrs.src) {
603 keys->addrs.v4addrs.src = ip;
604 upd = true;
605 }
606 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
607 if (ip != keys->addrs.v4addrs.dst) {
608 keys->addrs.v4addrs.dst = ip;
609 upd = true;
610 }
611
612 if (keys->ports.ports) {
613 __be16 port;
614
615 port = rev ? tuple.dst.u.all : tuple.src.u.all;
616 if (port != keys->ports.src) {
617 keys->ports.src = port;
618 upd = true;
619 }
620 port = rev ? tuple.src.u.all : tuple.dst.u.all;
621 if (port != keys->ports.dst) {
622 port = keys->ports.dst;
623 upd = true;
624 }
625 }
626 return upd;
627 #else
628 return false;
629 #endif
630 }
631
632 /* Cake has several subtle multiple bit settings. In these cases you
633 * would be matching triple isolate mode as well.
634 */
635
cake_dsrc(int flow_mode)636 static bool cake_dsrc(int flow_mode)
637 {
638 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
639 }
640
cake_ddst(int flow_mode)641 static bool cake_ddst(int flow_mode)
642 {
643 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
644 }
645
cake_hash(struct cake_tin_data * q,const struct sk_buff * skb,int flow_mode,u16 flow_override,u16 host_override)646 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
647 int flow_mode, u16 flow_override, u16 host_override)
648 {
649 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
650 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
651 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
652 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
653 u16 reduced_hash, srchost_idx, dsthost_idx;
654 struct flow_keys keys, host_keys;
655 bool use_skbhash = skb->l4_hash;
656
657 if (unlikely(flow_mode == CAKE_FLOW_NONE))
658 return 0;
659
660 /* If both overrides are set, or we can use the SKB hash and nat mode is
661 * disabled, we can skip packet dissection entirely. If nat mode is
662 * enabled there's another check below after doing the conntrack lookup.
663 */
664 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
665 goto skip_hash;
666
667 skb_flow_dissect_flow_keys(skb, &keys,
668 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
669
670 /* Don't use the SKB hash if we change the lookup keys from conntrack */
671 if (nat_enabled && cake_update_flowkeys(&keys, skb))
672 use_skbhash = false;
673
674 /* If we can still use the SKB hash and don't need the host hash, we can
675 * skip the rest of the hashing procedure
676 */
677 if (use_skbhash && !hash_hosts)
678 goto skip_hash;
679
680 /* flow_hash_from_keys() sorts the addresses by value, so we have
681 * to preserve their order in a separate data structure to treat
682 * src and dst host addresses as independently selectable.
683 */
684 host_keys = keys;
685 host_keys.ports.ports = 0;
686 host_keys.basic.ip_proto = 0;
687 host_keys.keyid.keyid = 0;
688 host_keys.tags.flow_label = 0;
689
690 switch (host_keys.control.addr_type) {
691 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
692 host_keys.addrs.v4addrs.src = 0;
693 dsthost_hash = flow_hash_from_keys(&host_keys);
694 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
695 host_keys.addrs.v4addrs.dst = 0;
696 srchost_hash = flow_hash_from_keys(&host_keys);
697 break;
698
699 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
700 memset(&host_keys.addrs.v6addrs.src, 0,
701 sizeof(host_keys.addrs.v6addrs.src));
702 dsthost_hash = flow_hash_from_keys(&host_keys);
703 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
704 memset(&host_keys.addrs.v6addrs.dst, 0,
705 sizeof(host_keys.addrs.v6addrs.dst));
706 srchost_hash = flow_hash_from_keys(&host_keys);
707 break;
708
709 default:
710 dsthost_hash = 0;
711 srchost_hash = 0;
712 }
713
714 /* This *must* be after the above switch, since as a
715 * side-effect it sorts the src and dst addresses.
716 */
717 if (hash_flows && !use_skbhash)
718 flow_hash = flow_hash_from_keys(&keys);
719
720 skip_hash:
721 if (flow_override)
722 flow_hash = flow_override - 1;
723 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
724 flow_hash = skb->hash;
725 if (host_override) {
726 dsthost_hash = host_override - 1;
727 srchost_hash = host_override - 1;
728 }
729
730 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
731 if (flow_mode & CAKE_FLOW_SRC_IP)
732 flow_hash ^= srchost_hash;
733
734 if (flow_mode & CAKE_FLOW_DST_IP)
735 flow_hash ^= dsthost_hash;
736 }
737
738 reduced_hash = flow_hash % CAKE_QUEUES;
739
740 /* set-associative hashing */
741 /* fast path if no hash collision (direct lookup succeeds) */
742 if (likely(q->tags[reduced_hash] == flow_hash &&
743 q->flows[reduced_hash].set)) {
744 q->way_directs++;
745 } else {
746 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
747 u32 outer_hash = reduced_hash - inner_hash;
748 bool allocate_src = false;
749 bool allocate_dst = false;
750 u32 i, k;
751
752 /* check if any active queue in the set is reserved for
753 * this flow.
754 */
755 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
756 i++, k = (k + 1) % CAKE_SET_WAYS) {
757 if (q->tags[outer_hash + k] == flow_hash) {
758 if (i)
759 q->way_hits++;
760
761 if (!q->flows[outer_hash + k].set) {
762 /* need to increment host refcnts */
763 allocate_src = cake_dsrc(flow_mode);
764 allocate_dst = cake_ddst(flow_mode);
765 }
766
767 goto found;
768 }
769 }
770
771 /* no queue is reserved for this flow, look for an
772 * empty one.
773 */
774 for (i = 0; i < CAKE_SET_WAYS;
775 i++, k = (k + 1) % CAKE_SET_WAYS) {
776 if (!q->flows[outer_hash + k].set) {
777 q->way_misses++;
778 allocate_src = cake_dsrc(flow_mode);
779 allocate_dst = cake_ddst(flow_mode);
780 goto found;
781 }
782 }
783
784 /* With no empty queues, default to the original
785 * queue, accept the collision, update the host tags.
786 */
787 q->way_collisions++;
788 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
789 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
790 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
791 }
792 allocate_src = cake_dsrc(flow_mode);
793 allocate_dst = cake_ddst(flow_mode);
794 found:
795 /* reserve queue for future packets in same flow */
796 reduced_hash = outer_hash + k;
797 q->tags[reduced_hash] = flow_hash;
798
799 if (allocate_src) {
800 srchost_idx = srchost_hash % CAKE_QUEUES;
801 inner_hash = srchost_idx % CAKE_SET_WAYS;
802 outer_hash = srchost_idx - inner_hash;
803 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
804 i++, k = (k + 1) % CAKE_SET_WAYS) {
805 if (q->hosts[outer_hash + k].srchost_tag ==
806 srchost_hash)
807 goto found_src;
808 }
809 for (i = 0; i < CAKE_SET_WAYS;
810 i++, k = (k + 1) % CAKE_SET_WAYS) {
811 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
812 break;
813 }
814 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
815 found_src:
816 srchost_idx = outer_hash + k;
817 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
818 q->hosts[srchost_idx].srchost_bulk_flow_count++;
819 q->flows[reduced_hash].srchost = srchost_idx;
820 }
821
822 if (allocate_dst) {
823 dsthost_idx = dsthost_hash % CAKE_QUEUES;
824 inner_hash = dsthost_idx % CAKE_SET_WAYS;
825 outer_hash = dsthost_idx - inner_hash;
826 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
827 i++, k = (k + 1) % CAKE_SET_WAYS) {
828 if (q->hosts[outer_hash + k].dsthost_tag ==
829 dsthost_hash)
830 goto found_dst;
831 }
832 for (i = 0; i < CAKE_SET_WAYS;
833 i++, k = (k + 1) % CAKE_SET_WAYS) {
834 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
835 break;
836 }
837 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
838 found_dst:
839 dsthost_idx = outer_hash + k;
840 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
841 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
842 q->flows[reduced_hash].dsthost = dsthost_idx;
843 }
844 }
845
846 return reduced_hash;
847 }
848
849 /* helper functions : might be changed when/if skb use a standard list_head */
850 /* remove one skb from head of slot queue */
851
dequeue_head(struct cake_flow * flow)852 static struct sk_buff *dequeue_head(struct cake_flow *flow)
853 {
854 struct sk_buff *skb = flow->head;
855
856 if (skb) {
857 flow->head = skb->next;
858 skb_mark_not_on_list(skb);
859 }
860
861 return skb;
862 }
863
864 /* add skb to flow queue (tail add) */
865
flow_queue_add(struct cake_flow * flow,struct sk_buff * skb)866 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
867 {
868 if (!flow->head)
869 flow->head = skb;
870 else
871 flow->tail->next = skb;
872 flow->tail = skb;
873 skb->next = NULL;
874 }
875
cake_get_iphdr(const struct sk_buff * skb,struct ipv6hdr * buf)876 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
877 struct ipv6hdr *buf)
878 {
879 unsigned int offset = skb_network_offset(skb);
880 struct iphdr *iph;
881
882 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
883
884 if (!iph)
885 return NULL;
886
887 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
888 return skb_header_pointer(skb, offset + iph->ihl * 4,
889 sizeof(struct ipv6hdr), buf);
890
891 else if (iph->version == 4)
892 return iph;
893
894 else if (iph->version == 6)
895 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
896 buf);
897
898 return NULL;
899 }
900
cake_get_tcphdr(const struct sk_buff * skb,void * buf,unsigned int bufsize)901 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
902 void *buf, unsigned int bufsize)
903 {
904 unsigned int offset = skb_network_offset(skb);
905 const struct ipv6hdr *ipv6h;
906 const struct tcphdr *tcph;
907 const struct iphdr *iph;
908 struct ipv6hdr _ipv6h;
909 struct tcphdr _tcph;
910
911 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
912
913 if (!ipv6h)
914 return NULL;
915
916 if (ipv6h->version == 4) {
917 iph = (struct iphdr *)ipv6h;
918 offset += iph->ihl * 4;
919
920 /* special-case 6in4 tunnelling, as that is a common way to get
921 * v6 connectivity in the home
922 */
923 if (iph->protocol == IPPROTO_IPV6) {
924 ipv6h = skb_header_pointer(skb, offset,
925 sizeof(_ipv6h), &_ipv6h);
926
927 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
928 return NULL;
929
930 offset += sizeof(struct ipv6hdr);
931
932 } else if (iph->protocol != IPPROTO_TCP) {
933 return NULL;
934 }
935
936 } else if (ipv6h->version == 6) {
937 if (ipv6h->nexthdr != IPPROTO_TCP)
938 return NULL;
939
940 offset += sizeof(struct ipv6hdr);
941 } else {
942 return NULL;
943 }
944
945 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
946 if (!tcph || tcph->doff < 5)
947 return NULL;
948
949 return skb_header_pointer(skb, offset,
950 min(__tcp_hdrlen(tcph), bufsize), buf);
951 }
952
cake_get_tcpopt(const struct tcphdr * tcph,int code,int * oplen)953 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
954 int code, int *oplen)
955 {
956 /* inspired by tcp_parse_options in tcp_input.c */
957 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
958 const u8 *ptr = (const u8 *)(tcph + 1);
959
960 while (length > 0) {
961 int opcode = *ptr++;
962 int opsize;
963
964 if (opcode == TCPOPT_EOL)
965 break;
966 if (opcode == TCPOPT_NOP) {
967 length--;
968 continue;
969 }
970 if (length < 2)
971 break;
972 opsize = *ptr++;
973 if (opsize < 2 || opsize > length)
974 break;
975
976 if (opcode == code) {
977 *oplen = opsize;
978 return ptr;
979 }
980
981 ptr += opsize - 2;
982 length -= opsize;
983 }
984
985 return NULL;
986 }
987
988 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
989 * bytes than the other. In the case where both sequences ACKs bytes that the
990 * other doesn't, A is considered greater. DSACKs in A also makes A be
991 * considered greater.
992 *
993 * @return -1, 0 or 1 as normal compare functions
994 */
cake_tcph_sack_compare(const struct tcphdr * tcph_a,const struct tcphdr * tcph_b)995 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
996 const struct tcphdr *tcph_b)
997 {
998 const struct tcp_sack_block_wire *sack_a, *sack_b;
999 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1000 u32 bytes_a = 0, bytes_b = 0;
1001 int oplen_a, oplen_b;
1002 bool first = true;
1003
1004 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1005 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1006
1007 /* pointers point to option contents */
1008 oplen_a -= TCPOLEN_SACK_BASE;
1009 oplen_b -= TCPOLEN_SACK_BASE;
1010
1011 if (sack_a && oplen_a >= sizeof(*sack_a) &&
1012 (!sack_b || oplen_b < sizeof(*sack_b)))
1013 return -1;
1014 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1015 (!sack_a || oplen_a < sizeof(*sack_a)))
1016 return 1;
1017 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1018 (!sack_b || oplen_b < sizeof(*sack_b)))
1019 return 0;
1020
1021 while (oplen_a >= sizeof(*sack_a)) {
1022 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1023 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1024 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1025 int oplen_tmp = oplen_b;
1026 bool found = false;
1027
1028 /* DSACK; always considered greater to prevent dropping */
1029 if (before(start_a, ack_seq_a))
1030 return -1;
1031
1032 bytes_a += end_a - start_a;
1033
1034 while (oplen_tmp >= sizeof(*sack_tmp)) {
1035 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1036 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1037
1038 /* first time through we count the total size */
1039 if (first)
1040 bytes_b += end_b - start_b;
1041
1042 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1043 found = true;
1044 if (!first)
1045 break;
1046 }
1047 oplen_tmp -= sizeof(*sack_tmp);
1048 sack_tmp++;
1049 }
1050
1051 if (!found)
1052 return -1;
1053
1054 oplen_a -= sizeof(*sack_a);
1055 sack_a++;
1056 first = false;
1057 }
1058
1059 /* If we made it this far, all ranges SACKed by A are covered by B, so
1060 * either the SACKs are equal, or B SACKs more bytes.
1061 */
1062 return bytes_b > bytes_a ? 1 : 0;
1063 }
1064
cake_tcph_get_tstamp(const struct tcphdr * tcph,u32 * tsval,u32 * tsecr)1065 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1066 u32 *tsval, u32 *tsecr)
1067 {
1068 const u8 *ptr;
1069 int opsize;
1070
1071 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1072
1073 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1074 *tsval = get_unaligned_be32(ptr);
1075 *tsecr = get_unaligned_be32(ptr + 4);
1076 }
1077 }
1078
cake_tcph_may_drop(const struct tcphdr * tcph,u32 tstamp_new,u32 tsecr_new)1079 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1080 u32 tstamp_new, u32 tsecr_new)
1081 {
1082 /* inspired by tcp_parse_options in tcp_input.c */
1083 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1084 const u8 *ptr = (const u8 *)(tcph + 1);
1085 u32 tstamp, tsecr;
1086
1087 /* 3 reserved flags must be unset to avoid future breakage
1088 * ACK must be set
1089 * ECE/CWR are handled separately
1090 * All other flags URG/PSH/RST/SYN/FIN must be unset
1091 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1092 * 0x00C00000 = CWR/ECE (handled separately)
1093 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1094 */
1095 if (((tcp_flag_word(tcph) &
1096 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1097 return false;
1098
1099 while (length > 0) {
1100 int opcode = *ptr++;
1101 int opsize;
1102
1103 if (opcode == TCPOPT_EOL)
1104 break;
1105 if (opcode == TCPOPT_NOP) {
1106 length--;
1107 continue;
1108 }
1109 if (length < 2)
1110 break;
1111 opsize = *ptr++;
1112 if (opsize < 2 || opsize > length)
1113 break;
1114
1115 switch (opcode) {
1116 case TCPOPT_MD5SIG: /* doesn't influence state */
1117 break;
1118
1119 case TCPOPT_SACK: /* stricter checking performed later */
1120 if (opsize % 8 != 2)
1121 return false;
1122 break;
1123
1124 case TCPOPT_TIMESTAMP:
1125 /* only drop timestamps lower than new */
1126 if (opsize != TCPOLEN_TIMESTAMP)
1127 return false;
1128 tstamp = get_unaligned_be32(ptr);
1129 tsecr = get_unaligned_be32(ptr + 4);
1130 if (after(tstamp, tstamp_new) ||
1131 after(tsecr, tsecr_new))
1132 return false;
1133 break;
1134
1135 case TCPOPT_MSS: /* these should only be set on SYN */
1136 case TCPOPT_WINDOW:
1137 case TCPOPT_SACK_PERM:
1138 case TCPOPT_FASTOPEN:
1139 case TCPOPT_EXP:
1140 default: /* don't drop if any unknown options are present */
1141 return false;
1142 }
1143
1144 ptr += opsize - 2;
1145 length -= opsize;
1146 }
1147
1148 return true;
1149 }
1150
cake_ack_filter(struct cake_sched_data * q,struct cake_flow * flow)1151 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1152 struct cake_flow *flow)
1153 {
1154 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1155 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1156 struct sk_buff *skb_check, *skb_prev = NULL;
1157 const struct ipv6hdr *ipv6h, *ipv6h_check;
1158 unsigned char _tcph[64], _tcph_check[64];
1159 const struct tcphdr *tcph, *tcph_check;
1160 const struct iphdr *iph, *iph_check;
1161 struct ipv6hdr _iph, _iph_check;
1162 const struct sk_buff *skb;
1163 int seglen, num_found = 0;
1164 u32 tstamp = 0, tsecr = 0;
1165 __be32 elig_flags = 0;
1166 int sack_comp;
1167
1168 /* no other possible ACKs to filter */
1169 if (flow->head == flow->tail)
1170 return NULL;
1171
1172 skb = flow->tail;
1173 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1174 iph = cake_get_iphdr(skb, &_iph);
1175 if (!tcph)
1176 return NULL;
1177
1178 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1179
1180 /* the 'triggering' packet need only have the ACK flag set.
1181 * also check that SYN is not set, as there won't be any previous ACKs.
1182 */
1183 if ((tcp_flag_word(tcph) &
1184 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1185 return NULL;
1186
1187 /* the 'triggering' ACK is at the tail of the queue, we have already
1188 * returned if it is the only packet in the flow. loop through the rest
1189 * of the queue looking for pure ACKs with the same 5-tuple as the
1190 * triggering one.
1191 */
1192 for (skb_check = flow->head;
1193 skb_check && skb_check != skb;
1194 skb_prev = skb_check, skb_check = skb_check->next) {
1195 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1196 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1197 sizeof(_tcph_check));
1198
1199 /* only TCP packets with matching 5-tuple are eligible, and only
1200 * drop safe headers
1201 */
1202 if (!tcph_check || iph->version != iph_check->version ||
1203 tcph_check->source != tcph->source ||
1204 tcph_check->dest != tcph->dest)
1205 continue;
1206
1207 if (iph_check->version == 4) {
1208 if (iph_check->saddr != iph->saddr ||
1209 iph_check->daddr != iph->daddr)
1210 continue;
1211
1212 seglen = ntohs(iph_check->tot_len) -
1213 (4 * iph_check->ihl);
1214 } else if (iph_check->version == 6) {
1215 ipv6h = (struct ipv6hdr *)iph;
1216 ipv6h_check = (struct ipv6hdr *)iph_check;
1217
1218 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1219 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1220 continue;
1221
1222 seglen = ntohs(ipv6h_check->payload_len);
1223 } else {
1224 WARN_ON(1); /* shouldn't happen */
1225 continue;
1226 }
1227
1228 /* If the ECE/CWR flags changed from the previous eligible
1229 * packet in the same flow, we should no longer be dropping that
1230 * previous packet as this would lose information.
1231 */
1232 if (elig_ack && (tcp_flag_word(tcph_check) &
1233 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1234 elig_ack = NULL;
1235 elig_ack_prev = NULL;
1236 num_found--;
1237 }
1238
1239 /* Check TCP options and flags, don't drop ACKs with segment
1240 * data, and don't drop ACKs with a higher cumulative ACK
1241 * counter than the triggering packet. Check ACK seqno here to
1242 * avoid parsing SACK options of packets we are going to exclude
1243 * anyway.
1244 */
1245 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1246 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1247 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1248 continue;
1249
1250 /* Check SACK options. The triggering packet must SACK more data
1251 * than the ACK under consideration, or SACK the same range but
1252 * have a larger cumulative ACK counter. The latter is a
1253 * pathological case, but is contained in the following check
1254 * anyway, just to be safe.
1255 */
1256 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1257
1258 if (sack_comp < 0 ||
1259 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1260 sack_comp == 0))
1261 continue;
1262
1263 /* At this point we have found an eligible pure ACK to drop; if
1264 * we are in aggressive mode, we are done. Otherwise, keep
1265 * searching unless this is the second eligible ACK we
1266 * found.
1267 *
1268 * Since we want to drop ACK closest to the head of the queue,
1269 * save the first eligible ACK we find, even if we need to loop
1270 * again.
1271 */
1272 if (!elig_ack) {
1273 elig_ack = skb_check;
1274 elig_ack_prev = skb_prev;
1275 elig_flags = (tcp_flag_word(tcph_check)
1276 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1277 }
1278
1279 if (num_found++ > 0)
1280 goto found;
1281 }
1282
1283 /* We made it through the queue without finding two eligible ACKs . If
1284 * we found a single eligible ACK we can drop it in aggressive mode if
1285 * we can guarantee that this does not interfere with ECN flag
1286 * information. We ensure this by dropping it only if the enqueued
1287 * packet is consecutive with the eligible ACK, and their flags match.
1288 */
1289 if (elig_ack && aggressive && elig_ack->next == skb &&
1290 (elig_flags == (tcp_flag_word(tcph) &
1291 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1292 goto found;
1293
1294 return NULL;
1295
1296 found:
1297 if (elig_ack_prev)
1298 elig_ack_prev->next = elig_ack->next;
1299 else
1300 flow->head = elig_ack->next;
1301
1302 skb_mark_not_on_list(elig_ack);
1303
1304 return elig_ack;
1305 }
1306
cake_ewma(u64 avg,u64 sample,u32 shift)1307 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1308 {
1309 avg -= avg >> shift;
1310 avg += sample >> shift;
1311 return avg;
1312 }
1313
cake_calc_overhead(struct cake_sched_data * q,u32 len,u32 off)1314 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1315 {
1316 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1317 len -= off;
1318
1319 if (q->max_netlen < len)
1320 q->max_netlen = len;
1321 if (q->min_netlen > len)
1322 q->min_netlen = len;
1323
1324 len += q->rate_overhead;
1325
1326 if (len < q->rate_mpu)
1327 len = q->rate_mpu;
1328
1329 if (q->atm_mode == CAKE_ATM_ATM) {
1330 len += 47;
1331 len /= 48;
1332 len *= 53;
1333 } else if (q->atm_mode == CAKE_ATM_PTM) {
1334 /* Add one byte per 64 bytes or part thereof.
1335 * This is conservative and easier to calculate than the
1336 * precise value.
1337 */
1338 len += (len + 63) / 64;
1339 }
1340
1341 if (q->max_adjlen < len)
1342 q->max_adjlen = len;
1343 if (q->min_adjlen > len)
1344 q->min_adjlen = len;
1345
1346 return len;
1347 }
1348
cake_overhead(struct cake_sched_data * q,const struct sk_buff * skb)1349 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1350 {
1351 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1352 unsigned int hdr_len, last_len = 0;
1353 u32 off = skb_network_offset(skb);
1354 u32 len = qdisc_pkt_len(skb);
1355 u16 segs = 1;
1356
1357 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1358
1359 if (!shinfo->gso_size)
1360 return cake_calc_overhead(q, len, off);
1361
1362 /* borrowed from qdisc_pkt_len_init() */
1363 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1364
1365 /* + transport layer */
1366 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1367 SKB_GSO_TCPV6))) {
1368 const struct tcphdr *th;
1369 struct tcphdr _tcphdr;
1370
1371 th = skb_header_pointer(skb, skb_transport_offset(skb),
1372 sizeof(_tcphdr), &_tcphdr);
1373 if (likely(th))
1374 hdr_len += __tcp_hdrlen(th);
1375 } else {
1376 struct udphdr _udphdr;
1377
1378 if (skb_header_pointer(skb, skb_transport_offset(skb),
1379 sizeof(_udphdr), &_udphdr))
1380 hdr_len += sizeof(struct udphdr);
1381 }
1382
1383 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1384 segs = DIV_ROUND_UP(skb->len - hdr_len,
1385 shinfo->gso_size);
1386 else
1387 segs = shinfo->gso_segs;
1388
1389 len = shinfo->gso_size + hdr_len;
1390 last_len = skb->len - shinfo->gso_size * (segs - 1);
1391
1392 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1393 cake_calc_overhead(q, last_len, off));
1394 }
1395
cake_heap_swap(struct cake_sched_data * q,u16 i,u16 j)1396 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1397 {
1398 struct cake_heap_entry ii = q->overflow_heap[i];
1399 struct cake_heap_entry jj = q->overflow_heap[j];
1400
1401 q->overflow_heap[i] = jj;
1402 q->overflow_heap[j] = ii;
1403
1404 q->tins[ii.t].overflow_idx[ii.b] = j;
1405 q->tins[jj.t].overflow_idx[jj.b] = i;
1406 }
1407
cake_heap_get_backlog(const struct cake_sched_data * q,u16 i)1408 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1409 {
1410 struct cake_heap_entry ii = q->overflow_heap[i];
1411
1412 return q->tins[ii.t].backlogs[ii.b];
1413 }
1414
cake_heapify(struct cake_sched_data * q,u16 i)1415 static void cake_heapify(struct cake_sched_data *q, u16 i)
1416 {
1417 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1418 u32 mb = cake_heap_get_backlog(q, i);
1419 u32 m = i;
1420
1421 while (m < a) {
1422 u32 l = m + m + 1;
1423 u32 r = l + 1;
1424
1425 if (l < a) {
1426 u32 lb = cake_heap_get_backlog(q, l);
1427
1428 if (lb > mb) {
1429 m = l;
1430 mb = lb;
1431 }
1432 }
1433
1434 if (r < a) {
1435 u32 rb = cake_heap_get_backlog(q, r);
1436
1437 if (rb > mb) {
1438 m = r;
1439 mb = rb;
1440 }
1441 }
1442
1443 if (m != i) {
1444 cake_heap_swap(q, i, m);
1445 i = m;
1446 } else {
1447 break;
1448 }
1449 }
1450 }
1451
cake_heapify_up(struct cake_sched_data * q,u16 i)1452 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1453 {
1454 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1455 u16 p = (i - 1) >> 1;
1456 u32 ib = cake_heap_get_backlog(q, i);
1457 u32 pb = cake_heap_get_backlog(q, p);
1458
1459 if (ib > pb) {
1460 cake_heap_swap(q, i, p);
1461 i = p;
1462 } else {
1463 break;
1464 }
1465 }
1466 }
1467
cake_advance_shaper(struct cake_sched_data * q,struct cake_tin_data * b,struct sk_buff * skb,ktime_t now,bool drop)1468 static int cake_advance_shaper(struct cake_sched_data *q,
1469 struct cake_tin_data *b,
1470 struct sk_buff *skb,
1471 ktime_t now, bool drop)
1472 {
1473 u32 len = get_cobalt_cb(skb)->adjusted_len;
1474
1475 /* charge packet bandwidth to this tin
1476 * and to the global shaper.
1477 */
1478 if (q->rate_ns) {
1479 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1480 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1481 u64 failsafe_dur = global_dur + (global_dur >> 1);
1482
1483 if (ktime_before(b->time_next_packet, now))
1484 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1485 tin_dur);
1486
1487 else if (ktime_before(b->time_next_packet,
1488 ktime_add_ns(now, tin_dur)))
1489 b->time_next_packet = ktime_add_ns(now, tin_dur);
1490
1491 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1492 global_dur);
1493 if (!drop)
1494 q->failsafe_next_packet = \
1495 ktime_add_ns(q->failsafe_next_packet,
1496 failsafe_dur);
1497 }
1498 return len;
1499 }
1500
cake_drop(struct Qdisc * sch,struct sk_buff ** to_free)1501 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1502 {
1503 struct cake_sched_data *q = qdisc_priv(sch);
1504 ktime_t now = ktime_get();
1505 u32 idx = 0, tin = 0, len;
1506 struct cake_heap_entry qq;
1507 struct cake_tin_data *b;
1508 struct cake_flow *flow;
1509 struct sk_buff *skb;
1510
1511 if (!q->overflow_timeout) {
1512 int i;
1513 /* Build fresh max-heap */
1514 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1515 cake_heapify(q, i);
1516 }
1517 q->overflow_timeout = 65535;
1518
1519 /* select longest queue for pruning */
1520 qq = q->overflow_heap[0];
1521 tin = qq.t;
1522 idx = qq.b;
1523
1524 b = &q->tins[tin];
1525 flow = &b->flows[idx];
1526 skb = dequeue_head(flow);
1527 if (unlikely(!skb)) {
1528 /* heap has gone wrong, rebuild it next time */
1529 q->overflow_timeout = 0;
1530 return idx + (tin << 16);
1531 }
1532
1533 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1534 b->unresponsive_flow_count++;
1535
1536 len = qdisc_pkt_len(skb);
1537 q->buffer_used -= skb->truesize;
1538 b->backlogs[idx] -= len;
1539 b->tin_backlog -= len;
1540 sch->qstats.backlog -= len;
1541 qdisc_tree_reduce_backlog(sch, 1, len);
1542
1543 flow->dropped++;
1544 b->tin_dropped++;
1545 sch->qstats.drops++;
1546
1547 if (q->rate_flags & CAKE_FLAG_INGRESS)
1548 cake_advance_shaper(q, b, skb, now, true);
1549
1550 __qdisc_drop(skb, to_free);
1551 sch->q.qlen--;
1552
1553 cake_heapify(q, 0);
1554
1555 return idx + (tin << 16);
1556 }
1557
cake_handle_diffserv(struct sk_buff * skb,bool wash)1558 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1559 {
1560 const int offset = skb_network_offset(skb);
1561 u16 *buf, buf_;
1562 u8 dscp;
1563
1564 switch (skb_protocol(skb, true)) {
1565 case htons(ETH_P_IP):
1566 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1567 if (unlikely(!buf))
1568 return 0;
1569
1570 /* ToS is in the second byte of iphdr */
1571 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1572
1573 if (wash && dscp) {
1574 const int wlen = offset + sizeof(struct iphdr);
1575
1576 if (!pskb_may_pull(skb, wlen) ||
1577 skb_try_make_writable(skb, wlen))
1578 return 0;
1579
1580 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1581 }
1582
1583 return dscp;
1584
1585 case htons(ETH_P_IPV6):
1586 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1587 if (unlikely(!buf))
1588 return 0;
1589
1590 /* Traffic class is in the first and second bytes of ipv6hdr */
1591 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1592
1593 if (wash && dscp) {
1594 const int wlen = offset + sizeof(struct ipv6hdr);
1595
1596 if (!pskb_may_pull(skb, wlen) ||
1597 skb_try_make_writable(skb, wlen))
1598 return 0;
1599
1600 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1601 }
1602
1603 return dscp;
1604
1605 case htons(ETH_P_ARP):
1606 return 0x38; /* CS7 - Net Control */
1607
1608 default:
1609 /* If there is no Diffserv field, treat as best-effort */
1610 return 0;
1611 }
1612 }
1613
cake_select_tin(struct Qdisc * sch,struct sk_buff * skb)1614 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1615 struct sk_buff *skb)
1616 {
1617 struct cake_sched_data *q = qdisc_priv(sch);
1618 u32 tin, mark;
1619 bool wash;
1620 u8 dscp;
1621
1622 /* Tin selection: Default to diffserv-based selection, allow overriding
1623 * using firewall marks or skb->priority. Call DSCP parsing early if
1624 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1625 */
1626 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1627 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1628 if (wash)
1629 dscp = cake_handle_diffserv(skb, wash);
1630
1631 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1632 tin = 0;
1633
1634 else if (mark && mark <= q->tin_cnt)
1635 tin = q->tin_order[mark - 1];
1636
1637 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1638 TC_H_MIN(skb->priority) > 0 &&
1639 TC_H_MIN(skb->priority) <= q->tin_cnt)
1640 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1641
1642 else {
1643 if (!wash)
1644 dscp = cake_handle_diffserv(skb, wash);
1645 tin = q->tin_index[dscp];
1646
1647 if (unlikely(tin >= q->tin_cnt))
1648 tin = 0;
1649 }
1650
1651 return &q->tins[tin];
1652 }
1653
cake_classify(struct Qdisc * sch,struct cake_tin_data ** t,struct sk_buff * skb,int flow_mode,int * qerr)1654 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1655 struct sk_buff *skb, int flow_mode, int *qerr)
1656 {
1657 struct cake_sched_data *q = qdisc_priv(sch);
1658 struct tcf_proto *filter;
1659 struct tcf_result res;
1660 u16 flow = 0, host = 0;
1661 int result;
1662
1663 filter = rcu_dereference_bh(q->filter_list);
1664 if (!filter)
1665 goto hash;
1666
1667 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1668 result = tcf_classify(skb, NULL, filter, &res, false);
1669
1670 if (result >= 0) {
1671 #ifdef CONFIG_NET_CLS_ACT
1672 switch (result) {
1673 case TC_ACT_STOLEN:
1674 case TC_ACT_QUEUED:
1675 case TC_ACT_TRAP:
1676 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1677 fallthrough;
1678 case TC_ACT_SHOT:
1679 return 0;
1680 }
1681 #endif
1682 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1683 flow = TC_H_MIN(res.classid);
1684 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1685 host = TC_H_MAJ(res.classid) >> 16;
1686 }
1687 hash:
1688 *t = cake_select_tin(sch, skb);
1689 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1690 }
1691
1692 static void cake_reconfigure(struct Qdisc *sch);
1693
cake_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1694 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1695 struct sk_buff **to_free)
1696 {
1697 struct cake_sched_data *q = qdisc_priv(sch);
1698 int len = qdisc_pkt_len(skb);
1699 int ret;
1700 struct sk_buff *ack = NULL;
1701 ktime_t now = ktime_get();
1702 struct cake_tin_data *b;
1703 struct cake_flow *flow;
1704 u32 idx;
1705
1706 /* choose flow to insert into */
1707 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1708 if (idx == 0) {
1709 if (ret & __NET_XMIT_BYPASS)
1710 qdisc_qstats_drop(sch);
1711 __qdisc_drop(skb, to_free);
1712 return ret;
1713 }
1714 idx--;
1715 flow = &b->flows[idx];
1716
1717 /* ensure shaper state isn't stale */
1718 if (!b->tin_backlog) {
1719 if (ktime_before(b->time_next_packet, now))
1720 b->time_next_packet = now;
1721
1722 if (!sch->q.qlen) {
1723 if (ktime_before(q->time_next_packet, now)) {
1724 q->failsafe_next_packet = now;
1725 q->time_next_packet = now;
1726 } else if (ktime_after(q->time_next_packet, now) &&
1727 ktime_after(q->failsafe_next_packet, now)) {
1728 u64 next = \
1729 min(ktime_to_ns(q->time_next_packet),
1730 ktime_to_ns(
1731 q->failsafe_next_packet));
1732 sch->qstats.overlimits++;
1733 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1734 }
1735 }
1736 }
1737
1738 if (unlikely(len > b->max_skblen))
1739 b->max_skblen = len;
1740
1741 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1742 struct sk_buff *segs, *nskb;
1743 netdev_features_t features = netif_skb_features(skb);
1744 unsigned int slen = 0, numsegs = 0;
1745
1746 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1747 if (IS_ERR_OR_NULL(segs))
1748 return qdisc_drop(skb, sch, to_free);
1749
1750 skb_list_walk_safe(segs, segs, nskb) {
1751 skb_mark_not_on_list(segs);
1752 qdisc_skb_cb(segs)->pkt_len = segs->len;
1753 cobalt_set_enqueue_time(segs, now);
1754 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1755 segs);
1756 flow_queue_add(flow, segs);
1757
1758 sch->q.qlen++;
1759 numsegs++;
1760 slen += segs->len;
1761 q->buffer_used += segs->truesize;
1762 b->packets++;
1763 }
1764
1765 /* stats */
1766 b->bytes += slen;
1767 b->backlogs[idx] += slen;
1768 b->tin_backlog += slen;
1769 sch->qstats.backlog += slen;
1770 q->avg_window_bytes += slen;
1771
1772 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1773 consume_skb(skb);
1774 } else {
1775 /* not splitting */
1776 cobalt_set_enqueue_time(skb, now);
1777 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1778 flow_queue_add(flow, skb);
1779
1780 if (q->ack_filter)
1781 ack = cake_ack_filter(q, flow);
1782
1783 if (ack) {
1784 b->ack_drops++;
1785 sch->qstats.drops++;
1786 b->bytes += qdisc_pkt_len(ack);
1787 len -= qdisc_pkt_len(ack);
1788 q->buffer_used += skb->truesize - ack->truesize;
1789 if (q->rate_flags & CAKE_FLAG_INGRESS)
1790 cake_advance_shaper(q, b, ack, now, true);
1791
1792 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1793 consume_skb(ack);
1794 } else {
1795 sch->q.qlen++;
1796 q->buffer_used += skb->truesize;
1797 }
1798
1799 /* stats */
1800 b->packets++;
1801 b->bytes += len;
1802 b->backlogs[idx] += len;
1803 b->tin_backlog += len;
1804 sch->qstats.backlog += len;
1805 q->avg_window_bytes += len;
1806 }
1807
1808 if (q->overflow_timeout)
1809 cake_heapify_up(q, b->overflow_idx[idx]);
1810
1811 /* incoming bandwidth capacity estimate */
1812 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1813 u64 packet_interval = \
1814 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1815
1816 if (packet_interval > NSEC_PER_SEC)
1817 packet_interval = NSEC_PER_SEC;
1818
1819 /* filter out short-term bursts, eg. wifi aggregation */
1820 q->avg_packet_interval = \
1821 cake_ewma(q->avg_packet_interval,
1822 packet_interval,
1823 (packet_interval > q->avg_packet_interval ?
1824 2 : 8));
1825
1826 q->last_packet_time = now;
1827
1828 if (packet_interval > q->avg_packet_interval) {
1829 u64 window_interval = \
1830 ktime_to_ns(ktime_sub(now,
1831 q->avg_window_begin));
1832 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1833
1834 b = div64_u64(b, window_interval);
1835 q->avg_peak_bandwidth =
1836 cake_ewma(q->avg_peak_bandwidth, b,
1837 b > q->avg_peak_bandwidth ? 2 : 8);
1838 q->avg_window_bytes = 0;
1839 q->avg_window_begin = now;
1840
1841 if (ktime_after(now,
1842 ktime_add_ms(q->last_reconfig_time,
1843 250))) {
1844 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1845 cake_reconfigure(sch);
1846 }
1847 }
1848 } else {
1849 q->avg_window_bytes = 0;
1850 q->last_packet_time = now;
1851 }
1852
1853 /* flowchain */
1854 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1855 struct cake_host *srchost = &b->hosts[flow->srchost];
1856 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1857 u16 host_load = 1;
1858
1859 if (!flow->set) {
1860 list_add_tail(&flow->flowchain, &b->new_flows);
1861 } else {
1862 b->decaying_flow_count--;
1863 list_move_tail(&flow->flowchain, &b->new_flows);
1864 }
1865 flow->set = CAKE_SET_SPARSE;
1866 b->sparse_flow_count++;
1867
1868 if (cake_dsrc(q->flow_mode))
1869 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1870
1871 if (cake_ddst(q->flow_mode))
1872 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1873
1874 flow->deficit = (b->flow_quantum *
1875 quantum_div[host_load]) >> 16;
1876 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1877 struct cake_host *srchost = &b->hosts[flow->srchost];
1878 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1879
1880 /* this flow was empty, accounted as a sparse flow, but actually
1881 * in the bulk rotation.
1882 */
1883 flow->set = CAKE_SET_BULK;
1884 b->sparse_flow_count--;
1885 b->bulk_flow_count++;
1886
1887 if (cake_dsrc(q->flow_mode))
1888 srchost->srchost_bulk_flow_count++;
1889
1890 if (cake_ddst(q->flow_mode))
1891 dsthost->dsthost_bulk_flow_count++;
1892
1893 }
1894
1895 if (q->buffer_used > q->buffer_max_used)
1896 q->buffer_max_used = q->buffer_used;
1897
1898 if (q->buffer_used > q->buffer_limit) {
1899 u32 dropped = 0;
1900
1901 while (q->buffer_used > q->buffer_limit) {
1902 dropped++;
1903 cake_drop(sch, to_free);
1904 }
1905 b->drop_overlimit += dropped;
1906 }
1907 return NET_XMIT_SUCCESS;
1908 }
1909
cake_dequeue_one(struct Qdisc * sch)1910 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1911 {
1912 struct cake_sched_data *q = qdisc_priv(sch);
1913 struct cake_tin_data *b = &q->tins[q->cur_tin];
1914 struct cake_flow *flow = &b->flows[q->cur_flow];
1915 struct sk_buff *skb = NULL;
1916 u32 len;
1917
1918 if (flow->head) {
1919 skb = dequeue_head(flow);
1920 len = qdisc_pkt_len(skb);
1921 b->backlogs[q->cur_flow] -= len;
1922 b->tin_backlog -= len;
1923 sch->qstats.backlog -= len;
1924 q->buffer_used -= skb->truesize;
1925 sch->q.qlen--;
1926
1927 if (q->overflow_timeout)
1928 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1929 }
1930 return skb;
1931 }
1932
1933 /* Discard leftover packets from a tin no longer in use. */
cake_clear_tin(struct Qdisc * sch,u16 tin)1934 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1935 {
1936 struct cake_sched_data *q = qdisc_priv(sch);
1937 struct sk_buff *skb;
1938
1939 q->cur_tin = tin;
1940 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1941 while (!!(skb = cake_dequeue_one(sch)))
1942 kfree_skb(skb);
1943 }
1944
cake_dequeue(struct Qdisc * sch)1945 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1946 {
1947 struct cake_sched_data *q = qdisc_priv(sch);
1948 struct cake_tin_data *b = &q->tins[q->cur_tin];
1949 struct cake_host *srchost, *dsthost;
1950 ktime_t now = ktime_get();
1951 struct cake_flow *flow;
1952 struct list_head *head;
1953 bool first_flow = true;
1954 struct sk_buff *skb;
1955 u16 host_load;
1956 u64 delay;
1957 u32 len;
1958
1959 begin:
1960 if (!sch->q.qlen)
1961 return NULL;
1962
1963 /* global hard shaper */
1964 if (ktime_after(q->time_next_packet, now) &&
1965 ktime_after(q->failsafe_next_packet, now)) {
1966 u64 next = min(ktime_to_ns(q->time_next_packet),
1967 ktime_to_ns(q->failsafe_next_packet));
1968
1969 sch->qstats.overlimits++;
1970 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1971 return NULL;
1972 }
1973
1974 /* Choose a class to work on. */
1975 if (!q->rate_ns) {
1976 /* In unlimited mode, can't rely on shaper timings, just balance
1977 * with DRR
1978 */
1979 bool wrapped = false, empty = true;
1980
1981 while (b->tin_deficit < 0 ||
1982 !(b->sparse_flow_count + b->bulk_flow_count)) {
1983 if (b->tin_deficit <= 0)
1984 b->tin_deficit += b->tin_quantum;
1985 if (b->sparse_flow_count + b->bulk_flow_count)
1986 empty = false;
1987
1988 q->cur_tin++;
1989 b++;
1990 if (q->cur_tin >= q->tin_cnt) {
1991 q->cur_tin = 0;
1992 b = q->tins;
1993
1994 if (wrapped) {
1995 /* It's possible for q->qlen to be
1996 * nonzero when we actually have no
1997 * packets anywhere.
1998 */
1999 if (empty)
2000 return NULL;
2001 } else {
2002 wrapped = true;
2003 }
2004 }
2005 }
2006 } else {
2007 /* In shaped mode, choose:
2008 * - Highest-priority tin with queue and meeting schedule, or
2009 * - The earliest-scheduled tin with queue.
2010 */
2011 ktime_t best_time = KTIME_MAX;
2012 int tin, best_tin = 0;
2013
2014 for (tin = 0; tin < q->tin_cnt; tin++) {
2015 b = q->tins + tin;
2016 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2017 ktime_t time_to_pkt = \
2018 ktime_sub(b->time_next_packet, now);
2019
2020 if (ktime_to_ns(time_to_pkt) <= 0 ||
2021 ktime_compare(time_to_pkt,
2022 best_time) <= 0) {
2023 best_time = time_to_pkt;
2024 best_tin = tin;
2025 }
2026 }
2027 }
2028
2029 q->cur_tin = best_tin;
2030 b = q->tins + best_tin;
2031
2032 /* No point in going further if no packets to deliver. */
2033 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2034 return NULL;
2035 }
2036
2037 retry:
2038 /* service this class */
2039 head = &b->decaying_flows;
2040 if (!first_flow || list_empty(head)) {
2041 head = &b->new_flows;
2042 if (list_empty(head)) {
2043 head = &b->old_flows;
2044 if (unlikely(list_empty(head))) {
2045 head = &b->decaying_flows;
2046 if (unlikely(list_empty(head)))
2047 goto begin;
2048 }
2049 }
2050 }
2051 flow = list_first_entry(head, struct cake_flow, flowchain);
2052 q->cur_flow = flow - b->flows;
2053 first_flow = false;
2054
2055 /* triple isolation (modified DRR++) */
2056 srchost = &b->hosts[flow->srchost];
2057 dsthost = &b->hosts[flow->dsthost];
2058 host_load = 1;
2059
2060 /* flow isolation (DRR++) */
2061 if (flow->deficit <= 0) {
2062 /* Keep all flows with deficits out of the sparse and decaying
2063 * rotations. No non-empty flow can go into the decaying
2064 * rotation, so they can't get deficits
2065 */
2066 if (flow->set == CAKE_SET_SPARSE) {
2067 if (flow->head) {
2068 b->sparse_flow_count--;
2069 b->bulk_flow_count++;
2070
2071 if (cake_dsrc(q->flow_mode))
2072 srchost->srchost_bulk_flow_count++;
2073
2074 if (cake_ddst(q->flow_mode))
2075 dsthost->dsthost_bulk_flow_count++;
2076
2077 flow->set = CAKE_SET_BULK;
2078 } else {
2079 /* we've moved it to the bulk rotation for
2080 * correct deficit accounting but we still want
2081 * to count it as a sparse flow, not a bulk one.
2082 */
2083 flow->set = CAKE_SET_SPARSE_WAIT;
2084 }
2085 }
2086
2087 if (cake_dsrc(q->flow_mode))
2088 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2089
2090 if (cake_ddst(q->flow_mode))
2091 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2092
2093 WARN_ON(host_load > CAKE_QUEUES);
2094
2095 /* The get_random_u16() is a way to apply dithering to avoid
2096 * accumulating roundoff errors
2097 */
2098 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2099 get_random_u16()) >> 16;
2100 list_move_tail(&flow->flowchain, &b->old_flows);
2101
2102 goto retry;
2103 }
2104
2105 /* Retrieve a packet via the AQM */
2106 while (1) {
2107 skb = cake_dequeue_one(sch);
2108 if (!skb) {
2109 /* this queue was actually empty */
2110 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2111 b->unresponsive_flow_count--;
2112
2113 if (flow->cvars.p_drop || flow->cvars.count ||
2114 ktime_before(now, flow->cvars.drop_next)) {
2115 /* keep in the flowchain until the state has
2116 * decayed to rest
2117 */
2118 list_move_tail(&flow->flowchain,
2119 &b->decaying_flows);
2120 if (flow->set == CAKE_SET_BULK) {
2121 b->bulk_flow_count--;
2122
2123 if (cake_dsrc(q->flow_mode))
2124 srchost->srchost_bulk_flow_count--;
2125
2126 if (cake_ddst(q->flow_mode))
2127 dsthost->dsthost_bulk_flow_count--;
2128
2129 b->decaying_flow_count++;
2130 } else if (flow->set == CAKE_SET_SPARSE ||
2131 flow->set == CAKE_SET_SPARSE_WAIT) {
2132 b->sparse_flow_count--;
2133 b->decaying_flow_count++;
2134 }
2135 flow->set = CAKE_SET_DECAYING;
2136 } else {
2137 /* remove empty queue from the flowchain */
2138 list_del_init(&flow->flowchain);
2139 if (flow->set == CAKE_SET_SPARSE ||
2140 flow->set == CAKE_SET_SPARSE_WAIT)
2141 b->sparse_flow_count--;
2142 else if (flow->set == CAKE_SET_BULK) {
2143 b->bulk_flow_count--;
2144
2145 if (cake_dsrc(q->flow_mode))
2146 srchost->srchost_bulk_flow_count--;
2147
2148 if (cake_ddst(q->flow_mode))
2149 dsthost->dsthost_bulk_flow_count--;
2150
2151 } else
2152 b->decaying_flow_count--;
2153
2154 flow->set = CAKE_SET_NONE;
2155 }
2156 goto begin;
2157 }
2158
2159 /* Last packet in queue may be marked, shouldn't be dropped */
2160 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2161 (b->bulk_flow_count *
2162 !!(q->rate_flags &
2163 CAKE_FLAG_INGRESS))) ||
2164 !flow->head)
2165 break;
2166
2167 /* drop this packet, get another one */
2168 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2169 len = cake_advance_shaper(q, b, skb,
2170 now, true);
2171 flow->deficit -= len;
2172 b->tin_deficit -= len;
2173 }
2174 flow->dropped++;
2175 b->tin_dropped++;
2176 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2177 qdisc_qstats_drop(sch);
2178 kfree_skb(skb);
2179 if (q->rate_flags & CAKE_FLAG_INGRESS)
2180 goto retry;
2181 }
2182
2183 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2184 qdisc_bstats_update(sch, skb);
2185
2186 /* collect delay stats */
2187 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2188 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2189 b->peak_delay = cake_ewma(b->peak_delay, delay,
2190 delay > b->peak_delay ? 2 : 8);
2191 b->base_delay = cake_ewma(b->base_delay, delay,
2192 delay < b->base_delay ? 2 : 8);
2193
2194 len = cake_advance_shaper(q, b, skb, now, false);
2195 flow->deficit -= len;
2196 b->tin_deficit -= len;
2197
2198 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2199 u64 next = min(ktime_to_ns(q->time_next_packet),
2200 ktime_to_ns(q->failsafe_next_packet));
2201
2202 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2203 } else if (!sch->q.qlen) {
2204 int i;
2205
2206 for (i = 0; i < q->tin_cnt; i++) {
2207 if (q->tins[i].decaying_flow_count) {
2208 ktime_t next = \
2209 ktime_add_ns(now,
2210 q->tins[i].cparams.target);
2211
2212 qdisc_watchdog_schedule_ns(&q->watchdog,
2213 ktime_to_ns(next));
2214 break;
2215 }
2216 }
2217 }
2218
2219 if (q->overflow_timeout)
2220 q->overflow_timeout--;
2221
2222 return skb;
2223 }
2224
cake_reset(struct Qdisc * sch)2225 static void cake_reset(struct Qdisc *sch)
2226 {
2227 struct cake_sched_data *q = qdisc_priv(sch);
2228 u32 c;
2229
2230 if (!q->tins)
2231 return;
2232
2233 for (c = 0; c < CAKE_MAX_TINS; c++)
2234 cake_clear_tin(sch, c);
2235 }
2236
2237 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2238 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2239 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2240 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2241 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2242 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2243 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2244 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2245 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2246 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2247 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2248 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2249 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2250 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2251 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2252 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2253 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2254 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2255 };
2256
cake_set_rate(struct cake_tin_data * b,u64 rate,u32 mtu,u64 target_ns,u64 rtt_est_ns)2257 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2258 u64 target_ns, u64 rtt_est_ns)
2259 {
2260 /* convert byte-rate into time-per-byte
2261 * so it will always unwedge in reasonable time.
2262 */
2263 static const u64 MIN_RATE = 64;
2264 u32 byte_target = mtu;
2265 u64 byte_target_ns;
2266 u8 rate_shft = 0;
2267 u64 rate_ns = 0;
2268
2269 b->flow_quantum = 1514;
2270 if (rate) {
2271 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2272 rate_shft = 34;
2273 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2274 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2275 while (!!(rate_ns >> 34)) {
2276 rate_ns >>= 1;
2277 rate_shft--;
2278 }
2279 } /* else unlimited, ie. zero delay */
2280
2281 b->tin_rate_bps = rate;
2282 b->tin_rate_ns = rate_ns;
2283 b->tin_rate_shft = rate_shft;
2284
2285 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2286
2287 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2288 b->cparams.interval = max(rtt_est_ns +
2289 b->cparams.target - target_ns,
2290 b->cparams.target * 2);
2291 b->cparams.mtu_time = byte_target_ns;
2292 b->cparams.p_inc = 1 << 24; /* 1/256 */
2293 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2294 }
2295
cake_config_besteffort(struct Qdisc * sch)2296 static int cake_config_besteffort(struct Qdisc *sch)
2297 {
2298 struct cake_sched_data *q = qdisc_priv(sch);
2299 struct cake_tin_data *b = &q->tins[0];
2300 u32 mtu = psched_mtu(qdisc_dev(sch));
2301 u64 rate = q->rate_bps;
2302
2303 q->tin_cnt = 1;
2304
2305 q->tin_index = besteffort;
2306 q->tin_order = normal_order;
2307
2308 cake_set_rate(b, rate, mtu,
2309 us_to_ns(q->target), us_to_ns(q->interval));
2310 b->tin_quantum = 65535;
2311
2312 return 0;
2313 }
2314
cake_config_precedence(struct Qdisc * sch)2315 static int cake_config_precedence(struct Qdisc *sch)
2316 {
2317 /* convert high-level (user visible) parameters into internal format */
2318 struct cake_sched_data *q = qdisc_priv(sch);
2319 u32 mtu = psched_mtu(qdisc_dev(sch));
2320 u64 rate = q->rate_bps;
2321 u32 quantum = 256;
2322 u32 i;
2323
2324 q->tin_cnt = 8;
2325 q->tin_index = precedence;
2326 q->tin_order = normal_order;
2327
2328 for (i = 0; i < q->tin_cnt; i++) {
2329 struct cake_tin_data *b = &q->tins[i];
2330
2331 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2332 us_to_ns(q->interval));
2333
2334 b->tin_quantum = max_t(u16, 1U, quantum);
2335
2336 /* calculate next class's parameters */
2337 rate *= 7;
2338 rate >>= 3;
2339
2340 quantum *= 7;
2341 quantum >>= 3;
2342 }
2343
2344 return 0;
2345 }
2346
2347 /* List of known Diffserv codepoints:
2348 *
2349 * Default Forwarding (DF/CS0) - Best Effort
2350 * Max Throughput (TOS2)
2351 * Min Delay (TOS4)
2352 * LLT "La" (TOS5)
2353 * Assured Forwarding 1 (AF1x) - x3
2354 * Assured Forwarding 2 (AF2x) - x3
2355 * Assured Forwarding 3 (AF3x) - x3
2356 * Assured Forwarding 4 (AF4x) - x3
2357 * Precedence Class 1 (CS1)
2358 * Precedence Class 2 (CS2)
2359 * Precedence Class 3 (CS3)
2360 * Precedence Class 4 (CS4)
2361 * Precedence Class 5 (CS5)
2362 * Precedence Class 6 (CS6)
2363 * Precedence Class 7 (CS7)
2364 * Voice Admit (VA)
2365 * Expedited Forwarding (EF)
2366 * Lower Effort (LE)
2367 *
2368 * Total 26 codepoints.
2369 */
2370
2371 /* List of traffic classes in RFC 4594, updated by RFC 8622:
2372 * (roughly descending order of contended priority)
2373 * (roughly ascending order of uncontended throughput)
2374 *
2375 * Network Control (CS6,CS7) - routing traffic
2376 * Telephony (EF,VA) - aka. VoIP streams
2377 * Signalling (CS5) - VoIP setup
2378 * Multimedia Conferencing (AF4x) - aka. video calls
2379 * Realtime Interactive (CS4) - eg. games
2380 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2381 * Broadcast Video (CS3)
2382 * Low-Latency Data (AF2x,TOS4) - eg. database
2383 * Ops, Admin, Management (CS2) - eg. ssh
2384 * Standard Service (DF & unrecognised codepoints)
2385 * High-Throughput Data (AF1x,TOS2) - eg. web traffic
2386 * Low-Priority Data (LE,CS1) - eg. BitTorrent
2387 *
2388 * Total 12 traffic classes.
2389 */
2390
cake_config_diffserv8(struct Qdisc * sch)2391 static int cake_config_diffserv8(struct Qdisc *sch)
2392 {
2393 /* Pruned list of traffic classes for typical applications:
2394 *
2395 * Network Control (CS6, CS7)
2396 * Minimum Latency (EF, VA, CS5, CS4)
2397 * Interactive Shell (CS2)
2398 * Low Latency Transactions (AF2x, TOS4)
2399 * Video Streaming (AF4x, AF3x, CS3)
2400 * Bog Standard (DF etc.)
2401 * High Throughput (AF1x, TOS2, CS1)
2402 * Background Traffic (LE)
2403 *
2404 * Total 8 traffic classes.
2405 */
2406
2407 struct cake_sched_data *q = qdisc_priv(sch);
2408 u32 mtu = psched_mtu(qdisc_dev(sch));
2409 u64 rate = q->rate_bps;
2410 u32 quantum = 256;
2411 u32 i;
2412
2413 q->tin_cnt = 8;
2414
2415 /* codepoint to class mapping */
2416 q->tin_index = diffserv8;
2417 q->tin_order = normal_order;
2418
2419 /* class characteristics */
2420 for (i = 0; i < q->tin_cnt; i++) {
2421 struct cake_tin_data *b = &q->tins[i];
2422
2423 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2424 us_to_ns(q->interval));
2425
2426 b->tin_quantum = max_t(u16, 1U, quantum);
2427
2428 /* calculate next class's parameters */
2429 rate *= 7;
2430 rate >>= 3;
2431
2432 quantum *= 7;
2433 quantum >>= 3;
2434 }
2435
2436 return 0;
2437 }
2438
cake_config_diffserv4(struct Qdisc * sch)2439 static int cake_config_diffserv4(struct Qdisc *sch)
2440 {
2441 /* Further pruned list of traffic classes for four-class system:
2442 *
2443 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2444 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2445 * Best Effort (DF, AF1x, TOS2, and those not specified)
2446 * Background Traffic (LE, CS1)
2447 *
2448 * Total 4 traffic classes.
2449 */
2450
2451 struct cake_sched_data *q = qdisc_priv(sch);
2452 u32 mtu = psched_mtu(qdisc_dev(sch));
2453 u64 rate = q->rate_bps;
2454 u32 quantum = 1024;
2455
2456 q->tin_cnt = 4;
2457
2458 /* codepoint to class mapping */
2459 q->tin_index = diffserv4;
2460 q->tin_order = bulk_order;
2461
2462 /* class characteristics */
2463 cake_set_rate(&q->tins[0], rate, mtu,
2464 us_to_ns(q->target), us_to_ns(q->interval));
2465 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2466 us_to_ns(q->target), us_to_ns(q->interval));
2467 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2468 us_to_ns(q->target), us_to_ns(q->interval));
2469 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2470 us_to_ns(q->target), us_to_ns(q->interval));
2471
2472 /* bandwidth-sharing weights */
2473 q->tins[0].tin_quantum = quantum;
2474 q->tins[1].tin_quantum = quantum >> 4;
2475 q->tins[2].tin_quantum = quantum >> 1;
2476 q->tins[3].tin_quantum = quantum >> 2;
2477
2478 return 0;
2479 }
2480
cake_config_diffserv3(struct Qdisc * sch)2481 static int cake_config_diffserv3(struct Qdisc *sch)
2482 {
2483 /* Simplified Diffserv structure with 3 tins.
2484 * Latency Sensitive (CS7, CS6, EF, VA, TOS4)
2485 * Best Effort
2486 * Low Priority (LE, CS1)
2487 */
2488 struct cake_sched_data *q = qdisc_priv(sch);
2489 u32 mtu = psched_mtu(qdisc_dev(sch));
2490 u64 rate = q->rate_bps;
2491 u32 quantum = 1024;
2492
2493 q->tin_cnt = 3;
2494
2495 /* codepoint to class mapping */
2496 q->tin_index = diffserv3;
2497 q->tin_order = bulk_order;
2498
2499 /* class characteristics */
2500 cake_set_rate(&q->tins[0], rate, mtu,
2501 us_to_ns(q->target), us_to_ns(q->interval));
2502 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2503 us_to_ns(q->target), us_to_ns(q->interval));
2504 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2505 us_to_ns(q->target), us_to_ns(q->interval));
2506
2507 /* bandwidth-sharing weights */
2508 q->tins[0].tin_quantum = quantum;
2509 q->tins[1].tin_quantum = quantum >> 4;
2510 q->tins[2].tin_quantum = quantum >> 2;
2511
2512 return 0;
2513 }
2514
cake_reconfigure(struct Qdisc * sch)2515 static void cake_reconfigure(struct Qdisc *sch)
2516 {
2517 struct cake_sched_data *q = qdisc_priv(sch);
2518 int c, ft;
2519
2520 switch (q->tin_mode) {
2521 case CAKE_DIFFSERV_BESTEFFORT:
2522 ft = cake_config_besteffort(sch);
2523 break;
2524
2525 case CAKE_DIFFSERV_PRECEDENCE:
2526 ft = cake_config_precedence(sch);
2527 break;
2528
2529 case CAKE_DIFFSERV_DIFFSERV8:
2530 ft = cake_config_diffserv8(sch);
2531 break;
2532
2533 case CAKE_DIFFSERV_DIFFSERV4:
2534 ft = cake_config_diffserv4(sch);
2535 break;
2536
2537 case CAKE_DIFFSERV_DIFFSERV3:
2538 default:
2539 ft = cake_config_diffserv3(sch);
2540 break;
2541 }
2542
2543 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2544 cake_clear_tin(sch, c);
2545 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2546 }
2547
2548 q->rate_ns = q->tins[ft].tin_rate_ns;
2549 q->rate_shft = q->tins[ft].tin_rate_shft;
2550
2551 if (q->buffer_config_limit) {
2552 q->buffer_limit = q->buffer_config_limit;
2553 } else if (q->rate_bps) {
2554 u64 t = q->rate_bps * q->interval;
2555
2556 do_div(t, USEC_PER_SEC / 4);
2557 q->buffer_limit = max_t(u32, t, 4U << 20);
2558 } else {
2559 q->buffer_limit = ~0;
2560 }
2561
2562 sch->flags &= ~TCQ_F_CAN_BYPASS;
2563
2564 q->buffer_limit = min(q->buffer_limit,
2565 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2566 q->buffer_config_limit));
2567 }
2568
cake_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2569 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2570 struct netlink_ext_ack *extack)
2571 {
2572 struct cake_sched_data *q = qdisc_priv(sch);
2573 struct nlattr *tb[TCA_CAKE_MAX + 1];
2574 int err;
2575
2576 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2577 extack);
2578 if (err < 0)
2579 return err;
2580
2581 if (tb[TCA_CAKE_NAT]) {
2582 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2583 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2584 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2585 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2586 #else
2587 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2588 "No conntrack support in kernel");
2589 return -EOPNOTSUPP;
2590 #endif
2591 }
2592
2593 if (tb[TCA_CAKE_BASE_RATE64])
2594 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2595
2596 if (tb[TCA_CAKE_DIFFSERV_MODE])
2597 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2598
2599 if (tb[TCA_CAKE_WASH]) {
2600 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2601 q->rate_flags |= CAKE_FLAG_WASH;
2602 else
2603 q->rate_flags &= ~CAKE_FLAG_WASH;
2604 }
2605
2606 if (tb[TCA_CAKE_FLOW_MODE])
2607 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2608 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2609 CAKE_FLOW_MASK));
2610
2611 if (tb[TCA_CAKE_ATM])
2612 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2613
2614 if (tb[TCA_CAKE_OVERHEAD]) {
2615 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2616 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2617
2618 q->max_netlen = 0;
2619 q->max_adjlen = 0;
2620 q->min_netlen = ~0;
2621 q->min_adjlen = ~0;
2622 }
2623
2624 if (tb[TCA_CAKE_RAW]) {
2625 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2626
2627 q->max_netlen = 0;
2628 q->max_adjlen = 0;
2629 q->min_netlen = ~0;
2630 q->min_adjlen = ~0;
2631 }
2632
2633 if (tb[TCA_CAKE_MPU])
2634 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2635
2636 if (tb[TCA_CAKE_RTT]) {
2637 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2638
2639 if (!q->interval)
2640 q->interval = 1;
2641 }
2642
2643 if (tb[TCA_CAKE_TARGET]) {
2644 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2645
2646 if (!q->target)
2647 q->target = 1;
2648 }
2649
2650 if (tb[TCA_CAKE_AUTORATE]) {
2651 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2652 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2653 else
2654 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2655 }
2656
2657 if (tb[TCA_CAKE_INGRESS]) {
2658 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2659 q->rate_flags |= CAKE_FLAG_INGRESS;
2660 else
2661 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2662 }
2663
2664 if (tb[TCA_CAKE_ACK_FILTER])
2665 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2666
2667 if (tb[TCA_CAKE_MEMORY])
2668 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2669
2670 if (tb[TCA_CAKE_SPLIT_GSO]) {
2671 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2672 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2673 else
2674 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2675 }
2676
2677 if (tb[TCA_CAKE_FWMARK]) {
2678 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2679 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2680 }
2681
2682 if (q->tins) {
2683 sch_tree_lock(sch);
2684 cake_reconfigure(sch);
2685 sch_tree_unlock(sch);
2686 }
2687
2688 return 0;
2689 }
2690
cake_destroy(struct Qdisc * sch)2691 static void cake_destroy(struct Qdisc *sch)
2692 {
2693 struct cake_sched_data *q = qdisc_priv(sch);
2694
2695 qdisc_watchdog_cancel(&q->watchdog);
2696 tcf_block_put(q->block);
2697 kvfree(q->tins);
2698 }
2699
cake_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2700 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2701 struct netlink_ext_ack *extack)
2702 {
2703 struct cake_sched_data *q = qdisc_priv(sch);
2704 int i, j, err;
2705
2706 sch->limit = 10240;
2707 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2708 q->flow_mode = CAKE_FLOW_TRIPLE;
2709
2710 q->rate_bps = 0; /* unlimited by default */
2711
2712 q->interval = 100000; /* 100ms default */
2713 q->target = 5000; /* 5ms: codel RFC argues
2714 * for 5 to 10% of interval
2715 */
2716 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2717 q->cur_tin = 0;
2718 q->cur_flow = 0;
2719
2720 qdisc_watchdog_init(&q->watchdog, sch);
2721
2722 if (opt) {
2723 err = cake_change(sch, opt, extack);
2724
2725 if (err)
2726 return err;
2727 }
2728
2729 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2730 if (err)
2731 return err;
2732
2733 quantum_div[0] = ~0;
2734 for (i = 1; i <= CAKE_QUEUES; i++)
2735 quantum_div[i] = 65535 / i;
2736
2737 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2738 GFP_KERNEL);
2739 if (!q->tins)
2740 return -ENOMEM;
2741
2742 for (i = 0; i < CAKE_MAX_TINS; i++) {
2743 struct cake_tin_data *b = q->tins + i;
2744
2745 INIT_LIST_HEAD(&b->new_flows);
2746 INIT_LIST_HEAD(&b->old_flows);
2747 INIT_LIST_HEAD(&b->decaying_flows);
2748 b->sparse_flow_count = 0;
2749 b->bulk_flow_count = 0;
2750 b->decaying_flow_count = 0;
2751
2752 for (j = 0; j < CAKE_QUEUES; j++) {
2753 struct cake_flow *flow = b->flows + j;
2754 u32 k = j * CAKE_MAX_TINS + i;
2755
2756 INIT_LIST_HEAD(&flow->flowchain);
2757 cobalt_vars_init(&flow->cvars);
2758
2759 q->overflow_heap[k].t = i;
2760 q->overflow_heap[k].b = j;
2761 b->overflow_idx[j] = k;
2762 }
2763 }
2764
2765 cake_reconfigure(sch);
2766 q->avg_peak_bandwidth = q->rate_bps;
2767 q->min_netlen = ~0;
2768 q->min_adjlen = ~0;
2769 return 0;
2770 }
2771
cake_dump(struct Qdisc * sch,struct sk_buff * skb)2772 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2773 {
2774 struct cake_sched_data *q = qdisc_priv(sch);
2775 struct nlattr *opts;
2776
2777 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2778 if (!opts)
2779 goto nla_put_failure;
2780
2781 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2782 TCA_CAKE_PAD))
2783 goto nla_put_failure;
2784
2785 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2786 q->flow_mode & CAKE_FLOW_MASK))
2787 goto nla_put_failure;
2788
2789 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2790 goto nla_put_failure;
2791
2792 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2793 goto nla_put_failure;
2794
2795 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2796 goto nla_put_failure;
2797
2798 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2799 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2800 goto nla_put_failure;
2801
2802 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2803 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2804 goto nla_put_failure;
2805
2806 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2807 goto nla_put_failure;
2808
2809 if (nla_put_u32(skb, TCA_CAKE_NAT,
2810 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2811 goto nla_put_failure;
2812
2813 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2814 goto nla_put_failure;
2815
2816 if (nla_put_u32(skb, TCA_CAKE_WASH,
2817 !!(q->rate_flags & CAKE_FLAG_WASH)))
2818 goto nla_put_failure;
2819
2820 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2821 goto nla_put_failure;
2822
2823 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2824 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2825 goto nla_put_failure;
2826
2827 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2828 goto nla_put_failure;
2829
2830 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2831 goto nla_put_failure;
2832
2833 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2834 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2835 goto nla_put_failure;
2836
2837 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2838 goto nla_put_failure;
2839
2840 return nla_nest_end(skb, opts);
2841
2842 nla_put_failure:
2843 return -1;
2844 }
2845
cake_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2846 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2847 {
2848 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2849 struct cake_sched_data *q = qdisc_priv(sch);
2850 struct nlattr *tstats, *ts;
2851 int i;
2852
2853 if (!stats)
2854 return -1;
2855
2856 #define PUT_STAT_U32(attr, data) do { \
2857 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2858 goto nla_put_failure; \
2859 } while (0)
2860 #define PUT_STAT_U64(attr, data) do { \
2861 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2862 data, TCA_CAKE_STATS_PAD)) \
2863 goto nla_put_failure; \
2864 } while (0)
2865
2866 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2867 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2868 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2869 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2870 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2871 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2872 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2873 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2874
2875 #undef PUT_STAT_U32
2876 #undef PUT_STAT_U64
2877
2878 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2879 if (!tstats)
2880 goto nla_put_failure;
2881
2882 #define PUT_TSTAT_U32(attr, data) do { \
2883 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2884 goto nla_put_failure; \
2885 } while (0)
2886 #define PUT_TSTAT_U64(attr, data) do { \
2887 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2888 data, TCA_CAKE_TIN_STATS_PAD)) \
2889 goto nla_put_failure; \
2890 } while (0)
2891
2892 for (i = 0; i < q->tin_cnt; i++) {
2893 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2894
2895 ts = nla_nest_start_noflag(d->skb, i + 1);
2896 if (!ts)
2897 goto nla_put_failure;
2898
2899 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2900 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2901 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2902
2903 PUT_TSTAT_U32(TARGET_US,
2904 ktime_to_us(ns_to_ktime(b->cparams.target)));
2905 PUT_TSTAT_U32(INTERVAL_US,
2906 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2907
2908 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2909 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2910 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2911 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2912
2913 PUT_TSTAT_U32(PEAK_DELAY_US,
2914 ktime_to_us(ns_to_ktime(b->peak_delay)));
2915 PUT_TSTAT_U32(AVG_DELAY_US,
2916 ktime_to_us(ns_to_ktime(b->avge_delay)));
2917 PUT_TSTAT_U32(BASE_DELAY_US,
2918 ktime_to_us(ns_to_ktime(b->base_delay)));
2919
2920 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2921 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2922 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2923
2924 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2925 b->decaying_flow_count);
2926 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2927 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2928 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2929
2930 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2931 nla_nest_end(d->skb, ts);
2932 }
2933
2934 #undef PUT_TSTAT_U32
2935 #undef PUT_TSTAT_U64
2936
2937 nla_nest_end(d->skb, tstats);
2938 return nla_nest_end(d->skb, stats);
2939
2940 nla_put_failure:
2941 nla_nest_cancel(d->skb, stats);
2942 return -1;
2943 }
2944
cake_leaf(struct Qdisc * sch,unsigned long arg)2945 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2946 {
2947 return NULL;
2948 }
2949
cake_find(struct Qdisc * sch,u32 classid)2950 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2951 {
2952 return 0;
2953 }
2954
cake_bind(struct Qdisc * sch,unsigned long parent,u32 classid)2955 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2956 u32 classid)
2957 {
2958 return 0;
2959 }
2960
cake_unbind(struct Qdisc * q,unsigned long cl)2961 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2962 {
2963 }
2964
cake_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)2965 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2966 struct netlink_ext_ack *extack)
2967 {
2968 struct cake_sched_data *q = qdisc_priv(sch);
2969
2970 if (cl)
2971 return NULL;
2972 return q->block;
2973 }
2974
cake_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2975 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2976 struct sk_buff *skb, struct tcmsg *tcm)
2977 {
2978 tcm->tcm_handle |= TC_H_MIN(cl);
2979 return 0;
2980 }
2981
cake_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2982 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2983 struct gnet_dump *d)
2984 {
2985 struct cake_sched_data *q = qdisc_priv(sch);
2986 const struct cake_flow *flow = NULL;
2987 struct gnet_stats_queue qs = { 0 };
2988 struct nlattr *stats;
2989 u32 idx = cl - 1;
2990
2991 if (idx < CAKE_QUEUES * q->tin_cnt) {
2992 const struct cake_tin_data *b = \
2993 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2994 const struct sk_buff *skb;
2995
2996 flow = &b->flows[idx % CAKE_QUEUES];
2997
2998 if (flow->head) {
2999 sch_tree_lock(sch);
3000 skb = flow->head;
3001 while (skb) {
3002 qs.qlen++;
3003 skb = skb->next;
3004 }
3005 sch_tree_unlock(sch);
3006 }
3007 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3008 qs.drops = flow->dropped;
3009 }
3010 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3011 return -1;
3012 if (flow) {
3013 ktime_t now = ktime_get();
3014
3015 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3016 if (!stats)
3017 return -1;
3018
3019 #define PUT_STAT_U32(attr, data) do { \
3020 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3021 goto nla_put_failure; \
3022 } while (0)
3023 #define PUT_STAT_S32(attr, data) do { \
3024 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3025 goto nla_put_failure; \
3026 } while (0)
3027
3028 PUT_STAT_S32(DEFICIT, flow->deficit);
3029 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3030 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3031 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3032 if (flow->cvars.p_drop) {
3033 PUT_STAT_S32(BLUE_TIMER_US,
3034 ktime_to_us(
3035 ktime_sub(now,
3036 flow->cvars.blue_timer)));
3037 }
3038 if (flow->cvars.dropping) {
3039 PUT_STAT_S32(DROP_NEXT_US,
3040 ktime_to_us(
3041 ktime_sub(now,
3042 flow->cvars.drop_next)));
3043 }
3044
3045 if (nla_nest_end(d->skb, stats) < 0)
3046 return -1;
3047 }
3048
3049 return 0;
3050
3051 nla_put_failure:
3052 nla_nest_cancel(d->skb, stats);
3053 return -1;
3054 }
3055
cake_walk(struct Qdisc * sch,struct qdisc_walker * arg)3056 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3057 {
3058 struct cake_sched_data *q = qdisc_priv(sch);
3059 unsigned int i, j;
3060
3061 if (arg->stop)
3062 return;
3063
3064 for (i = 0; i < q->tin_cnt; i++) {
3065 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3066
3067 for (j = 0; j < CAKE_QUEUES; j++) {
3068 if (list_empty(&b->flows[j].flowchain)) {
3069 arg->count++;
3070 continue;
3071 }
3072 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3073 arg))
3074 break;
3075 }
3076 }
3077 }
3078
3079 static const struct Qdisc_class_ops cake_class_ops = {
3080 .leaf = cake_leaf,
3081 .find = cake_find,
3082 .tcf_block = cake_tcf_block,
3083 .bind_tcf = cake_bind,
3084 .unbind_tcf = cake_unbind,
3085 .dump = cake_dump_class,
3086 .dump_stats = cake_dump_class_stats,
3087 .walk = cake_walk,
3088 };
3089
3090 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3091 .cl_ops = &cake_class_ops,
3092 .id = "cake",
3093 .priv_size = sizeof(struct cake_sched_data),
3094 .enqueue = cake_enqueue,
3095 .dequeue = cake_dequeue,
3096 .peek = qdisc_peek_dequeued,
3097 .init = cake_init,
3098 .reset = cake_reset,
3099 .destroy = cake_destroy,
3100 .change = cake_change,
3101 .dump = cake_dump,
3102 .dump_stats = cake_dump_stats,
3103 .owner = THIS_MODULE,
3104 };
3105
cake_module_init(void)3106 static int __init cake_module_init(void)
3107 {
3108 return register_qdisc(&cake_qdisc_ops);
3109 }
3110
cake_module_exit(void)3111 static void __exit cake_module_exit(void)
3112 {
3113 unregister_qdisc(&cake_qdisc_ops);
3114 }
3115
3116 module_init(cake_module_init)
3117 module_exit(cake_module_exit)
3118 MODULE_AUTHOR("Jonathan Morton");
3119 MODULE_LICENSE("Dual BSD/GPL");
3120 MODULE_DESCRIPTION("The CAKE shaper.");
3121