1 /*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/fadvise.h>
24
25 #include "internal.h"
26
27 /*
28 * Initialise a struct file's readahead state. Assumes that the caller has
29 * memset *ra to zero.
30 */
31 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)32 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
33 {
34 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
35 ra->prev_pos = -1;
36 }
37 EXPORT_SYMBOL_GPL(file_ra_state_init);
38
39 /*
40 * see if a page needs releasing upon read_cache_pages() failure
41 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
42 * before calling, such as the NFS fs marking pages that are cached locally
43 * on disk, thus we need to give the fs a chance to clean up in the event of
44 * an error
45 */
read_cache_pages_invalidate_page(struct address_space * mapping,struct page * page)46 static void read_cache_pages_invalidate_page(struct address_space *mapping,
47 struct page *page)
48 {
49 if (page_has_private(page)) {
50 if (!trylock_page(page))
51 BUG();
52 page->mapping = mapping;
53 do_invalidatepage(page, 0, PAGE_SIZE);
54 page->mapping = NULL;
55 unlock_page(page);
56 }
57 put_page(page);
58 }
59
60 /*
61 * release a list of pages, invalidating them first if need be
62 */
read_cache_pages_invalidate_pages(struct address_space * mapping,struct list_head * pages)63 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
64 struct list_head *pages)
65 {
66 struct page *victim;
67
68 while (!list_empty(pages)) {
69 victim = lru_to_page(pages);
70 list_del(&victim->lru);
71 read_cache_pages_invalidate_page(mapping, victim);
72 }
73 }
74
75 /**
76 * read_cache_pages - populate an address space with some pages & start reads against them
77 * @mapping: the address_space
78 * @pages: The address of a list_head which contains the target pages. These
79 * pages have their ->index populated and are otherwise uninitialised.
80 * @filler: callback routine for filling a single page.
81 * @data: private data for the callback routine.
82 *
83 * Hides the details of the LRU cache etc from the filesystems.
84 */
read_cache_pages(struct address_space * mapping,struct list_head * pages,int (* filler)(void *,struct page *),void * data)85 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
86 int (*filler)(void *, struct page *), void *data)
87 {
88 struct page *page;
89 int ret = 0;
90
91 while (!list_empty(pages)) {
92 page = lru_to_page(pages);
93 list_del(&page->lru);
94 if (add_to_page_cache_lru(page, mapping, page->index,
95 readahead_gfp_mask(mapping))) {
96 read_cache_pages_invalidate_page(mapping, page);
97 continue;
98 }
99 put_page(page);
100
101 ret = filler(data, page);
102 if (unlikely(ret)) {
103 read_cache_pages_invalidate_pages(mapping, pages);
104 break;
105 }
106 task_io_account_read(PAGE_SIZE);
107 }
108 return ret;
109 }
110
111 EXPORT_SYMBOL(read_cache_pages);
112
read_pages(struct address_space * mapping,struct file * filp,struct list_head * pages,unsigned int nr_pages,gfp_t gfp)113 static int read_pages(struct address_space *mapping, struct file *filp,
114 struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
115 {
116 struct blk_plug plug;
117 unsigned page_idx;
118 int ret;
119
120 blk_start_plug(&plug);
121
122 if (mapping->a_ops->readpages) {
123 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
124 /* Clean up the remaining pages */
125 put_pages_list(pages);
126 goto out;
127 }
128
129 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
130 struct page *page = lru_to_page(pages);
131 list_del(&page->lru);
132 if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
133 mapping->a_ops->readpage(filp, page);
134 put_page(page);
135 }
136 ret = 0;
137
138 out:
139 blk_finish_plug(&plug);
140
141 return ret;
142 }
143
144 /*
145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates
146 * the pages first, then submits them for I/O. This avoids the very bad
147 * behaviour which would occur if page allocations are causing VM writeback.
148 * We really don't want to intermingle reads and writes like that.
149 *
150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 */
__do_page_cache_readahead(struct address_space * mapping,struct file * filp,pgoff_t offset,unsigned long nr_to_read,unsigned long lookahead_size)152 unsigned int __do_page_cache_readahead(struct address_space *mapping,
153 struct file *filp, pgoff_t offset, unsigned long nr_to_read,
154 unsigned long lookahead_size)
155 {
156 struct inode *inode = mapping->host;
157 struct page *page;
158 unsigned long end_index; /* The last page we want to read */
159 LIST_HEAD(page_pool);
160 int page_idx;
161 unsigned int nr_pages = 0;
162 loff_t isize = i_size_read(inode);
163 gfp_t gfp_mask = readahead_gfp_mask(mapping);
164
165 if (isize == 0)
166 goto out;
167
168 end_index = ((isize - 1) >> PAGE_SHIFT);
169
170 /*
171 * Preallocate as many pages as we will need.
172 */
173 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
174 pgoff_t page_offset = offset + page_idx;
175
176 if (page_offset > end_index)
177 break;
178
179 rcu_read_lock();
180 page = radix_tree_lookup(&mapping->i_pages, page_offset);
181 rcu_read_unlock();
182 if (page && !radix_tree_exceptional_entry(page)) {
183 /*
184 * Page already present? Kick off the current batch of
185 * contiguous pages before continuing with the next
186 * batch.
187 */
188 if (nr_pages)
189 read_pages(mapping, filp, &page_pool, nr_pages,
190 gfp_mask);
191 nr_pages = 0;
192 continue;
193 }
194
195 page = __page_cache_alloc(gfp_mask);
196 if (!page)
197 break;
198 page->index = page_offset;
199 list_add(&page->lru, &page_pool);
200 if (page_idx == nr_to_read - lookahead_size)
201 SetPageReadahead(page);
202 nr_pages++;
203 }
204
205 /*
206 * Now start the IO. We ignore I/O errors - if the page is not
207 * uptodate then the caller will launch readpage again, and
208 * will then handle the error.
209 */
210 if (nr_pages)
211 read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
212 BUG_ON(!list_empty(&page_pool));
213 out:
214 return nr_pages;
215 }
216
217 /*
218 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
219 * memory at once.
220 */
force_page_cache_readahead(struct address_space * mapping,struct file * filp,pgoff_t offset,unsigned long nr_to_read)221 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
222 pgoff_t offset, unsigned long nr_to_read)
223 {
224 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
225 struct file_ra_state *ra = &filp->f_ra;
226 unsigned long max_pages;
227
228 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
229 return -EINVAL;
230
231 /*
232 * If the request exceeds the readahead window, allow the read to
233 * be up to the optimal hardware IO size
234 */
235 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
236 nr_to_read = min(nr_to_read, max_pages);
237 while (nr_to_read) {
238 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
239
240 if (this_chunk > nr_to_read)
241 this_chunk = nr_to_read;
242 __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
243
244 offset += this_chunk;
245 nr_to_read -= this_chunk;
246 }
247 return 0;
248 }
249
250 /*
251 * Set the initial window size, round to next power of 2 and square
252 * for small size, x 4 for medium, and x 2 for large
253 * for 128k (32 page) max ra
254 * 1-8 page = 32k initial, > 8 page = 128k initial
255 */
get_init_ra_size(unsigned long size,unsigned long max)256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
257 {
258 unsigned long newsize = roundup_pow_of_two(size);
259
260 if (newsize <= max / 32)
261 newsize = newsize * 4;
262 else if (newsize <= max / 4)
263 newsize = newsize * 2;
264 else
265 newsize = max;
266
267 return newsize;
268 }
269
270 /*
271 * Get the previous window size, ramp it up, and
272 * return it as the new window size.
273 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)274 static unsigned long get_next_ra_size(struct file_ra_state *ra,
275 unsigned long max)
276 {
277 unsigned long cur = ra->size;
278 unsigned long newsize;
279
280 if (cur < max / 16)
281 newsize = 4 * cur;
282 else
283 newsize = 2 * cur;
284
285 return min(newsize, max);
286 }
287
288 /*
289 * On-demand readahead design.
290 *
291 * The fields in struct file_ra_state represent the most-recently-executed
292 * readahead attempt:
293 *
294 * |<----- async_size ---------|
295 * |------------------- size -------------------->|
296 * |==================#===========================|
297 * ^start ^page marked with PG_readahead
298 *
299 * To overlap application thinking time and disk I/O time, we do
300 * `readahead pipelining': Do not wait until the application consumed all
301 * readahead pages and stalled on the missing page at readahead_index;
302 * Instead, submit an asynchronous readahead I/O as soon as there are
303 * only async_size pages left in the readahead window. Normally async_size
304 * will be equal to size, for maximum pipelining.
305 *
306 * In interleaved sequential reads, concurrent streams on the same fd can
307 * be invalidating each other's readahead state. So we flag the new readahead
308 * page at (start+size-async_size) with PG_readahead, and use it as readahead
309 * indicator. The flag won't be set on already cached pages, to avoid the
310 * readahead-for-nothing fuss, saving pointless page cache lookups.
311 *
312 * prev_pos tracks the last visited byte in the _previous_ read request.
313 * It should be maintained by the caller, and will be used for detecting
314 * small random reads. Note that the readahead algorithm checks loosely
315 * for sequential patterns. Hence interleaved reads might be served as
316 * sequential ones.
317 *
318 * There is a special-case: if the first page which the application tries to
319 * read happens to be the first page of the file, it is assumed that a linear
320 * read is about to happen and the window is immediately set to the initial size
321 * based on I/O request size and the max_readahead.
322 *
323 * The code ramps up the readahead size aggressively at first, but slow down as
324 * it approaches max_readhead.
325 */
326
327 /*
328 * Count contiguously cached pages from @offset-1 to @offset-@max,
329 * this count is a conservative estimation of
330 * - length of the sequential read sequence, or
331 * - thrashing threshold in memory tight systems
332 */
count_history_pages(struct address_space * mapping,pgoff_t offset,unsigned long max)333 static pgoff_t count_history_pages(struct address_space *mapping,
334 pgoff_t offset, unsigned long max)
335 {
336 pgoff_t head;
337
338 rcu_read_lock();
339 head = page_cache_prev_hole(mapping, offset - 1, max);
340 rcu_read_unlock();
341
342 return offset - 1 - head;
343 }
344
345 /*
346 * page cache context based read-ahead
347 */
try_context_readahead(struct address_space * mapping,struct file_ra_state * ra,pgoff_t offset,unsigned long req_size,unsigned long max)348 static int try_context_readahead(struct address_space *mapping,
349 struct file_ra_state *ra,
350 pgoff_t offset,
351 unsigned long req_size,
352 unsigned long max)
353 {
354 pgoff_t size;
355
356 size = count_history_pages(mapping, offset, max);
357
358 /*
359 * not enough history pages:
360 * it could be a random read
361 */
362 if (size <= req_size)
363 return 0;
364
365 /*
366 * starts from beginning of file:
367 * it is a strong indication of long-run stream (or whole-file-read)
368 */
369 if (size >= offset)
370 size *= 2;
371
372 ra->start = offset;
373 ra->size = min(size + req_size, max);
374 ra->async_size = 1;
375
376 return 1;
377 }
378
379 /*
380 * A minimal readahead algorithm for trivial sequential/random reads.
381 */
382 static unsigned long
ondemand_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * filp,bool hit_readahead_marker,pgoff_t offset,unsigned long req_size)383 ondemand_readahead(struct address_space *mapping,
384 struct file_ra_state *ra, struct file *filp,
385 bool hit_readahead_marker, pgoff_t offset,
386 unsigned long req_size)
387 {
388 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
389 unsigned long max_pages = ra->ra_pages;
390 unsigned long add_pages;
391 pgoff_t prev_offset;
392
393 /*
394 * If the request exceeds the readahead window, allow the read to
395 * be up to the optimal hardware IO size
396 */
397 if (req_size > max_pages && bdi->io_pages > max_pages)
398 max_pages = min(req_size, bdi->io_pages);
399
400 /*
401 * start of file
402 */
403 if (!offset)
404 goto initial_readahead;
405
406 /*
407 * It's the expected callback offset, assume sequential access.
408 * Ramp up sizes, and push forward the readahead window.
409 */
410 if ((offset == (ra->start + ra->size - ra->async_size) ||
411 offset == (ra->start + ra->size))) {
412 ra->start += ra->size;
413 ra->size = get_next_ra_size(ra, max_pages);
414 ra->async_size = ra->size;
415 goto readit;
416 }
417
418 /*
419 * Hit a marked page without valid readahead state.
420 * E.g. interleaved reads.
421 * Query the pagecache for async_size, which normally equals to
422 * readahead size. Ramp it up and use it as the new readahead size.
423 */
424 if (hit_readahead_marker) {
425 pgoff_t start;
426
427 rcu_read_lock();
428 start = page_cache_next_hole(mapping, offset + 1, max_pages);
429 rcu_read_unlock();
430
431 if (!start || start - offset > max_pages)
432 return 0;
433
434 ra->start = start;
435 ra->size = start - offset; /* old async_size */
436 ra->size += req_size;
437 ra->size = get_next_ra_size(ra, max_pages);
438 ra->async_size = ra->size;
439 goto readit;
440 }
441
442 /*
443 * oversize read
444 */
445 if (req_size > max_pages)
446 goto initial_readahead;
447
448 /*
449 * sequential cache miss
450 * trivial case: (offset - prev_offset) == 1
451 * unaligned reads: (offset - prev_offset) == 0
452 */
453 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
454 if (offset - prev_offset <= 1UL)
455 goto initial_readahead;
456
457 /*
458 * Query the page cache and look for the traces(cached history pages)
459 * that a sequential stream would leave behind.
460 */
461 if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
462 goto readit;
463
464 /*
465 * standalone, small random read
466 * Read as is, and do not pollute the readahead state.
467 */
468 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
469
470 initial_readahead:
471 ra->start = offset;
472 ra->size = get_init_ra_size(req_size, max_pages);
473 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
474
475 readit:
476 /*
477 * Will this read hit the readahead marker made by itself?
478 * If so, trigger the readahead marker hit now, and merge
479 * the resulted next readahead window into the current one.
480 * Take care of maximum IO pages as above.
481 */
482 if (offset == ra->start && ra->size == ra->async_size) {
483 add_pages = get_next_ra_size(ra, max_pages);
484 if (ra->size + add_pages <= max_pages) {
485 ra->async_size = add_pages;
486 ra->size += add_pages;
487 } else {
488 ra->size = max_pages;
489 ra->async_size = max_pages >> 1;
490 }
491 }
492
493 return ra_submit(ra, mapping, filp);
494 }
495
496 /**
497 * page_cache_sync_readahead - generic file readahead
498 * @mapping: address_space which holds the pagecache and I/O vectors
499 * @ra: file_ra_state which holds the readahead state
500 * @filp: passed on to ->readpage() and ->readpages()
501 * @offset: start offset into @mapping, in pagecache page-sized units
502 * @req_size: hint: total size of the read which the caller is performing in
503 * pagecache pages
504 *
505 * page_cache_sync_readahead() should be called when a cache miss happened:
506 * it will submit the read. The readahead logic may decide to piggyback more
507 * pages onto the read request if access patterns suggest it will improve
508 * performance.
509 */
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * filp,pgoff_t offset,unsigned long req_size)510 void page_cache_sync_readahead(struct address_space *mapping,
511 struct file_ra_state *ra, struct file *filp,
512 pgoff_t offset, unsigned long req_size)
513 {
514 /* no read-ahead */
515 if (!ra->ra_pages)
516 return;
517
518 if (blk_cgroup_congested())
519 return;
520
521 /* be dumb */
522 if (filp && (filp->f_mode & FMODE_RANDOM)) {
523 force_page_cache_readahead(mapping, filp, offset, req_size);
524 return;
525 }
526
527 /* do read-ahead */
528 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
529 }
530 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
531
532 /**
533 * page_cache_async_readahead - file readahead for marked pages
534 * @mapping: address_space which holds the pagecache and I/O vectors
535 * @ra: file_ra_state which holds the readahead state
536 * @filp: passed on to ->readpage() and ->readpages()
537 * @page: the page at @offset which has the PG_readahead flag set
538 * @offset: start offset into @mapping, in pagecache page-sized units
539 * @req_size: hint: total size of the read which the caller is performing in
540 * pagecache pages
541 *
542 * page_cache_async_readahead() should be called when a page is used which
543 * has the PG_readahead flag; this is a marker to suggest that the application
544 * has used up enough of the readahead window that we should start pulling in
545 * more pages.
546 */
547 void
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * filp,struct page * page,pgoff_t offset,unsigned long req_size)548 page_cache_async_readahead(struct address_space *mapping,
549 struct file_ra_state *ra, struct file *filp,
550 struct page *page, pgoff_t offset,
551 unsigned long req_size)
552 {
553 /* no read-ahead */
554 if (!ra->ra_pages)
555 return;
556
557 /*
558 * Same bit is used for PG_readahead and PG_reclaim.
559 */
560 if (PageWriteback(page))
561 return;
562
563 ClearPageReadahead(page);
564
565 /*
566 * Defer asynchronous read-ahead on IO congestion.
567 */
568 if (inode_read_congested(mapping->host))
569 return;
570
571 if (blk_cgroup_congested())
572 return;
573
574 /* do read-ahead */
575 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
576 }
577 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
578
ksys_readahead(int fd,loff_t offset,size_t count)579 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
580 {
581 ssize_t ret;
582 struct fd f;
583
584 ret = -EBADF;
585 f = fdget(fd);
586 if (!f.file || !(f.file->f_mode & FMODE_READ))
587 goto out;
588
589 /*
590 * The readahead() syscall is intended to run only on files
591 * that can execute readahead. If readahead is not possible
592 * on this file, then we must return -EINVAL.
593 */
594 ret = -EINVAL;
595 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
596 !S_ISREG(file_inode(f.file)->i_mode))
597 goto out;
598
599 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
600 out:
601 fdput(f);
602 return ret;
603 }
604
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)605 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
606 {
607 return ksys_readahead(fd, offset, count);
608 }
609