1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Syncookies implementation for the Linux kernel
4  *
5  *  Copyright (C) 1997 Andi Kleen
6  *  Based on ideas by D.J.Bernstein and Eric Schenk.
7  */
8 
9 #include <linux/tcp.h>
10 #include <linux/siphash.h>
11 #include <linux/kernel.h>
12 #include <linux/export.h>
13 #include <net/secure_seq.h>
14 #include <net/tcp.h>
15 #include <net/route.h>
16 
17 static siphash_aligned_key_t syncookie_secret[2];
18 
19 #define COOKIEBITS 24	/* Upper bits store count */
20 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
21 
22 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
23  * stores TCP options:
24  *
25  * MSB                               LSB
26  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
27  * |  Timestamp | ECN | SACK | WScale  |
28  *
29  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
30  * any) to figure out which TCP options we should use for the rebuilt
31  * connection.
32  *
33  * A WScale setting of '0xf' (which is an invalid scaling value)
34  * means that original syn did not include the TCP window scaling option.
35  */
36 #define TS_OPT_WSCALE_MASK	0xf
37 #define TS_OPT_SACK		BIT(4)
38 #define TS_OPT_ECN		BIT(5)
39 /* There is no TS_OPT_TIMESTAMP:
40  * if ACK contains timestamp option, we already know it was
41  * requested/supported by the syn/synack exchange.
42  */
43 #define TSBITS	6
44 #define TSMASK	(((__u32)1 << TSBITS) - 1)
45 
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)46 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
47 		       u32 count, int c)
48 {
49 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
50 	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
51 			    (__force u32)sport << 16 | (__force u32)dport,
52 			    count, &syncookie_secret[c]);
53 }
54 
55 
56 /*
57  * when syncookies are in effect and tcp timestamps are enabled we encode
58  * tcp options in the lower bits of the timestamp value that will be
59  * sent in the syn-ack.
60  * Since subsequent timestamps use the normal tcp_time_stamp value, we
61  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
62  */
cookie_init_timestamp(struct request_sock * req,u64 now)63 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
64 {
65 	struct inet_request_sock *ireq;
66 	u32 ts, ts_now = tcp_ns_to_ts(now);
67 	u32 options = 0;
68 
69 	ireq = inet_rsk(req);
70 
71 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
72 	if (ireq->sack_ok)
73 		options |= TS_OPT_SACK;
74 	if (ireq->ecn_ok)
75 		options |= TS_OPT_ECN;
76 
77 	ts = ts_now & ~TSMASK;
78 	ts |= options;
79 	if (ts > ts_now) {
80 		ts >>= TSBITS;
81 		ts--;
82 		ts <<= TSBITS;
83 		ts |= options;
84 	}
85 	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
86 }
87 
88 
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)89 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
90 				   __be16 dport, __u32 sseq, __u32 data)
91 {
92 	/*
93 	 * Compute the secure sequence number.
94 	 * The output should be:
95 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
96 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
97 	 * Where sseq is their sequence number and count increases every
98 	 * minute by 1.
99 	 * As an extra hack, we add a small "data" value that encodes the
100 	 * MSS into the second hash value.
101 	 */
102 	u32 count = tcp_cookie_time();
103 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
104 		sseq + (count << COOKIEBITS) +
105 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
106 		 & COOKIEMASK));
107 }
108 
109 /*
110  * This retrieves the small "data" value from the syncookie.
111  * If the syncookie is bad, the data returned will be out of
112  * range.  This must be checked by the caller.
113  *
114  * The count value used to generate the cookie must be less than
115  * MAX_SYNCOOKIE_AGE minutes in the past.
116  * The return value (__u32)-1 if this test fails.
117  */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)118 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
119 				  __be16 sport, __be16 dport, __u32 sseq)
120 {
121 	u32 diff, count = tcp_cookie_time();
122 
123 	/* Strip away the layers from the cookie */
124 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
125 
126 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
127 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
128 	if (diff >= MAX_SYNCOOKIE_AGE)
129 		return (__u32)-1;
130 
131 	return (cookie -
132 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
133 		& COOKIEMASK;	/* Leaving the data behind */
134 }
135 
136 /*
137  * MSS Values are chosen based on the 2011 paper
138  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
139  * Values ..
140  *  .. lower than 536 are rare (< 0.2%)
141  *  .. between 537 and 1299 account for less than < 1.5% of observed values
142  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
143  *  .. exceeding 1460 are very rare (< 0.04%)
144  *
145  *  1460 is the single most frequently announced mss value (30 to 46% depending
146  *  on monitor location).  Table must be sorted.
147  */
148 static __u16 const msstab[] = {
149 	536,
150 	1300,
151 	1440,	/* 1440, 1452: PPPoE */
152 	1460,
153 };
154 
155 /*
156  * Generate a syncookie.  mssp points to the mss, which is returned
157  * rounded down to the value encoded in the cookie.
158  */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)159 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
160 			      u16 *mssp)
161 {
162 	int mssind;
163 	const __u16 mss = *mssp;
164 
165 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
166 		if (mss >= msstab[mssind])
167 			break;
168 	*mssp = msstab[mssind];
169 
170 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
171 				     th->source, th->dest, ntohl(th->seq),
172 				     mssind);
173 }
174 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
175 
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)176 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
177 {
178 	const struct iphdr *iph = ip_hdr(skb);
179 	const struct tcphdr *th = tcp_hdr(skb);
180 
181 	return __cookie_v4_init_sequence(iph, th, mssp);
182 }
183 
184 /*
185  * Check if a ack sequence number is a valid syncookie.
186  * Return the decoded mss if it is, or 0 if not.
187  */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th,u32 cookie)188 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
189 		      u32 cookie)
190 {
191 	__u32 seq = ntohl(th->seq) - 1;
192 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
193 					    th->source, th->dest, seq);
194 
195 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
196 }
197 EXPORT_SYMBOL_GPL(__cookie_v4_check);
198 
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst,u32 tsoff)199 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
200 				 struct request_sock *req,
201 				 struct dst_entry *dst, u32 tsoff)
202 {
203 	struct inet_connection_sock *icsk = inet_csk(sk);
204 	struct sock *child;
205 	bool own_req;
206 
207 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
208 						 NULL, &own_req);
209 	if (child) {
210 		refcount_set(&req->rsk_refcnt, 1);
211 		tcp_sk(child)->tsoffset = tsoff;
212 		sock_rps_save_rxhash(child, skb);
213 
214 		if (rsk_drop_req(req)) {
215 			reqsk_put(req);
216 			return child;
217 		}
218 
219 		if (inet_csk_reqsk_queue_add(sk, req, child))
220 			return child;
221 
222 		bh_unlock_sock(child);
223 		sock_put(child);
224 	}
225 	__reqsk_free(req);
226 
227 	return NULL;
228 }
229 EXPORT_SYMBOL(tcp_get_cookie_sock);
230 
231 /*
232  * when syncookies are in effect and tcp timestamps are enabled we stored
233  * additional tcp options in the timestamp.
234  * This extracts these options from the timestamp echo.
235  *
236  * return false if we decode a tcp option that is disabled
237  * on the host.
238  */
cookie_timestamp_decode(const struct net * net,struct tcp_options_received * tcp_opt)239 bool cookie_timestamp_decode(const struct net *net,
240 			     struct tcp_options_received *tcp_opt)
241 {
242 	/* echoed timestamp, lowest bits contain options */
243 	u32 options = tcp_opt->rcv_tsecr;
244 
245 	if (!tcp_opt->saw_tstamp)  {
246 		tcp_clear_options(tcp_opt);
247 		return true;
248 	}
249 
250 	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
251 		return false;
252 
253 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
254 
255 	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
256 		return false;
257 
258 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
259 		return true; /* no window scaling */
260 
261 	tcp_opt->wscale_ok = 1;
262 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
263 
264 	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
265 }
266 EXPORT_SYMBOL(cookie_timestamp_decode);
267 
cookie_ecn_ok(const struct tcp_options_received * tcp_opt,const struct net * net,const struct dst_entry * dst)268 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
269 		   const struct net *net, const struct dst_entry *dst)
270 {
271 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
272 
273 	if (!ecn_ok)
274 		return false;
275 
276 	if (READ_ONCE(net->ipv4.sysctl_tcp_ecn))
277 		return true;
278 
279 	return dst_feature(dst, RTAX_FEATURE_ECN);
280 }
281 EXPORT_SYMBOL(cookie_ecn_ok);
282 
cookie_tcp_reqsk_alloc(const struct request_sock_ops * ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)283 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
284 					    const struct tcp_request_sock_ops *af_ops,
285 					    struct sock *sk,
286 					    struct sk_buff *skb)
287 {
288 	struct tcp_request_sock *treq;
289 	struct request_sock *req;
290 
291 	if (sk_is_mptcp(sk))
292 		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
293 	else
294 		req = inet_reqsk_alloc(ops, sk, false);
295 
296 	if (!req)
297 		return NULL;
298 
299 	treq = tcp_rsk(req);
300 
301 	/* treq->af_specific might be used to perform TCP_MD5 lookup */
302 	treq->af_specific = af_ops;
303 
304 	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
305 #if IS_ENABLED(CONFIG_MPTCP)
306 	treq->is_mptcp = sk_is_mptcp(sk);
307 	if (treq->is_mptcp) {
308 		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
309 
310 		if (err) {
311 			reqsk_free(req);
312 			return NULL;
313 		}
314 	}
315 #endif
316 
317 	return req;
318 }
319 EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
320 
321 /* On input, sk is a listener.
322  * Output is listener if incoming packet would not create a child
323  *           NULL if memory could not be allocated.
324  */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)325 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
328 	struct tcp_options_received tcp_opt;
329 	struct inet_request_sock *ireq;
330 	struct tcp_request_sock *treq;
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	const struct tcphdr *th = tcp_hdr(skb);
333 	__u32 cookie = ntohl(th->ack_seq) - 1;
334 	struct sock *ret = sk;
335 	struct request_sock *req;
336 	int full_space, mss;
337 	struct rtable *rt;
338 	__u8 rcv_wscale;
339 	struct flowi4 fl4;
340 	u32 tsoff = 0;
341 
342 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
343 	    !th->ack || th->rst)
344 		goto out;
345 
346 	if (tcp_synq_no_recent_overflow(sk))
347 		goto out;
348 
349 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
350 	if (mss == 0) {
351 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
352 		goto out;
353 	}
354 
355 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
356 
357 	/* check for timestamp cookie support */
358 	memset(&tcp_opt, 0, sizeof(tcp_opt));
359 	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
360 
361 	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
362 		tsoff = secure_tcp_ts_off(sock_net(sk),
363 					  ip_hdr(skb)->daddr,
364 					  ip_hdr(skb)->saddr);
365 		tcp_opt.rcv_tsecr -= tsoff;
366 	}
367 
368 	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
369 		goto out;
370 
371 	ret = NULL;
372 	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops,
373 				     &tcp_request_sock_ipv4_ops, sk, skb);
374 	if (!req)
375 		goto out;
376 
377 	ireq = inet_rsk(req);
378 	treq = tcp_rsk(req);
379 	treq->rcv_isn		= ntohl(th->seq) - 1;
380 	treq->snt_isn		= cookie;
381 	treq->ts_off		= 0;
382 	treq->txhash		= net_tx_rndhash();
383 	req->mss		= mss;
384 	ireq->ir_num		= ntohs(th->dest);
385 	ireq->ir_rmt_port	= th->source;
386 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
387 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
388 	ireq->ir_mark		= inet_request_mark(sk, skb);
389 	ireq->snd_wscale	= tcp_opt.snd_wscale;
390 	ireq->sack_ok		= tcp_opt.sack_ok;
391 	ireq->wscale_ok		= tcp_opt.wscale_ok;
392 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
393 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
394 	treq->snt_synack	= 0;
395 	treq->tfo_listener	= false;
396 
397 	if (IS_ENABLED(CONFIG_SMC))
398 		ireq->smc_ok = 0;
399 
400 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
401 
402 	/* We throwed the options of the initial SYN away, so we hope
403 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
404 	 */
405 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
406 
407 	if (security_inet_conn_request(sk, skb, req)) {
408 		reqsk_free(req);
409 		goto out;
410 	}
411 
412 	req->num_retrans = 0;
413 
414 	/*
415 	 * We need to lookup the route here to get at the correct
416 	 * window size. We should better make sure that the window size
417 	 * hasn't changed since we received the original syn, but I see
418 	 * no easy way to do this.
419 	 */
420 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
421 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
422 			   IPPROTO_TCP, inet_sk_flowi_flags(sk),
423 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
424 			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
425 	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
426 	rt = ip_route_output_key(sock_net(sk), &fl4);
427 	if (IS_ERR(rt)) {
428 		reqsk_free(req);
429 		goto out;
430 	}
431 
432 	/* Try to redo what tcp_v4_send_synack did. */
433 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
434 	/* limit the window selection if the user enforce a smaller rx buffer */
435 	full_space = tcp_full_space(sk);
436 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
437 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
438 		req->rsk_window_clamp = full_space;
439 
440 	tcp_select_initial_window(sk, full_space, req->mss,
441 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
442 				  ireq->wscale_ok, &rcv_wscale,
443 				  dst_metric(&rt->dst, RTAX_INITRWND));
444 
445 	ireq->rcv_wscale  = rcv_wscale;
446 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
447 
448 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
449 	/* ip_queue_xmit() depends on our flow being setup
450 	 * Normal sockets get it right from inet_csk_route_child_sock()
451 	 */
452 	if (ret)
453 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
454 out:	return ret;
455 }
456