1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299
300 /*
301 * Current number of TCP sockets.
302 */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305
306 /*
307 * TCP splice context
308 */
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313 };
314
315 /*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
tcp_enter_memory_pressure(struct sock * sk)324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
tcp_leave_memory_pressure(struct sock * sk)339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370 }
371
372 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387 }
388
tcp_compute_delivery_rate(const struct tcp_sock * tp)389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400 }
401
402 /* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
tcp_init_sock(struct sock * sk)407 void tcp_init_sock(struct sock *sk)
408 {
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459
tcp_init_transfer(struct sock * sk,int bpf_op)460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 struct inet_connection_sock *icsk = inet_csk(sk);
463
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
470 }
471
tcp_tx_timestamp(struct sock * sk,u16 tsflags)472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486 }
487
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
490 {
491 return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
494 }
495
496 /*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (tp->urg_seq == tp->copied_seq &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (sk_stream_is_writeable(sk)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = tp->write_seq - tp->snd_nxt;
640 break;
641 default:
642 return -ENOIOCTLCMD;
643 }
644
645 return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 tp->pushed_seq = tp->write_seq;
653 }
654
forced_push(const struct tcp_sock * tp)655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659
skb_entail(struct sock * sk,struct sk_buff * skb)660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664
665 skb->csum = 0;
666 tcb->seq = tcb->end_seq = tp->write_seq;
667 tcb->tcp_flags = TCPHDR_ACK;
668 tcb->sacked = 0;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk->sk_wmem_queued += skb->truesize;
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677 }
678
tcp_mark_urg(struct tcp_sock * tp,int flags)679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683 }
684
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697 {
698 return skb->len < size_goal &&
699 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 int nonagle, int size_goal)
706 {
707 struct tcp_sock *tp = tcp_sk(sk);
708 struct sk_buff *skb;
709
710 skb = tcp_write_queue_tail(sk);
711 if (!skb)
712 return;
713 if (!(flags & MSG_MORE) || forced_push(tp))
714 tcp_mark_push(tp, skb);
715
716 tcp_mark_urg(tp, flags);
717
718 if (tcp_should_autocork(sk, skb, size_goal)) {
719
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 }
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
727 */
728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 return;
730 }
731
732 if (flags & MSG_MORE)
733 nonagle = TCP_NAGLE_CORK;
734
735 __tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 unsigned int offset, size_t len)
740 {
741 struct tcp_splice_state *tss = rd_desc->arg.data;
742 int ret;
743
744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 min(rd_desc->count, len), tss->flags);
746 if (ret > 0)
747 rd_desc->count -= ret;
748 return ret;
749 }
750
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc = {
755 .arg.data = tss,
756 .count = tss->len,
757 };
758
759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761
762 /**
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
769 *
770 * Description:
771 * Will read pages from given socket and fill them into a pipe.
772 *
773 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777 {
778 struct sock *sk = sock->sk;
779 struct tcp_splice_state tss = {
780 .pipe = pipe,
781 .len = len,
782 .flags = flags,
783 };
784 long timeo;
785 ssize_t spliced;
786 int ret;
787
788 sock_rps_record_flow(sk);
789 /*
790 * We can't seek on a socket input
791 */
792 if (unlikely(*ppos))
793 return -ESPIPE;
794
795 ret = spliced = 0;
796
797 lock_sock(sk);
798
799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 while (tss.len) {
801 ret = __tcp_splice_read(sk, &tss);
802 if (ret < 0)
803 break;
804 else if (!ret) {
805 if (spliced)
806 break;
807 if (sock_flag(sk, SOCK_DONE))
808 break;
809 if (sk->sk_err) {
810 ret = sock_error(sk);
811 break;
812 }
813 if (sk->sk_shutdown & RCV_SHUTDOWN)
814 break;
815 if (sk->sk_state == TCP_CLOSE) {
816 /*
817 * This occurs when user tries to read
818 * from never connected socket.
819 */
820 ret = -ENOTCONN;
821 break;
822 }
823 if (!timeo) {
824 ret = -EAGAIN;
825 break;
826 }
827 /* if __tcp_splice_read() got nothing while we have
828 * an skb in receive queue, we do not want to loop.
829 * This might happen with URG data.
830 */
831 if (!skb_queue_empty(&sk->sk_receive_queue))
832 break;
833 sk_wait_data(sk, &timeo, NULL);
834 if (signal_pending(current)) {
835 ret = sock_intr_errno(timeo);
836 break;
837 }
838 continue;
839 }
840 tss.len -= ret;
841 spliced += ret;
842
843 if (!timeo)
844 break;
845 release_sock(sk);
846 lock_sock(sk);
847
848 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 signal_pending(current))
851 break;
852 }
853
854 release_sock(sk);
855
856 if (spliced)
857 return spliced;
858
859 return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 bool force_schedule)
865 {
866 struct sk_buff *skb;
867
868 /* The TCP header must be at least 32-bit aligned. */
869 size = ALIGN(size, 4);
870
871 if (unlikely(tcp_under_memory_pressure(sk)))
872 sk_mem_reclaim_partial(sk);
873
874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
875 if (likely(skb)) {
876 bool mem_scheduled;
877
878 if (force_schedule) {
879 mem_scheduled = true;
880 sk_forced_mem_schedule(sk, skb->truesize);
881 } else {
882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 }
884 if (likely(mem_scheduled)) {
885 skb_reserve(skb, sk->sk_prot->max_header);
886 /*
887 * Make sure that we have exactly size bytes
888 * available to the caller, no more, no less.
889 */
890 skb->reserved_tailroom = skb->end - skb->tail - size;
891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
892 return skb;
893 }
894 __kfree_skb(skb);
895 } else {
896 sk->sk_prot->enter_memory_pressure(sk);
897 sk_stream_moderate_sndbuf(sk);
898 }
899 return NULL;
900 }
901
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
903 int large_allowed)
904 {
905 struct tcp_sock *tp = tcp_sk(sk);
906 u32 new_size_goal, size_goal;
907
908 if (!large_allowed)
909 return mss_now;
910
911 /* Note : tcp_tso_autosize() will eventually split this later */
912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
914
915 /* We try hard to avoid divides here */
916 size_goal = tp->gso_segs * mss_now;
917 if (unlikely(new_size_goal < size_goal ||
918 new_size_goal >= size_goal + mss_now)) {
919 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
920 sk->sk_gso_max_segs);
921 size_goal = tp->gso_segs * mss_now;
922 }
923
924 return max(size_goal, mss_now);
925 }
926
tcp_send_mss(struct sock * sk,int * size_goal,int flags)927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
928 {
929 int mss_now;
930
931 mss_now = tcp_current_mss(sk);
932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
933
934 return mss_now;
935 }
936
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
938 size_t size, int flags)
939 {
940 struct tcp_sock *tp = tcp_sk(sk);
941 int mss_now, size_goal;
942 int err;
943 ssize_t copied;
944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
945
946 /* Wait for a connection to finish. One exception is TCP Fast Open
947 * (passive side) where data is allowed to be sent before a connection
948 * is fully established.
949 */
950 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
951 !tcp_passive_fastopen(sk)) {
952 err = sk_stream_wait_connect(sk, &timeo);
953 if (err != 0)
954 goto out_err;
955 }
956
957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
958
959 mss_now = tcp_send_mss(sk, &size_goal, flags);
960 copied = 0;
961
962 err = -EPIPE;
963 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
964 goto out_err;
965
966 while (size > 0) {
967 struct sk_buff *skb = tcp_write_queue_tail(sk);
968 int copy, i;
969 bool can_coalesce;
970
971 if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 if (!sk_stream_memory_free(sk))
975 goto wait_for_sndbuf;
976
977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 tcp_rtx_and_write_queues_empty(sk));
979 if (!skb)
980 goto wait_for_memory;
981
982 skb_entail(sk, skb);
983 copy = size_goal;
984 }
985
986 if (copy > size)
987 copy = size;
988
989 i = skb_shinfo(skb)->nr_frags;
990 can_coalesce = skb_can_coalesce(skb, i, page, offset);
991 if (!can_coalesce && i >= sysctl_max_skb_frags) {
992 tcp_mark_push(tp, skb);
993 goto new_segment;
994 }
995 if (!sk_wmem_schedule(sk, copy))
996 goto wait_for_memory;
997
998 if (can_coalesce) {
999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1000 } else {
1001 get_page(page);
1002 skb_fill_page_desc(skb, i, page, offset, copy);
1003 }
1004
1005 if (!(flags & MSG_NO_SHARED_FRAGS))
1006 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1007
1008 skb->len += copy;
1009 skb->data_len += copy;
1010 skb->truesize += copy;
1011 sk->sk_wmem_queued += copy;
1012 sk_mem_charge(sk, copy);
1013 skb->ip_summed = CHECKSUM_PARTIAL;
1014 tp->write_seq += copy;
1015 TCP_SKB_CB(skb)->end_seq += copy;
1016 tcp_skb_pcount_set(skb, 0);
1017
1018 if (!copied)
1019 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1020
1021 copied += copy;
1022 offset += copy;
1023 size -= copy;
1024 if (!size)
1025 goto out;
1026
1027 if (skb->len < size_goal || (flags & MSG_OOB))
1028 continue;
1029
1030 if (forced_push(tp)) {
1031 tcp_mark_push(tp, skb);
1032 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1033 } else if (skb == tcp_send_head(sk))
1034 tcp_push_one(sk, mss_now);
1035 continue;
1036
1037 wait_for_sndbuf:
1038 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1039 wait_for_memory:
1040 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1041 TCP_NAGLE_PUSH, size_goal);
1042
1043 err = sk_stream_wait_memory(sk, &timeo);
1044 if (err != 0)
1045 goto do_error;
1046
1047 mss_now = tcp_send_mss(sk, &size_goal, flags);
1048 }
1049
1050 out:
1051 if (copied) {
1052 tcp_tx_timestamp(sk, sk->sk_tsflags);
1053 if (!(flags & MSG_SENDPAGE_NOTLAST))
1054 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1055 }
1056 return copied;
1057
1058 do_error:
1059 if (copied)
1060 goto out;
1061 out_err:
1062 /* make sure we wake any epoll edge trigger waiter */
1063 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1064 err == -EAGAIN)) {
1065 sk->sk_write_space(sk);
1066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1067 }
1068 return sk_stream_error(sk, flags, err);
1069 }
1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1071
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1072 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1073 size_t size, int flags)
1074 {
1075 if (!(sk->sk_route_caps & NETIF_F_SG))
1076 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1077
1078 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1079
1080 return do_tcp_sendpages(sk, page, offset, size, flags);
1081 }
1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1083
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1085 size_t size, int flags)
1086 {
1087 int ret;
1088
1089 lock_sock(sk);
1090 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1091 release_sock(sk);
1092
1093 return ret;
1094 }
1095 EXPORT_SYMBOL(tcp_sendpage);
1096
1097 /* Do not bother using a page frag for very small frames.
1098 * But use this heuristic only for the first skb in write queue.
1099 *
1100 * Having no payload in skb->head allows better SACK shifting
1101 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1102 * write queue has less skbs.
1103 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1104 * This also speeds up tso_fragment(), since it wont fallback
1105 * to tcp_fragment().
1106 */
linear_payload_sz(bool first_skb)1107 static int linear_payload_sz(bool first_skb)
1108 {
1109 if (first_skb)
1110 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1111 return 0;
1112 }
1113
select_size(bool first_skb,bool zc)1114 static int select_size(bool first_skb, bool zc)
1115 {
1116 if (zc)
1117 return 0;
1118 return linear_payload_sz(first_skb);
1119 }
1120
tcp_free_fastopen_req(struct tcp_sock * tp)1121 void tcp_free_fastopen_req(struct tcp_sock *tp)
1122 {
1123 if (tp->fastopen_req) {
1124 kfree(tp->fastopen_req);
1125 tp->fastopen_req = NULL;
1126 }
1127 }
1128
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1130 int *copied, size_t size)
1131 {
1132 struct tcp_sock *tp = tcp_sk(sk);
1133 struct inet_sock *inet = inet_sk(sk);
1134 struct sockaddr *uaddr = msg->msg_name;
1135 int err, flags;
1136
1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1139 uaddr->sa_family == AF_UNSPEC))
1140 return -EOPNOTSUPP;
1141 if (tp->fastopen_req)
1142 return -EALREADY; /* Another Fast Open is in progress */
1143
1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1145 sk->sk_allocation);
1146 if (unlikely(!tp->fastopen_req))
1147 return -ENOBUFS;
1148 tp->fastopen_req->data = msg;
1149 tp->fastopen_req->size = size;
1150
1151 if (inet->defer_connect) {
1152 err = tcp_connect(sk);
1153 /* Same failure procedure as in tcp_v4/6_connect */
1154 if (err) {
1155 tcp_set_state(sk, TCP_CLOSE);
1156 inet->inet_dport = 0;
1157 sk->sk_route_caps = 0;
1158 }
1159 }
1160 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1161 err = __inet_stream_connect(sk->sk_socket, uaddr,
1162 msg->msg_namelen, flags, 1);
1163 /* fastopen_req could already be freed in __inet_stream_connect
1164 * if the connection times out or gets rst
1165 */
1166 if (tp->fastopen_req) {
1167 *copied = tp->fastopen_req->copied;
1168 tcp_free_fastopen_req(tp);
1169 inet->defer_connect = 0;
1170 }
1171 return err;
1172 }
1173
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1174 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1175 {
1176 struct tcp_sock *tp = tcp_sk(sk);
1177 struct ubuf_info *uarg = NULL;
1178 struct sk_buff *skb;
1179 struct sockcm_cookie sockc;
1180 int flags, err, copied = 0;
1181 int mss_now = 0, size_goal, copied_syn = 0;
1182 bool process_backlog = false;
1183 bool zc = false;
1184 long timeo;
1185
1186 flags = msg->msg_flags;
1187
1188 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1189 if (sk->sk_state != TCP_ESTABLISHED) {
1190 err = -EINVAL;
1191 goto out_err;
1192 }
1193
1194 skb = tcp_write_queue_tail(sk);
1195 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1196 if (!uarg) {
1197 err = -ENOBUFS;
1198 goto out_err;
1199 }
1200
1201 zc = sk->sk_route_caps & NETIF_F_SG;
1202 if (!zc)
1203 uarg->zerocopy = 0;
1204 }
1205
1206 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1207 !tp->repair) {
1208 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1209 if (err == -EINPROGRESS && copied_syn > 0)
1210 goto out;
1211 else if (err)
1212 goto out_err;
1213 }
1214
1215 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1216
1217 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1218
1219 /* Wait for a connection to finish. One exception is TCP Fast Open
1220 * (passive side) where data is allowed to be sent before a connection
1221 * is fully established.
1222 */
1223 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1224 !tcp_passive_fastopen(sk)) {
1225 err = sk_stream_wait_connect(sk, &timeo);
1226 if (err != 0)
1227 goto do_error;
1228 }
1229
1230 if (unlikely(tp->repair)) {
1231 if (tp->repair_queue == TCP_RECV_QUEUE) {
1232 copied = tcp_send_rcvq(sk, msg, size);
1233 goto out_nopush;
1234 }
1235
1236 err = -EINVAL;
1237 if (tp->repair_queue == TCP_NO_QUEUE)
1238 goto out_err;
1239
1240 /* 'common' sending to sendq */
1241 }
1242
1243 sockcm_init(&sockc, sk);
1244 if (msg->msg_controllen) {
1245 err = sock_cmsg_send(sk, msg, &sockc);
1246 if (unlikely(err)) {
1247 err = -EINVAL;
1248 goto out_err;
1249 }
1250 }
1251
1252 /* This should be in poll */
1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1254
1255 /* Ok commence sending. */
1256 copied = 0;
1257
1258 restart:
1259 mss_now = tcp_send_mss(sk, &size_goal, flags);
1260
1261 err = -EPIPE;
1262 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1263 goto do_error;
1264
1265 while (msg_data_left(msg)) {
1266 int copy = 0;
1267
1268 skb = tcp_write_queue_tail(sk);
1269 if (skb)
1270 copy = size_goal - skb->len;
1271
1272 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1273 bool first_skb;
1274 int linear;
1275
1276 new_segment:
1277 if (!sk_stream_memory_free(sk))
1278 goto wait_for_sndbuf;
1279
1280 if (process_backlog && sk_flush_backlog(sk)) {
1281 process_backlog = false;
1282 goto restart;
1283 }
1284 first_skb = tcp_rtx_and_write_queues_empty(sk);
1285 linear = select_size(first_skb, zc);
1286 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1287 first_skb);
1288 if (!skb)
1289 goto wait_for_memory;
1290
1291 process_backlog = true;
1292 skb->ip_summed = CHECKSUM_PARTIAL;
1293
1294 skb_entail(sk, skb);
1295 copy = size_goal;
1296
1297 /* All packets are restored as if they have
1298 * already been sent. skb_mstamp isn't set to
1299 * avoid wrong rtt estimation.
1300 */
1301 if (tp->repair)
1302 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1303 }
1304
1305 /* Try to append data to the end of skb. */
1306 if (copy > msg_data_left(msg))
1307 copy = msg_data_left(msg);
1308
1309 /* Where to copy to? */
1310 if (skb_availroom(skb) > 0 && !zc) {
1311 /* We have some space in skb head. Superb! */
1312 copy = min_t(int, copy, skb_availroom(skb));
1313 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1314 if (err)
1315 goto do_fault;
1316 } else if (!zc) {
1317 bool merge = true;
1318 int i = skb_shinfo(skb)->nr_frags;
1319 struct page_frag *pfrag = sk_page_frag(sk);
1320
1321 if (!sk_page_frag_refill(sk, pfrag))
1322 goto wait_for_memory;
1323
1324 if (!skb_can_coalesce(skb, i, pfrag->page,
1325 pfrag->offset)) {
1326 if (i >= sysctl_max_skb_frags) {
1327 tcp_mark_push(tp, skb);
1328 goto new_segment;
1329 }
1330 merge = false;
1331 }
1332
1333 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1334
1335 if (!sk_wmem_schedule(sk, copy))
1336 goto wait_for_memory;
1337
1338 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1339 pfrag->page,
1340 pfrag->offset,
1341 copy);
1342 if (err)
1343 goto do_error;
1344
1345 /* Update the skb. */
1346 if (merge) {
1347 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1348 } else {
1349 skb_fill_page_desc(skb, i, pfrag->page,
1350 pfrag->offset, copy);
1351 page_ref_inc(pfrag->page);
1352 }
1353 pfrag->offset += copy;
1354 } else {
1355 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1356 if (err == -EMSGSIZE || err == -EEXIST) {
1357 tcp_mark_push(tp, skb);
1358 goto new_segment;
1359 }
1360 if (err < 0)
1361 goto do_error;
1362 copy = err;
1363 }
1364
1365 if (!copied)
1366 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1367
1368 tp->write_seq += copy;
1369 TCP_SKB_CB(skb)->end_seq += copy;
1370 tcp_skb_pcount_set(skb, 0);
1371
1372 copied += copy;
1373 if (!msg_data_left(msg)) {
1374 if (unlikely(flags & MSG_EOR))
1375 TCP_SKB_CB(skb)->eor = 1;
1376 goto out;
1377 }
1378
1379 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1380 continue;
1381
1382 if (forced_push(tp)) {
1383 tcp_mark_push(tp, skb);
1384 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1385 } else if (skb == tcp_send_head(sk))
1386 tcp_push_one(sk, mss_now);
1387 continue;
1388
1389 wait_for_sndbuf:
1390 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1391 wait_for_memory:
1392 if (copied)
1393 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1394 TCP_NAGLE_PUSH, size_goal);
1395
1396 err = sk_stream_wait_memory(sk, &timeo);
1397 if (err != 0)
1398 goto do_error;
1399
1400 mss_now = tcp_send_mss(sk, &size_goal, flags);
1401 }
1402
1403 out:
1404 if (copied) {
1405 tcp_tx_timestamp(sk, sockc.tsflags);
1406 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1407 }
1408 out_nopush:
1409 sock_zerocopy_put(uarg);
1410 return copied + copied_syn;
1411
1412 do_fault:
1413 if (!skb->len) {
1414 tcp_unlink_write_queue(skb, sk);
1415 /* It is the one place in all of TCP, except connection
1416 * reset, where we can be unlinking the send_head.
1417 */
1418 tcp_check_send_head(sk, skb);
1419 sk_wmem_free_skb(sk, skb);
1420 }
1421
1422 do_error:
1423 if (copied + copied_syn)
1424 goto out;
1425 out_err:
1426 sock_zerocopy_put_abort(uarg);
1427 err = sk_stream_error(sk, flags, err);
1428 /* make sure we wake any epoll edge trigger waiter */
1429 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1430 err == -EAGAIN)) {
1431 sk->sk_write_space(sk);
1432 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1433 }
1434 return err;
1435 }
1436 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1437
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1438 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1439 {
1440 int ret;
1441
1442 lock_sock(sk);
1443 ret = tcp_sendmsg_locked(sk, msg, size);
1444 release_sock(sk);
1445
1446 return ret;
1447 }
1448 EXPORT_SYMBOL(tcp_sendmsg);
1449
1450 /*
1451 * Handle reading urgent data. BSD has very simple semantics for
1452 * this, no blocking and very strange errors 8)
1453 */
1454
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1455 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1456 {
1457 struct tcp_sock *tp = tcp_sk(sk);
1458
1459 /* No URG data to read. */
1460 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1461 tp->urg_data == TCP_URG_READ)
1462 return -EINVAL; /* Yes this is right ! */
1463
1464 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1465 return -ENOTCONN;
1466
1467 if (tp->urg_data & TCP_URG_VALID) {
1468 int err = 0;
1469 char c = tp->urg_data;
1470
1471 if (!(flags & MSG_PEEK))
1472 tp->urg_data = TCP_URG_READ;
1473
1474 /* Read urgent data. */
1475 msg->msg_flags |= MSG_OOB;
1476
1477 if (len > 0) {
1478 if (!(flags & MSG_TRUNC))
1479 err = memcpy_to_msg(msg, &c, 1);
1480 len = 1;
1481 } else
1482 msg->msg_flags |= MSG_TRUNC;
1483
1484 return err ? -EFAULT : len;
1485 }
1486
1487 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1488 return 0;
1489
1490 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1491 * the available implementations agree in this case:
1492 * this call should never block, independent of the
1493 * blocking state of the socket.
1494 * Mike <pall@rz.uni-karlsruhe.de>
1495 */
1496 return -EAGAIN;
1497 }
1498
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1499 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1500 {
1501 struct sk_buff *skb;
1502 int copied = 0, err = 0;
1503
1504 /* XXX -- need to support SO_PEEK_OFF */
1505
1506 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1508 if (err)
1509 return err;
1510 copied += skb->len;
1511 }
1512
1513 skb_queue_walk(&sk->sk_write_queue, skb) {
1514 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1515 if (err)
1516 break;
1517
1518 copied += skb->len;
1519 }
1520
1521 return err ?: copied;
1522 }
1523
1524 /* Clean up the receive buffer for full frames taken by the user,
1525 * then send an ACK if necessary. COPIED is the number of bytes
1526 * tcp_recvmsg has given to the user so far, it speeds up the
1527 * calculation of whether or not we must ACK for the sake of
1528 * a window update.
1529 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1530 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1531 {
1532 struct tcp_sock *tp = tcp_sk(sk);
1533 bool time_to_ack = false;
1534
1535 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1536
1537 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1538 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1539 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1540
1541 if (inet_csk_ack_scheduled(sk)) {
1542 const struct inet_connection_sock *icsk = inet_csk(sk);
1543 /* Delayed ACKs frequently hit locked sockets during bulk
1544 * receive. */
1545 if (icsk->icsk_ack.blocked ||
1546 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1547 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1548 /*
1549 * If this read emptied read buffer, we send ACK, if
1550 * connection is not bidirectional, user drained
1551 * receive buffer and there was a small segment
1552 * in queue.
1553 */
1554 (copied > 0 &&
1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1556 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1557 !icsk->icsk_ack.pingpong)) &&
1558 !atomic_read(&sk->sk_rmem_alloc)))
1559 time_to_ack = true;
1560 }
1561
1562 /* We send an ACK if we can now advertise a non-zero window
1563 * which has been raised "significantly".
1564 *
1565 * Even if window raised up to infinity, do not send window open ACK
1566 * in states, where we will not receive more. It is useless.
1567 */
1568 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1569 __u32 rcv_window_now = tcp_receive_window(tp);
1570
1571 /* Optimize, __tcp_select_window() is not cheap. */
1572 if (2*rcv_window_now <= tp->window_clamp) {
1573 __u32 new_window = __tcp_select_window(sk);
1574
1575 /* Send ACK now, if this read freed lots of space
1576 * in our buffer. Certainly, new_window is new window.
1577 * We can advertise it now, if it is not less than current one.
1578 * "Lots" means "at least twice" here.
1579 */
1580 if (new_window && new_window >= 2 * rcv_window_now)
1581 time_to_ack = true;
1582 }
1583 }
1584 if (time_to_ack)
1585 tcp_send_ack(sk);
1586 }
1587
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1588 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1589 {
1590 struct sk_buff *skb;
1591 u32 offset;
1592
1593 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1594 offset = seq - TCP_SKB_CB(skb)->seq;
1595 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1596 pr_err_once("%s: found a SYN, please report !\n", __func__);
1597 offset--;
1598 }
1599 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1600 *off = offset;
1601 return skb;
1602 }
1603 /* This looks weird, but this can happen if TCP collapsing
1604 * splitted a fat GRO packet, while we released socket lock
1605 * in skb_splice_bits()
1606 */
1607 sk_eat_skb(sk, skb);
1608 }
1609 return NULL;
1610 }
1611
1612 /*
1613 * This routine provides an alternative to tcp_recvmsg() for routines
1614 * that would like to handle copying from skbuffs directly in 'sendfile'
1615 * fashion.
1616 * Note:
1617 * - It is assumed that the socket was locked by the caller.
1618 * - The routine does not block.
1619 * - At present, there is no support for reading OOB data
1620 * or for 'peeking' the socket using this routine
1621 * (although both would be easy to implement).
1622 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1623 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1624 sk_read_actor_t recv_actor)
1625 {
1626 struct sk_buff *skb;
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 u32 seq = tp->copied_seq;
1629 u32 offset;
1630 int copied = 0;
1631
1632 if (sk->sk_state == TCP_LISTEN)
1633 return -ENOTCONN;
1634 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1635 if (offset < skb->len) {
1636 int used;
1637 size_t len;
1638
1639 len = skb->len - offset;
1640 /* Stop reading if we hit a patch of urgent data */
1641 if (tp->urg_data) {
1642 u32 urg_offset = tp->urg_seq - seq;
1643 if (urg_offset < len)
1644 len = urg_offset;
1645 if (!len)
1646 break;
1647 }
1648 used = recv_actor(desc, skb, offset, len);
1649 if (used <= 0) {
1650 if (!copied)
1651 copied = used;
1652 break;
1653 } else if (used <= len) {
1654 seq += used;
1655 copied += used;
1656 offset += used;
1657 }
1658 /* If recv_actor drops the lock (e.g. TCP splice
1659 * receive) the skb pointer might be invalid when
1660 * getting here: tcp_collapse might have deleted it
1661 * while aggregating skbs from the socket queue.
1662 */
1663 skb = tcp_recv_skb(sk, seq - 1, &offset);
1664 if (!skb)
1665 break;
1666 /* TCP coalescing might have appended data to the skb.
1667 * Try to splice more frags
1668 */
1669 if (offset + 1 != skb->len)
1670 continue;
1671 }
1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1673 sk_eat_skb(sk, skb);
1674 ++seq;
1675 break;
1676 }
1677 sk_eat_skb(sk, skb);
1678 if (!desc->count)
1679 break;
1680 tp->copied_seq = seq;
1681 }
1682 tp->copied_seq = seq;
1683
1684 tcp_rcv_space_adjust(sk);
1685
1686 /* Clean up data we have read: This will do ACK frames. */
1687 if (copied > 0) {
1688 tcp_recv_skb(sk, seq, &offset);
1689 tcp_cleanup_rbuf(sk, copied);
1690 }
1691 return copied;
1692 }
1693 EXPORT_SYMBOL(tcp_read_sock);
1694
tcp_peek_len(struct socket * sock)1695 int tcp_peek_len(struct socket *sock)
1696 {
1697 return tcp_inq(sock->sk);
1698 }
1699 EXPORT_SYMBOL(tcp_peek_len);
1700
1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1702 int tcp_set_rcvlowat(struct sock *sk, int val)
1703 {
1704 int cap;
1705
1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 cap = sk->sk_rcvbuf >> 1;
1708 else
1709 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1710 val = min(val, cap);
1711 sk->sk_rcvlowat = val ? : 1;
1712
1713 /* Check if we need to signal EPOLLIN right now */
1714 tcp_data_ready(sk);
1715
1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1717 return 0;
1718
1719 val <<= 1;
1720 if (val > sk->sk_rcvbuf) {
1721 sk->sk_rcvbuf = val;
1722 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1723 }
1724 return 0;
1725 }
1726 EXPORT_SYMBOL(tcp_set_rcvlowat);
1727
1728 #ifdef CONFIG_MMU
1729 static const struct vm_operations_struct tcp_vm_ops = {
1730 };
1731
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1732 int tcp_mmap(struct file *file, struct socket *sock,
1733 struct vm_area_struct *vma)
1734 {
1735 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1736 return -EPERM;
1737 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1738
1739 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1740 vma->vm_flags |= VM_MIXEDMAP;
1741
1742 vma->vm_ops = &tcp_vm_ops;
1743 return 0;
1744 }
1745 EXPORT_SYMBOL(tcp_mmap);
1746
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1747 static int tcp_zerocopy_receive(struct sock *sk,
1748 struct tcp_zerocopy_receive *zc)
1749 {
1750 unsigned long address = (unsigned long)zc->address;
1751 const skb_frag_t *frags = NULL;
1752 u32 length = 0, seq, offset;
1753 struct vm_area_struct *vma;
1754 struct sk_buff *skb = NULL;
1755 struct tcp_sock *tp;
1756 int ret;
1757
1758 if (address & (PAGE_SIZE - 1) || address != zc->address)
1759 return -EINVAL;
1760
1761 if (sk->sk_state == TCP_LISTEN)
1762 return -ENOTCONN;
1763
1764 sock_rps_record_flow(sk);
1765
1766 down_read(¤t->mm->mmap_sem);
1767
1768 ret = -EINVAL;
1769 vma = find_vma(current->mm, address);
1770 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1771 goto out;
1772 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1773
1774 tp = tcp_sk(sk);
1775 seq = tp->copied_seq;
1776 zc->length = min_t(u32, zc->length, tcp_inq(sk));
1777 zc->length &= ~(PAGE_SIZE - 1);
1778
1779 zap_page_range(vma, address, zc->length);
1780
1781 zc->recv_skip_hint = 0;
1782 ret = 0;
1783 while (length + PAGE_SIZE <= zc->length) {
1784 if (zc->recv_skip_hint < PAGE_SIZE) {
1785 if (skb) {
1786 skb = skb->next;
1787 offset = seq - TCP_SKB_CB(skb)->seq;
1788 } else {
1789 skb = tcp_recv_skb(sk, seq, &offset);
1790 }
1791
1792 zc->recv_skip_hint = skb->len - offset;
1793 offset -= skb_headlen(skb);
1794 if ((int)offset < 0 || skb_has_frag_list(skb))
1795 break;
1796 frags = skb_shinfo(skb)->frags;
1797 while (offset) {
1798 if (frags->size > offset)
1799 goto out;
1800 offset -= frags->size;
1801 frags++;
1802 }
1803 }
1804 if (frags->size != PAGE_SIZE || frags->page_offset)
1805 break;
1806 ret = vm_insert_page(vma, address + length,
1807 skb_frag_page(frags));
1808 if (ret)
1809 break;
1810 length += PAGE_SIZE;
1811 seq += PAGE_SIZE;
1812 zc->recv_skip_hint -= PAGE_SIZE;
1813 frags++;
1814 }
1815 out:
1816 up_read(¤t->mm->mmap_sem);
1817 if (length) {
1818 tp->copied_seq = seq;
1819 tcp_rcv_space_adjust(sk);
1820
1821 /* Clean up data we have read: This will do ACK frames. */
1822 tcp_recv_skb(sk, seq, &offset);
1823 tcp_cleanup_rbuf(sk, length);
1824 ret = 0;
1825 if (length == zc->length)
1826 zc->recv_skip_hint = 0;
1827 } else {
1828 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1829 ret = -EIO;
1830 }
1831 zc->length = length;
1832 return ret;
1833 }
1834 #endif
1835
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping * tss)1836 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1837 struct scm_timestamping *tss)
1838 {
1839 if (skb->tstamp)
1840 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1841 else
1842 tss->ts[0] = (struct timespec) {0};
1843
1844 if (skb_hwtstamps(skb)->hwtstamp)
1845 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1846 else
1847 tss->ts[2] = (struct timespec) {0};
1848 }
1849
1850 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping * tss)1851 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1852 struct scm_timestamping *tss)
1853 {
1854 struct timeval tv;
1855 bool has_timestamping = false;
1856
1857 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1858 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1859 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1860 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1861 sizeof(tss->ts[0]), &tss->ts[0]);
1862 } else {
1863 tv.tv_sec = tss->ts[0].tv_sec;
1864 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1865
1866 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1867 sizeof(tv), &tv);
1868 }
1869 }
1870
1871 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1872 has_timestamping = true;
1873 else
1874 tss->ts[0] = (struct timespec) {0};
1875 }
1876
1877 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1878 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1879 has_timestamping = true;
1880 else
1881 tss->ts[2] = (struct timespec) {0};
1882 }
1883
1884 if (has_timestamping) {
1885 tss->ts[1] = (struct timespec) {0};
1886 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1887 sizeof(*tss), tss);
1888 }
1889 }
1890
tcp_inq_hint(struct sock * sk)1891 static int tcp_inq_hint(struct sock *sk)
1892 {
1893 const struct tcp_sock *tp = tcp_sk(sk);
1894 u32 copied_seq = READ_ONCE(tp->copied_seq);
1895 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1896 int inq;
1897
1898 inq = rcv_nxt - copied_seq;
1899 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1900 lock_sock(sk);
1901 inq = tp->rcv_nxt - tp->copied_seq;
1902 release_sock(sk);
1903 }
1904 return inq;
1905 }
1906
1907 /*
1908 * This routine copies from a sock struct into the user buffer.
1909 *
1910 * Technical note: in 2.3 we work on _locked_ socket, so that
1911 * tricks with *seq access order and skb->users are not required.
1912 * Probably, code can be easily improved even more.
1913 */
1914
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1915 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1916 int flags, int *addr_len)
1917 {
1918 struct tcp_sock *tp = tcp_sk(sk);
1919 int copied = 0;
1920 u32 peek_seq;
1921 u32 *seq;
1922 unsigned long used;
1923 int err, inq;
1924 int target; /* Read at least this many bytes */
1925 long timeo;
1926 struct sk_buff *skb, *last;
1927 u32 urg_hole = 0;
1928 struct scm_timestamping tss;
1929 bool has_tss = false;
1930 bool has_cmsg;
1931
1932 if (unlikely(flags & MSG_ERRQUEUE))
1933 return inet_recv_error(sk, msg, len, addr_len);
1934
1935 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1936 (sk->sk_state == TCP_ESTABLISHED))
1937 sk_busy_loop(sk, nonblock);
1938
1939 lock_sock(sk);
1940
1941 err = -ENOTCONN;
1942 if (sk->sk_state == TCP_LISTEN)
1943 goto out;
1944
1945 has_cmsg = tp->recvmsg_inq;
1946 timeo = sock_rcvtimeo(sk, nonblock);
1947
1948 /* Urgent data needs to be handled specially. */
1949 if (flags & MSG_OOB)
1950 goto recv_urg;
1951
1952 if (unlikely(tp->repair)) {
1953 err = -EPERM;
1954 if (!(flags & MSG_PEEK))
1955 goto out;
1956
1957 if (tp->repair_queue == TCP_SEND_QUEUE)
1958 goto recv_sndq;
1959
1960 err = -EINVAL;
1961 if (tp->repair_queue == TCP_NO_QUEUE)
1962 goto out;
1963
1964 /* 'common' recv queue MSG_PEEK-ing */
1965 }
1966
1967 seq = &tp->copied_seq;
1968 if (flags & MSG_PEEK) {
1969 peek_seq = tp->copied_seq;
1970 seq = &peek_seq;
1971 }
1972
1973 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1974
1975 do {
1976 u32 offset;
1977
1978 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1979 if (tp->urg_data && tp->urg_seq == *seq) {
1980 if (copied)
1981 break;
1982 if (signal_pending(current)) {
1983 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1984 break;
1985 }
1986 }
1987
1988 /* Next get a buffer. */
1989
1990 last = skb_peek_tail(&sk->sk_receive_queue);
1991 skb_queue_walk(&sk->sk_receive_queue, skb) {
1992 last = skb;
1993 /* Now that we have two receive queues this
1994 * shouldn't happen.
1995 */
1996 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1997 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1998 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1999 flags))
2000 break;
2001
2002 offset = *seq - TCP_SKB_CB(skb)->seq;
2003 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2004 pr_err_once("%s: found a SYN, please report !\n", __func__);
2005 offset--;
2006 }
2007 if (offset < skb->len)
2008 goto found_ok_skb;
2009 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2010 goto found_fin_ok;
2011 WARN(!(flags & MSG_PEEK),
2012 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2013 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2014 }
2015
2016 /* Well, if we have backlog, try to process it now yet. */
2017
2018 if (copied >= target && !sk->sk_backlog.tail)
2019 break;
2020
2021 if (copied) {
2022 if (sk->sk_err ||
2023 sk->sk_state == TCP_CLOSE ||
2024 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2025 !timeo ||
2026 signal_pending(current))
2027 break;
2028 } else {
2029 if (sock_flag(sk, SOCK_DONE))
2030 break;
2031
2032 if (sk->sk_err) {
2033 copied = sock_error(sk);
2034 break;
2035 }
2036
2037 if (sk->sk_shutdown & RCV_SHUTDOWN)
2038 break;
2039
2040 if (sk->sk_state == TCP_CLOSE) {
2041 /* This occurs when user tries to read
2042 * from never connected socket.
2043 */
2044 copied = -ENOTCONN;
2045 break;
2046 }
2047
2048 if (!timeo) {
2049 copied = -EAGAIN;
2050 break;
2051 }
2052
2053 if (signal_pending(current)) {
2054 copied = sock_intr_errno(timeo);
2055 break;
2056 }
2057 }
2058
2059 tcp_cleanup_rbuf(sk, copied);
2060
2061 if (copied >= target) {
2062 /* Do not sleep, just process backlog. */
2063 release_sock(sk);
2064 lock_sock(sk);
2065 } else {
2066 sk_wait_data(sk, &timeo, last);
2067 }
2068
2069 if ((flags & MSG_PEEK) &&
2070 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2071 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2072 current->comm,
2073 task_pid_nr(current));
2074 peek_seq = tp->copied_seq;
2075 }
2076 continue;
2077
2078 found_ok_skb:
2079 /* Ok so how much can we use? */
2080 used = skb->len - offset;
2081 if (len < used)
2082 used = len;
2083
2084 /* Do we have urgent data here? */
2085 if (tp->urg_data) {
2086 u32 urg_offset = tp->urg_seq - *seq;
2087 if (urg_offset < used) {
2088 if (!urg_offset) {
2089 if (!sock_flag(sk, SOCK_URGINLINE)) {
2090 ++*seq;
2091 urg_hole++;
2092 offset++;
2093 used--;
2094 if (!used)
2095 goto skip_copy;
2096 }
2097 } else
2098 used = urg_offset;
2099 }
2100 }
2101
2102 if (!(flags & MSG_TRUNC)) {
2103 err = skb_copy_datagram_msg(skb, offset, msg, used);
2104 if (err) {
2105 /* Exception. Bailout! */
2106 if (!copied)
2107 copied = -EFAULT;
2108 break;
2109 }
2110 }
2111
2112 *seq += used;
2113 copied += used;
2114 len -= used;
2115
2116 tcp_rcv_space_adjust(sk);
2117
2118 skip_copy:
2119 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2120 tp->urg_data = 0;
2121 tcp_fast_path_check(sk);
2122 }
2123 if (used + offset < skb->len)
2124 continue;
2125
2126 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2127 tcp_update_recv_tstamps(skb, &tss);
2128 has_tss = true;
2129 has_cmsg = true;
2130 }
2131 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2132 goto found_fin_ok;
2133 if (!(flags & MSG_PEEK))
2134 sk_eat_skb(sk, skb);
2135 continue;
2136
2137 found_fin_ok:
2138 /* Process the FIN. */
2139 ++*seq;
2140 if (!(flags & MSG_PEEK))
2141 sk_eat_skb(sk, skb);
2142 break;
2143 } while (len > 0);
2144
2145 /* According to UNIX98, msg_name/msg_namelen are ignored
2146 * on connected socket. I was just happy when found this 8) --ANK
2147 */
2148
2149 /* Clean up data we have read: This will do ACK frames. */
2150 tcp_cleanup_rbuf(sk, copied);
2151
2152 release_sock(sk);
2153
2154 if (has_cmsg) {
2155 if (has_tss)
2156 tcp_recv_timestamp(msg, sk, &tss);
2157 if (tp->recvmsg_inq) {
2158 inq = tcp_inq_hint(sk);
2159 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2160 }
2161 }
2162
2163 return copied;
2164
2165 out:
2166 release_sock(sk);
2167 return err;
2168
2169 recv_urg:
2170 err = tcp_recv_urg(sk, msg, len, flags);
2171 goto out;
2172
2173 recv_sndq:
2174 err = tcp_peek_sndq(sk, msg, len);
2175 goto out;
2176 }
2177 EXPORT_SYMBOL(tcp_recvmsg);
2178
tcp_set_state(struct sock * sk,int state)2179 void tcp_set_state(struct sock *sk, int state)
2180 {
2181 int oldstate = sk->sk_state;
2182
2183 /* We defined a new enum for TCP states that are exported in BPF
2184 * so as not force the internal TCP states to be frozen. The
2185 * following checks will detect if an internal state value ever
2186 * differs from the BPF value. If this ever happens, then we will
2187 * need to remap the internal value to the BPF value before calling
2188 * tcp_call_bpf_2arg.
2189 */
2190 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2191 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2192 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2193 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2194 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2195 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2196 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2197 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2198 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2199 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2200 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2201 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2202 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2203
2204 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2205 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2206
2207 switch (state) {
2208 case TCP_ESTABLISHED:
2209 if (oldstate != TCP_ESTABLISHED)
2210 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2211 break;
2212
2213 case TCP_CLOSE:
2214 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2215 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2216
2217 sk->sk_prot->unhash(sk);
2218 if (inet_csk(sk)->icsk_bind_hash &&
2219 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2220 inet_put_port(sk);
2221 /* fall through */
2222 default:
2223 if (oldstate == TCP_ESTABLISHED)
2224 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2225 }
2226
2227 /* Change state AFTER socket is unhashed to avoid closed
2228 * socket sitting in hash tables.
2229 */
2230 inet_sk_state_store(sk, state);
2231
2232 #ifdef STATE_TRACE
2233 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2234 #endif
2235 }
2236 EXPORT_SYMBOL_GPL(tcp_set_state);
2237
2238 /*
2239 * State processing on a close. This implements the state shift for
2240 * sending our FIN frame. Note that we only send a FIN for some
2241 * states. A shutdown() may have already sent the FIN, or we may be
2242 * closed.
2243 */
2244
2245 static const unsigned char new_state[16] = {
2246 /* current state: new state: action: */
2247 [0 /* (Invalid) */] = TCP_CLOSE,
2248 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2249 [TCP_SYN_SENT] = TCP_CLOSE,
2250 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2251 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2252 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2253 [TCP_TIME_WAIT] = TCP_CLOSE,
2254 [TCP_CLOSE] = TCP_CLOSE,
2255 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2256 [TCP_LAST_ACK] = TCP_LAST_ACK,
2257 [TCP_LISTEN] = TCP_CLOSE,
2258 [TCP_CLOSING] = TCP_CLOSING,
2259 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2260 };
2261
tcp_close_state(struct sock * sk)2262 static int tcp_close_state(struct sock *sk)
2263 {
2264 int next = (int)new_state[sk->sk_state];
2265 int ns = next & TCP_STATE_MASK;
2266
2267 tcp_set_state(sk, ns);
2268
2269 return next & TCP_ACTION_FIN;
2270 }
2271
2272 /*
2273 * Shutdown the sending side of a connection. Much like close except
2274 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2275 */
2276
tcp_shutdown(struct sock * sk,int how)2277 void tcp_shutdown(struct sock *sk, int how)
2278 {
2279 /* We need to grab some memory, and put together a FIN,
2280 * and then put it into the queue to be sent.
2281 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2282 */
2283 if (!(how & SEND_SHUTDOWN))
2284 return;
2285
2286 /* If we've already sent a FIN, or it's a closed state, skip this. */
2287 if ((1 << sk->sk_state) &
2288 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2289 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2290 /* Clear out any half completed packets. FIN if needed. */
2291 if (tcp_close_state(sk))
2292 tcp_send_fin(sk);
2293 }
2294 }
2295 EXPORT_SYMBOL(tcp_shutdown);
2296
tcp_check_oom(struct sock * sk,int shift)2297 bool tcp_check_oom(struct sock *sk, int shift)
2298 {
2299 bool too_many_orphans, out_of_socket_memory;
2300
2301 too_many_orphans = tcp_too_many_orphans(sk, shift);
2302 out_of_socket_memory = tcp_out_of_memory(sk);
2303
2304 if (too_many_orphans)
2305 net_info_ratelimited("too many orphaned sockets\n");
2306 if (out_of_socket_memory)
2307 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2308 return too_many_orphans || out_of_socket_memory;
2309 }
2310
tcp_close(struct sock * sk,long timeout)2311 void tcp_close(struct sock *sk, long timeout)
2312 {
2313 struct sk_buff *skb;
2314 int data_was_unread = 0;
2315 int state;
2316
2317 lock_sock(sk);
2318 sk->sk_shutdown = SHUTDOWN_MASK;
2319
2320 if (sk->sk_state == TCP_LISTEN) {
2321 tcp_set_state(sk, TCP_CLOSE);
2322
2323 /* Special case. */
2324 inet_csk_listen_stop(sk);
2325
2326 goto adjudge_to_death;
2327 }
2328
2329 /* We need to flush the recv. buffs. We do this only on the
2330 * descriptor close, not protocol-sourced closes, because the
2331 * reader process may not have drained the data yet!
2332 */
2333 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2334 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2335
2336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2337 len--;
2338 data_was_unread += len;
2339 __kfree_skb(skb);
2340 }
2341
2342 sk_mem_reclaim(sk);
2343
2344 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2345 if (sk->sk_state == TCP_CLOSE)
2346 goto adjudge_to_death;
2347
2348 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2349 * data was lost. To witness the awful effects of the old behavior of
2350 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2351 * GET in an FTP client, suspend the process, wait for the client to
2352 * advertise a zero window, then kill -9 the FTP client, wheee...
2353 * Note: timeout is always zero in such a case.
2354 */
2355 if (unlikely(tcp_sk(sk)->repair)) {
2356 sk->sk_prot->disconnect(sk, 0);
2357 } else if (data_was_unread) {
2358 /* Unread data was tossed, zap the connection. */
2359 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2360 tcp_set_state(sk, TCP_CLOSE);
2361 tcp_send_active_reset(sk, sk->sk_allocation);
2362 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2363 /* Check zero linger _after_ checking for unread data. */
2364 sk->sk_prot->disconnect(sk, 0);
2365 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2366 } else if (tcp_close_state(sk)) {
2367 /* We FIN if the application ate all the data before
2368 * zapping the connection.
2369 */
2370
2371 /* RED-PEN. Formally speaking, we have broken TCP state
2372 * machine. State transitions:
2373 *
2374 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2375 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2376 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2377 *
2378 * are legal only when FIN has been sent (i.e. in window),
2379 * rather than queued out of window. Purists blame.
2380 *
2381 * F.e. "RFC state" is ESTABLISHED,
2382 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2383 *
2384 * The visible declinations are that sometimes
2385 * we enter time-wait state, when it is not required really
2386 * (harmless), do not send active resets, when they are
2387 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2388 * they look as CLOSING or LAST_ACK for Linux)
2389 * Probably, I missed some more holelets.
2390 * --ANK
2391 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2392 * in a single packet! (May consider it later but will
2393 * probably need API support or TCP_CORK SYN-ACK until
2394 * data is written and socket is closed.)
2395 */
2396 tcp_send_fin(sk);
2397 }
2398
2399 sk_stream_wait_close(sk, timeout);
2400
2401 adjudge_to_death:
2402 state = sk->sk_state;
2403 sock_hold(sk);
2404 sock_orphan(sk);
2405
2406 /* It is the last release_sock in its life. It will remove backlog. */
2407 release_sock(sk);
2408
2409
2410 /* Now socket is owned by kernel and we acquire BH lock
2411 * to finish close. No need to check for user refs.
2412 */
2413 local_bh_disable();
2414 bh_lock_sock(sk);
2415 WARN_ON(sock_owned_by_user(sk));
2416
2417 percpu_counter_inc(sk->sk_prot->orphan_count);
2418
2419 /* Have we already been destroyed by a softirq or backlog? */
2420 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2421 goto out;
2422
2423 /* This is a (useful) BSD violating of the RFC. There is a
2424 * problem with TCP as specified in that the other end could
2425 * keep a socket open forever with no application left this end.
2426 * We use a 1 minute timeout (about the same as BSD) then kill
2427 * our end. If they send after that then tough - BUT: long enough
2428 * that we won't make the old 4*rto = almost no time - whoops
2429 * reset mistake.
2430 *
2431 * Nope, it was not mistake. It is really desired behaviour
2432 * f.e. on http servers, when such sockets are useless, but
2433 * consume significant resources. Let's do it with special
2434 * linger2 option. --ANK
2435 */
2436
2437 if (sk->sk_state == TCP_FIN_WAIT2) {
2438 struct tcp_sock *tp = tcp_sk(sk);
2439 if (tp->linger2 < 0) {
2440 tcp_set_state(sk, TCP_CLOSE);
2441 tcp_send_active_reset(sk, GFP_ATOMIC);
2442 __NET_INC_STATS(sock_net(sk),
2443 LINUX_MIB_TCPABORTONLINGER);
2444 } else {
2445 const int tmo = tcp_fin_time(sk);
2446
2447 if (tmo > TCP_TIMEWAIT_LEN) {
2448 inet_csk_reset_keepalive_timer(sk,
2449 tmo - TCP_TIMEWAIT_LEN);
2450 } else {
2451 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2452 goto out;
2453 }
2454 }
2455 }
2456 if (sk->sk_state != TCP_CLOSE) {
2457 sk_mem_reclaim(sk);
2458 if (tcp_check_oom(sk, 0)) {
2459 tcp_set_state(sk, TCP_CLOSE);
2460 tcp_send_active_reset(sk, GFP_ATOMIC);
2461 __NET_INC_STATS(sock_net(sk),
2462 LINUX_MIB_TCPABORTONMEMORY);
2463 } else if (!check_net(sock_net(sk))) {
2464 /* Not possible to send reset; just close */
2465 tcp_set_state(sk, TCP_CLOSE);
2466 }
2467 }
2468
2469 if (sk->sk_state == TCP_CLOSE) {
2470 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2471 /* We could get here with a non-NULL req if the socket is
2472 * aborted (e.g., closed with unread data) before 3WHS
2473 * finishes.
2474 */
2475 if (req)
2476 reqsk_fastopen_remove(sk, req, false);
2477 inet_csk_destroy_sock(sk);
2478 }
2479 /* Otherwise, socket is reprieved until protocol close. */
2480
2481 out:
2482 bh_unlock_sock(sk);
2483 local_bh_enable();
2484 sock_put(sk);
2485 }
2486 EXPORT_SYMBOL(tcp_close);
2487
2488 /* These states need RST on ABORT according to RFC793 */
2489
tcp_need_reset(int state)2490 static inline bool tcp_need_reset(int state)
2491 {
2492 return (1 << state) &
2493 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2494 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2495 }
2496
tcp_rtx_queue_purge(struct sock * sk)2497 static void tcp_rtx_queue_purge(struct sock *sk)
2498 {
2499 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2500
2501 while (p) {
2502 struct sk_buff *skb = rb_to_skb(p);
2503
2504 p = rb_next(p);
2505 /* Since we are deleting whole queue, no need to
2506 * list_del(&skb->tcp_tsorted_anchor)
2507 */
2508 tcp_rtx_queue_unlink(skb, sk);
2509 sk_wmem_free_skb(sk, skb);
2510 }
2511 }
2512
tcp_write_queue_purge(struct sock * sk)2513 void tcp_write_queue_purge(struct sock *sk)
2514 {
2515 struct sk_buff *skb;
2516
2517 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2518 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2519 tcp_skb_tsorted_anchor_cleanup(skb);
2520 sk_wmem_free_skb(sk, skb);
2521 }
2522 tcp_rtx_queue_purge(sk);
2523 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2524 sk_mem_reclaim(sk);
2525 tcp_clear_all_retrans_hints(tcp_sk(sk));
2526 tcp_sk(sk)->packets_out = 0;
2527 }
2528
tcp_disconnect(struct sock * sk,int flags)2529 int tcp_disconnect(struct sock *sk, int flags)
2530 {
2531 struct inet_sock *inet = inet_sk(sk);
2532 struct inet_connection_sock *icsk = inet_csk(sk);
2533 struct tcp_sock *tp = tcp_sk(sk);
2534 int old_state = sk->sk_state;
2535
2536 if (old_state != TCP_CLOSE)
2537 tcp_set_state(sk, TCP_CLOSE);
2538
2539 /* ABORT function of RFC793 */
2540 if (old_state == TCP_LISTEN) {
2541 inet_csk_listen_stop(sk);
2542 } else if (unlikely(tp->repair)) {
2543 sk->sk_err = ECONNABORTED;
2544 } else if (tcp_need_reset(old_state) ||
2545 (tp->snd_nxt != tp->write_seq &&
2546 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2547 /* The last check adjusts for discrepancy of Linux wrt. RFC
2548 * states
2549 */
2550 tcp_send_active_reset(sk, gfp_any());
2551 sk->sk_err = ECONNRESET;
2552 } else if (old_state == TCP_SYN_SENT)
2553 sk->sk_err = ECONNRESET;
2554
2555 tcp_clear_xmit_timers(sk);
2556 __skb_queue_purge(&sk->sk_receive_queue);
2557 tp->copied_seq = tp->rcv_nxt;
2558 tp->urg_data = 0;
2559 tcp_write_queue_purge(sk);
2560 tcp_fastopen_active_disable_ofo_check(sk);
2561 skb_rbtree_purge(&tp->out_of_order_queue);
2562
2563 inet->inet_dport = 0;
2564
2565 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2566 inet_reset_saddr(sk);
2567
2568 sk->sk_shutdown = 0;
2569 sock_reset_flag(sk, SOCK_DONE);
2570 tp->srtt_us = 0;
2571 tp->rcv_rtt_last_tsecr = 0;
2572 tp->write_seq += tp->max_window + 2;
2573 if (tp->write_seq == 0)
2574 tp->write_seq = 1;
2575 icsk->icsk_backoff = 0;
2576 tp->snd_cwnd = 2;
2577 icsk->icsk_probes_out = 0;
2578 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2579 tp->snd_cwnd_cnt = 0;
2580 tp->window_clamp = 0;
2581 tp->delivered_ce = 0;
2582 tcp_set_ca_state(sk, TCP_CA_Open);
2583 tp->is_sack_reneg = 0;
2584 tcp_clear_retrans(tp);
2585 inet_csk_delack_init(sk);
2586 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2587 * issue in __tcp_select_window()
2588 */
2589 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2590 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2591 __sk_dst_reset(sk);
2592 dst_release(sk->sk_rx_dst);
2593 sk->sk_rx_dst = NULL;
2594 tcp_saved_syn_free(tp);
2595 tp->compressed_ack = 0;
2596 tp->bytes_sent = 0;
2597 tp->bytes_retrans = 0;
2598 tp->dsack_dups = 0;
2599 tp->reord_seen = 0;
2600
2601 /* Clean up fastopen related fields */
2602 tcp_free_fastopen_req(tp);
2603 inet->defer_connect = 0;
2604
2605 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2606
2607 if (sk->sk_frag.page) {
2608 put_page(sk->sk_frag.page);
2609 sk->sk_frag.page = NULL;
2610 sk->sk_frag.offset = 0;
2611 }
2612
2613 sk->sk_error_report(sk);
2614 return 0;
2615 }
2616 EXPORT_SYMBOL(tcp_disconnect);
2617
tcp_can_repair_sock(const struct sock * sk)2618 static inline bool tcp_can_repair_sock(const struct sock *sk)
2619 {
2620 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2621 (sk->sk_state != TCP_LISTEN);
2622 }
2623
tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2624 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2625 {
2626 struct tcp_repair_window opt;
2627
2628 if (!tp->repair)
2629 return -EPERM;
2630
2631 if (len != sizeof(opt))
2632 return -EINVAL;
2633
2634 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2635 return -EFAULT;
2636
2637 if (opt.max_window < opt.snd_wnd)
2638 return -EINVAL;
2639
2640 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2641 return -EINVAL;
2642
2643 if (after(opt.rcv_wup, tp->rcv_nxt))
2644 return -EINVAL;
2645
2646 tp->snd_wl1 = opt.snd_wl1;
2647 tp->snd_wnd = opt.snd_wnd;
2648 tp->max_window = opt.max_window;
2649
2650 tp->rcv_wnd = opt.rcv_wnd;
2651 tp->rcv_wup = opt.rcv_wup;
2652
2653 return 0;
2654 }
2655
tcp_repair_options_est(struct sock * sk,struct tcp_repair_opt __user * optbuf,unsigned int len)2656 static int tcp_repair_options_est(struct sock *sk,
2657 struct tcp_repair_opt __user *optbuf, unsigned int len)
2658 {
2659 struct tcp_sock *tp = tcp_sk(sk);
2660 struct tcp_repair_opt opt;
2661
2662 while (len >= sizeof(opt)) {
2663 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2664 return -EFAULT;
2665
2666 optbuf++;
2667 len -= sizeof(opt);
2668
2669 switch (opt.opt_code) {
2670 case TCPOPT_MSS:
2671 tp->rx_opt.mss_clamp = opt.opt_val;
2672 tcp_mtup_init(sk);
2673 break;
2674 case TCPOPT_WINDOW:
2675 {
2676 u16 snd_wscale = opt.opt_val & 0xFFFF;
2677 u16 rcv_wscale = opt.opt_val >> 16;
2678
2679 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2680 return -EFBIG;
2681
2682 tp->rx_opt.snd_wscale = snd_wscale;
2683 tp->rx_opt.rcv_wscale = rcv_wscale;
2684 tp->rx_opt.wscale_ok = 1;
2685 }
2686 break;
2687 case TCPOPT_SACK_PERM:
2688 if (opt.opt_val != 0)
2689 return -EINVAL;
2690
2691 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2692 break;
2693 case TCPOPT_TIMESTAMP:
2694 if (opt.opt_val != 0)
2695 return -EINVAL;
2696
2697 tp->rx_opt.tstamp_ok = 1;
2698 break;
2699 }
2700 }
2701
2702 return 0;
2703 }
2704
2705 /*
2706 * Socket option code for TCP.
2707 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2708 static int do_tcp_setsockopt(struct sock *sk, int level,
2709 int optname, char __user *optval, unsigned int optlen)
2710 {
2711 struct tcp_sock *tp = tcp_sk(sk);
2712 struct inet_connection_sock *icsk = inet_csk(sk);
2713 struct net *net = sock_net(sk);
2714 int val;
2715 int err = 0;
2716
2717 /* These are data/string values, all the others are ints */
2718 switch (optname) {
2719 case TCP_CONGESTION: {
2720 char name[TCP_CA_NAME_MAX];
2721
2722 if (optlen < 1)
2723 return -EINVAL;
2724
2725 val = strncpy_from_user(name, optval,
2726 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2727 if (val < 0)
2728 return -EFAULT;
2729 name[val] = 0;
2730
2731 lock_sock(sk);
2732 err = tcp_set_congestion_control(sk, name, true, true);
2733 release_sock(sk);
2734 return err;
2735 }
2736 case TCP_ULP: {
2737 char name[TCP_ULP_NAME_MAX];
2738
2739 if (optlen < 1)
2740 return -EINVAL;
2741
2742 val = strncpy_from_user(name, optval,
2743 min_t(long, TCP_ULP_NAME_MAX - 1,
2744 optlen));
2745 if (val < 0)
2746 return -EFAULT;
2747 name[val] = 0;
2748
2749 lock_sock(sk);
2750 err = tcp_set_ulp(sk, name);
2751 release_sock(sk);
2752 return err;
2753 }
2754 case TCP_FASTOPEN_KEY: {
2755 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2756
2757 if (optlen != sizeof(key))
2758 return -EINVAL;
2759
2760 if (copy_from_user(key, optval, optlen))
2761 return -EFAULT;
2762
2763 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2764 }
2765 default:
2766 /* fallthru */
2767 break;
2768 }
2769
2770 if (optlen < sizeof(int))
2771 return -EINVAL;
2772
2773 if (get_user(val, (int __user *)optval))
2774 return -EFAULT;
2775
2776 lock_sock(sk);
2777
2778 switch (optname) {
2779 case TCP_MAXSEG:
2780 /* Values greater than interface MTU won't take effect. However
2781 * at the point when this call is done we typically don't yet
2782 * know which interface is going to be used
2783 */
2784 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2785 err = -EINVAL;
2786 break;
2787 }
2788 tp->rx_opt.user_mss = val;
2789 break;
2790
2791 case TCP_NODELAY:
2792 if (val) {
2793 /* TCP_NODELAY is weaker than TCP_CORK, so that
2794 * this option on corked socket is remembered, but
2795 * it is not activated until cork is cleared.
2796 *
2797 * However, when TCP_NODELAY is set we make
2798 * an explicit push, which overrides even TCP_CORK
2799 * for currently queued segments.
2800 */
2801 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2802 tcp_push_pending_frames(sk);
2803 } else {
2804 tp->nonagle &= ~TCP_NAGLE_OFF;
2805 }
2806 break;
2807
2808 case TCP_THIN_LINEAR_TIMEOUTS:
2809 if (val < 0 || val > 1)
2810 err = -EINVAL;
2811 else
2812 tp->thin_lto = val;
2813 break;
2814
2815 case TCP_THIN_DUPACK:
2816 if (val < 0 || val > 1)
2817 err = -EINVAL;
2818 break;
2819
2820 case TCP_REPAIR:
2821 if (!tcp_can_repair_sock(sk))
2822 err = -EPERM;
2823 else if (val == TCP_REPAIR_ON) {
2824 tp->repair = 1;
2825 sk->sk_reuse = SK_FORCE_REUSE;
2826 tp->repair_queue = TCP_NO_QUEUE;
2827 } else if (val == TCP_REPAIR_OFF) {
2828 tp->repair = 0;
2829 sk->sk_reuse = SK_NO_REUSE;
2830 tcp_send_window_probe(sk);
2831 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2832 tp->repair = 0;
2833 sk->sk_reuse = SK_NO_REUSE;
2834 } else
2835 err = -EINVAL;
2836
2837 break;
2838
2839 case TCP_REPAIR_QUEUE:
2840 if (!tp->repair)
2841 err = -EPERM;
2842 else if ((unsigned int)val < TCP_QUEUES_NR)
2843 tp->repair_queue = val;
2844 else
2845 err = -EINVAL;
2846 break;
2847
2848 case TCP_QUEUE_SEQ:
2849 if (sk->sk_state != TCP_CLOSE)
2850 err = -EPERM;
2851 else if (tp->repair_queue == TCP_SEND_QUEUE)
2852 tp->write_seq = val;
2853 else if (tp->repair_queue == TCP_RECV_QUEUE)
2854 tp->rcv_nxt = val;
2855 else
2856 err = -EINVAL;
2857 break;
2858
2859 case TCP_REPAIR_OPTIONS:
2860 if (!tp->repair)
2861 err = -EINVAL;
2862 else if (sk->sk_state == TCP_ESTABLISHED)
2863 err = tcp_repair_options_est(sk,
2864 (struct tcp_repair_opt __user *)optval,
2865 optlen);
2866 else
2867 err = -EPERM;
2868 break;
2869
2870 case TCP_CORK:
2871 /* When set indicates to always queue non-full frames.
2872 * Later the user clears this option and we transmit
2873 * any pending partial frames in the queue. This is
2874 * meant to be used alongside sendfile() to get properly
2875 * filled frames when the user (for example) must write
2876 * out headers with a write() call first and then use
2877 * sendfile to send out the data parts.
2878 *
2879 * TCP_CORK can be set together with TCP_NODELAY and it is
2880 * stronger than TCP_NODELAY.
2881 */
2882 if (val) {
2883 tp->nonagle |= TCP_NAGLE_CORK;
2884 } else {
2885 tp->nonagle &= ~TCP_NAGLE_CORK;
2886 if (tp->nonagle&TCP_NAGLE_OFF)
2887 tp->nonagle |= TCP_NAGLE_PUSH;
2888 tcp_push_pending_frames(sk);
2889 }
2890 break;
2891
2892 case TCP_KEEPIDLE:
2893 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2894 err = -EINVAL;
2895 else {
2896 tp->keepalive_time = val * HZ;
2897 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2898 !((1 << sk->sk_state) &
2899 (TCPF_CLOSE | TCPF_LISTEN))) {
2900 u32 elapsed = keepalive_time_elapsed(tp);
2901 if (tp->keepalive_time > elapsed)
2902 elapsed = tp->keepalive_time - elapsed;
2903 else
2904 elapsed = 0;
2905 inet_csk_reset_keepalive_timer(sk, elapsed);
2906 }
2907 }
2908 break;
2909 case TCP_KEEPINTVL:
2910 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2911 err = -EINVAL;
2912 else
2913 tp->keepalive_intvl = val * HZ;
2914 break;
2915 case TCP_KEEPCNT:
2916 if (val < 1 || val > MAX_TCP_KEEPCNT)
2917 err = -EINVAL;
2918 else
2919 tp->keepalive_probes = val;
2920 break;
2921 case TCP_SYNCNT:
2922 if (val < 1 || val > MAX_TCP_SYNCNT)
2923 err = -EINVAL;
2924 else
2925 icsk->icsk_syn_retries = val;
2926 break;
2927
2928 case TCP_SAVE_SYN:
2929 if (val < 0 || val > 1)
2930 err = -EINVAL;
2931 else
2932 tp->save_syn = val;
2933 break;
2934
2935 case TCP_LINGER2:
2936 if (val < 0)
2937 tp->linger2 = -1;
2938 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2939 tp->linger2 = 0;
2940 else
2941 tp->linger2 = val * HZ;
2942 break;
2943
2944 case TCP_DEFER_ACCEPT:
2945 /* Translate value in seconds to number of retransmits */
2946 icsk->icsk_accept_queue.rskq_defer_accept =
2947 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2948 TCP_RTO_MAX / HZ);
2949 break;
2950
2951 case TCP_WINDOW_CLAMP:
2952 if (!val) {
2953 if (sk->sk_state != TCP_CLOSE) {
2954 err = -EINVAL;
2955 break;
2956 }
2957 tp->window_clamp = 0;
2958 } else
2959 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2960 SOCK_MIN_RCVBUF / 2 : val;
2961 break;
2962
2963 case TCP_QUICKACK:
2964 if (!val) {
2965 icsk->icsk_ack.pingpong = 1;
2966 } else {
2967 icsk->icsk_ack.pingpong = 0;
2968 if ((1 << sk->sk_state) &
2969 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2970 inet_csk_ack_scheduled(sk)) {
2971 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2972 tcp_cleanup_rbuf(sk, 1);
2973 if (!(val & 1))
2974 icsk->icsk_ack.pingpong = 1;
2975 }
2976 }
2977 break;
2978
2979 #ifdef CONFIG_TCP_MD5SIG
2980 case TCP_MD5SIG:
2981 case TCP_MD5SIG_EXT:
2982 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2983 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2984 else
2985 err = -EINVAL;
2986 break;
2987 #endif
2988 case TCP_USER_TIMEOUT:
2989 /* Cap the max time in ms TCP will retry or probe the window
2990 * before giving up and aborting (ETIMEDOUT) a connection.
2991 */
2992 if (val < 0)
2993 err = -EINVAL;
2994 else
2995 icsk->icsk_user_timeout = val;
2996 break;
2997
2998 case TCP_FASTOPEN:
2999 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3000 TCPF_LISTEN))) {
3001 tcp_fastopen_init_key_once(net);
3002
3003 fastopen_queue_tune(sk, val);
3004 } else {
3005 err = -EINVAL;
3006 }
3007 break;
3008 case TCP_FASTOPEN_CONNECT:
3009 if (val > 1 || val < 0) {
3010 err = -EINVAL;
3011 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3012 if (sk->sk_state == TCP_CLOSE)
3013 tp->fastopen_connect = val;
3014 else
3015 err = -EINVAL;
3016 } else {
3017 err = -EOPNOTSUPP;
3018 }
3019 break;
3020 case TCP_FASTOPEN_NO_COOKIE:
3021 if (val > 1 || val < 0)
3022 err = -EINVAL;
3023 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3024 err = -EINVAL;
3025 else
3026 tp->fastopen_no_cookie = val;
3027 break;
3028 case TCP_TIMESTAMP:
3029 if (!tp->repair)
3030 err = -EPERM;
3031 else
3032 tp->tsoffset = val - tcp_time_stamp_raw();
3033 break;
3034 case TCP_REPAIR_WINDOW:
3035 err = tcp_repair_set_window(tp, optval, optlen);
3036 break;
3037 case TCP_NOTSENT_LOWAT:
3038 tp->notsent_lowat = val;
3039 sk->sk_write_space(sk);
3040 break;
3041 case TCP_INQ:
3042 if (val > 1 || val < 0)
3043 err = -EINVAL;
3044 else
3045 tp->recvmsg_inq = val;
3046 break;
3047 default:
3048 err = -ENOPROTOOPT;
3049 break;
3050 }
3051
3052 release_sock(sk);
3053 return err;
3054 }
3055
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3056 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3057 unsigned int optlen)
3058 {
3059 const struct inet_connection_sock *icsk = inet_csk(sk);
3060
3061 if (level != SOL_TCP)
3062 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3063 optval, optlen);
3064 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3065 }
3066 EXPORT_SYMBOL(tcp_setsockopt);
3067
3068 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3069 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3070 char __user *optval, unsigned int optlen)
3071 {
3072 if (level != SOL_TCP)
3073 return inet_csk_compat_setsockopt(sk, level, optname,
3074 optval, optlen);
3075 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3076 }
3077 EXPORT_SYMBOL(compat_tcp_setsockopt);
3078 #endif
3079
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3080 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3081 struct tcp_info *info)
3082 {
3083 u64 stats[__TCP_CHRONO_MAX], total = 0;
3084 enum tcp_chrono i;
3085
3086 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3087 stats[i] = tp->chrono_stat[i - 1];
3088 if (i == tp->chrono_type)
3089 stats[i] += tcp_jiffies32 - tp->chrono_start;
3090 stats[i] *= USEC_PER_SEC / HZ;
3091 total += stats[i];
3092 }
3093
3094 info->tcpi_busy_time = total;
3095 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3096 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3097 }
3098
3099 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3100 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3101 {
3102 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3103 const struct inet_connection_sock *icsk = inet_csk(sk);
3104 u32 now;
3105 u64 rate64;
3106 bool slow;
3107 u32 rate;
3108
3109 memset(info, 0, sizeof(*info));
3110 if (sk->sk_type != SOCK_STREAM)
3111 return;
3112
3113 info->tcpi_state = inet_sk_state_load(sk);
3114
3115 /* Report meaningful fields for all TCP states, including listeners */
3116 rate = READ_ONCE(sk->sk_pacing_rate);
3117 rate64 = rate != ~0U ? rate : ~0ULL;
3118 info->tcpi_pacing_rate = rate64;
3119
3120 rate = READ_ONCE(sk->sk_max_pacing_rate);
3121 rate64 = rate != ~0U ? rate : ~0ULL;
3122 info->tcpi_max_pacing_rate = rate64;
3123
3124 info->tcpi_reordering = tp->reordering;
3125 info->tcpi_snd_cwnd = tp->snd_cwnd;
3126
3127 if (info->tcpi_state == TCP_LISTEN) {
3128 /* listeners aliased fields :
3129 * tcpi_unacked -> Number of children ready for accept()
3130 * tcpi_sacked -> max backlog
3131 */
3132 info->tcpi_unacked = sk->sk_ack_backlog;
3133 info->tcpi_sacked = sk->sk_max_ack_backlog;
3134 return;
3135 }
3136
3137 slow = lock_sock_fast(sk);
3138
3139 info->tcpi_ca_state = icsk->icsk_ca_state;
3140 info->tcpi_retransmits = icsk->icsk_retransmits;
3141 info->tcpi_probes = icsk->icsk_probes_out;
3142 info->tcpi_backoff = icsk->icsk_backoff;
3143
3144 if (tp->rx_opt.tstamp_ok)
3145 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3146 if (tcp_is_sack(tp))
3147 info->tcpi_options |= TCPI_OPT_SACK;
3148 if (tp->rx_opt.wscale_ok) {
3149 info->tcpi_options |= TCPI_OPT_WSCALE;
3150 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3151 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3152 }
3153
3154 if (tp->ecn_flags & TCP_ECN_OK)
3155 info->tcpi_options |= TCPI_OPT_ECN;
3156 if (tp->ecn_flags & TCP_ECN_SEEN)
3157 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3158 if (tp->syn_data_acked)
3159 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3160
3161 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3162 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3163 info->tcpi_snd_mss = tp->mss_cache;
3164 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3165
3166 info->tcpi_unacked = tp->packets_out;
3167 info->tcpi_sacked = tp->sacked_out;
3168
3169 info->tcpi_lost = tp->lost_out;
3170 info->tcpi_retrans = tp->retrans_out;
3171
3172 now = tcp_jiffies32;
3173 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3174 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3175 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3176
3177 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3178 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3179 info->tcpi_rtt = tp->srtt_us >> 3;
3180 info->tcpi_rttvar = tp->mdev_us >> 2;
3181 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3182 info->tcpi_advmss = tp->advmss;
3183
3184 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3185 info->tcpi_rcv_space = tp->rcvq_space.space;
3186
3187 info->tcpi_total_retrans = tp->total_retrans;
3188
3189 info->tcpi_bytes_acked = tp->bytes_acked;
3190 info->tcpi_bytes_received = tp->bytes_received;
3191 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3192 tcp_get_info_chrono_stats(tp, info);
3193
3194 info->tcpi_segs_out = tp->segs_out;
3195 info->tcpi_segs_in = tp->segs_in;
3196
3197 info->tcpi_min_rtt = tcp_min_rtt(tp);
3198 info->tcpi_data_segs_in = tp->data_segs_in;
3199 info->tcpi_data_segs_out = tp->data_segs_out;
3200
3201 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3202 rate64 = tcp_compute_delivery_rate(tp);
3203 if (rate64)
3204 info->tcpi_delivery_rate = rate64;
3205 info->tcpi_delivered = tp->delivered;
3206 info->tcpi_delivered_ce = tp->delivered_ce;
3207 info->tcpi_bytes_sent = tp->bytes_sent;
3208 info->tcpi_bytes_retrans = tp->bytes_retrans;
3209 info->tcpi_dsack_dups = tp->dsack_dups;
3210 info->tcpi_reord_seen = tp->reord_seen;
3211 unlock_sock_fast(sk, slow);
3212 }
3213 EXPORT_SYMBOL_GPL(tcp_get_info);
3214
tcp_opt_stats_get_size(void)3215 static size_t tcp_opt_stats_get_size(void)
3216 {
3217 return
3218 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3219 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3220 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3221 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3222 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3223 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3224 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3225 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3226 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3227 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3228 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3229 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3230 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3231 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3232 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3233 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3234 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3235 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3236 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3237 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3238 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3239 0;
3240 }
3241
tcp_get_timestamping_opt_stats(const struct sock * sk)3242 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3243 {
3244 const struct tcp_sock *tp = tcp_sk(sk);
3245 struct sk_buff *stats;
3246 struct tcp_info info;
3247 u64 rate64;
3248 u32 rate;
3249
3250 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3251 if (!stats)
3252 return NULL;
3253
3254 tcp_get_info_chrono_stats(tp, &info);
3255 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3256 info.tcpi_busy_time, TCP_NLA_PAD);
3257 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3258 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3259 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3260 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3261 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3262 tp->data_segs_out, TCP_NLA_PAD);
3263 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3264 tp->total_retrans, TCP_NLA_PAD);
3265
3266 rate = READ_ONCE(sk->sk_pacing_rate);
3267 rate64 = rate != ~0U ? rate : ~0ULL;
3268 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3269
3270 rate64 = tcp_compute_delivery_rate(tp);
3271 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3272
3273 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3274 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3275 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3276
3277 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3278 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3279 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3280 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3281 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3282
3283 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3284 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3285
3286 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3287 TCP_NLA_PAD);
3288 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3289 TCP_NLA_PAD);
3290 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3291 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3292
3293 return stats;
3294 }
3295
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3296 static int do_tcp_getsockopt(struct sock *sk, int level,
3297 int optname, char __user *optval, int __user *optlen)
3298 {
3299 struct inet_connection_sock *icsk = inet_csk(sk);
3300 struct tcp_sock *tp = tcp_sk(sk);
3301 struct net *net = sock_net(sk);
3302 int val, len;
3303
3304 if (get_user(len, optlen))
3305 return -EFAULT;
3306
3307 len = min_t(unsigned int, len, sizeof(int));
3308
3309 if (len < 0)
3310 return -EINVAL;
3311
3312 switch (optname) {
3313 case TCP_MAXSEG:
3314 val = tp->mss_cache;
3315 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3316 val = tp->rx_opt.user_mss;
3317 if (tp->repair)
3318 val = tp->rx_opt.mss_clamp;
3319 break;
3320 case TCP_NODELAY:
3321 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3322 break;
3323 case TCP_CORK:
3324 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3325 break;
3326 case TCP_KEEPIDLE:
3327 val = keepalive_time_when(tp) / HZ;
3328 break;
3329 case TCP_KEEPINTVL:
3330 val = keepalive_intvl_when(tp) / HZ;
3331 break;
3332 case TCP_KEEPCNT:
3333 val = keepalive_probes(tp);
3334 break;
3335 case TCP_SYNCNT:
3336 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3337 break;
3338 case TCP_LINGER2:
3339 val = tp->linger2;
3340 if (val >= 0)
3341 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3342 break;
3343 case TCP_DEFER_ACCEPT:
3344 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3345 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3346 break;
3347 case TCP_WINDOW_CLAMP:
3348 val = tp->window_clamp;
3349 break;
3350 case TCP_INFO: {
3351 struct tcp_info info;
3352
3353 if (get_user(len, optlen))
3354 return -EFAULT;
3355
3356 tcp_get_info(sk, &info);
3357
3358 len = min_t(unsigned int, len, sizeof(info));
3359 if (put_user(len, optlen))
3360 return -EFAULT;
3361 if (copy_to_user(optval, &info, len))
3362 return -EFAULT;
3363 return 0;
3364 }
3365 case TCP_CC_INFO: {
3366 const struct tcp_congestion_ops *ca_ops;
3367 union tcp_cc_info info;
3368 size_t sz = 0;
3369 int attr;
3370
3371 if (get_user(len, optlen))
3372 return -EFAULT;
3373
3374 ca_ops = icsk->icsk_ca_ops;
3375 if (ca_ops && ca_ops->get_info)
3376 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3377
3378 len = min_t(unsigned int, len, sz);
3379 if (put_user(len, optlen))
3380 return -EFAULT;
3381 if (copy_to_user(optval, &info, len))
3382 return -EFAULT;
3383 return 0;
3384 }
3385 case TCP_QUICKACK:
3386 val = !icsk->icsk_ack.pingpong;
3387 break;
3388
3389 case TCP_CONGESTION:
3390 if (get_user(len, optlen))
3391 return -EFAULT;
3392 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3393 if (put_user(len, optlen))
3394 return -EFAULT;
3395 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3396 return -EFAULT;
3397 return 0;
3398
3399 case TCP_ULP:
3400 if (get_user(len, optlen))
3401 return -EFAULT;
3402 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3403 if (!icsk->icsk_ulp_ops) {
3404 if (put_user(0, optlen))
3405 return -EFAULT;
3406 return 0;
3407 }
3408 if (put_user(len, optlen))
3409 return -EFAULT;
3410 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3411 return -EFAULT;
3412 return 0;
3413
3414 case TCP_FASTOPEN_KEY: {
3415 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3416 struct tcp_fastopen_context *ctx;
3417
3418 if (get_user(len, optlen))
3419 return -EFAULT;
3420
3421 rcu_read_lock();
3422 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3423 if (ctx)
3424 memcpy(key, ctx->key, sizeof(key));
3425 else
3426 len = 0;
3427 rcu_read_unlock();
3428
3429 len = min_t(unsigned int, len, sizeof(key));
3430 if (put_user(len, optlen))
3431 return -EFAULT;
3432 if (copy_to_user(optval, key, len))
3433 return -EFAULT;
3434 return 0;
3435 }
3436 case TCP_THIN_LINEAR_TIMEOUTS:
3437 val = tp->thin_lto;
3438 break;
3439
3440 case TCP_THIN_DUPACK:
3441 val = 0;
3442 break;
3443
3444 case TCP_REPAIR:
3445 val = tp->repair;
3446 break;
3447
3448 case TCP_REPAIR_QUEUE:
3449 if (tp->repair)
3450 val = tp->repair_queue;
3451 else
3452 return -EINVAL;
3453 break;
3454
3455 case TCP_REPAIR_WINDOW: {
3456 struct tcp_repair_window opt;
3457
3458 if (get_user(len, optlen))
3459 return -EFAULT;
3460
3461 if (len != sizeof(opt))
3462 return -EINVAL;
3463
3464 if (!tp->repair)
3465 return -EPERM;
3466
3467 opt.snd_wl1 = tp->snd_wl1;
3468 opt.snd_wnd = tp->snd_wnd;
3469 opt.max_window = tp->max_window;
3470 opt.rcv_wnd = tp->rcv_wnd;
3471 opt.rcv_wup = tp->rcv_wup;
3472
3473 if (copy_to_user(optval, &opt, len))
3474 return -EFAULT;
3475 return 0;
3476 }
3477 case TCP_QUEUE_SEQ:
3478 if (tp->repair_queue == TCP_SEND_QUEUE)
3479 val = tp->write_seq;
3480 else if (tp->repair_queue == TCP_RECV_QUEUE)
3481 val = tp->rcv_nxt;
3482 else
3483 return -EINVAL;
3484 break;
3485
3486 case TCP_USER_TIMEOUT:
3487 val = icsk->icsk_user_timeout;
3488 break;
3489
3490 case TCP_FASTOPEN:
3491 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3492 break;
3493
3494 case TCP_FASTOPEN_CONNECT:
3495 val = tp->fastopen_connect;
3496 break;
3497
3498 case TCP_FASTOPEN_NO_COOKIE:
3499 val = tp->fastopen_no_cookie;
3500 break;
3501
3502 case TCP_TIMESTAMP:
3503 val = tcp_time_stamp_raw() + tp->tsoffset;
3504 break;
3505 case TCP_NOTSENT_LOWAT:
3506 val = tp->notsent_lowat;
3507 break;
3508 case TCP_INQ:
3509 val = tp->recvmsg_inq;
3510 break;
3511 case TCP_SAVE_SYN:
3512 val = tp->save_syn;
3513 break;
3514 case TCP_SAVED_SYN: {
3515 if (get_user(len, optlen))
3516 return -EFAULT;
3517
3518 lock_sock(sk);
3519 if (tp->saved_syn) {
3520 if (len < tp->saved_syn[0]) {
3521 if (put_user(tp->saved_syn[0], optlen)) {
3522 release_sock(sk);
3523 return -EFAULT;
3524 }
3525 release_sock(sk);
3526 return -EINVAL;
3527 }
3528 len = tp->saved_syn[0];
3529 if (put_user(len, optlen)) {
3530 release_sock(sk);
3531 return -EFAULT;
3532 }
3533 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3534 release_sock(sk);
3535 return -EFAULT;
3536 }
3537 tcp_saved_syn_free(tp);
3538 release_sock(sk);
3539 } else {
3540 release_sock(sk);
3541 len = 0;
3542 if (put_user(len, optlen))
3543 return -EFAULT;
3544 }
3545 return 0;
3546 }
3547 #ifdef CONFIG_MMU
3548 case TCP_ZEROCOPY_RECEIVE: {
3549 struct tcp_zerocopy_receive zc;
3550 int err;
3551
3552 if (get_user(len, optlen))
3553 return -EFAULT;
3554 if (len != sizeof(zc))
3555 return -EINVAL;
3556 if (copy_from_user(&zc, optval, len))
3557 return -EFAULT;
3558 lock_sock(sk);
3559 err = tcp_zerocopy_receive(sk, &zc);
3560 release_sock(sk);
3561 if (!err && copy_to_user(optval, &zc, len))
3562 err = -EFAULT;
3563 return err;
3564 }
3565 #endif
3566 default:
3567 return -ENOPROTOOPT;
3568 }
3569
3570 if (put_user(len, optlen))
3571 return -EFAULT;
3572 if (copy_to_user(optval, &val, len))
3573 return -EFAULT;
3574 return 0;
3575 }
3576
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3577 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3578 int __user *optlen)
3579 {
3580 struct inet_connection_sock *icsk = inet_csk(sk);
3581
3582 if (level != SOL_TCP)
3583 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3584 optval, optlen);
3585 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3586 }
3587 EXPORT_SYMBOL(tcp_getsockopt);
3588
3589 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3590 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3591 char __user *optval, int __user *optlen)
3592 {
3593 if (level != SOL_TCP)
3594 return inet_csk_compat_getsockopt(sk, level, optname,
3595 optval, optlen);
3596 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3597 }
3598 EXPORT_SYMBOL(compat_tcp_getsockopt);
3599 #endif
3600
3601 #ifdef CONFIG_TCP_MD5SIG
3602 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3603 static DEFINE_MUTEX(tcp_md5sig_mutex);
3604 static bool tcp_md5sig_pool_populated = false;
3605
__tcp_alloc_md5sig_pool(void)3606 static void __tcp_alloc_md5sig_pool(void)
3607 {
3608 struct crypto_ahash *hash;
3609 int cpu;
3610
3611 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3612 if (IS_ERR(hash))
3613 return;
3614
3615 for_each_possible_cpu(cpu) {
3616 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3617 struct ahash_request *req;
3618
3619 if (!scratch) {
3620 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3621 sizeof(struct tcphdr),
3622 GFP_KERNEL,
3623 cpu_to_node(cpu));
3624 if (!scratch)
3625 return;
3626 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3627 }
3628 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3629 continue;
3630
3631 req = ahash_request_alloc(hash, GFP_KERNEL);
3632 if (!req)
3633 return;
3634
3635 ahash_request_set_callback(req, 0, NULL, NULL);
3636
3637 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3638 }
3639 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3640 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3641 */
3642 smp_wmb();
3643 tcp_md5sig_pool_populated = true;
3644 }
3645
tcp_alloc_md5sig_pool(void)3646 bool tcp_alloc_md5sig_pool(void)
3647 {
3648 if (unlikely(!tcp_md5sig_pool_populated)) {
3649 mutex_lock(&tcp_md5sig_mutex);
3650
3651 if (!tcp_md5sig_pool_populated)
3652 __tcp_alloc_md5sig_pool();
3653
3654 mutex_unlock(&tcp_md5sig_mutex);
3655 }
3656 return tcp_md5sig_pool_populated;
3657 }
3658 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3659
3660
3661 /**
3662 * tcp_get_md5sig_pool - get md5sig_pool for this user
3663 *
3664 * We use percpu structure, so if we succeed, we exit with preemption
3665 * and BH disabled, to make sure another thread or softirq handling
3666 * wont try to get same context.
3667 */
tcp_get_md5sig_pool(void)3668 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3669 {
3670 local_bh_disable();
3671
3672 if (tcp_md5sig_pool_populated) {
3673 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3674 smp_rmb();
3675 return this_cpu_ptr(&tcp_md5sig_pool);
3676 }
3677 local_bh_enable();
3678 return NULL;
3679 }
3680 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3681
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3682 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3683 const struct sk_buff *skb, unsigned int header_len)
3684 {
3685 struct scatterlist sg;
3686 const struct tcphdr *tp = tcp_hdr(skb);
3687 struct ahash_request *req = hp->md5_req;
3688 unsigned int i;
3689 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3690 skb_headlen(skb) - header_len : 0;
3691 const struct skb_shared_info *shi = skb_shinfo(skb);
3692 struct sk_buff *frag_iter;
3693
3694 sg_init_table(&sg, 1);
3695
3696 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3697 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3698 if (crypto_ahash_update(req))
3699 return 1;
3700
3701 for (i = 0; i < shi->nr_frags; ++i) {
3702 const struct skb_frag_struct *f = &shi->frags[i];
3703 unsigned int offset = f->page_offset;
3704 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3705
3706 sg_set_page(&sg, page, skb_frag_size(f),
3707 offset_in_page(offset));
3708 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3709 if (crypto_ahash_update(req))
3710 return 1;
3711 }
3712
3713 skb_walk_frags(skb, frag_iter)
3714 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3715 return 1;
3716
3717 return 0;
3718 }
3719 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3720
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3721 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3722 {
3723 struct scatterlist sg;
3724
3725 sg_init_one(&sg, key->key, key->keylen);
3726 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3727 return crypto_ahash_update(hp->md5_req);
3728 }
3729 EXPORT_SYMBOL(tcp_md5_hash_key);
3730
3731 #endif
3732
tcp_done(struct sock * sk)3733 void tcp_done(struct sock *sk)
3734 {
3735 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3736
3737 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3738 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3739
3740 tcp_set_state(sk, TCP_CLOSE);
3741 tcp_clear_xmit_timers(sk);
3742 if (req)
3743 reqsk_fastopen_remove(sk, req, false);
3744
3745 sk->sk_shutdown = SHUTDOWN_MASK;
3746
3747 if (!sock_flag(sk, SOCK_DEAD))
3748 sk->sk_state_change(sk);
3749 else
3750 inet_csk_destroy_sock(sk);
3751 }
3752 EXPORT_SYMBOL_GPL(tcp_done);
3753
tcp_abort(struct sock * sk,int err)3754 int tcp_abort(struct sock *sk, int err)
3755 {
3756 if (!sk_fullsock(sk)) {
3757 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3758 struct request_sock *req = inet_reqsk(sk);
3759
3760 local_bh_disable();
3761 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3762 local_bh_enable();
3763 return 0;
3764 }
3765 return -EOPNOTSUPP;
3766 }
3767
3768 /* Don't race with userspace socket closes such as tcp_close. */
3769 lock_sock(sk);
3770
3771 if (sk->sk_state == TCP_LISTEN) {
3772 tcp_set_state(sk, TCP_CLOSE);
3773 inet_csk_listen_stop(sk);
3774 }
3775
3776 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3777 local_bh_disable();
3778 bh_lock_sock(sk);
3779
3780 if (!sock_flag(sk, SOCK_DEAD)) {
3781 sk->sk_err = err;
3782 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3783 smp_wmb();
3784 sk->sk_error_report(sk);
3785 if (tcp_need_reset(sk->sk_state))
3786 tcp_send_active_reset(sk, GFP_ATOMIC);
3787 tcp_done(sk);
3788 }
3789
3790 bh_unlock_sock(sk);
3791 local_bh_enable();
3792 tcp_write_queue_purge(sk);
3793 release_sock(sk);
3794 return 0;
3795 }
3796 EXPORT_SYMBOL_GPL(tcp_abort);
3797
3798 extern struct tcp_congestion_ops tcp_reno;
3799
3800 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3801 static int __init set_thash_entries(char *str)
3802 {
3803 ssize_t ret;
3804
3805 if (!str)
3806 return 0;
3807
3808 ret = kstrtoul(str, 0, &thash_entries);
3809 if (ret)
3810 return 0;
3811
3812 return 1;
3813 }
3814 __setup("thash_entries=", set_thash_entries);
3815
tcp_init_mem(void)3816 static void __init tcp_init_mem(void)
3817 {
3818 unsigned long limit = nr_free_buffer_pages() / 16;
3819
3820 limit = max(limit, 128UL);
3821 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3822 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3823 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3824 }
3825
tcp_init(void)3826 void __init tcp_init(void)
3827 {
3828 int max_rshare, max_wshare, cnt;
3829 unsigned long limit;
3830 unsigned int i;
3831
3832 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3833 FIELD_SIZEOF(struct sk_buff, cb));
3834
3835 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3836 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3837 inet_hashinfo_init(&tcp_hashinfo);
3838 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3839 thash_entries, 21, /* one slot per 2 MB*/
3840 0, 64 * 1024);
3841 tcp_hashinfo.bind_bucket_cachep =
3842 kmem_cache_create("tcp_bind_bucket",
3843 sizeof(struct inet_bind_bucket), 0,
3844 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3845
3846 /* Size and allocate the main established and bind bucket
3847 * hash tables.
3848 *
3849 * The methodology is similar to that of the buffer cache.
3850 */
3851 tcp_hashinfo.ehash =
3852 alloc_large_system_hash("TCP established",
3853 sizeof(struct inet_ehash_bucket),
3854 thash_entries,
3855 17, /* one slot per 128 KB of memory */
3856 0,
3857 NULL,
3858 &tcp_hashinfo.ehash_mask,
3859 0,
3860 thash_entries ? 0 : 512 * 1024);
3861 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3862 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3863
3864 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3865 panic("TCP: failed to alloc ehash_locks");
3866 tcp_hashinfo.bhash =
3867 alloc_large_system_hash("TCP bind",
3868 sizeof(struct inet_bind_hashbucket),
3869 tcp_hashinfo.ehash_mask + 1,
3870 17, /* one slot per 128 KB of memory */
3871 0,
3872 &tcp_hashinfo.bhash_size,
3873 NULL,
3874 0,
3875 64 * 1024);
3876 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3877 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3878 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3879 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3880 }
3881
3882
3883 cnt = tcp_hashinfo.ehash_mask + 1;
3884 sysctl_tcp_max_orphans = cnt / 2;
3885
3886 tcp_init_mem();
3887 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3888 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3889 max_wshare = min(4UL*1024*1024, limit);
3890 max_rshare = min(6UL*1024*1024, limit);
3891
3892 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3893 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3894 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3895
3896 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3897 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3898 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3899
3900 pr_info("Hash tables configured (established %u bind %u)\n",
3901 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3902
3903 tcp_v4_init();
3904 tcp_metrics_init();
3905 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3906 tcp_tasklet_init();
3907 }
3908