1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291 
292 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323 
tcp_enter_memory_pressure(struct sock * sk)324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	unsigned long val;
327 
328 	if (tcp_memory_pressure)
329 		return;
330 	val = jiffies;
331 
332 	if (!val)
333 		val--;
334 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338 
tcp_leave_memory_pressure(struct sock * sk)339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (!tcp_memory_pressure)
344 		return;
345 	val = xchg(&tcp_memory_pressure, 0);
346 	if (val)
347 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 			      jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351 
352 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 	u8 res = 0;
356 
357 	if (seconds > 0) {
358 		int period = timeout;
359 
360 		res = 1;
361 		while (seconds > period && res < 255) {
362 			res++;
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return res;
370 }
371 
372 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 	int period = 0;
376 
377 	if (retrans > 0) {
378 		period = timeout;
379 		while (--retrans) {
380 			timeout <<= 1;
381 			if (timeout > rto_max)
382 				timeout = rto_max;
383 			period += timeout;
384 		}
385 	}
386 	return period;
387 }
388 
tcp_compute_delivery_rate(const struct tcp_sock * tp)389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 	u32 rate = READ_ONCE(tp->rate_delivered);
392 	u32 intv = READ_ONCE(tp->rate_interval_us);
393 	u64 rate64 = 0;
394 
395 	if (rate && intv) {
396 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 		do_div(rate64, intv);
398 	}
399 	return rate64;
400 }
401 
402 /* Address-family independent initialization for a tcp_sock.
403  *
404  * NOTE: A lot of things set to zero explicitly by call to
405  *       sk_alloc() so need not be done here.
406  */
tcp_init_sock(struct sock * sk)407 void tcp_init_sock(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	struct tcp_sock *tp = tcp_sk(sk);
411 
412 	tp->out_of_order_queue = RB_ROOT;
413 	sk->tcp_rtx_queue = RB_ROOT;
414 	tcp_init_xmit_timers(sk);
415 	INIT_LIST_HEAD(&tp->tsq_node);
416 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417 
418 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421 
422 	/* So many TCP implementations out there (incorrectly) count the
423 	 * initial SYN frame in their delayed-ACK and congestion control
424 	 * algorithms that we must have the following bandaid to talk
425 	 * efficiently to them.  -DaveM
426 	 */
427 	tp->snd_cwnd = TCP_INIT_CWND;
428 
429 	/* There's a bubble in the pipe until at least the first ACK. */
430 	tp->app_limited = ~0U;
431 
432 	/* See draft-stevens-tcpca-spec-01 for discussion of the
433 	 * initialization of these values.
434 	 */
435 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 	tp->snd_cwnd_clamp = ~0;
437 	tp->mss_cache = TCP_MSS_DEFAULT;
438 
439 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 	tcp_assign_congestion_control(sk);
441 
442 	tp->tsoffset = 0;
443 	tp->rack.reo_wnd_steps = 1;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 	sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459 
tcp_init_transfer(struct sock * sk,int bpf_op)460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 	struct inet_connection_sock *icsk = inet_csk(sk);
463 
464 	tcp_mtup_init(sk);
465 	icsk->icsk_af_ops->rebuild_header(sk);
466 	tcp_init_metrics(sk);
467 	tcp_call_bpf(sk, bpf_op, 0, NULL);
468 	tcp_init_congestion_control(sk);
469 	tcp_init_buffer_space(sk);
470 }
471 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 	struct sk_buff *skb = tcp_write_queue_tail(sk);
475 
476 	if (tsflags && skb) {
477 		struct skb_shared_info *shinfo = skb_shinfo(skb);
478 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479 
480 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 			tcb->txstamp_ack = 1;
483 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 	}
486 }
487 
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 					  int target, struct sock *sk)
490 {
491 	return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 		(sk->sk_prot->stream_memory_read ?
493 		sk->sk_prot->stream_memory_read(sk) : false);
494 }
495 
496 /*
497  *	Wait for a TCP event.
498  *
499  *	Note that we don't need to lock the socket, as the upper poll layers
500  *	take care of normal races (between the test and the event) and we don't
501  *	go look at any of the socket buffers directly.
502  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 	__poll_t mask;
506 	struct sock *sk = sock->sk;
507 	const struct tcp_sock *tp = tcp_sk(sk);
508 	int state;
509 
510 	sock_poll_wait(file, wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 		mask |= EPOLLHUP;
552 	if (sk->sk_shutdown & RCV_SHUTDOWN)
553 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554 
555 	/* Connected or passive Fast Open socket? */
556 	if (state != TCP_SYN_SENT &&
557 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 		int target = sock_rcvlowat(sk, 0, INT_MAX);
559 
560 		if (tp->urg_seq == tp->copied_seq &&
561 		    !sock_flag(sk, SOCK_URGINLINE) &&
562 		    tp->urg_data)
563 			target++;
564 
565 		if (tcp_stream_is_readable(tp, target, sk))
566 			mask |= EPOLLIN | EPOLLRDNORM;
567 
568 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 			if (sk_stream_is_writeable(sk)) {
570 				mask |= EPOLLOUT | EPOLLWRNORM;
571 			} else {  /* send SIGIO later */
572 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574 
575 				/* Race breaker. If space is freed after
576 				 * wspace test but before the flags are set,
577 				 * IO signal will be lost. Memory barrier
578 				 * pairs with the input side.
579 				 */
580 				smp_mb__after_atomic();
581 				if (sk_stream_is_writeable(sk))
582 					mask |= EPOLLOUT | EPOLLWRNORM;
583 			}
584 		} else
585 			mask |= EPOLLOUT | EPOLLWRNORM;
586 
587 		if (tp->urg_data & TCP_URG_VALID)
588 			mask |= EPOLLPRI;
589 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 		/* Active TCP fastopen socket with defer_connect
591 		 * Return EPOLLOUT so application can call write()
592 		 * in order for kernel to generate SYN+data
593 		 */
594 		mask |= EPOLLOUT | EPOLLWRNORM;
595 	}
596 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
597 	smp_rmb();
598 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = tp->write_seq - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = tp->write_seq - tp->snd_nxt;
640 		break;
641 	default:
642 		return -ENOIOCTLCMD;
643 	}
644 
645 	return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
forced_push(const struct tcp_sock * tp)655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
skb_entail(struct sock * sk,struct sk_buff * skb)660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	skb->csum    = 0;
666 	tcb->seq     = tcb->end_seq = tp->write_seq;
667 	tcb->tcp_flags = TCPHDR_ACK;
668 	tcb->sacked  = 0;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk->sk_wmem_queued += skb->truesize;
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
tcp_mark_urg(struct tcp_sock * tp,int flags)679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 		     int nonagle, int size_goal)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	struct sk_buff *skb;
709 
710 	skb = tcp_write_queue_tail(sk);
711 	if (!skb)
712 		return;
713 	if (!(flags & MSG_MORE) || forced_push(tp))
714 		tcp_mark_push(tp, skb);
715 
716 	tcp_mark_urg(tp, flags);
717 
718 	if (tcp_should_autocork(sk, skb, size_goal)) {
719 
720 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
721 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 		}
725 		/* It is possible TX completion already happened
726 		 * before we set TSQ_THROTTLED.
727 		 */
728 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 			return;
730 	}
731 
732 	if (flags & MSG_MORE)
733 		nonagle = TCP_NAGLE_CORK;
734 
735 	__tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 				unsigned int offset, size_t len)
740 {
741 	struct tcp_splice_state *tss = rd_desc->arg.data;
742 	int ret;
743 
744 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 			      min(rd_desc->count, len), tss->flags);
746 	if (ret > 0)
747 		rd_desc->count -= ret;
748 	return ret;
749 }
750 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 	/* Store TCP splice context information in read_descriptor_t. */
754 	read_descriptor_t rd_desc = {
755 		.arg.data = tss,
756 		.count	  = tss->len,
757 	};
758 
759 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761 
762 /**
763  *  tcp_splice_read - splice data from TCP socket to a pipe
764  * @sock:	socket to splice from
765  * @ppos:	position (not valid)
766  * @pipe:	pipe to splice to
767  * @len:	number of bytes to splice
768  * @flags:	splice modifier flags
769  *
770  * Description:
771  *    Will read pages from given socket and fill them into a pipe.
772  *
773  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 			struct pipe_inode_info *pipe, size_t len,
776 			unsigned int flags)
777 {
778 	struct sock *sk = sock->sk;
779 	struct tcp_splice_state tss = {
780 		.pipe = pipe,
781 		.len = len,
782 		.flags = flags,
783 	};
784 	long timeo;
785 	ssize_t spliced;
786 	int ret;
787 
788 	sock_rps_record_flow(sk);
789 	/*
790 	 * We can't seek on a socket input
791 	 */
792 	if (unlikely(*ppos))
793 		return -ESPIPE;
794 
795 	ret = spliced = 0;
796 
797 	lock_sock(sk);
798 
799 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 	while (tss.len) {
801 		ret = __tcp_splice_read(sk, &tss);
802 		if (ret < 0)
803 			break;
804 		else if (!ret) {
805 			if (spliced)
806 				break;
807 			if (sock_flag(sk, SOCK_DONE))
808 				break;
809 			if (sk->sk_err) {
810 				ret = sock_error(sk);
811 				break;
812 			}
813 			if (sk->sk_shutdown & RCV_SHUTDOWN)
814 				break;
815 			if (sk->sk_state == TCP_CLOSE) {
816 				/*
817 				 * This occurs when user tries to read
818 				 * from never connected socket.
819 				 */
820 				ret = -ENOTCONN;
821 				break;
822 			}
823 			if (!timeo) {
824 				ret = -EAGAIN;
825 				break;
826 			}
827 			/* if __tcp_splice_read() got nothing while we have
828 			 * an skb in receive queue, we do not want to loop.
829 			 * This might happen with URG data.
830 			 */
831 			if (!skb_queue_empty(&sk->sk_receive_queue))
832 				break;
833 			sk_wait_data(sk, &timeo, NULL);
834 			if (signal_pending(current)) {
835 				ret = sock_intr_errno(timeo);
836 				break;
837 			}
838 			continue;
839 		}
840 		tss.len -= ret;
841 		spliced += ret;
842 
843 		if (!timeo)
844 			break;
845 		release_sock(sk);
846 		lock_sock(sk);
847 
848 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 		    signal_pending(current))
851 			break;
852 	}
853 
854 	release_sock(sk);
855 
856 	if (spliced)
857 		return spliced;
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 				    bool force_schedule)
865 {
866 	struct sk_buff *skb;
867 
868 	/* The TCP header must be at least 32-bit aligned.  */
869 	size = ALIGN(size, 4);
870 
871 	if (unlikely(tcp_under_memory_pressure(sk)))
872 		sk_mem_reclaim_partial(sk);
873 
874 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
875 	if (likely(skb)) {
876 		bool mem_scheduled;
877 
878 		if (force_schedule) {
879 			mem_scheduled = true;
880 			sk_forced_mem_schedule(sk, skb->truesize);
881 		} else {
882 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 		}
884 		if (likely(mem_scheduled)) {
885 			skb_reserve(skb, sk->sk_prot->max_header);
886 			/*
887 			 * Make sure that we have exactly size bytes
888 			 * available to the caller, no more, no less.
889 			 */
890 			skb->reserved_tailroom = skb->end - skb->tail - size;
891 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
892 			return skb;
893 		}
894 		__kfree_skb(skb);
895 	} else {
896 		sk->sk_prot->enter_memory_pressure(sk);
897 		sk_stream_moderate_sndbuf(sk);
898 	}
899 	return NULL;
900 }
901 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
903 				       int large_allowed)
904 {
905 	struct tcp_sock *tp = tcp_sk(sk);
906 	u32 new_size_goal, size_goal;
907 
908 	if (!large_allowed)
909 		return mss_now;
910 
911 	/* Note : tcp_tso_autosize() will eventually split this later */
912 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
913 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
914 
915 	/* We try hard to avoid divides here */
916 	size_goal = tp->gso_segs * mss_now;
917 	if (unlikely(new_size_goal < size_goal ||
918 		     new_size_goal >= size_goal + mss_now)) {
919 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
920 				     sk->sk_gso_max_segs);
921 		size_goal = tp->gso_segs * mss_now;
922 	}
923 
924 	return max(size_goal, mss_now);
925 }
926 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
928 {
929 	int mss_now;
930 
931 	mss_now = tcp_current_mss(sk);
932 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
933 
934 	return mss_now;
935 }
936 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
938 			 size_t size, int flags)
939 {
940 	struct tcp_sock *tp = tcp_sk(sk);
941 	int mss_now, size_goal;
942 	int err;
943 	ssize_t copied;
944 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
945 
946 	/* Wait for a connection to finish. One exception is TCP Fast Open
947 	 * (passive side) where data is allowed to be sent before a connection
948 	 * is fully established.
949 	 */
950 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
951 	    !tcp_passive_fastopen(sk)) {
952 		err = sk_stream_wait_connect(sk, &timeo);
953 		if (err != 0)
954 			goto out_err;
955 	}
956 
957 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
958 
959 	mss_now = tcp_send_mss(sk, &size_goal, flags);
960 	copied = 0;
961 
962 	err = -EPIPE;
963 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
964 		goto out_err;
965 
966 	while (size > 0) {
967 		struct sk_buff *skb = tcp_write_queue_tail(sk);
968 		int copy, i;
969 		bool can_coalesce;
970 
971 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 		    !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 			if (!sk_stream_memory_free(sk))
975 				goto wait_for_sndbuf;
976 
977 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 					tcp_rtx_and_write_queues_empty(sk));
979 			if (!skb)
980 				goto wait_for_memory;
981 
982 			skb_entail(sk, skb);
983 			copy = size_goal;
984 		}
985 
986 		if (copy > size)
987 			copy = size;
988 
989 		i = skb_shinfo(skb)->nr_frags;
990 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
991 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
992 			tcp_mark_push(tp, skb);
993 			goto new_segment;
994 		}
995 		if (!sk_wmem_schedule(sk, copy))
996 			goto wait_for_memory;
997 
998 		if (can_coalesce) {
999 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1000 		} else {
1001 			get_page(page);
1002 			skb_fill_page_desc(skb, i, page, offset, copy);
1003 		}
1004 
1005 		if (!(flags & MSG_NO_SHARED_FRAGS))
1006 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1007 
1008 		skb->len += copy;
1009 		skb->data_len += copy;
1010 		skb->truesize += copy;
1011 		sk->sk_wmem_queued += copy;
1012 		sk_mem_charge(sk, copy);
1013 		skb->ip_summed = CHECKSUM_PARTIAL;
1014 		tp->write_seq += copy;
1015 		TCP_SKB_CB(skb)->end_seq += copy;
1016 		tcp_skb_pcount_set(skb, 0);
1017 
1018 		if (!copied)
1019 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1020 
1021 		copied += copy;
1022 		offset += copy;
1023 		size -= copy;
1024 		if (!size)
1025 			goto out;
1026 
1027 		if (skb->len < size_goal || (flags & MSG_OOB))
1028 			continue;
1029 
1030 		if (forced_push(tp)) {
1031 			tcp_mark_push(tp, skb);
1032 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1033 		} else if (skb == tcp_send_head(sk))
1034 			tcp_push_one(sk, mss_now);
1035 		continue;
1036 
1037 wait_for_sndbuf:
1038 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1039 wait_for_memory:
1040 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1041 			 TCP_NAGLE_PUSH, size_goal);
1042 
1043 		err = sk_stream_wait_memory(sk, &timeo);
1044 		if (err != 0)
1045 			goto do_error;
1046 
1047 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1048 	}
1049 
1050 out:
1051 	if (copied) {
1052 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1053 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1054 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1055 	}
1056 	return copied;
1057 
1058 do_error:
1059 	if (copied)
1060 		goto out;
1061 out_err:
1062 	/* make sure we wake any epoll edge trigger waiter */
1063 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1064 		     err == -EAGAIN)) {
1065 		sk->sk_write_space(sk);
1066 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1067 	}
1068 	return sk_stream_error(sk, flags, err);
1069 }
1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1071 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1072 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1073 			size_t size, int flags)
1074 {
1075 	if (!(sk->sk_route_caps & NETIF_F_SG))
1076 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1077 
1078 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1079 
1080 	return do_tcp_sendpages(sk, page, offset, size, flags);
1081 }
1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1083 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1085 		 size_t size, int flags)
1086 {
1087 	int ret;
1088 
1089 	lock_sock(sk);
1090 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1091 	release_sock(sk);
1092 
1093 	return ret;
1094 }
1095 EXPORT_SYMBOL(tcp_sendpage);
1096 
1097 /* Do not bother using a page frag for very small frames.
1098  * But use this heuristic only for the first skb in write queue.
1099  *
1100  * Having no payload in skb->head allows better SACK shifting
1101  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1102  * write queue has less skbs.
1103  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1104  * This also speeds up tso_fragment(), since it wont fallback
1105  * to tcp_fragment().
1106  */
linear_payload_sz(bool first_skb)1107 static int linear_payload_sz(bool first_skb)
1108 {
1109 	if (first_skb)
1110 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1111 	return 0;
1112 }
1113 
select_size(bool first_skb,bool zc)1114 static int select_size(bool first_skb, bool zc)
1115 {
1116 	if (zc)
1117 		return 0;
1118 	return linear_payload_sz(first_skb);
1119 }
1120 
tcp_free_fastopen_req(struct tcp_sock * tp)1121 void tcp_free_fastopen_req(struct tcp_sock *tp)
1122 {
1123 	if (tp->fastopen_req) {
1124 		kfree(tp->fastopen_req);
1125 		tp->fastopen_req = NULL;
1126 	}
1127 }
1128 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1130 				int *copied, size_t size)
1131 {
1132 	struct tcp_sock *tp = tcp_sk(sk);
1133 	struct inet_sock *inet = inet_sk(sk);
1134 	struct sockaddr *uaddr = msg->msg_name;
1135 	int err, flags;
1136 
1137 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1138 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1139 	     uaddr->sa_family == AF_UNSPEC))
1140 		return -EOPNOTSUPP;
1141 	if (tp->fastopen_req)
1142 		return -EALREADY; /* Another Fast Open is in progress */
1143 
1144 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1145 				   sk->sk_allocation);
1146 	if (unlikely(!tp->fastopen_req))
1147 		return -ENOBUFS;
1148 	tp->fastopen_req->data = msg;
1149 	tp->fastopen_req->size = size;
1150 
1151 	if (inet->defer_connect) {
1152 		err = tcp_connect(sk);
1153 		/* Same failure procedure as in tcp_v4/6_connect */
1154 		if (err) {
1155 			tcp_set_state(sk, TCP_CLOSE);
1156 			inet->inet_dport = 0;
1157 			sk->sk_route_caps = 0;
1158 		}
1159 	}
1160 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1161 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1162 				    msg->msg_namelen, flags, 1);
1163 	/* fastopen_req could already be freed in __inet_stream_connect
1164 	 * if the connection times out or gets rst
1165 	 */
1166 	if (tp->fastopen_req) {
1167 		*copied = tp->fastopen_req->copied;
1168 		tcp_free_fastopen_req(tp);
1169 		inet->defer_connect = 0;
1170 	}
1171 	return err;
1172 }
1173 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1174 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1175 {
1176 	struct tcp_sock *tp = tcp_sk(sk);
1177 	struct ubuf_info *uarg = NULL;
1178 	struct sk_buff *skb;
1179 	struct sockcm_cookie sockc;
1180 	int flags, err, copied = 0;
1181 	int mss_now = 0, size_goal, copied_syn = 0;
1182 	bool process_backlog = false;
1183 	bool zc = false;
1184 	long timeo;
1185 
1186 	flags = msg->msg_flags;
1187 
1188 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1189 		if (sk->sk_state != TCP_ESTABLISHED) {
1190 			err = -EINVAL;
1191 			goto out_err;
1192 		}
1193 
1194 		skb = tcp_write_queue_tail(sk);
1195 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1196 		if (!uarg) {
1197 			err = -ENOBUFS;
1198 			goto out_err;
1199 		}
1200 
1201 		zc = sk->sk_route_caps & NETIF_F_SG;
1202 		if (!zc)
1203 			uarg->zerocopy = 0;
1204 	}
1205 
1206 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1207 	    !tp->repair) {
1208 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1209 		if (err == -EINPROGRESS && copied_syn > 0)
1210 			goto out;
1211 		else if (err)
1212 			goto out_err;
1213 	}
1214 
1215 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1216 
1217 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1218 
1219 	/* Wait for a connection to finish. One exception is TCP Fast Open
1220 	 * (passive side) where data is allowed to be sent before a connection
1221 	 * is fully established.
1222 	 */
1223 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1224 	    !tcp_passive_fastopen(sk)) {
1225 		err = sk_stream_wait_connect(sk, &timeo);
1226 		if (err != 0)
1227 			goto do_error;
1228 	}
1229 
1230 	if (unlikely(tp->repair)) {
1231 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1232 			copied = tcp_send_rcvq(sk, msg, size);
1233 			goto out_nopush;
1234 		}
1235 
1236 		err = -EINVAL;
1237 		if (tp->repair_queue == TCP_NO_QUEUE)
1238 			goto out_err;
1239 
1240 		/* 'common' sending to sendq */
1241 	}
1242 
1243 	sockcm_init(&sockc, sk);
1244 	if (msg->msg_controllen) {
1245 		err = sock_cmsg_send(sk, msg, &sockc);
1246 		if (unlikely(err)) {
1247 			err = -EINVAL;
1248 			goto out_err;
1249 		}
1250 	}
1251 
1252 	/* This should be in poll */
1253 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1254 
1255 	/* Ok commence sending. */
1256 	copied = 0;
1257 
1258 restart:
1259 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1260 
1261 	err = -EPIPE;
1262 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1263 		goto do_error;
1264 
1265 	while (msg_data_left(msg)) {
1266 		int copy = 0;
1267 
1268 		skb = tcp_write_queue_tail(sk);
1269 		if (skb)
1270 			copy = size_goal - skb->len;
1271 
1272 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1273 			bool first_skb;
1274 			int linear;
1275 
1276 new_segment:
1277 			if (!sk_stream_memory_free(sk))
1278 				goto wait_for_sndbuf;
1279 
1280 			if (process_backlog && sk_flush_backlog(sk)) {
1281 				process_backlog = false;
1282 				goto restart;
1283 			}
1284 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1285 			linear = select_size(first_skb, zc);
1286 			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1287 						  first_skb);
1288 			if (!skb)
1289 				goto wait_for_memory;
1290 
1291 			process_backlog = true;
1292 			skb->ip_summed = CHECKSUM_PARTIAL;
1293 
1294 			skb_entail(sk, skb);
1295 			copy = size_goal;
1296 
1297 			/* All packets are restored as if they have
1298 			 * already been sent. skb_mstamp isn't set to
1299 			 * avoid wrong rtt estimation.
1300 			 */
1301 			if (tp->repair)
1302 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1303 		}
1304 
1305 		/* Try to append data to the end of skb. */
1306 		if (copy > msg_data_left(msg))
1307 			copy = msg_data_left(msg);
1308 
1309 		/* Where to copy to? */
1310 		if (skb_availroom(skb) > 0 && !zc) {
1311 			/* We have some space in skb head. Superb! */
1312 			copy = min_t(int, copy, skb_availroom(skb));
1313 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1314 			if (err)
1315 				goto do_fault;
1316 		} else if (!zc) {
1317 			bool merge = true;
1318 			int i = skb_shinfo(skb)->nr_frags;
1319 			struct page_frag *pfrag = sk_page_frag(sk);
1320 
1321 			if (!sk_page_frag_refill(sk, pfrag))
1322 				goto wait_for_memory;
1323 
1324 			if (!skb_can_coalesce(skb, i, pfrag->page,
1325 					      pfrag->offset)) {
1326 				if (i >= sysctl_max_skb_frags) {
1327 					tcp_mark_push(tp, skb);
1328 					goto new_segment;
1329 				}
1330 				merge = false;
1331 			}
1332 
1333 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1334 
1335 			if (!sk_wmem_schedule(sk, copy))
1336 				goto wait_for_memory;
1337 
1338 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1339 						       pfrag->page,
1340 						       pfrag->offset,
1341 						       copy);
1342 			if (err)
1343 				goto do_error;
1344 
1345 			/* Update the skb. */
1346 			if (merge) {
1347 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1348 			} else {
1349 				skb_fill_page_desc(skb, i, pfrag->page,
1350 						   pfrag->offset, copy);
1351 				page_ref_inc(pfrag->page);
1352 			}
1353 			pfrag->offset += copy;
1354 		} else {
1355 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1356 			if (err == -EMSGSIZE || err == -EEXIST) {
1357 				tcp_mark_push(tp, skb);
1358 				goto new_segment;
1359 			}
1360 			if (err < 0)
1361 				goto do_error;
1362 			copy = err;
1363 		}
1364 
1365 		if (!copied)
1366 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1367 
1368 		tp->write_seq += copy;
1369 		TCP_SKB_CB(skb)->end_seq += copy;
1370 		tcp_skb_pcount_set(skb, 0);
1371 
1372 		copied += copy;
1373 		if (!msg_data_left(msg)) {
1374 			if (unlikely(flags & MSG_EOR))
1375 				TCP_SKB_CB(skb)->eor = 1;
1376 			goto out;
1377 		}
1378 
1379 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1380 			continue;
1381 
1382 		if (forced_push(tp)) {
1383 			tcp_mark_push(tp, skb);
1384 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1385 		} else if (skb == tcp_send_head(sk))
1386 			tcp_push_one(sk, mss_now);
1387 		continue;
1388 
1389 wait_for_sndbuf:
1390 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1391 wait_for_memory:
1392 		if (copied)
1393 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1394 				 TCP_NAGLE_PUSH, size_goal);
1395 
1396 		err = sk_stream_wait_memory(sk, &timeo);
1397 		if (err != 0)
1398 			goto do_error;
1399 
1400 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1401 	}
1402 
1403 out:
1404 	if (copied) {
1405 		tcp_tx_timestamp(sk, sockc.tsflags);
1406 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1407 	}
1408 out_nopush:
1409 	sock_zerocopy_put(uarg);
1410 	return copied + copied_syn;
1411 
1412 do_fault:
1413 	if (!skb->len) {
1414 		tcp_unlink_write_queue(skb, sk);
1415 		/* It is the one place in all of TCP, except connection
1416 		 * reset, where we can be unlinking the send_head.
1417 		 */
1418 		tcp_check_send_head(sk, skb);
1419 		sk_wmem_free_skb(sk, skb);
1420 	}
1421 
1422 do_error:
1423 	if (copied + copied_syn)
1424 		goto out;
1425 out_err:
1426 	sock_zerocopy_put_abort(uarg);
1427 	err = sk_stream_error(sk, flags, err);
1428 	/* make sure we wake any epoll edge trigger waiter */
1429 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1430 		     err == -EAGAIN)) {
1431 		sk->sk_write_space(sk);
1432 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1433 	}
1434 	return err;
1435 }
1436 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1437 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1438 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1439 {
1440 	int ret;
1441 
1442 	lock_sock(sk);
1443 	ret = tcp_sendmsg_locked(sk, msg, size);
1444 	release_sock(sk);
1445 
1446 	return ret;
1447 }
1448 EXPORT_SYMBOL(tcp_sendmsg);
1449 
1450 /*
1451  *	Handle reading urgent data. BSD has very simple semantics for
1452  *	this, no blocking and very strange errors 8)
1453  */
1454 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1455 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1456 {
1457 	struct tcp_sock *tp = tcp_sk(sk);
1458 
1459 	/* No URG data to read. */
1460 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1461 	    tp->urg_data == TCP_URG_READ)
1462 		return -EINVAL;	/* Yes this is right ! */
1463 
1464 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1465 		return -ENOTCONN;
1466 
1467 	if (tp->urg_data & TCP_URG_VALID) {
1468 		int err = 0;
1469 		char c = tp->urg_data;
1470 
1471 		if (!(flags & MSG_PEEK))
1472 			tp->urg_data = TCP_URG_READ;
1473 
1474 		/* Read urgent data. */
1475 		msg->msg_flags |= MSG_OOB;
1476 
1477 		if (len > 0) {
1478 			if (!(flags & MSG_TRUNC))
1479 				err = memcpy_to_msg(msg, &c, 1);
1480 			len = 1;
1481 		} else
1482 			msg->msg_flags |= MSG_TRUNC;
1483 
1484 		return err ? -EFAULT : len;
1485 	}
1486 
1487 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1488 		return 0;
1489 
1490 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1491 	 * the available implementations agree in this case:
1492 	 * this call should never block, independent of the
1493 	 * blocking state of the socket.
1494 	 * Mike <pall@rz.uni-karlsruhe.de>
1495 	 */
1496 	return -EAGAIN;
1497 }
1498 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1499 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1500 {
1501 	struct sk_buff *skb;
1502 	int copied = 0, err = 0;
1503 
1504 	/* XXX -- need to support SO_PEEK_OFF */
1505 
1506 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1507 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1508 		if (err)
1509 			return err;
1510 		copied += skb->len;
1511 	}
1512 
1513 	skb_queue_walk(&sk->sk_write_queue, skb) {
1514 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1515 		if (err)
1516 			break;
1517 
1518 		copied += skb->len;
1519 	}
1520 
1521 	return err ?: copied;
1522 }
1523 
1524 /* Clean up the receive buffer for full frames taken by the user,
1525  * then send an ACK if necessary.  COPIED is the number of bytes
1526  * tcp_recvmsg has given to the user so far, it speeds up the
1527  * calculation of whether or not we must ACK for the sake of
1528  * a window update.
1529  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1530 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1531 {
1532 	struct tcp_sock *tp = tcp_sk(sk);
1533 	bool time_to_ack = false;
1534 
1535 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1536 
1537 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1538 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1539 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1540 
1541 	if (inet_csk_ack_scheduled(sk)) {
1542 		const struct inet_connection_sock *icsk = inet_csk(sk);
1543 		   /* Delayed ACKs frequently hit locked sockets during bulk
1544 		    * receive. */
1545 		if (icsk->icsk_ack.blocked ||
1546 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1547 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1548 		    /*
1549 		     * If this read emptied read buffer, we send ACK, if
1550 		     * connection is not bidirectional, user drained
1551 		     * receive buffer and there was a small segment
1552 		     * in queue.
1553 		     */
1554 		    (copied > 0 &&
1555 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1556 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1557 		       !icsk->icsk_ack.pingpong)) &&
1558 		      !atomic_read(&sk->sk_rmem_alloc)))
1559 			time_to_ack = true;
1560 	}
1561 
1562 	/* We send an ACK if we can now advertise a non-zero window
1563 	 * which has been raised "significantly".
1564 	 *
1565 	 * Even if window raised up to infinity, do not send window open ACK
1566 	 * in states, where we will not receive more. It is useless.
1567 	 */
1568 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1569 		__u32 rcv_window_now = tcp_receive_window(tp);
1570 
1571 		/* Optimize, __tcp_select_window() is not cheap. */
1572 		if (2*rcv_window_now <= tp->window_clamp) {
1573 			__u32 new_window = __tcp_select_window(sk);
1574 
1575 			/* Send ACK now, if this read freed lots of space
1576 			 * in our buffer. Certainly, new_window is new window.
1577 			 * We can advertise it now, if it is not less than current one.
1578 			 * "Lots" means "at least twice" here.
1579 			 */
1580 			if (new_window && new_window >= 2 * rcv_window_now)
1581 				time_to_ack = true;
1582 		}
1583 	}
1584 	if (time_to_ack)
1585 		tcp_send_ack(sk);
1586 }
1587 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1588 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1589 {
1590 	struct sk_buff *skb;
1591 	u32 offset;
1592 
1593 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1594 		offset = seq - TCP_SKB_CB(skb)->seq;
1595 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1596 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1597 			offset--;
1598 		}
1599 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1600 			*off = offset;
1601 			return skb;
1602 		}
1603 		/* This looks weird, but this can happen if TCP collapsing
1604 		 * splitted a fat GRO packet, while we released socket lock
1605 		 * in skb_splice_bits()
1606 		 */
1607 		sk_eat_skb(sk, skb);
1608 	}
1609 	return NULL;
1610 }
1611 
1612 /*
1613  * This routine provides an alternative to tcp_recvmsg() for routines
1614  * that would like to handle copying from skbuffs directly in 'sendfile'
1615  * fashion.
1616  * Note:
1617  *	- It is assumed that the socket was locked by the caller.
1618  *	- The routine does not block.
1619  *	- At present, there is no support for reading OOB data
1620  *	  or for 'peeking' the socket using this routine
1621  *	  (although both would be easy to implement).
1622  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1623 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1624 		  sk_read_actor_t recv_actor)
1625 {
1626 	struct sk_buff *skb;
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	u32 seq = tp->copied_seq;
1629 	u32 offset;
1630 	int copied = 0;
1631 
1632 	if (sk->sk_state == TCP_LISTEN)
1633 		return -ENOTCONN;
1634 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1635 		if (offset < skb->len) {
1636 			int used;
1637 			size_t len;
1638 
1639 			len = skb->len - offset;
1640 			/* Stop reading if we hit a patch of urgent data */
1641 			if (tp->urg_data) {
1642 				u32 urg_offset = tp->urg_seq - seq;
1643 				if (urg_offset < len)
1644 					len = urg_offset;
1645 				if (!len)
1646 					break;
1647 			}
1648 			used = recv_actor(desc, skb, offset, len);
1649 			if (used <= 0) {
1650 				if (!copied)
1651 					copied = used;
1652 				break;
1653 			} else if (used <= len) {
1654 				seq += used;
1655 				copied += used;
1656 				offset += used;
1657 			}
1658 			/* If recv_actor drops the lock (e.g. TCP splice
1659 			 * receive) the skb pointer might be invalid when
1660 			 * getting here: tcp_collapse might have deleted it
1661 			 * while aggregating skbs from the socket queue.
1662 			 */
1663 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1664 			if (!skb)
1665 				break;
1666 			/* TCP coalescing might have appended data to the skb.
1667 			 * Try to splice more frags
1668 			 */
1669 			if (offset + 1 != skb->len)
1670 				continue;
1671 		}
1672 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1673 			sk_eat_skb(sk, skb);
1674 			++seq;
1675 			break;
1676 		}
1677 		sk_eat_skb(sk, skb);
1678 		if (!desc->count)
1679 			break;
1680 		tp->copied_seq = seq;
1681 	}
1682 	tp->copied_seq = seq;
1683 
1684 	tcp_rcv_space_adjust(sk);
1685 
1686 	/* Clean up data we have read: This will do ACK frames. */
1687 	if (copied > 0) {
1688 		tcp_recv_skb(sk, seq, &offset);
1689 		tcp_cleanup_rbuf(sk, copied);
1690 	}
1691 	return copied;
1692 }
1693 EXPORT_SYMBOL(tcp_read_sock);
1694 
tcp_peek_len(struct socket * sock)1695 int tcp_peek_len(struct socket *sock)
1696 {
1697 	return tcp_inq(sock->sk);
1698 }
1699 EXPORT_SYMBOL(tcp_peek_len);
1700 
1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1702 int tcp_set_rcvlowat(struct sock *sk, int val)
1703 {
1704 	int cap;
1705 
1706 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 		cap = sk->sk_rcvbuf >> 1;
1708 	else
1709 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1710 	val = min(val, cap);
1711 	sk->sk_rcvlowat = val ? : 1;
1712 
1713 	/* Check if we need to signal EPOLLIN right now */
1714 	tcp_data_ready(sk);
1715 
1716 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1717 		return 0;
1718 
1719 	val <<= 1;
1720 	if (val > sk->sk_rcvbuf) {
1721 		sk->sk_rcvbuf = val;
1722 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1723 	}
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(tcp_set_rcvlowat);
1727 
1728 #ifdef CONFIG_MMU
1729 static const struct vm_operations_struct tcp_vm_ops = {
1730 };
1731 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1732 int tcp_mmap(struct file *file, struct socket *sock,
1733 	     struct vm_area_struct *vma)
1734 {
1735 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1736 		return -EPERM;
1737 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1738 
1739 	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
1740 	vma->vm_flags |= VM_MIXEDMAP;
1741 
1742 	vma->vm_ops = &tcp_vm_ops;
1743 	return 0;
1744 }
1745 EXPORT_SYMBOL(tcp_mmap);
1746 
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1747 static int tcp_zerocopy_receive(struct sock *sk,
1748 				struct tcp_zerocopy_receive *zc)
1749 {
1750 	unsigned long address = (unsigned long)zc->address;
1751 	const skb_frag_t *frags = NULL;
1752 	u32 length = 0, seq, offset;
1753 	struct vm_area_struct *vma;
1754 	struct sk_buff *skb = NULL;
1755 	struct tcp_sock *tp;
1756 	int ret;
1757 
1758 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1759 		return -EINVAL;
1760 
1761 	if (sk->sk_state == TCP_LISTEN)
1762 		return -ENOTCONN;
1763 
1764 	sock_rps_record_flow(sk);
1765 
1766 	down_read(&current->mm->mmap_sem);
1767 
1768 	ret = -EINVAL;
1769 	vma = find_vma(current->mm, address);
1770 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1771 		goto out;
1772 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1773 
1774 	tp = tcp_sk(sk);
1775 	seq = tp->copied_seq;
1776 	zc->length = min_t(u32, zc->length, tcp_inq(sk));
1777 	zc->length &= ~(PAGE_SIZE - 1);
1778 
1779 	zap_page_range(vma, address, zc->length);
1780 
1781 	zc->recv_skip_hint = 0;
1782 	ret = 0;
1783 	while (length + PAGE_SIZE <= zc->length) {
1784 		if (zc->recv_skip_hint < PAGE_SIZE) {
1785 			if (skb) {
1786 				skb = skb->next;
1787 				offset = seq - TCP_SKB_CB(skb)->seq;
1788 			} else {
1789 				skb = tcp_recv_skb(sk, seq, &offset);
1790 			}
1791 
1792 			zc->recv_skip_hint = skb->len - offset;
1793 			offset -= skb_headlen(skb);
1794 			if ((int)offset < 0 || skb_has_frag_list(skb))
1795 				break;
1796 			frags = skb_shinfo(skb)->frags;
1797 			while (offset) {
1798 				if (frags->size > offset)
1799 					goto out;
1800 				offset -= frags->size;
1801 				frags++;
1802 			}
1803 		}
1804 		if (frags->size != PAGE_SIZE || frags->page_offset)
1805 			break;
1806 		ret = vm_insert_page(vma, address + length,
1807 				     skb_frag_page(frags));
1808 		if (ret)
1809 			break;
1810 		length += PAGE_SIZE;
1811 		seq += PAGE_SIZE;
1812 		zc->recv_skip_hint -= PAGE_SIZE;
1813 		frags++;
1814 	}
1815 out:
1816 	up_read(&current->mm->mmap_sem);
1817 	if (length) {
1818 		tp->copied_seq = seq;
1819 		tcp_rcv_space_adjust(sk);
1820 
1821 		/* Clean up data we have read: This will do ACK frames. */
1822 		tcp_recv_skb(sk, seq, &offset);
1823 		tcp_cleanup_rbuf(sk, length);
1824 		ret = 0;
1825 		if (length == zc->length)
1826 			zc->recv_skip_hint = 0;
1827 	} else {
1828 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1829 			ret = -EIO;
1830 	}
1831 	zc->length = length;
1832 	return ret;
1833 }
1834 #endif
1835 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping * tss)1836 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1837 				    struct scm_timestamping *tss)
1838 {
1839 	if (skb->tstamp)
1840 		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1841 	else
1842 		tss->ts[0] = (struct timespec) {0};
1843 
1844 	if (skb_hwtstamps(skb)->hwtstamp)
1845 		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1846 	else
1847 		tss->ts[2] = (struct timespec) {0};
1848 }
1849 
1850 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping * tss)1851 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1852 			       struct scm_timestamping *tss)
1853 {
1854 	struct timeval tv;
1855 	bool has_timestamping = false;
1856 
1857 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1858 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1859 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1860 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1861 					 sizeof(tss->ts[0]), &tss->ts[0]);
1862 			} else {
1863 				tv.tv_sec = tss->ts[0].tv_sec;
1864 				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1865 
1866 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1867 					 sizeof(tv), &tv);
1868 			}
1869 		}
1870 
1871 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1872 			has_timestamping = true;
1873 		else
1874 			tss->ts[0] = (struct timespec) {0};
1875 	}
1876 
1877 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1878 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1879 			has_timestamping = true;
1880 		else
1881 			tss->ts[2] = (struct timespec) {0};
1882 	}
1883 
1884 	if (has_timestamping) {
1885 		tss->ts[1] = (struct timespec) {0};
1886 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1887 			 sizeof(*tss), tss);
1888 	}
1889 }
1890 
tcp_inq_hint(struct sock * sk)1891 static int tcp_inq_hint(struct sock *sk)
1892 {
1893 	const struct tcp_sock *tp = tcp_sk(sk);
1894 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1895 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1896 	int inq;
1897 
1898 	inq = rcv_nxt - copied_seq;
1899 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1900 		lock_sock(sk);
1901 		inq = tp->rcv_nxt - tp->copied_seq;
1902 		release_sock(sk);
1903 	}
1904 	return inq;
1905 }
1906 
1907 /*
1908  *	This routine copies from a sock struct into the user buffer.
1909  *
1910  *	Technical note: in 2.3 we work on _locked_ socket, so that
1911  *	tricks with *seq access order and skb->users are not required.
1912  *	Probably, code can be easily improved even more.
1913  */
1914 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1915 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1916 		int flags, int *addr_len)
1917 {
1918 	struct tcp_sock *tp = tcp_sk(sk);
1919 	int copied = 0;
1920 	u32 peek_seq;
1921 	u32 *seq;
1922 	unsigned long used;
1923 	int err, inq;
1924 	int target;		/* Read at least this many bytes */
1925 	long timeo;
1926 	struct sk_buff *skb, *last;
1927 	u32 urg_hole = 0;
1928 	struct scm_timestamping tss;
1929 	bool has_tss = false;
1930 	bool has_cmsg;
1931 
1932 	if (unlikely(flags & MSG_ERRQUEUE))
1933 		return inet_recv_error(sk, msg, len, addr_len);
1934 
1935 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1936 	    (sk->sk_state == TCP_ESTABLISHED))
1937 		sk_busy_loop(sk, nonblock);
1938 
1939 	lock_sock(sk);
1940 
1941 	err = -ENOTCONN;
1942 	if (sk->sk_state == TCP_LISTEN)
1943 		goto out;
1944 
1945 	has_cmsg = tp->recvmsg_inq;
1946 	timeo = sock_rcvtimeo(sk, nonblock);
1947 
1948 	/* Urgent data needs to be handled specially. */
1949 	if (flags & MSG_OOB)
1950 		goto recv_urg;
1951 
1952 	if (unlikely(tp->repair)) {
1953 		err = -EPERM;
1954 		if (!(flags & MSG_PEEK))
1955 			goto out;
1956 
1957 		if (tp->repair_queue == TCP_SEND_QUEUE)
1958 			goto recv_sndq;
1959 
1960 		err = -EINVAL;
1961 		if (tp->repair_queue == TCP_NO_QUEUE)
1962 			goto out;
1963 
1964 		/* 'common' recv queue MSG_PEEK-ing */
1965 	}
1966 
1967 	seq = &tp->copied_seq;
1968 	if (flags & MSG_PEEK) {
1969 		peek_seq = tp->copied_seq;
1970 		seq = &peek_seq;
1971 	}
1972 
1973 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1974 
1975 	do {
1976 		u32 offset;
1977 
1978 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1979 		if (tp->urg_data && tp->urg_seq == *seq) {
1980 			if (copied)
1981 				break;
1982 			if (signal_pending(current)) {
1983 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1984 				break;
1985 			}
1986 		}
1987 
1988 		/* Next get a buffer. */
1989 
1990 		last = skb_peek_tail(&sk->sk_receive_queue);
1991 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1992 			last = skb;
1993 			/* Now that we have two receive queues this
1994 			 * shouldn't happen.
1995 			 */
1996 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1997 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1998 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1999 				 flags))
2000 				break;
2001 
2002 			offset = *seq - TCP_SKB_CB(skb)->seq;
2003 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2004 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2005 				offset--;
2006 			}
2007 			if (offset < skb->len)
2008 				goto found_ok_skb;
2009 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2010 				goto found_fin_ok;
2011 			WARN(!(flags & MSG_PEEK),
2012 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2013 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2014 		}
2015 
2016 		/* Well, if we have backlog, try to process it now yet. */
2017 
2018 		if (copied >= target && !sk->sk_backlog.tail)
2019 			break;
2020 
2021 		if (copied) {
2022 			if (sk->sk_err ||
2023 			    sk->sk_state == TCP_CLOSE ||
2024 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2025 			    !timeo ||
2026 			    signal_pending(current))
2027 				break;
2028 		} else {
2029 			if (sock_flag(sk, SOCK_DONE))
2030 				break;
2031 
2032 			if (sk->sk_err) {
2033 				copied = sock_error(sk);
2034 				break;
2035 			}
2036 
2037 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2038 				break;
2039 
2040 			if (sk->sk_state == TCP_CLOSE) {
2041 				/* This occurs when user tries to read
2042 				 * from never connected socket.
2043 				 */
2044 				copied = -ENOTCONN;
2045 				break;
2046 			}
2047 
2048 			if (!timeo) {
2049 				copied = -EAGAIN;
2050 				break;
2051 			}
2052 
2053 			if (signal_pending(current)) {
2054 				copied = sock_intr_errno(timeo);
2055 				break;
2056 			}
2057 		}
2058 
2059 		tcp_cleanup_rbuf(sk, copied);
2060 
2061 		if (copied >= target) {
2062 			/* Do not sleep, just process backlog. */
2063 			release_sock(sk);
2064 			lock_sock(sk);
2065 		} else {
2066 			sk_wait_data(sk, &timeo, last);
2067 		}
2068 
2069 		if ((flags & MSG_PEEK) &&
2070 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2071 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2072 					    current->comm,
2073 					    task_pid_nr(current));
2074 			peek_seq = tp->copied_seq;
2075 		}
2076 		continue;
2077 
2078 	found_ok_skb:
2079 		/* Ok so how much can we use? */
2080 		used = skb->len - offset;
2081 		if (len < used)
2082 			used = len;
2083 
2084 		/* Do we have urgent data here? */
2085 		if (tp->urg_data) {
2086 			u32 urg_offset = tp->urg_seq - *seq;
2087 			if (urg_offset < used) {
2088 				if (!urg_offset) {
2089 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2090 						++*seq;
2091 						urg_hole++;
2092 						offset++;
2093 						used--;
2094 						if (!used)
2095 							goto skip_copy;
2096 					}
2097 				} else
2098 					used = urg_offset;
2099 			}
2100 		}
2101 
2102 		if (!(flags & MSG_TRUNC)) {
2103 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2104 			if (err) {
2105 				/* Exception. Bailout! */
2106 				if (!copied)
2107 					copied = -EFAULT;
2108 				break;
2109 			}
2110 		}
2111 
2112 		*seq += used;
2113 		copied += used;
2114 		len -= used;
2115 
2116 		tcp_rcv_space_adjust(sk);
2117 
2118 skip_copy:
2119 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2120 			tp->urg_data = 0;
2121 			tcp_fast_path_check(sk);
2122 		}
2123 		if (used + offset < skb->len)
2124 			continue;
2125 
2126 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2127 			tcp_update_recv_tstamps(skb, &tss);
2128 			has_tss = true;
2129 			has_cmsg = true;
2130 		}
2131 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2132 			goto found_fin_ok;
2133 		if (!(flags & MSG_PEEK))
2134 			sk_eat_skb(sk, skb);
2135 		continue;
2136 
2137 	found_fin_ok:
2138 		/* Process the FIN. */
2139 		++*seq;
2140 		if (!(flags & MSG_PEEK))
2141 			sk_eat_skb(sk, skb);
2142 		break;
2143 	} while (len > 0);
2144 
2145 	/* According to UNIX98, msg_name/msg_namelen are ignored
2146 	 * on connected socket. I was just happy when found this 8) --ANK
2147 	 */
2148 
2149 	/* Clean up data we have read: This will do ACK frames. */
2150 	tcp_cleanup_rbuf(sk, copied);
2151 
2152 	release_sock(sk);
2153 
2154 	if (has_cmsg) {
2155 		if (has_tss)
2156 			tcp_recv_timestamp(msg, sk, &tss);
2157 		if (tp->recvmsg_inq) {
2158 			inq = tcp_inq_hint(sk);
2159 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2160 		}
2161 	}
2162 
2163 	return copied;
2164 
2165 out:
2166 	release_sock(sk);
2167 	return err;
2168 
2169 recv_urg:
2170 	err = tcp_recv_urg(sk, msg, len, flags);
2171 	goto out;
2172 
2173 recv_sndq:
2174 	err = tcp_peek_sndq(sk, msg, len);
2175 	goto out;
2176 }
2177 EXPORT_SYMBOL(tcp_recvmsg);
2178 
tcp_set_state(struct sock * sk,int state)2179 void tcp_set_state(struct sock *sk, int state)
2180 {
2181 	int oldstate = sk->sk_state;
2182 
2183 	/* We defined a new enum for TCP states that are exported in BPF
2184 	 * so as not force the internal TCP states to be frozen. The
2185 	 * following checks will detect if an internal state value ever
2186 	 * differs from the BPF value. If this ever happens, then we will
2187 	 * need to remap the internal value to the BPF value before calling
2188 	 * tcp_call_bpf_2arg.
2189 	 */
2190 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2191 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2192 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2193 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2194 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2195 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2196 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2197 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2198 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2199 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2200 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2201 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2202 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2203 
2204 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2205 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2206 
2207 	switch (state) {
2208 	case TCP_ESTABLISHED:
2209 		if (oldstate != TCP_ESTABLISHED)
2210 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2211 		break;
2212 
2213 	case TCP_CLOSE:
2214 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2215 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2216 
2217 		sk->sk_prot->unhash(sk);
2218 		if (inet_csk(sk)->icsk_bind_hash &&
2219 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2220 			inet_put_port(sk);
2221 		/* fall through */
2222 	default:
2223 		if (oldstate == TCP_ESTABLISHED)
2224 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2225 	}
2226 
2227 	/* Change state AFTER socket is unhashed to avoid closed
2228 	 * socket sitting in hash tables.
2229 	 */
2230 	inet_sk_state_store(sk, state);
2231 
2232 #ifdef STATE_TRACE
2233 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2234 #endif
2235 }
2236 EXPORT_SYMBOL_GPL(tcp_set_state);
2237 
2238 /*
2239  *	State processing on a close. This implements the state shift for
2240  *	sending our FIN frame. Note that we only send a FIN for some
2241  *	states. A shutdown() may have already sent the FIN, or we may be
2242  *	closed.
2243  */
2244 
2245 static const unsigned char new_state[16] = {
2246   /* current state:        new state:      action:	*/
2247   [0 /* (Invalid) */]	= TCP_CLOSE,
2248   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2249   [TCP_SYN_SENT]	= TCP_CLOSE,
2250   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2251   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2252   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2253   [TCP_TIME_WAIT]	= TCP_CLOSE,
2254   [TCP_CLOSE]		= TCP_CLOSE,
2255   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2256   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2257   [TCP_LISTEN]		= TCP_CLOSE,
2258   [TCP_CLOSING]		= TCP_CLOSING,
2259   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2260 };
2261 
tcp_close_state(struct sock * sk)2262 static int tcp_close_state(struct sock *sk)
2263 {
2264 	int next = (int)new_state[sk->sk_state];
2265 	int ns = next & TCP_STATE_MASK;
2266 
2267 	tcp_set_state(sk, ns);
2268 
2269 	return next & TCP_ACTION_FIN;
2270 }
2271 
2272 /*
2273  *	Shutdown the sending side of a connection. Much like close except
2274  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2275  */
2276 
tcp_shutdown(struct sock * sk,int how)2277 void tcp_shutdown(struct sock *sk, int how)
2278 {
2279 	/*	We need to grab some memory, and put together a FIN,
2280 	 *	and then put it into the queue to be sent.
2281 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2282 	 */
2283 	if (!(how & SEND_SHUTDOWN))
2284 		return;
2285 
2286 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2287 	if ((1 << sk->sk_state) &
2288 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2289 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2290 		/* Clear out any half completed packets.  FIN if needed. */
2291 		if (tcp_close_state(sk))
2292 			tcp_send_fin(sk);
2293 	}
2294 }
2295 EXPORT_SYMBOL(tcp_shutdown);
2296 
tcp_check_oom(struct sock * sk,int shift)2297 bool tcp_check_oom(struct sock *sk, int shift)
2298 {
2299 	bool too_many_orphans, out_of_socket_memory;
2300 
2301 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2302 	out_of_socket_memory = tcp_out_of_memory(sk);
2303 
2304 	if (too_many_orphans)
2305 		net_info_ratelimited("too many orphaned sockets\n");
2306 	if (out_of_socket_memory)
2307 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2308 	return too_many_orphans || out_of_socket_memory;
2309 }
2310 
tcp_close(struct sock * sk,long timeout)2311 void tcp_close(struct sock *sk, long timeout)
2312 {
2313 	struct sk_buff *skb;
2314 	int data_was_unread = 0;
2315 	int state;
2316 
2317 	lock_sock(sk);
2318 	sk->sk_shutdown = SHUTDOWN_MASK;
2319 
2320 	if (sk->sk_state == TCP_LISTEN) {
2321 		tcp_set_state(sk, TCP_CLOSE);
2322 
2323 		/* Special case. */
2324 		inet_csk_listen_stop(sk);
2325 
2326 		goto adjudge_to_death;
2327 	}
2328 
2329 	/*  We need to flush the recv. buffs.  We do this only on the
2330 	 *  descriptor close, not protocol-sourced closes, because the
2331 	 *  reader process may not have drained the data yet!
2332 	 */
2333 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2334 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2335 
2336 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2337 			len--;
2338 		data_was_unread += len;
2339 		__kfree_skb(skb);
2340 	}
2341 
2342 	sk_mem_reclaim(sk);
2343 
2344 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2345 	if (sk->sk_state == TCP_CLOSE)
2346 		goto adjudge_to_death;
2347 
2348 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2349 	 * data was lost. To witness the awful effects of the old behavior of
2350 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2351 	 * GET in an FTP client, suspend the process, wait for the client to
2352 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2353 	 * Note: timeout is always zero in such a case.
2354 	 */
2355 	if (unlikely(tcp_sk(sk)->repair)) {
2356 		sk->sk_prot->disconnect(sk, 0);
2357 	} else if (data_was_unread) {
2358 		/* Unread data was tossed, zap the connection. */
2359 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2360 		tcp_set_state(sk, TCP_CLOSE);
2361 		tcp_send_active_reset(sk, sk->sk_allocation);
2362 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2363 		/* Check zero linger _after_ checking for unread data. */
2364 		sk->sk_prot->disconnect(sk, 0);
2365 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2366 	} else if (tcp_close_state(sk)) {
2367 		/* We FIN if the application ate all the data before
2368 		 * zapping the connection.
2369 		 */
2370 
2371 		/* RED-PEN. Formally speaking, we have broken TCP state
2372 		 * machine. State transitions:
2373 		 *
2374 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2375 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2376 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2377 		 *
2378 		 * are legal only when FIN has been sent (i.e. in window),
2379 		 * rather than queued out of window. Purists blame.
2380 		 *
2381 		 * F.e. "RFC state" is ESTABLISHED,
2382 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2383 		 *
2384 		 * The visible declinations are that sometimes
2385 		 * we enter time-wait state, when it is not required really
2386 		 * (harmless), do not send active resets, when they are
2387 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2388 		 * they look as CLOSING or LAST_ACK for Linux)
2389 		 * Probably, I missed some more holelets.
2390 		 * 						--ANK
2391 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2392 		 * in a single packet! (May consider it later but will
2393 		 * probably need API support or TCP_CORK SYN-ACK until
2394 		 * data is written and socket is closed.)
2395 		 */
2396 		tcp_send_fin(sk);
2397 	}
2398 
2399 	sk_stream_wait_close(sk, timeout);
2400 
2401 adjudge_to_death:
2402 	state = sk->sk_state;
2403 	sock_hold(sk);
2404 	sock_orphan(sk);
2405 
2406 	/* It is the last release_sock in its life. It will remove backlog. */
2407 	release_sock(sk);
2408 
2409 
2410 	/* Now socket is owned by kernel and we acquire BH lock
2411 	 *  to finish close. No need to check for user refs.
2412 	 */
2413 	local_bh_disable();
2414 	bh_lock_sock(sk);
2415 	WARN_ON(sock_owned_by_user(sk));
2416 
2417 	percpu_counter_inc(sk->sk_prot->orphan_count);
2418 
2419 	/* Have we already been destroyed by a softirq or backlog? */
2420 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2421 		goto out;
2422 
2423 	/*	This is a (useful) BSD violating of the RFC. There is a
2424 	 *	problem with TCP as specified in that the other end could
2425 	 *	keep a socket open forever with no application left this end.
2426 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2427 	 *	our end. If they send after that then tough - BUT: long enough
2428 	 *	that we won't make the old 4*rto = almost no time - whoops
2429 	 *	reset mistake.
2430 	 *
2431 	 *	Nope, it was not mistake. It is really desired behaviour
2432 	 *	f.e. on http servers, when such sockets are useless, but
2433 	 *	consume significant resources. Let's do it with special
2434 	 *	linger2	option.					--ANK
2435 	 */
2436 
2437 	if (sk->sk_state == TCP_FIN_WAIT2) {
2438 		struct tcp_sock *tp = tcp_sk(sk);
2439 		if (tp->linger2 < 0) {
2440 			tcp_set_state(sk, TCP_CLOSE);
2441 			tcp_send_active_reset(sk, GFP_ATOMIC);
2442 			__NET_INC_STATS(sock_net(sk),
2443 					LINUX_MIB_TCPABORTONLINGER);
2444 		} else {
2445 			const int tmo = tcp_fin_time(sk);
2446 
2447 			if (tmo > TCP_TIMEWAIT_LEN) {
2448 				inet_csk_reset_keepalive_timer(sk,
2449 						tmo - TCP_TIMEWAIT_LEN);
2450 			} else {
2451 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2452 				goto out;
2453 			}
2454 		}
2455 	}
2456 	if (sk->sk_state != TCP_CLOSE) {
2457 		sk_mem_reclaim(sk);
2458 		if (tcp_check_oom(sk, 0)) {
2459 			tcp_set_state(sk, TCP_CLOSE);
2460 			tcp_send_active_reset(sk, GFP_ATOMIC);
2461 			__NET_INC_STATS(sock_net(sk),
2462 					LINUX_MIB_TCPABORTONMEMORY);
2463 		} else if (!check_net(sock_net(sk))) {
2464 			/* Not possible to send reset; just close */
2465 			tcp_set_state(sk, TCP_CLOSE);
2466 		}
2467 	}
2468 
2469 	if (sk->sk_state == TCP_CLOSE) {
2470 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2471 		/* We could get here with a non-NULL req if the socket is
2472 		 * aborted (e.g., closed with unread data) before 3WHS
2473 		 * finishes.
2474 		 */
2475 		if (req)
2476 			reqsk_fastopen_remove(sk, req, false);
2477 		inet_csk_destroy_sock(sk);
2478 	}
2479 	/* Otherwise, socket is reprieved until protocol close. */
2480 
2481 out:
2482 	bh_unlock_sock(sk);
2483 	local_bh_enable();
2484 	sock_put(sk);
2485 }
2486 EXPORT_SYMBOL(tcp_close);
2487 
2488 /* These states need RST on ABORT according to RFC793 */
2489 
tcp_need_reset(int state)2490 static inline bool tcp_need_reset(int state)
2491 {
2492 	return (1 << state) &
2493 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2494 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2495 }
2496 
tcp_rtx_queue_purge(struct sock * sk)2497 static void tcp_rtx_queue_purge(struct sock *sk)
2498 {
2499 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2500 
2501 	while (p) {
2502 		struct sk_buff *skb = rb_to_skb(p);
2503 
2504 		p = rb_next(p);
2505 		/* Since we are deleting whole queue, no need to
2506 		 * list_del(&skb->tcp_tsorted_anchor)
2507 		 */
2508 		tcp_rtx_queue_unlink(skb, sk);
2509 		sk_wmem_free_skb(sk, skb);
2510 	}
2511 }
2512 
tcp_write_queue_purge(struct sock * sk)2513 void tcp_write_queue_purge(struct sock *sk)
2514 {
2515 	struct sk_buff *skb;
2516 
2517 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2518 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2519 		tcp_skb_tsorted_anchor_cleanup(skb);
2520 		sk_wmem_free_skb(sk, skb);
2521 	}
2522 	tcp_rtx_queue_purge(sk);
2523 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2524 	sk_mem_reclaim(sk);
2525 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2526 	tcp_sk(sk)->packets_out = 0;
2527 }
2528 
tcp_disconnect(struct sock * sk,int flags)2529 int tcp_disconnect(struct sock *sk, int flags)
2530 {
2531 	struct inet_sock *inet = inet_sk(sk);
2532 	struct inet_connection_sock *icsk = inet_csk(sk);
2533 	struct tcp_sock *tp = tcp_sk(sk);
2534 	int old_state = sk->sk_state;
2535 
2536 	if (old_state != TCP_CLOSE)
2537 		tcp_set_state(sk, TCP_CLOSE);
2538 
2539 	/* ABORT function of RFC793 */
2540 	if (old_state == TCP_LISTEN) {
2541 		inet_csk_listen_stop(sk);
2542 	} else if (unlikely(tp->repair)) {
2543 		sk->sk_err = ECONNABORTED;
2544 	} else if (tcp_need_reset(old_state) ||
2545 		   (tp->snd_nxt != tp->write_seq &&
2546 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2547 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2548 		 * states
2549 		 */
2550 		tcp_send_active_reset(sk, gfp_any());
2551 		sk->sk_err = ECONNRESET;
2552 	} else if (old_state == TCP_SYN_SENT)
2553 		sk->sk_err = ECONNRESET;
2554 
2555 	tcp_clear_xmit_timers(sk);
2556 	__skb_queue_purge(&sk->sk_receive_queue);
2557 	tp->copied_seq = tp->rcv_nxt;
2558 	tp->urg_data = 0;
2559 	tcp_write_queue_purge(sk);
2560 	tcp_fastopen_active_disable_ofo_check(sk);
2561 	skb_rbtree_purge(&tp->out_of_order_queue);
2562 
2563 	inet->inet_dport = 0;
2564 
2565 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2566 		inet_reset_saddr(sk);
2567 
2568 	sk->sk_shutdown = 0;
2569 	sock_reset_flag(sk, SOCK_DONE);
2570 	tp->srtt_us = 0;
2571 	tp->rcv_rtt_last_tsecr = 0;
2572 	tp->write_seq += tp->max_window + 2;
2573 	if (tp->write_seq == 0)
2574 		tp->write_seq = 1;
2575 	icsk->icsk_backoff = 0;
2576 	tp->snd_cwnd = 2;
2577 	icsk->icsk_probes_out = 0;
2578 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2579 	tp->snd_cwnd_cnt = 0;
2580 	tp->window_clamp = 0;
2581 	tp->delivered_ce = 0;
2582 	tcp_set_ca_state(sk, TCP_CA_Open);
2583 	tp->is_sack_reneg = 0;
2584 	tcp_clear_retrans(tp);
2585 	inet_csk_delack_init(sk);
2586 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2587 	 * issue in __tcp_select_window()
2588 	 */
2589 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2590 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2591 	__sk_dst_reset(sk);
2592 	dst_release(sk->sk_rx_dst);
2593 	sk->sk_rx_dst = NULL;
2594 	tcp_saved_syn_free(tp);
2595 	tp->compressed_ack = 0;
2596 	tp->bytes_sent = 0;
2597 	tp->bytes_retrans = 0;
2598 	tp->dsack_dups = 0;
2599 	tp->reord_seen = 0;
2600 
2601 	/* Clean up fastopen related fields */
2602 	tcp_free_fastopen_req(tp);
2603 	inet->defer_connect = 0;
2604 
2605 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2606 
2607 	if (sk->sk_frag.page) {
2608 		put_page(sk->sk_frag.page);
2609 		sk->sk_frag.page = NULL;
2610 		sk->sk_frag.offset = 0;
2611 	}
2612 
2613 	sk->sk_error_report(sk);
2614 	return 0;
2615 }
2616 EXPORT_SYMBOL(tcp_disconnect);
2617 
tcp_can_repair_sock(const struct sock * sk)2618 static inline bool tcp_can_repair_sock(const struct sock *sk)
2619 {
2620 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2621 		(sk->sk_state != TCP_LISTEN);
2622 }
2623 
tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2624 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2625 {
2626 	struct tcp_repair_window opt;
2627 
2628 	if (!tp->repair)
2629 		return -EPERM;
2630 
2631 	if (len != sizeof(opt))
2632 		return -EINVAL;
2633 
2634 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2635 		return -EFAULT;
2636 
2637 	if (opt.max_window < opt.snd_wnd)
2638 		return -EINVAL;
2639 
2640 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2641 		return -EINVAL;
2642 
2643 	if (after(opt.rcv_wup, tp->rcv_nxt))
2644 		return -EINVAL;
2645 
2646 	tp->snd_wl1	= opt.snd_wl1;
2647 	tp->snd_wnd	= opt.snd_wnd;
2648 	tp->max_window	= opt.max_window;
2649 
2650 	tp->rcv_wnd	= opt.rcv_wnd;
2651 	tp->rcv_wup	= opt.rcv_wup;
2652 
2653 	return 0;
2654 }
2655 
tcp_repair_options_est(struct sock * sk,struct tcp_repair_opt __user * optbuf,unsigned int len)2656 static int tcp_repair_options_est(struct sock *sk,
2657 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2658 {
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 	struct tcp_repair_opt opt;
2661 
2662 	while (len >= sizeof(opt)) {
2663 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2664 			return -EFAULT;
2665 
2666 		optbuf++;
2667 		len -= sizeof(opt);
2668 
2669 		switch (opt.opt_code) {
2670 		case TCPOPT_MSS:
2671 			tp->rx_opt.mss_clamp = opt.opt_val;
2672 			tcp_mtup_init(sk);
2673 			break;
2674 		case TCPOPT_WINDOW:
2675 			{
2676 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2677 				u16 rcv_wscale = opt.opt_val >> 16;
2678 
2679 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2680 					return -EFBIG;
2681 
2682 				tp->rx_opt.snd_wscale = snd_wscale;
2683 				tp->rx_opt.rcv_wscale = rcv_wscale;
2684 				tp->rx_opt.wscale_ok = 1;
2685 			}
2686 			break;
2687 		case TCPOPT_SACK_PERM:
2688 			if (opt.opt_val != 0)
2689 				return -EINVAL;
2690 
2691 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2692 			break;
2693 		case TCPOPT_TIMESTAMP:
2694 			if (opt.opt_val != 0)
2695 				return -EINVAL;
2696 
2697 			tp->rx_opt.tstamp_ok = 1;
2698 			break;
2699 		}
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 /*
2706  *	Socket option code for TCP.
2707  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2708 static int do_tcp_setsockopt(struct sock *sk, int level,
2709 		int optname, char __user *optval, unsigned int optlen)
2710 {
2711 	struct tcp_sock *tp = tcp_sk(sk);
2712 	struct inet_connection_sock *icsk = inet_csk(sk);
2713 	struct net *net = sock_net(sk);
2714 	int val;
2715 	int err = 0;
2716 
2717 	/* These are data/string values, all the others are ints */
2718 	switch (optname) {
2719 	case TCP_CONGESTION: {
2720 		char name[TCP_CA_NAME_MAX];
2721 
2722 		if (optlen < 1)
2723 			return -EINVAL;
2724 
2725 		val = strncpy_from_user(name, optval,
2726 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2727 		if (val < 0)
2728 			return -EFAULT;
2729 		name[val] = 0;
2730 
2731 		lock_sock(sk);
2732 		err = tcp_set_congestion_control(sk, name, true, true);
2733 		release_sock(sk);
2734 		return err;
2735 	}
2736 	case TCP_ULP: {
2737 		char name[TCP_ULP_NAME_MAX];
2738 
2739 		if (optlen < 1)
2740 			return -EINVAL;
2741 
2742 		val = strncpy_from_user(name, optval,
2743 					min_t(long, TCP_ULP_NAME_MAX - 1,
2744 					      optlen));
2745 		if (val < 0)
2746 			return -EFAULT;
2747 		name[val] = 0;
2748 
2749 		lock_sock(sk);
2750 		err = tcp_set_ulp(sk, name);
2751 		release_sock(sk);
2752 		return err;
2753 	}
2754 	case TCP_FASTOPEN_KEY: {
2755 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2756 
2757 		if (optlen != sizeof(key))
2758 			return -EINVAL;
2759 
2760 		if (copy_from_user(key, optval, optlen))
2761 			return -EFAULT;
2762 
2763 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2764 	}
2765 	default:
2766 		/* fallthru */
2767 		break;
2768 	}
2769 
2770 	if (optlen < sizeof(int))
2771 		return -EINVAL;
2772 
2773 	if (get_user(val, (int __user *)optval))
2774 		return -EFAULT;
2775 
2776 	lock_sock(sk);
2777 
2778 	switch (optname) {
2779 	case TCP_MAXSEG:
2780 		/* Values greater than interface MTU won't take effect. However
2781 		 * at the point when this call is done we typically don't yet
2782 		 * know which interface is going to be used
2783 		 */
2784 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2785 			err = -EINVAL;
2786 			break;
2787 		}
2788 		tp->rx_opt.user_mss = val;
2789 		break;
2790 
2791 	case TCP_NODELAY:
2792 		if (val) {
2793 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2794 			 * this option on corked socket is remembered, but
2795 			 * it is not activated until cork is cleared.
2796 			 *
2797 			 * However, when TCP_NODELAY is set we make
2798 			 * an explicit push, which overrides even TCP_CORK
2799 			 * for currently queued segments.
2800 			 */
2801 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2802 			tcp_push_pending_frames(sk);
2803 		} else {
2804 			tp->nonagle &= ~TCP_NAGLE_OFF;
2805 		}
2806 		break;
2807 
2808 	case TCP_THIN_LINEAR_TIMEOUTS:
2809 		if (val < 0 || val > 1)
2810 			err = -EINVAL;
2811 		else
2812 			tp->thin_lto = val;
2813 		break;
2814 
2815 	case TCP_THIN_DUPACK:
2816 		if (val < 0 || val > 1)
2817 			err = -EINVAL;
2818 		break;
2819 
2820 	case TCP_REPAIR:
2821 		if (!tcp_can_repair_sock(sk))
2822 			err = -EPERM;
2823 		else if (val == TCP_REPAIR_ON) {
2824 			tp->repair = 1;
2825 			sk->sk_reuse = SK_FORCE_REUSE;
2826 			tp->repair_queue = TCP_NO_QUEUE;
2827 		} else if (val == TCP_REPAIR_OFF) {
2828 			tp->repair = 0;
2829 			sk->sk_reuse = SK_NO_REUSE;
2830 			tcp_send_window_probe(sk);
2831 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
2832 			tp->repair = 0;
2833 			sk->sk_reuse = SK_NO_REUSE;
2834 		} else
2835 			err = -EINVAL;
2836 
2837 		break;
2838 
2839 	case TCP_REPAIR_QUEUE:
2840 		if (!tp->repair)
2841 			err = -EPERM;
2842 		else if ((unsigned int)val < TCP_QUEUES_NR)
2843 			tp->repair_queue = val;
2844 		else
2845 			err = -EINVAL;
2846 		break;
2847 
2848 	case TCP_QUEUE_SEQ:
2849 		if (sk->sk_state != TCP_CLOSE)
2850 			err = -EPERM;
2851 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2852 			tp->write_seq = val;
2853 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2854 			tp->rcv_nxt = val;
2855 		else
2856 			err = -EINVAL;
2857 		break;
2858 
2859 	case TCP_REPAIR_OPTIONS:
2860 		if (!tp->repair)
2861 			err = -EINVAL;
2862 		else if (sk->sk_state == TCP_ESTABLISHED)
2863 			err = tcp_repair_options_est(sk,
2864 					(struct tcp_repair_opt __user *)optval,
2865 					optlen);
2866 		else
2867 			err = -EPERM;
2868 		break;
2869 
2870 	case TCP_CORK:
2871 		/* When set indicates to always queue non-full frames.
2872 		 * Later the user clears this option and we transmit
2873 		 * any pending partial frames in the queue.  This is
2874 		 * meant to be used alongside sendfile() to get properly
2875 		 * filled frames when the user (for example) must write
2876 		 * out headers with a write() call first and then use
2877 		 * sendfile to send out the data parts.
2878 		 *
2879 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2880 		 * stronger than TCP_NODELAY.
2881 		 */
2882 		if (val) {
2883 			tp->nonagle |= TCP_NAGLE_CORK;
2884 		} else {
2885 			tp->nonagle &= ~TCP_NAGLE_CORK;
2886 			if (tp->nonagle&TCP_NAGLE_OFF)
2887 				tp->nonagle |= TCP_NAGLE_PUSH;
2888 			tcp_push_pending_frames(sk);
2889 		}
2890 		break;
2891 
2892 	case TCP_KEEPIDLE:
2893 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2894 			err = -EINVAL;
2895 		else {
2896 			tp->keepalive_time = val * HZ;
2897 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2898 			    !((1 << sk->sk_state) &
2899 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2900 				u32 elapsed = keepalive_time_elapsed(tp);
2901 				if (tp->keepalive_time > elapsed)
2902 					elapsed = tp->keepalive_time - elapsed;
2903 				else
2904 					elapsed = 0;
2905 				inet_csk_reset_keepalive_timer(sk, elapsed);
2906 			}
2907 		}
2908 		break;
2909 	case TCP_KEEPINTVL:
2910 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2911 			err = -EINVAL;
2912 		else
2913 			tp->keepalive_intvl = val * HZ;
2914 		break;
2915 	case TCP_KEEPCNT:
2916 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2917 			err = -EINVAL;
2918 		else
2919 			tp->keepalive_probes = val;
2920 		break;
2921 	case TCP_SYNCNT:
2922 		if (val < 1 || val > MAX_TCP_SYNCNT)
2923 			err = -EINVAL;
2924 		else
2925 			icsk->icsk_syn_retries = val;
2926 		break;
2927 
2928 	case TCP_SAVE_SYN:
2929 		if (val < 0 || val > 1)
2930 			err = -EINVAL;
2931 		else
2932 			tp->save_syn = val;
2933 		break;
2934 
2935 	case TCP_LINGER2:
2936 		if (val < 0)
2937 			tp->linger2 = -1;
2938 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2939 			tp->linger2 = 0;
2940 		else
2941 			tp->linger2 = val * HZ;
2942 		break;
2943 
2944 	case TCP_DEFER_ACCEPT:
2945 		/* Translate value in seconds to number of retransmits */
2946 		icsk->icsk_accept_queue.rskq_defer_accept =
2947 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2948 					TCP_RTO_MAX / HZ);
2949 		break;
2950 
2951 	case TCP_WINDOW_CLAMP:
2952 		if (!val) {
2953 			if (sk->sk_state != TCP_CLOSE) {
2954 				err = -EINVAL;
2955 				break;
2956 			}
2957 			tp->window_clamp = 0;
2958 		} else
2959 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2960 						SOCK_MIN_RCVBUF / 2 : val;
2961 		break;
2962 
2963 	case TCP_QUICKACK:
2964 		if (!val) {
2965 			icsk->icsk_ack.pingpong = 1;
2966 		} else {
2967 			icsk->icsk_ack.pingpong = 0;
2968 			if ((1 << sk->sk_state) &
2969 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2970 			    inet_csk_ack_scheduled(sk)) {
2971 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2972 				tcp_cleanup_rbuf(sk, 1);
2973 				if (!(val & 1))
2974 					icsk->icsk_ack.pingpong = 1;
2975 			}
2976 		}
2977 		break;
2978 
2979 #ifdef CONFIG_TCP_MD5SIG
2980 	case TCP_MD5SIG:
2981 	case TCP_MD5SIG_EXT:
2982 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2983 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2984 		else
2985 			err = -EINVAL;
2986 		break;
2987 #endif
2988 	case TCP_USER_TIMEOUT:
2989 		/* Cap the max time in ms TCP will retry or probe the window
2990 		 * before giving up and aborting (ETIMEDOUT) a connection.
2991 		 */
2992 		if (val < 0)
2993 			err = -EINVAL;
2994 		else
2995 			icsk->icsk_user_timeout = val;
2996 		break;
2997 
2998 	case TCP_FASTOPEN:
2999 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3000 		    TCPF_LISTEN))) {
3001 			tcp_fastopen_init_key_once(net);
3002 
3003 			fastopen_queue_tune(sk, val);
3004 		} else {
3005 			err = -EINVAL;
3006 		}
3007 		break;
3008 	case TCP_FASTOPEN_CONNECT:
3009 		if (val > 1 || val < 0) {
3010 			err = -EINVAL;
3011 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3012 			if (sk->sk_state == TCP_CLOSE)
3013 				tp->fastopen_connect = val;
3014 			else
3015 				err = -EINVAL;
3016 		} else {
3017 			err = -EOPNOTSUPP;
3018 		}
3019 		break;
3020 	case TCP_FASTOPEN_NO_COOKIE:
3021 		if (val > 1 || val < 0)
3022 			err = -EINVAL;
3023 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3024 			err = -EINVAL;
3025 		else
3026 			tp->fastopen_no_cookie = val;
3027 		break;
3028 	case TCP_TIMESTAMP:
3029 		if (!tp->repair)
3030 			err = -EPERM;
3031 		else
3032 			tp->tsoffset = val - tcp_time_stamp_raw();
3033 		break;
3034 	case TCP_REPAIR_WINDOW:
3035 		err = tcp_repair_set_window(tp, optval, optlen);
3036 		break;
3037 	case TCP_NOTSENT_LOWAT:
3038 		tp->notsent_lowat = val;
3039 		sk->sk_write_space(sk);
3040 		break;
3041 	case TCP_INQ:
3042 		if (val > 1 || val < 0)
3043 			err = -EINVAL;
3044 		else
3045 			tp->recvmsg_inq = val;
3046 		break;
3047 	default:
3048 		err = -ENOPROTOOPT;
3049 		break;
3050 	}
3051 
3052 	release_sock(sk);
3053 	return err;
3054 }
3055 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3056 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3057 		   unsigned int optlen)
3058 {
3059 	const struct inet_connection_sock *icsk = inet_csk(sk);
3060 
3061 	if (level != SOL_TCP)
3062 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3063 						     optval, optlen);
3064 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3065 }
3066 EXPORT_SYMBOL(tcp_setsockopt);
3067 
3068 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3069 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3070 			  char __user *optval, unsigned int optlen)
3071 {
3072 	if (level != SOL_TCP)
3073 		return inet_csk_compat_setsockopt(sk, level, optname,
3074 						  optval, optlen);
3075 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3076 }
3077 EXPORT_SYMBOL(compat_tcp_setsockopt);
3078 #endif
3079 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3080 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3081 				      struct tcp_info *info)
3082 {
3083 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3084 	enum tcp_chrono i;
3085 
3086 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3087 		stats[i] = tp->chrono_stat[i - 1];
3088 		if (i == tp->chrono_type)
3089 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3090 		stats[i] *= USEC_PER_SEC / HZ;
3091 		total += stats[i];
3092 	}
3093 
3094 	info->tcpi_busy_time = total;
3095 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3096 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3097 }
3098 
3099 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3100 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3101 {
3102 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3103 	const struct inet_connection_sock *icsk = inet_csk(sk);
3104 	u32 now;
3105 	u64 rate64;
3106 	bool slow;
3107 	u32 rate;
3108 
3109 	memset(info, 0, sizeof(*info));
3110 	if (sk->sk_type != SOCK_STREAM)
3111 		return;
3112 
3113 	info->tcpi_state = inet_sk_state_load(sk);
3114 
3115 	/* Report meaningful fields for all TCP states, including listeners */
3116 	rate = READ_ONCE(sk->sk_pacing_rate);
3117 	rate64 = rate != ~0U ? rate : ~0ULL;
3118 	info->tcpi_pacing_rate = rate64;
3119 
3120 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3121 	rate64 = rate != ~0U ? rate : ~0ULL;
3122 	info->tcpi_max_pacing_rate = rate64;
3123 
3124 	info->tcpi_reordering = tp->reordering;
3125 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3126 
3127 	if (info->tcpi_state == TCP_LISTEN) {
3128 		/* listeners aliased fields :
3129 		 * tcpi_unacked -> Number of children ready for accept()
3130 		 * tcpi_sacked  -> max backlog
3131 		 */
3132 		info->tcpi_unacked = sk->sk_ack_backlog;
3133 		info->tcpi_sacked = sk->sk_max_ack_backlog;
3134 		return;
3135 	}
3136 
3137 	slow = lock_sock_fast(sk);
3138 
3139 	info->tcpi_ca_state = icsk->icsk_ca_state;
3140 	info->tcpi_retransmits = icsk->icsk_retransmits;
3141 	info->tcpi_probes = icsk->icsk_probes_out;
3142 	info->tcpi_backoff = icsk->icsk_backoff;
3143 
3144 	if (tp->rx_opt.tstamp_ok)
3145 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3146 	if (tcp_is_sack(tp))
3147 		info->tcpi_options |= TCPI_OPT_SACK;
3148 	if (tp->rx_opt.wscale_ok) {
3149 		info->tcpi_options |= TCPI_OPT_WSCALE;
3150 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3151 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3152 	}
3153 
3154 	if (tp->ecn_flags & TCP_ECN_OK)
3155 		info->tcpi_options |= TCPI_OPT_ECN;
3156 	if (tp->ecn_flags & TCP_ECN_SEEN)
3157 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3158 	if (tp->syn_data_acked)
3159 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3160 
3161 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3162 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3163 	info->tcpi_snd_mss = tp->mss_cache;
3164 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3165 
3166 	info->tcpi_unacked = tp->packets_out;
3167 	info->tcpi_sacked = tp->sacked_out;
3168 
3169 	info->tcpi_lost = tp->lost_out;
3170 	info->tcpi_retrans = tp->retrans_out;
3171 
3172 	now = tcp_jiffies32;
3173 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3174 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3175 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3176 
3177 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3178 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3179 	info->tcpi_rtt = tp->srtt_us >> 3;
3180 	info->tcpi_rttvar = tp->mdev_us >> 2;
3181 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3182 	info->tcpi_advmss = tp->advmss;
3183 
3184 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3185 	info->tcpi_rcv_space = tp->rcvq_space.space;
3186 
3187 	info->tcpi_total_retrans = tp->total_retrans;
3188 
3189 	info->tcpi_bytes_acked = tp->bytes_acked;
3190 	info->tcpi_bytes_received = tp->bytes_received;
3191 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3192 	tcp_get_info_chrono_stats(tp, info);
3193 
3194 	info->tcpi_segs_out = tp->segs_out;
3195 	info->tcpi_segs_in = tp->segs_in;
3196 
3197 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3198 	info->tcpi_data_segs_in = tp->data_segs_in;
3199 	info->tcpi_data_segs_out = tp->data_segs_out;
3200 
3201 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3202 	rate64 = tcp_compute_delivery_rate(tp);
3203 	if (rate64)
3204 		info->tcpi_delivery_rate = rate64;
3205 	info->tcpi_delivered = tp->delivered;
3206 	info->tcpi_delivered_ce = tp->delivered_ce;
3207 	info->tcpi_bytes_sent = tp->bytes_sent;
3208 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3209 	info->tcpi_dsack_dups = tp->dsack_dups;
3210 	info->tcpi_reord_seen = tp->reord_seen;
3211 	unlock_sock_fast(sk, slow);
3212 }
3213 EXPORT_SYMBOL_GPL(tcp_get_info);
3214 
tcp_opt_stats_get_size(void)3215 static size_t tcp_opt_stats_get_size(void)
3216 {
3217 	return
3218 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3219 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3220 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3221 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3222 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3223 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3224 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3225 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3226 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3227 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3228 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3229 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3230 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3231 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3232 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3233 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3234 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3235 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3236 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3237 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3238 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3239 		0;
3240 }
3241 
tcp_get_timestamping_opt_stats(const struct sock * sk)3242 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3243 {
3244 	const struct tcp_sock *tp = tcp_sk(sk);
3245 	struct sk_buff *stats;
3246 	struct tcp_info info;
3247 	u64 rate64;
3248 	u32 rate;
3249 
3250 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3251 	if (!stats)
3252 		return NULL;
3253 
3254 	tcp_get_info_chrono_stats(tp, &info);
3255 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3256 			  info.tcpi_busy_time, TCP_NLA_PAD);
3257 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3258 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3259 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3260 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3261 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3262 			  tp->data_segs_out, TCP_NLA_PAD);
3263 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3264 			  tp->total_retrans, TCP_NLA_PAD);
3265 
3266 	rate = READ_ONCE(sk->sk_pacing_rate);
3267 	rate64 = rate != ~0U ? rate : ~0ULL;
3268 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3269 
3270 	rate64 = tcp_compute_delivery_rate(tp);
3271 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3272 
3273 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3274 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3275 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3276 
3277 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3278 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3279 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3280 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3281 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3282 
3283 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3284 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3285 
3286 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3287 			  TCP_NLA_PAD);
3288 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3289 			  TCP_NLA_PAD);
3290 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3291 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3292 
3293 	return stats;
3294 }
3295 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3296 static int do_tcp_getsockopt(struct sock *sk, int level,
3297 		int optname, char __user *optval, int __user *optlen)
3298 {
3299 	struct inet_connection_sock *icsk = inet_csk(sk);
3300 	struct tcp_sock *tp = tcp_sk(sk);
3301 	struct net *net = sock_net(sk);
3302 	int val, len;
3303 
3304 	if (get_user(len, optlen))
3305 		return -EFAULT;
3306 
3307 	len = min_t(unsigned int, len, sizeof(int));
3308 
3309 	if (len < 0)
3310 		return -EINVAL;
3311 
3312 	switch (optname) {
3313 	case TCP_MAXSEG:
3314 		val = tp->mss_cache;
3315 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3316 			val = tp->rx_opt.user_mss;
3317 		if (tp->repair)
3318 			val = tp->rx_opt.mss_clamp;
3319 		break;
3320 	case TCP_NODELAY:
3321 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3322 		break;
3323 	case TCP_CORK:
3324 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3325 		break;
3326 	case TCP_KEEPIDLE:
3327 		val = keepalive_time_when(tp) / HZ;
3328 		break;
3329 	case TCP_KEEPINTVL:
3330 		val = keepalive_intvl_when(tp) / HZ;
3331 		break;
3332 	case TCP_KEEPCNT:
3333 		val = keepalive_probes(tp);
3334 		break;
3335 	case TCP_SYNCNT:
3336 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3337 		break;
3338 	case TCP_LINGER2:
3339 		val = tp->linger2;
3340 		if (val >= 0)
3341 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3342 		break;
3343 	case TCP_DEFER_ACCEPT:
3344 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3345 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3346 		break;
3347 	case TCP_WINDOW_CLAMP:
3348 		val = tp->window_clamp;
3349 		break;
3350 	case TCP_INFO: {
3351 		struct tcp_info info;
3352 
3353 		if (get_user(len, optlen))
3354 			return -EFAULT;
3355 
3356 		tcp_get_info(sk, &info);
3357 
3358 		len = min_t(unsigned int, len, sizeof(info));
3359 		if (put_user(len, optlen))
3360 			return -EFAULT;
3361 		if (copy_to_user(optval, &info, len))
3362 			return -EFAULT;
3363 		return 0;
3364 	}
3365 	case TCP_CC_INFO: {
3366 		const struct tcp_congestion_ops *ca_ops;
3367 		union tcp_cc_info info;
3368 		size_t sz = 0;
3369 		int attr;
3370 
3371 		if (get_user(len, optlen))
3372 			return -EFAULT;
3373 
3374 		ca_ops = icsk->icsk_ca_ops;
3375 		if (ca_ops && ca_ops->get_info)
3376 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3377 
3378 		len = min_t(unsigned int, len, sz);
3379 		if (put_user(len, optlen))
3380 			return -EFAULT;
3381 		if (copy_to_user(optval, &info, len))
3382 			return -EFAULT;
3383 		return 0;
3384 	}
3385 	case TCP_QUICKACK:
3386 		val = !icsk->icsk_ack.pingpong;
3387 		break;
3388 
3389 	case TCP_CONGESTION:
3390 		if (get_user(len, optlen))
3391 			return -EFAULT;
3392 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3393 		if (put_user(len, optlen))
3394 			return -EFAULT;
3395 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3396 			return -EFAULT;
3397 		return 0;
3398 
3399 	case TCP_ULP:
3400 		if (get_user(len, optlen))
3401 			return -EFAULT;
3402 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3403 		if (!icsk->icsk_ulp_ops) {
3404 			if (put_user(0, optlen))
3405 				return -EFAULT;
3406 			return 0;
3407 		}
3408 		if (put_user(len, optlen))
3409 			return -EFAULT;
3410 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3411 			return -EFAULT;
3412 		return 0;
3413 
3414 	case TCP_FASTOPEN_KEY: {
3415 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3416 		struct tcp_fastopen_context *ctx;
3417 
3418 		if (get_user(len, optlen))
3419 			return -EFAULT;
3420 
3421 		rcu_read_lock();
3422 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3423 		if (ctx)
3424 			memcpy(key, ctx->key, sizeof(key));
3425 		else
3426 			len = 0;
3427 		rcu_read_unlock();
3428 
3429 		len = min_t(unsigned int, len, sizeof(key));
3430 		if (put_user(len, optlen))
3431 			return -EFAULT;
3432 		if (copy_to_user(optval, key, len))
3433 			return -EFAULT;
3434 		return 0;
3435 	}
3436 	case TCP_THIN_LINEAR_TIMEOUTS:
3437 		val = tp->thin_lto;
3438 		break;
3439 
3440 	case TCP_THIN_DUPACK:
3441 		val = 0;
3442 		break;
3443 
3444 	case TCP_REPAIR:
3445 		val = tp->repair;
3446 		break;
3447 
3448 	case TCP_REPAIR_QUEUE:
3449 		if (tp->repair)
3450 			val = tp->repair_queue;
3451 		else
3452 			return -EINVAL;
3453 		break;
3454 
3455 	case TCP_REPAIR_WINDOW: {
3456 		struct tcp_repair_window opt;
3457 
3458 		if (get_user(len, optlen))
3459 			return -EFAULT;
3460 
3461 		if (len != sizeof(opt))
3462 			return -EINVAL;
3463 
3464 		if (!tp->repair)
3465 			return -EPERM;
3466 
3467 		opt.snd_wl1	= tp->snd_wl1;
3468 		opt.snd_wnd	= tp->snd_wnd;
3469 		opt.max_window	= tp->max_window;
3470 		opt.rcv_wnd	= tp->rcv_wnd;
3471 		opt.rcv_wup	= tp->rcv_wup;
3472 
3473 		if (copy_to_user(optval, &opt, len))
3474 			return -EFAULT;
3475 		return 0;
3476 	}
3477 	case TCP_QUEUE_SEQ:
3478 		if (tp->repair_queue == TCP_SEND_QUEUE)
3479 			val = tp->write_seq;
3480 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3481 			val = tp->rcv_nxt;
3482 		else
3483 			return -EINVAL;
3484 		break;
3485 
3486 	case TCP_USER_TIMEOUT:
3487 		val = icsk->icsk_user_timeout;
3488 		break;
3489 
3490 	case TCP_FASTOPEN:
3491 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3492 		break;
3493 
3494 	case TCP_FASTOPEN_CONNECT:
3495 		val = tp->fastopen_connect;
3496 		break;
3497 
3498 	case TCP_FASTOPEN_NO_COOKIE:
3499 		val = tp->fastopen_no_cookie;
3500 		break;
3501 
3502 	case TCP_TIMESTAMP:
3503 		val = tcp_time_stamp_raw() + tp->tsoffset;
3504 		break;
3505 	case TCP_NOTSENT_LOWAT:
3506 		val = tp->notsent_lowat;
3507 		break;
3508 	case TCP_INQ:
3509 		val = tp->recvmsg_inq;
3510 		break;
3511 	case TCP_SAVE_SYN:
3512 		val = tp->save_syn;
3513 		break;
3514 	case TCP_SAVED_SYN: {
3515 		if (get_user(len, optlen))
3516 			return -EFAULT;
3517 
3518 		lock_sock(sk);
3519 		if (tp->saved_syn) {
3520 			if (len < tp->saved_syn[0]) {
3521 				if (put_user(tp->saved_syn[0], optlen)) {
3522 					release_sock(sk);
3523 					return -EFAULT;
3524 				}
3525 				release_sock(sk);
3526 				return -EINVAL;
3527 			}
3528 			len = tp->saved_syn[0];
3529 			if (put_user(len, optlen)) {
3530 				release_sock(sk);
3531 				return -EFAULT;
3532 			}
3533 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3534 				release_sock(sk);
3535 				return -EFAULT;
3536 			}
3537 			tcp_saved_syn_free(tp);
3538 			release_sock(sk);
3539 		} else {
3540 			release_sock(sk);
3541 			len = 0;
3542 			if (put_user(len, optlen))
3543 				return -EFAULT;
3544 		}
3545 		return 0;
3546 	}
3547 #ifdef CONFIG_MMU
3548 	case TCP_ZEROCOPY_RECEIVE: {
3549 		struct tcp_zerocopy_receive zc;
3550 		int err;
3551 
3552 		if (get_user(len, optlen))
3553 			return -EFAULT;
3554 		if (len != sizeof(zc))
3555 			return -EINVAL;
3556 		if (copy_from_user(&zc, optval, len))
3557 			return -EFAULT;
3558 		lock_sock(sk);
3559 		err = tcp_zerocopy_receive(sk, &zc);
3560 		release_sock(sk);
3561 		if (!err && copy_to_user(optval, &zc, len))
3562 			err = -EFAULT;
3563 		return err;
3564 	}
3565 #endif
3566 	default:
3567 		return -ENOPROTOOPT;
3568 	}
3569 
3570 	if (put_user(len, optlen))
3571 		return -EFAULT;
3572 	if (copy_to_user(optval, &val, len))
3573 		return -EFAULT;
3574 	return 0;
3575 }
3576 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3577 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3578 		   int __user *optlen)
3579 {
3580 	struct inet_connection_sock *icsk = inet_csk(sk);
3581 
3582 	if (level != SOL_TCP)
3583 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3584 						     optval, optlen);
3585 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3586 }
3587 EXPORT_SYMBOL(tcp_getsockopt);
3588 
3589 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3590 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3591 			  char __user *optval, int __user *optlen)
3592 {
3593 	if (level != SOL_TCP)
3594 		return inet_csk_compat_getsockopt(sk, level, optname,
3595 						  optval, optlen);
3596 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3597 }
3598 EXPORT_SYMBOL(compat_tcp_getsockopt);
3599 #endif
3600 
3601 #ifdef CONFIG_TCP_MD5SIG
3602 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3603 static DEFINE_MUTEX(tcp_md5sig_mutex);
3604 static bool tcp_md5sig_pool_populated = false;
3605 
__tcp_alloc_md5sig_pool(void)3606 static void __tcp_alloc_md5sig_pool(void)
3607 {
3608 	struct crypto_ahash *hash;
3609 	int cpu;
3610 
3611 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3612 	if (IS_ERR(hash))
3613 		return;
3614 
3615 	for_each_possible_cpu(cpu) {
3616 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3617 		struct ahash_request *req;
3618 
3619 		if (!scratch) {
3620 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3621 					       sizeof(struct tcphdr),
3622 					       GFP_KERNEL,
3623 					       cpu_to_node(cpu));
3624 			if (!scratch)
3625 				return;
3626 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3627 		}
3628 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3629 			continue;
3630 
3631 		req = ahash_request_alloc(hash, GFP_KERNEL);
3632 		if (!req)
3633 			return;
3634 
3635 		ahash_request_set_callback(req, 0, NULL, NULL);
3636 
3637 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3638 	}
3639 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3640 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3641 	 */
3642 	smp_wmb();
3643 	tcp_md5sig_pool_populated = true;
3644 }
3645 
tcp_alloc_md5sig_pool(void)3646 bool tcp_alloc_md5sig_pool(void)
3647 {
3648 	if (unlikely(!tcp_md5sig_pool_populated)) {
3649 		mutex_lock(&tcp_md5sig_mutex);
3650 
3651 		if (!tcp_md5sig_pool_populated)
3652 			__tcp_alloc_md5sig_pool();
3653 
3654 		mutex_unlock(&tcp_md5sig_mutex);
3655 	}
3656 	return tcp_md5sig_pool_populated;
3657 }
3658 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3659 
3660 
3661 /**
3662  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3663  *
3664  *	We use percpu structure, so if we succeed, we exit with preemption
3665  *	and BH disabled, to make sure another thread or softirq handling
3666  *	wont try to get same context.
3667  */
tcp_get_md5sig_pool(void)3668 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3669 {
3670 	local_bh_disable();
3671 
3672 	if (tcp_md5sig_pool_populated) {
3673 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3674 		smp_rmb();
3675 		return this_cpu_ptr(&tcp_md5sig_pool);
3676 	}
3677 	local_bh_enable();
3678 	return NULL;
3679 }
3680 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3681 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3682 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3683 			  const struct sk_buff *skb, unsigned int header_len)
3684 {
3685 	struct scatterlist sg;
3686 	const struct tcphdr *tp = tcp_hdr(skb);
3687 	struct ahash_request *req = hp->md5_req;
3688 	unsigned int i;
3689 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3690 					   skb_headlen(skb) - header_len : 0;
3691 	const struct skb_shared_info *shi = skb_shinfo(skb);
3692 	struct sk_buff *frag_iter;
3693 
3694 	sg_init_table(&sg, 1);
3695 
3696 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3697 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3698 	if (crypto_ahash_update(req))
3699 		return 1;
3700 
3701 	for (i = 0; i < shi->nr_frags; ++i) {
3702 		const struct skb_frag_struct *f = &shi->frags[i];
3703 		unsigned int offset = f->page_offset;
3704 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3705 
3706 		sg_set_page(&sg, page, skb_frag_size(f),
3707 			    offset_in_page(offset));
3708 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3709 		if (crypto_ahash_update(req))
3710 			return 1;
3711 	}
3712 
3713 	skb_walk_frags(skb, frag_iter)
3714 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3715 			return 1;
3716 
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3720 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3721 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3722 {
3723 	struct scatterlist sg;
3724 
3725 	sg_init_one(&sg, key->key, key->keylen);
3726 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3727 	return crypto_ahash_update(hp->md5_req);
3728 }
3729 EXPORT_SYMBOL(tcp_md5_hash_key);
3730 
3731 #endif
3732 
tcp_done(struct sock * sk)3733 void tcp_done(struct sock *sk)
3734 {
3735 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3736 
3737 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3738 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3739 
3740 	tcp_set_state(sk, TCP_CLOSE);
3741 	tcp_clear_xmit_timers(sk);
3742 	if (req)
3743 		reqsk_fastopen_remove(sk, req, false);
3744 
3745 	sk->sk_shutdown = SHUTDOWN_MASK;
3746 
3747 	if (!sock_flag(sk, SOCK_DEAD))
3748 		sk->sk_state_change(sk);
3749 	else
3750 		inet_csk_destroy_sock(sk);
3751 }
3752 EXPORT_SYMBOL_GPL(tcp_done);
3753 
tcp_abort(struct sock * sk,int err)3754 int tcp_abort(struct sock *sk, int err)
3755 {
3756 	if (!sk_fullsock(sk)) {
3757 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3758 			struct request_sock *req = inet_reqsk(sk);
3759 
3760 			local_bh_disable();
3761 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3762 			local_bh_enable();
3763 			return 0;
3764 		}
3765 		return -EOPNOTSUPP;
3766 	}
3767 
3768 	/* Don't race with userspace socket closes such as tcp_close. */
3769 	lock_sock(sk);
3770 
3771 	if (sk->sk_state == TCP_LISTEN) {
3772 		tcp_set_state(sk, TCP_CLOSE);
3773 		inet_csk_listen_stop(sk);
3774 	}
3775 
3776 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3777 	local_bh_disable();
3778 	bh_lock_sock(sk);
3779 
3780 	if (!sock_flag(sk, SOCK_DEAD)) {
3781 		sk->sk_err = err;
3782 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3783 		smp_wmb();
3784 		sk->sk_error_report(sk);
3785 		if (tcp_need_reset(sk->sk_state))
3786 			tcp_send_active_reset(sk, GFP_ATOMIC);
3787 		tcp_done(sk);
3788 	}
3789 
3790 	bh_unlock_sock(sk);
3791 	local_bh_enable();
3792 	tcp_write_queue_purge(sk);
3793 	release_sock(sk);
3794 	return 0;
3795 }
3796 EXPORT_SYMBOL_GPL(tcp_abort);
3797 
3798 extern struct tcp_congestion_ops tcp_reno;
3799 
3800 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3801 static int __init set_thash_entries(char *str)
3802 {
3803 	ssize_t ret;
3804 
3805 	if (!str)
3806 		return 0;
3807 
3808 	ret = kstrtoul(str, 0, &thash_entries);
3809 	if (ret)
3810 		return 0;
3811 
3812 	return 1;
3813 }
3814 __setup("thash_entries=", set_thash_entries);
3815 
tcp_init_mem(void)3816 static void __init tcp_init_mem(void)
3817 {
3818 	unsigned long limit = nr_free_buffer_pages() / 16;
3819 
3820 	limit = max(limit, 128UL);
3821 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3822 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3823 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3824 }
3825 
tcp_init(void)3826 void __init tcp_init(void)
3827 {
3828 	int max_rshare, max_wshare, cnt;
3829 	unsigned long limit;
3830 	unsigned int i;
3831 
3832 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3833 		     FIELD_SIZEOF(struct sk_buff, cb));
3834 
3835 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3836 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3837 	inet_hashinfo_init(&tcp_hashinfo);
3838 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3839 			    thash_entries, 21,  /* one slot per 2 MB*/
3840 			    0, 64 * 1024);
3841 	tcp_hashinfo.bind_bucket_cachep =
3842 		kmem_cache_create("tcp_bind_bucket",
3843 				  sizeof(struct inet_bind_bucket), 0,
3844 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3845 
3846 	/* Size and allocate the main established and bind bucket
3847 	 * hash tables.
3848 	 *
3849 	 * The methodology is similar to that of the buffer cache.
3850 	 */
3851 	tcp_hashinfo.ehash =
3852 		alloc_large_system_hash("TCP established",
3853 					sizeof(struct inet_ehash_bucket),
3854 					thash_entries,
3855 					17, /* one slot per 128 KB of memory */
3856 					0,
3857 					NULL,
3858 					&tcp_hashinfo.ehash_mask,
3859 					0,
3860 					thash_entries ? 0 : 512 * 1024);
3861 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3862 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3863 
3864 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3865 		panic("TCP: failed to alloc ehash_locks");
3866 	tcp_hashinfo.bhash =
3867 		alloc_large_system_hash("TCP bind",
3868 					sizeof(struct inet_bind_hashbucket),
3869 					tcp_hashinfo.ehash_mask + 1,
3870 					17, /* one slot per 128 KB of memory */
3871 					0,
3872 					&tcp_hashinfo.bhash_size,
3873 					NULL,
3874 					0,
3875 					64 * 1024);
3876 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3877 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3878 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3879 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3880 	}
3881 
3882 
3883 	cnt = tcp_hashinfo.ehash_mask + 1;
3884 	sysctl_tcp_max_orphans = cnt / 2;
3885 
3886 	tcp_init_mem();
3887 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3888 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3889 	max_wshare = min(4UL*1024*1024, limit);
3890 	max_rshare = min(6UL*1024*1024, limit);
3891 
3892 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3893 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3894 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3895 
3896 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3897 	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3898 	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3899 
3900 	pr_info("Hash tables configured (established %u bind %u)\n",
3901 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3902 
3903 	tcp_v4_init();
3904 	tcp_metrics_init();
3905 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3906 	tcp_tasklet_init();
3907 }
3908