1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
72
73 u32 hwpoison_filter_enable = 0;
74 u32 hwpoison_filter_dev_major = ~0U;
75 u32 hwpoison_filter_dev_minor = ~0U;
76 u64 hwpoison_filter_flags_mask;
77 u64 hwpoison_filter_flags_value;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
83
hwpoison_filter_dev(struct page * p)84 static int hwpoison_filter_dev(struct page *p)
85 {
86 struct address_space *mapping;
87 dev_t dev;
88
89 if (hwpoison_filter_dev_major == ~0U &&
90 hwpoison_filter_dev_minor == ~0U)
91 return 0;
92
93 /*
94 * page_mapping() does not accept slab pages.
95 */
96 if (PageSlab(p))
97 return -EINVAL;
98
99 mapping = page_mapping(p);
100 if (mapping == NULL || mapping->host == NULL)
101 return -EINVAL;
102
103 dev = mapping->host->i_sb->s_dev;
104 if (hwpoison_filter_dev_major != ~0U &&
105 hwpoison_filter_dev_major != MAJOR(dev))
106 return -EINVAL;
107 if (hwpoison_filter_dev_minor != ~0U &&
108 hwpoison_filter_dev_minor != MINOR(dev))
109 return -EINVAL;
110
111 return 0;
112 }
113
hwpoison_filter_flags(struct page * p)114 static int hwpoison_filter_flags(struct page *p)
115 {
116 if (!hwpoison_filter_flags_mask)
117 return 0;
118
119 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
120 hwpoison_filter_flags_value)
121 return 0;
122 else
123 return -EINVAL;
124 }
125
126 /*
127 * This allows stress tests to limit test scope to a collection of tasks
128 * by putting them under some memcg. This prevents killing unrelated/important
129 * processes such as /sbin/init. Note that the target task may share clean
130 * pages with init (eg. libc text), which is harmless. If the target task
131 * share _dirty_ pages with another task B, the test scheme must make sure B
132 * is also included in the memcg. At last, due to race conditions this filter
133 * can only guarantee that the page either belongs to the memcg tasks, or is
134 * a freed page.
135 */
136 #ifdef CONFIG_MEMCG
137 u64 hwpoison_filter_memcg;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)139 static int hwpoison_filter_task(struct page *p)
140 {
141 if (!hwpoison_filter_memcg)
142 return 0;
143
144 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
145 return -EINVAL;
146
147 return 0;
148 }
149 #else
hwpoison_filter_task(struct page * p)150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152
hwpoison_filter(struct page * p)153 int hwpoison_filter(struct page *p)
154 {
155 if (!hwpoison_filter_enable)
156 return 0;
157
158 if (hwpoison_filter_dev(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_flags(p))
162 return -EINVAL;
163
164 if (hwpoison_filter_task(p))
165 return -EINVAL;
166
167 return 0;
168 }
169 #else
hwpoison_filter(struct page * p)170 int hwpoison_filter(struct page *p)
171 {
172 return 0;
173 }
174 #endif
175
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177
178 /*
179 * Kill all processes that have a poisoned page mapped and then isolate
180 * the page.
181 *
182 * General strategy:
183 * Find all processes having the page mapped and kill them.
184 * But we keep a page reference around so that the page is not
185 * actually freed yet.
186 * Then stash the page away
187 *
188 * There's no convenient way to get back to mapped processes
189 * from the VMAs. So do a brute-force search over all
190 * running processes.
191 *
192 * Remember that machine checks are not common (or rather
193 * if they are common you have other problems), so this shouldn't
194 * be a performance issue.
195 *
196 * Also there are some races possible while we get from the
197 * error detection to actually handle it.
198 */
199
200 struct to_kill {
201 struct list_head nd;
202 struct task_struct *tsk;
203 unsigned long addr;
204 short size_shift;
205 char addr_valid;
206 };
207
208 /*
209 * Send all the processes who have the page mapped a signal.
210 * ``action optional'' if they are not immediately affected by the error
211 * ``action required'' if error happened in current execution context
212 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
214 {
215 struct task_struct *t = tk->tsk;
216 short addr_lsb = tk->size_shift;
217 int ret;
218
219 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
220 pfn, t->comm, t->pid);
221
222 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
223 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
224 addr_lsb, current);
225 } else {
226 /*
227 * Don't use force here, it's convenient if the signal
228 * can be temporarily blocked.
229 * This could cause a loop when the user sets SIGBUS
230 * to SIG_IGN, but hopefully no one will do that?
231 */
232 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
233 addr_lsb, t); /* synchronous? */
234 }
235 if (ret < 0)
236 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237 t->comm, t->pid, ret);
238 return ret;
239 }
240
241 /*
242 * When a unknown page type is encountered drain as many buffers as possible
243 * in the hope to turn the page into a LRU or free page, which we can handle.
244 */
shake_page(struct page * p,int access)245 void shake_page(struct page *p, int access)
246 {
247 if (PageHuge(p))
248 return;
249
250 if (!PageSlab(p)) {
251 lru_add_drain_all();
252 if (PageLRU(p))
253 return;
254 drain_all_pages(page_zone(p));
255 if (PageLRU(p) || is_free_buddy_page(p))
256 return;
257 }
258
259 /*
260 * Only call shrink_node_slabs here (which would also shrink
261 * other caches) if access is not potentially fatal.
262 */
263 if (access)
264 drop_slab_node(page_to_nid(p));
265 }
266 EXPORT_SYMBOL_GPL(shake_page);
267
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)268 static unsigned long dev_pagemap_mapping_shift(struct page *page,
269 struct vm_area_struct *vma)
270 {
271 unsigned long address = vma_address(page, vma);
272 pgd_t *pgd;
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *pte;
277
278 pgd = pgd_offset(vma->vm_mm, address);
279 if (!pgd_present(*pgd))
280 return 0;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 return 0;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 return 0;
287 if (pud_devmap(*pud))
288 return PUD_SHIFT;
289 pmd = pmd_offset(pud, address);
290 if (!pmd_present(*pmd))
291 return 0;
292 if (pmd_devmap(*pmd))
293 return PMD_SHIFT;
294 pte = pte_offset_map(pmd, address);
295 if (!pte_present(*pte))
296 return 0;
297 if (pte_devmap(*pte))
298 return PAGE_SHIFT;
299 return 0;
300 }
301
302 /*
303 * Failure handling: if we can't find or can't kill a process there's
304 * not much we can do. We just print a message and ignore otherwise.
305 */
306
307 /*
308 * Schedule a process for later kill.
309 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
310 * TBD would GFP_NOIO be enough?
311 */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)312 static void add_to_kill(struct task_struct *tsk, struct page *p,
313 struct vm_area_struct *vma,
314 struct list_head *to_kill,
315 struct to_kill **tkc)
316 {
317 struct to_kill *tk;
318
319 if (*tkc) {
320 tk = *tkc;
321 *tkc = NULL;
322 } else {
323 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
324 if (!tk) {
325 pr_err("Memory failure: Out of memory while machine check handling\n");
326 return;
327 }
328 }
329 tk->addr = page_address_in_vma(p, vma);
330 tk->addr_valid = 1;
331 if (is_zone_device_page(p))
332 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
333 else
334 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
335
336 /*
337 * In theory we don't have to kill when the page was
338 * munmaped. But it could be also a mremap. Since that's
339 * likely very rare kill anyways just out of paranoia, but use
340 * a SIGKILL because the error is not contained anymore.
341 */
342 if (tk->addr == -EFAULT || tk->size_shift == 0) {
343 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 page_to_pfn(p), tsk->comm);
345 tk->addr_valid = 0;
346 }
347 get_task_struct(tsk);
348 tk->tsk = tsk;
349 list_add_tail(&tk->nd, to_kill);
350 }
351
352 /*
353 * Kill the processes that have been collected earlier.
354 *
355 * Only do anything when DOIT is set, otherwise just free the list
356 * (this is used for clean pages which do not need killing)
357 * Also when FAIL is set do a force kill because something went
358 * wrong earlier.
359 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
361 unsigned long pfn, int flags)
362 {
363 struct to_kill *tk, *next;
364
365 list_for_each_entry_safe (tk, next, to_kill, nd) {
366 if (forcekill) {
367 /*
368 * In case something went wrong with munmapping
369 * make sure the process doesn't catch the
370 * signal and then access the memory. Just kill it.
371 */
372 if (fail || tk->addr_valid == 0) {
373 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374 pfn, tk->tsk->comm, tk->tsk->pid);
375 force_sig(SIGKILL, tk->tsk);
376 }
377
378 /*
379 * In theory the process could have mapped
380 * something else on the address in-between. We could
381 * check for that, but we need to tell the
382 * process anyways.
383 */
384 else if (kill_proc(tk, pfn, flags) < 0)
385 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386 pfn, tk->tsk->comm, tk->tsk->pid);
387 }
388 put_task_struct(tk->tsk);
389 kfree(tk);
390 }
391 }
392
393 /*
394 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
395 * on behalf of the thread group. Return task_struct of the (first found)
396 * dedicated thread if found, and return NULL otherwise.
397 *
398 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
399 * have to call rcu_read_lock/unlock() in this function.
400 */
find_early_kill_thread(struct task_struct * tsk)401 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402 {
403 struct task_struct *t;
404
405 for_each_thread(tsk, t)
406 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
407 return t;
408 return NULL;
409 }
410
411 /*
412 * Determine whether a given process is "early kill" process which expects
413 * to be signaled when some page under the process is hwpoisoned.
414 * Return task_struct of the dedicated thread (main thread unless explicitly
415 * specified) if the process is "early kill," and otherwise returns NULL.
416 */
task_early_kill(struct task_struct * tsk,int force_early)417 static struct task_struct *task_early_kill(struct task_struct *tsk,
418 int force_early)
419 {
420 struct task_struct *t;
421 if (!tsk->mm)
422 return NULL;
423 if (force_early)
424 return tsk;
425 t = find_early_kill_thread(tsk);
426 if (t)
427 return t;
428 if (sysctl_memory_failure_early_kill)
429 return tsk;
430 return NULL;
431 }
432
433 /*
434 * Collect processes when the error hit an anonymous page.
435 */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)436 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437 struct to_kill **tkc, int force_early)
438 {
439 struct vm_area_struct *vma;
440 struct task_struct *tsk;
441 struct anon_vma *av;
442 pgoff_t pgoff;
443
444 av = page_lock_anon_vma_read(page);
445 if (av == NULL) /* Not actually mapped anymore */
446 return;
447
448 pgoff = page_to_pgoff(page);
449 read_lock(&tasklist_lock);
450 for_each_process (tsk) {
451 struct anon_vma_chain *vmac;
452 struct task_struct *t = task_early_kill(tsk, force_early);
453
454 if (!t)
455 continue;
456 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
457 pgoff, pgoff) {
458 vma = vmac->vma;
459 if (!page_mapped_in_vma(page, vma))
460 continue;
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
463 }
464 }
465 read_unlock(&tasklist_lock);
466 page_unlock_anon_vma_read(av);
467 }
468
469 /*
470 * Collect processes when the error hit a file mapped page.
471 */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)472 static void collect_procs_file(struct page *page, struct list_head *to_kill,
473 struct to_kill **tkc, int force_early)
474 {
475 struct vm_area_struct *vma;
476 struct task_struct *tsk;
477 struct address_space *mapping = page->mapping;
478
479 i_mmap_lock_read(mapping);
480 read_lock(&tasklist_lock);
481 for_each_process(tsk) {
482 pgoff_t pgoff = page_to_pgoff(page);
483 struct task_struct *t = task_early_kill(tsk, force_early);
484
485 if (!t)
486 continue;
487 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 pgoff) {
489 /*
490 * Send early kill signal to tasks where a vma covers
491 * the page but the corrupted page is not necessarily
492 * mapped it in its pte.
493 * Assume applications who requested early kill want
494 * to be informed of all such data corruptions.
495 */
496 if (vma->vm_mm == t->mm)
497 add_to_kill(t, page, vma, to_kill, tkc);
498 }
499 }
500 read_unlock(&tasklist_lock);
501 i_mmap_unlock_read(mapping);
502 }
503
504 /*
505 * Collect the processes who have the corrupted page mapped to kill.
506 * This is done in two steps for locking reasons.
507 * First preallocate one tokill structure outside the spin locks,
508 * so that we can kill at least one process reasonably reliable.
509 */
collect_procs(struct page * page,struct list_head * tokill,int force_early)510 static void collect_procs(struct page *page, struct list_head *tokill,
511 int force_early)
512 {
513 struct to_kill *tk;
514
515 if (!page->mapping)
516 return;
517
518 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
519 if (!tk)
520 return;
521 if (PageAnon(page))
522 collect_procs_anon(page, tokill, &tk, force_early);
523 else
524 collect_procs_file(page, tokill, &tk, force_early);
525 kfree(tk);
526 }
527
528 static const char *action_name[] = {
529 [MF_IGNORED] = "Ignored",
530 [MF_FAILED] = "Failed",
531 [MF_DELAYED] = "Delayed",
532 [MF_RECOVERED] = "Recovered",
533 };
534
535 static const char * const action_page_types[] = {
536 [MF_MSG_KERNEL] = "reserved kernel page",
537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
538 [MF_MSG_SLAB] = "kernel slab page",
539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
541 [MF_MSG_HUGE] = "huge page",
542 [MF_MSG_FREE_HUGE] = "free huge page",
543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
551 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
552 [MF_MSG_CLEAN_LRU] = "clean LRU page",
553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
554 [MF_MSG_BUDDY] = "free buddy page",
555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
556 [MF_MSG_DAX] = "dax page",
557 [MF_MSG_UNKNOWN] = "unknown page",
558 };
559
560 /*
561 * XXX: It is possible that a page is isolated from LRU cache,
562 * and then kept in swap cache or failed to remove from page cache.
563 * The page count will stop it from being freed by unpoison.
564 * Stress tests should be aware of this memory leak problem.
565 */
delete_from_lru_cache(struct page * p)566 static int delete_from_lru_cache(struct page *p)
567 {
568 if (!isolate_lru_page(p)) {
569 /*
570 * Clear sensible page flags, so that the buddy system won't
571 * complain when the page is unpoison-and-freed.
572 */
573 ClearPageActive(p);
574 ClearPageUnevictable(p);
575
576 /*
577 * Poisoned page might never drop its ref count to 0 so we have
578 * to uncharge it manually from its memcg.
579 */
580 mem_cgroup_uncharge(p);
581
582 /*
583 * drop the page count elevated by isolate_lru_page()
584 */
585 put_page(p);
586 return 0;
587 }
588 return -EIO;
589 }
590
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)591 static int truncate_error_page(struct page *p, unsigned long pfn,
592 struct address_space *mapping)
593 {
594 int ret = MF_FAILED;
595
596 if (mapping->a_ops->error_remove_page) {
597 int err = mapping->a_ops->error_remove_page(mapping, p);
598
599 if (err != 0) {
600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 pfn, err);
602 } else if (page_has_private(p) &&
603 !try_to_release_page(p, GFP_NOIO)) {
604 pr_info("Memory failure: %#lx: failed to release buffers\n",
605 pfn);
606 } else {
607 ret = MF_RECOVERED;
608 }
609 } else {
610 /*
611 * If the file system doesn't support it just invalidate
612 * This fails on dirty or anything with private pages
613 */
614 if (invalidate_inode_page(p))
615 ret = MF_RECOVERED;
616 else
617 pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 pfn);
619 }
620
621 return ret;
622 }
623
624 /*
625 * Error hit kernel page.
626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
627 * could be more sophisticated.
628 */
me_kernel(struct page * p,unsigned long pfn)629 static int me_kernel(struct page *p, unsigned long pfn)
630 {
631 return MF_IGNORED;
632 }
633
634 /*
635 * Page in unknown state. Do nothing.
636 */
me_unknown(struct page * p,unsigned long pfn)637 static int me_unknown(struct page *p, unsigned long pfn)
638 {
639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 return MF_FAILED;
641 }
642
643 /*
644 * Clean (or cleaned) page cache page.
645 */
me_pagecache_clean(struct page * p,unsigned long pfn)646 static int me_pagecache_clean(struct page *p, unsigned long pfn)
647 {
648 struct address_space *mapping;
649
650 delete_from_lru_cache(p);
651
652 /*
653 * For anonymous pages we're done the only reference left
654 * should be the one m_f() holds.
655 */
656 if (PageAnon(p))
657 return MF_RECOVERED;
658
659 /*
660 * Now truncate the page in the page cache. This is really
661 * more like a "temporary hole punch"
662 * Don't do this for block devices when someone else
663 * has a reference, because it could be file system metadata
664 * and that's not safe to truncate.
665 */
666 mapping = page_mapping(p);
667 if (!mapping) {
668 /*
669 * Page has been teared down in the meanwhile
670 */
671 return MF_FAILED;
672 }
673
674 /*
675 * Truncation is a bit tricky. Enable it per file system for now.
676 *
677 * Open: to take i_mutex or not for this? Right now we don't.
678 */
679 return truncate_error_page(p, pfn, mapping);
680 }
681
682 /*
683 * Dirty pagecache page
684 * Issues: when the error hit a hole page the error is not properly
685 * propagated.
686 */
me_pagecache_dirty(struct page * p,unsigned long pfn)687 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688 {
689 struct address_space *mapping = page_mapping(p);
690
691 SetPageError(p);
692 /* TBD: print more information about the file. */
693 if (mapping) {
694 /*
695 * IO error will be reported by write(), fsync(), etc.
696 * who check the mapping.
697 * This way the application knows that something went
698 * wrong with its dirty file data.
699 *
700 * There's one open issue:
701 *
702 * The EIO will be only reported on the next IO
703 * operation and then cleared through the IO map.
704 * Normally Linux has two mechanisms to pass IO error
705 * first through the AS_EIO flag in the address space
706 * and then through the PageError flag in the page.
707 * Since we drop pages on memory failure handling the
708 * only mechanism open to use is through AS_AIO.
709 *
710 * This has the disadvantage that it gets cleared on
711 * the first operation that returns an error, while
712 * the PageError bit is more sticky and only cleared
713 * when the page is reread or dropped. If an
714 * application assumes it will always get error on
715 * fsync, but does other operations on the fd before
716 * and the page is dropped between then the error
717 * will not be properly reported.
718 *
719 * This can already happen even without hwpoisoned
720 * pages: first on metadata IO errors (which only
721 * report through AS_EIO) or when the page is dropped
722 * at the wrong time.
723 *
724 * So right now we assume that the application DTRT on
725 * the first EIO, but we're not worse than other parts
726 * of the kernel.
727 */
728 mapping_set_error(mapping, -EIO);
729 }
730
731 return me_pagecache_clean(p, pfn);
732 }
733
734 /*
735 * Clean and dirty swap cache.
736 *
737 * Dirty swap cache page is tricky to handle. The page could live both in page
738 * cache and swap cache(ie. page is freshly swapped in). So it could be
739 * referenced concurrently by 2 types of PTEs:
740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742 * and then
743 * - clear dirty bit to prevent IO
744 * - remove from LRU
745 * - but keep in the swap cache, so that when we return to it on
746 * a later page fault, we know the application is accessing
747 * corrupted data and shall be killed (we installed simple
748 * interception code in do_swap_page to catch it).
749 *
750 * Clean swap cache pages can be directly isolated. A later page fault will
751 * bring in the known good data from disk.
752 */
me_swapcache_dirty(struct page * p,unsigned long pfn)753 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754 {
755 ClearPageDirty(p);
756 /* Trigger EIO in shmem: */
757 ClearPageUptodate(p);
758
759 if (!delete_from_lru_cache(p))
760 return MF_DELAYED;
761 else
762 return MF_FAILED;
763 }
764
me_swapcache_clean(struct page * p,unsigned long pfn)765 static int me_swapcache_clean(struct page *p, unsigned long pfn)
766 {
767 delete_from_swap_cache(p);
768
769 if (!delete_from_lru_cache(p))
770 return MF_RECOVERED;
771 else
772 return MF_FAILED;
773 }
774
775 /*
776 * Huge pages. Needs work.
777 * Issues:
778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779 * To narrow down kill region to one page, we need to break up pmd.
780 */
me_huge_page(struct page * p,unsigned long pfn)781 static int me_huge_page(struct page *p, unsigned long pfn)
782 {
783 int res = 0;
784 struct page *hpage = compound_head(p);
785 struct address_space *mapping;
786
787 if (!PageHuge(hpage))
788 return MF_DELAYED;
789
790 mapping = page_mapping(hpage);
791 if (mapping) {
792 res = truncate_error_page(hpage, pfn, mapping);
793 } else {
794 unlock_page(hpage);
795 /*
796 * migration entry prevents later access on error anonymous
797 * hugepage, so we can free and dissolve it into buddy to
798 * save healthy subpages.
799 */
800 if (PageAnon(hpage))
801 put_page(hpage);
802 dissolve_free_huge_page(p);
803 res = MF_RECOVERED;
804 lock_page(hpage);
805 }
806
807 return res;
808 }
809
810 /*
811 * Various page states we can handle.
812 *
813 * A page state is defined by its current page->flags bits.
814 * The table matches them in order and calls the right handler.
815 *
816 * This is quite tricky because we can access page at any time
817 * in its live cycle, so all accesses have to be extremely careful.
818 *
819 * This is not complete. More states could be added.
820 * For any missing state don't attempt recovery.
821 */
822
823 #define dirty (1UL << PG_dirty)
824 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict (1UL << PG_unevictable)
826 #define mlock (1UL << PG_mlocked)
827 #define writeback (1UL << PG_writeback)
828 #define lru (1UL << PG_lru)
829 #define head (1UL << PG_head)
830 #define slab (1UL << PG_slab)
831 #define reserved (1UL << PG_reserved)
832
833 static struct page_state {
834 unsigned long mask;
835 unsigned long res;
836 enum mf_action_page_type type;
837 int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
840 /*
841 * free pages are specially detected outside this table:
842 * PG_buddy pages only make a small fraction of all free pages.
843 */
844
845 /*
846 * Could in theory check if slab page is free or if we can drop
847 * currently unused objects without touching them. But just
848 * treat it as standard kernel for now.
849 */
850 { slab, slab, MF_MSG_SLAB, me_kernel },
851
852 { head, head, MF_MSG_HUGE, me_huge_page },
853
854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
856
857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
859
860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
862
863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
865
866 /*
867 * Catchall entry: must be at end.
868 */
869 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
870 };
871
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef writeback
877 #undef lru
878 #undef head
879 #undef slab
880 #undef reserved
881
882 /*
883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)886 static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 enum mf_result result)
888 {
889 trace_memory_failure_event(pfn, type, result);
890
891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 pfn, action_page_types[type], action_name[result]);
893 }
894
page_action(struct page_state * ps,struct page * p,unsigned long pfn)895 static int page_action(struct page_state *ps, struct page *p,
896 unsigned long pfn)
897 {
898 int result;
899 int count;
900
901 result = ps->action(p, pfn);
902
903 count = page_count(p) - 1;
904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 count--;
906 if (count > 0) {
907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 pfn, action_page_types[ps->type], count);
909 result = MF_FAILED;
910 }
911 action_result(pfn, ps->type, result);
912
913 /* Could do more checks here if page looks ok */
914 /*
915 * Could adjust zone counters here to correct for the missing page.
916 */
917
918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 }
920
921 /**
922 * get_hwpoison_page() - Get refcount for memory error handling:
923 * @page: raw error page (hit by memory error)
924 *
925 * Return: return 0 if failed to grab the refcount, otherwise true (some
926 * non-zero value.)
927 */
get_hwpoison_page(struct page * page)928 int get_hwpoison_page(struct page *page)
929 {
930 struct page *head = compound_head(page);
931
932 if (!PageHuge(head) && PageTransHuge(head)) {
933 /*
934 * Non anonymous thp exists only in allocation/free time. We
935 * can't handle such a case correctly, so let's give it up.
936 * This should be better than triggering BUG_ON when kernel
937 * tries to touch the "partially handled" page.
938 */
939 if (!PageAnon(head)) {
940 pr_err("Memory failure: %#lx: non anonymous thp\n",
941 page_to_pfn(page));
942 return 0;
943 }
944 }
945
946 if (get_page_unless_zero(head)) {
947 if (head == compound_head(page))
948 return 1;
949
950 pr_info("Memory failure: %#lx cannot catch tail\n",
951 page_to_pfn(page));
952 put_page(head);
953 }
954
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(get_hwpoison_page);
958
959 /*
960 * Do all that is necessary to remove user space mappings. Unmap
961 * the pages and send SIGBUS to the processes if the data was dirty.
962 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page ** hpagep)963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 int flags, struct page **hpagep)
965 {
966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 struct address_space *mapping;
968 LIST_HEAD(tokill);
969 bool unmap_success;
970 int kill = 1, forcekill;
971 struct page *hpage = *hpagep;
972 bool mlocked = PageMlocked(hpage);
973
974 /*
975 * Here we are interested only in user-mapped pages, so skip any
976 * other types of pages.
977 */
978 if (PageReserved(p) || PageSlab(p))
979 return true;
980 if (!(PageLRU(hpage) || PageHuge(p)))
981 return true;
982
983 /*
984 * This check implies we don't kill processes if their pages
985 * are in the swap cache early. Those are always late kills.
986 */
987 if (!page_mapped(hpage))
988 return true;
989
990 if (PageKsm(p)) {
991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 return false;
993 }
994
995 if (PageSwapCache(p)) {
996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 pfn);
998 ttu |= TTU_IGNORE_HWPOISON;
999 }
1000
1001 /*
1002 * Propagate the dirty bit from PTEs to struct page first, because we
1003 * need this to decide if we should kill or just drop the page.
1004 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 * be called inside page lock (it's recommended but not enforced).
1006 */
1007 mapping = page_mapping(hpage);
1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 mapping_cap_writeback_dirty(mapping)) {
1010 if (page_mkclean(hpage)) {
1011 SetPageDirty(hpage);
1012 } else {
1013 kill = 0;
1014 ttu |= TTU_IGNORE_HWPOISON;
1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 pfn);
1017 }
1018 }
1019
1020 /*
1021 * First collect all the processes that have the page
1022 * mapped in dirty form. This has to be done before try_to_unmap,
1023 * because ttu takes the rmap data structures down.
1024 *
1025 * Error handling: We ignore errors here because
1026 * there's nothing that can be done.
1027 */
1028 if (kill)
1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031 unmap_success = try_to_unmap(hpage, ttu);
1032 if (!unmap_success)
1033 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1034 pfn, page_mapcount(hpage));
1035
1036 /*
1037 * try_to_unmap() might put mlocked page in lru cache, so call
1038 * shake_page() again to ensure that it's flushed.
1039 */
1040 if (mlocked)
1041 shake_page(hpage, 0);
1042
1043 /*
1044 * Now that the dirty bit has been propagated to the
1045 * struct page and all unmaps done we can decide if
1046 * killing is needed or not. Only kill when the page
1047 * was dirty or the process is not restartable,
1048 * otherwise the tokill list is merely
1049 * freed. When there was a problem unmapping earlier
1050 * use a more force-full uncatchable kill to prevent
1051 * any accesses to the poisoned memory.
1052 */
1053 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1054 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1055
1056 return unmap_success;
1057 }
1058
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1059 static int identify_page_state(unsigned long pfn, struct page *p,
1060 unsigned long page_flags)
1061 {
1062 struct page_state *ps;
1063
1064 /*
1065 * The first check uses the current page flags which may not have any
1066 * relevant information. The second check with the saved page flags is
1067 * carried out only if the first check can't determine the page status.
1068 */
1069 for (ps = error_states;; ps++)
1070 if ((p->flags & ps->mask) == ps->res)
1071 break;
1072
1073 page_flags |= (p->flags & (1UL << PG_dirty));
1074
1075 if (!ps->mask)
1076 for (ps = error_states;; ps++)
1077 if ((page_flags & ps->mask) == ps->res)
1078 break;
1079 return page_action(ps, p, pfn);
1080 }
1081
memory_failure_hugetlb(unsigned long pfn,int flags)1082 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1083 {
1084 struct page *p = pfn_to_page(pfn);
1085 struct page *head = compound_head(p);
1086 int res;
1087 unsigned long page_flags;
1088
1089 if (TestSetPageHWPoison(head)) {
1090 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1091 pfn);
1092 return 0;
1093 }
1094
1095 num_poisoned_pages_inc();
1096
1097 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1098 /*
1099 * Check "filter hit" and "race with other subpage."
1100 */
1101 lock_page(head);
1102 if (PageHWPoison(head)) {
1103 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1104 || (p != head && TestSetPageHWPoison(head))) {
1105 num_poisoned_pages_dec();
1106 unlock_page(head);
1107 return 0;
1108 }
1109 }
1110 unlock_page(head);
1111 dissolve_free_huge_page(p);
1112 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1113 return 0;
1114 }
1115
1116 lock_page(head);
1117 page_flags = head->flags;
1118
1119 if (!PageHWPoison(head)) {
1120 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1121 num_poisoned_pages_dec();
1122 unlock_page(head);
1123 put_hwpoison_page(head);
1124 return 0;
1125 }
1126
1127 /*
1128 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1129 * simply disable it. In order to make it work properly, we need
1130 * make sure that:
1131 * - conversion of a pud that maps an error hugetlb into hwpoison
1132 * entry properly works, and
1133 * - other mm code walking over page table is aware of pud-aligned
1134 * hwpoison entries.
1135 */
1136 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1137 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1138 res = -EBUSY;
1139 goto out;
1140 }
1141
1142 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1143 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1144 res = -EBUSY;
1145 goto out;
1146 }
1147
1148 res = identify_page_state(pfn, p, page_flags);
1149 out:
1150 unlock_page(head);
1151 return res;
1152 }
1153
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1154 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1155 struct dev_pagemap *pgmap)
1156 {
1157 struct page *page = pfn_to_page(pfn);
1158 const bool unmap_success = true;
1159 unsigned long size = 0;
1160 struct to_kill *tk;
1161 LIST_HEAD(tokill);
1162 int rc = -EBUSY;
1163 loff_t start;
1164
1165 /*
1166 * Prevent the inode from being freed while we are interrogating
1167 * the address_space, typically this would be handled by
1168 * lock_page(), but dax pages do not use the page lock. This
1169 * also prevents changes to the mapping of this pfn until
1170 * poison signaling is complete.
1171 */
1172 if (!dax_lock_mapping_entry(page))
1173 goto out;
1174
1175 if (hwpoison_filter(page)) {
1176 rc = 0;
1177 goto unlock;
1178 }
1179
1180 switch (pgmap->type) {
1181 case MEMORY_DEVICE_PRIVATE:
1182 case MEMORY_DEVICE_PUBLIC:
1183 /*
1184 * TODO: Handle HMM pages which may need coordination
1185 * with device-side memory.
1186 */
1187 goto unlock;
1188 default:
1189 break;
1190 }
1191
1192 /*
1193 * Use this flag as an indication that the dax page has been
1194 * remapped UC to prevent speculative consumption of poison.
1195 */
1196 SetPageHWPoison(page);
1197
1198 /*
1199 * Unlike System-RAM there is no possibility to swap in a
1200 * different physical page at a given virtual address, so all
1201 * userspace consumption of ZONE_DEVICE memory necessitates
1202 * SIGBUS (i.e. MF_MUST_KILL)
1203 */
1204 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206
1207 list_for_each_entry(tk, &tokill, nd)
1208 if (tk->size_shift)
1209 size = max(size, 1UL << tk->size_shift);
1210 if (size) {
1211 /*
1212 * Unmap the largest mapping to avoid breaking up
1213 * device-dax mappings which are constant size. The
1214 * actual size of the mapping being torn down is
1215 * communicated in siginfo, see kill_proc()
1216 */
1217 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218 unmap_mapping_range(page->mapping, start, start + size, 0);
1219 }
1220 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221 rc = 0;
1222 unlock:
1223 dax_unlock_mapping_entry(page);
1224 out:
1225 /* drop pgmap ref acquired in caller */
1226 put_dev_pagemap(pgmap);
1227 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228 return rc;
1229 }
1230
1231 /**
1232 * memory_failure - Handle memory failure of a page.
1233 * @pfn: Page Number of the corrupted page
1234 * @flags: fine tune action taken
1235 *
1236 * This function is called by the low level machine check code
1237 * of an architecture when it detects hardware memory corruption
1238 * of a page. It tries its best to recover, which includes
1239 * dropping pages, killing processes etc.
1240 *
1241 * The function is primarily of use for corruptions that
1242 * happen outside the current execution context (e.g. when
1243 * detected by a background scrubber)
1244 *
1245 * Must run in process context (e.g. a work queue) with interrupts
1246 * enabled and no spinlocks hold.
1247 */
memory_failure(unsigned long pfn,int flags)1248 int memory_failure(unsigned long pfn, int flags)
1249 {
1250 struct page *p;
1251 struct page *hpage;
1252 struct page *orig_head;
1253 struct dev_pagemap *pgmap;
1254 int res;
1255 unsigned long page_flags;
1256
1257 if (!sysctl_memory_failure_recovery)
1258 panic("Memory failure on page %lx", pfn);
1259
1260 if (!pfn_valid(pfn)) {
1261 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1262 pfn);
1263 return -ENXIO;
1264 }
1265
1266 pgmap = get_dev_pagemap(pfn, NULL);
1267 if (pgmap)
1268 return memory_failure_dev_pagemap(pfn, flags, pgmap);
1269
1270 p = pfn_to_page(pfn);
1271 if (PageHuge(p))
1272 return memory_failure_hugetlb(pfn, flags);
1273 if (TestSetPageHWPoison(p)) {
1274 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1275 pfn);
1276 return 0;
1277 }
1278
1279 orig_head = hpage = compound_head(p);
1280 num_poisoned_pages_inc();
1281
1282 /*
1283 * We need/can do nothing about count=0 pages.
1284 * 1) it's a free page, and therefore in safe hand:
1285 * prep_new_page() will be the gate keeper.
1286 * 2) it's part of a non-compound high order page.
1287 * Implies some kernel user: cannot stop them from
1288 * R/W the page; let's pray that the page has been
1289 * used and will be freed some time later.
1290 * In fact it's dangerous to directly bump up page count from 0,
1291 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1292 */
1293 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1294 if (is_free_buddy_page(p)) {
1295 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1296 return 0;
1297 } else {
1298 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1299 return -EBUSY;
1300 }
1301 }
1302
1303 if (PageTransHuge(hpage)) {
1304 lock_page(p);
1305 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1306 unlock_page(p);
1307 if (!PageAnon(p))
1308 pr_err("Memory failure: %#lx: non anonymous thp\n",
1309 pfn);
1310 else
1311 pr_err("Memory failure: %#lx: thp split failed\n",
1312 pfn);
1313 if (TestClearPageHWPoison(p))
1314 num_poisoned_pages_dec();
1315 put_hwpoison_page(p);
1316 return -EBUSY;
1317 }
1318 unlock_page(p);
1319 VM_BUG_ON_PAGE(!page_count(p), p);
1320 hpage = compound_head(p);
1321 }
1322
1323 /*
1324 * We ignore non-LRU pages for good reasons.
1325 * - PG_locked is only well defined for LRU pages and a few others
1326 * - to avoid races with __SetPageLocked()
1327 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1328 * The check (unnecessarily) ignores LRU pages being isolated and
1329 * walked by the page reclaim code, however that's not a big loss.
1330 */
1331 shake_page(p, 0);
1332 /* shake_page could have turned it free. */
1333 if (!PageLRU(p) && is_free_buddy_page(p)) {
1334 if (flags & MF_COUNT_INCREASED)
1335 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1336 else
1337 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1338 return 0;
1339 }
1340
1341 lock_page(p);
1342
1343 /*
1344 * The page could have changed compound pages during the locking.
1345 * If this happens just bail out.
1346 */
1347 if (PageCompound(p) && compound_head(p) != orig_head) {
1348 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1349 res = -EBUSY;
1350 goto out;
1351 }
1352
1353 /*
1354 * We use page flags to determine what action should be taken, but
1355 * the flags can be modified by the error containment action. One
1356 * example is an mlocked page, where PG_mlocked is cleared by
1357 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1358 * correctly, we save a copy of the page flags at this time.
1359 */
1360 if (PageHuge(p))
1361 page_flags = hpage->flags;
1362 else
1363 page_flags = p->flags;
1364
1365 /*
1366 * unpoison always clear PG_hwpoison inside page lock
1367 */
1368 if (!PageHWPoison(p)) {
1369 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1370 num_poisoned_pages_dec();
1371 unlock_page(p);
1372 put_hwpoison_page(p);
1373 return 0;
1374 }
1375 if (hwpoison_filter(p)) {
1376 if (TestClearPageHWPoison(p))
1377 num_poisoned_pages_dec();
1378 unlock_page(p);
1379 put_hwpoison_page(p);
1380 return 0;
1381 }
1382
1383 if (!PageTransTail(p) && !PageLRU(p))
1384 goto identify_page_state;
1385
1386 /*
1387 * It's very difficult to mess with pages currently under IO
1388 * and in many cases impossible, so we just avoid it here.
1389 */
1390 wait_on_page_writeback(p);
1391
1392 /*
1393 * Now take care of user space mappings.
1394 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1395 *
1396 * When the raw error page is thp tail page, hpage points to the raw
1397 * page after thp split.
1398 */
1399 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1400 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1401 res = -EBUSY;
1402 goto out;
1403 }
1404
1405 /*
1406 * Torn down by someone else?
1407 */
1408 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1409 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1410 res = -EBUSY;
1411 goto out;
1412 }
1413
1414 identify_page_state:
1415 res = identify_page_state(pfn, p, page_flags);
1416 out:
1417 unlock_page(p);
1418 return res;
1419 }
1420 EXPORT_SYMBOL_GPL(memory_failure);
1421
1422 #define MEMORY_FAILURE_FIFO_ORDER 4
1423 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1424
1425 struct memory_failure_entry {
1426 unsigned long pfn;
1427 int flags;
1428 };
1429
1430 struct memory_failure_cpu {
1431 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1432 MEMORY_FAILURE_FIFO_SIZE);
1433 spinlock_t lock;
1434 struct work_struct work;
1435 };
1436
1437 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1438
1439 /**
1440 * memory_failure_queue - Schedule handling memory failure of a page.
1441 * @pfn: Page Number of the corrupted page
1442 * @flags: Flags for memory failure handling
1443 *
1444 * This function is called by the low level hardware error handler
1445 * when it detects hardware memory corruption of a page. It schedules
1446 * the recovering of error page, including dropping pages, killing
1447 * processes etc.
1448 *
1449 * The function is primarily of use for corruptions that
1450 * happen outside the current execution context (e.g. when
1451 * detected by a background scrubber)
1452 *
1453 * Can run in IRQ context.
1454 */
memory_failure_queue(unsigned long pfn,int flags)1455 void memory_failure_queue(unsigned long pfn, int flags)
1456 {
1457 struct memory_failure_cpu *mf_cpu;
1458 unsigned long proc_flags;
1459 struct memory_failure_entry entry = {
1460 .pfn = pfn,
1461 .flags = flags,
1462 };
1463
1464 mf_cpu = &get_cpu_var(memory_failure_cpu);
1465 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1466 if (kfifo_put(&mf_cpu->fifo, entry))
1467 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1468 else
1469 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1470 pfn);
1471 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1472 put_cpu_var(memory_failure_cpu);
1473 }
1474 EXPORT_SYMBOL_GPL(memory_failure_queue);
1475
memory_failure_work_func(struct work_struct * work)1476 static void memory_failure_work_func(struct work_struct *work)
1477 {
1478 struct memory_failure_cpu *mf_cpu;
1479 struct memory_failure_entry entry = { 0, };
1480 unsigned long proc_flags;
1481 int gotten;
1482
1483 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1484 for (;;) {
1485 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1486 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1487 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1488 if (!gotten)
1489 break;
1490 if (entry.flags & MF_SOFT_OFFLINE)
1491 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1492 else
1493 memory_failure(entry.pfn, entry.flags);
1494 }
1495 }
1496
memory_failure_init(void)1497 static int __init memory_failure_init(void)
1498 {
1499 struct memory_failure_cpu *mf_cpu;
1500 int cpu;
1501
1502 for_each_possible_cpu(cpu) {
1503 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1504 spin_lock_init(&mf_cpu->lock);
1505 INIT_KFIFO(mf_cpu->fifo);
1506 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1507 }
1508
1509 return 0;
1510 }
1511 core_initcall(memory_failure_init);
1512
1513 #define unpoison_pr_info(fmt, pfn, rs) \
1514 ({ \
1515 if (__ratelimit(rs)) \
1516 pr_info(fmt, pfn); \
1517 })
1518
1519 /**
1520 * unpoison_memory - Unpoison a previously poisoned page
1521 * @pfn: Page number of the to be unpoisoned page
1522 *
1523 * Software-unpoison a page that has been poisoned by
1524 * memory_failure() earlier.
1525 *
1526 * This is only done on the software-level, so it only works
1527 * for linux injected failures, not real hardware failures
1528 *
1529 * Returns 0 for success, otherwise -errno.
1530 */
unpoison_memory(unsigned long pfn)1531 int unpoison_memory(unsigned long pfn)
1532 {
1533 struct page *page;
1534 struct page *p;
1535 int freeit = 0;
1536 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1537 DEFAULT_RATELIMIT_BURST);
1538
1539 if (!pfn_valid(pfn))
1540 return -ENXIO;
1541
1542 p = pfn_to_page(pfn);
1543 page = compound_head(p);
1544
1545 if (!PageHWPoison(p)) {
1546 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1547 pfn, &unpoison_rs);
1548 return 0;
1549 }
1550
1551 if (page_count(page) > 1) {
1552 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1553 pfn, &unpoison_rs);
1554 return 0;
1555 }
1556
1557 if (page_mapped(page)) {
1558 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1559 pfn, &unpoison_rs);
1560 return 0;
1561 }
1562
1563 if (page_mapping(page)) {
1564 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1565 pfn, &unpoison_rs);
1566 return 0;
1567 }
1568
1569 /*
1570 * unpoison_memory() can encounter thp only when the thp is being
1571 * worked by memory_failure() and the page lock is not held yet.
1572 * In such case, we yield to memory_failure() and make unpoison fail.
1573 */
1574 if (!PageHuge(page) && PageTransHuge(page)) {
1575 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1576 pfn, &unpoison_rs);
1577 return 0;
1578 }
1579
1580 if (!get_hwpoison_page(p)) {
1581 if (TestClearPageHWPoison(p))
1582 num_poisoned_pages_dec();
1583 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1584 pfn, &unpoison_rs);
1585 return 0;
1586 }
1587
1588 lock_page(page);
1589 /*
1590 * This test is racy because PG_hwpoison is set outside of page lock.
1591 * That's acceptable because that won't trigger kernel panic. Instead,
1592 * the PG_hwpoison page will be caught and isolated on the entrance to
1593 * the free buddy page pool.
1594 */
1595 if (TestClearPageHWPoison(page)) {
1596 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1597 pfn, &unpoison_rs);
1598 num_poisoned_pages_dec();
1599 freeit = 1;
1600 }
1601 unlock_page(page);
1602
1603 put_hwpoison_page(page);
1604 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1605 put_hwpoison_page(page);
1606
1607 return 0;
1608 }
1609 EXPORT_SYMBOL(unpoison_memory);
1610
new_page(struct page * p,unsigned long private)1611 static struct page *new_page(struct page *p, unsigned long private)
1612 {
1613 int nid = page_to_nid(p);
1614
1615 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1616 }
1617
1618 /*
1619 * Safely get reference count of an arbitrary page.
1620 * Returns 0 for a free page, -EIO for a zero refcount page
1621 * that is not free, and 1 for any other page type.
1622 * For 1 the page is returned with increased page count, otherwise not.
1623 */
__get_any_page(struct page * p,unsigned long pfn,int flags)1624 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1625 {
1626 int ret;
1627
1628 if (flags & MF_COUNT_INCREASED)
1629 return 1;
1630
1631 /*
1632 * When the target page is a free hugepage, just remove it
1633 * from free hugepage list.
1634 */
1635 if (!get_hwpoison_page(p)) {
1636 if (PageHuge(p)) {
1637 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1638 ret = 0;
1639 } else if (is_free_buddy_page(p)) {
1640 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1641 ret = 0;
1642 } else {
1643 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1644 __func__, pfn, p->flags);
1645 ret = -EIO;
1646 }
1647 } else {
1648 /* Not a free page */
1649 ret = 1;
1650 }
1651 return ret;
1652 }
1653
get_any_page(struct page * page,unsigned long pfn,int flags)1654 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1655 {
1656 int ret = __get_any_page(page, pfn, flags);
1657
1658 if (ret == 1 && !PageHuge(page) &&
1659 !PageLRU(page) && !__PageMovable(page)) {
1660 /*
1661 * Try to free it.
1662 */
1663 put_hwpoison_page(page);
1664 shake_page(page, 1);
1665
1666 /*
1667 * Did it turn free?
1668 */
1669 ret = __get_any_page(page, pfn, 0);
1670 if (ret == 1 && !PageLRU(page)) {
1671 /* Drop page reference which is from __get_any_page() */
1672 put_hwpoison_page(page);
1673 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1674 pfn, page->flags, &page->flags);
1675 return -EIO;
1676 }
1677 }
1678 return ret;
1679 }
1680
soft_offline_huge_page(struct page * page,int flags)1681 static int soft_offline_huge_page(struct page *page, int flags)
1682 {
1683 int ret;
1684 unsigned long pfn = page_to_pfn(page);
1685 struct page *hpage = compound_head(page);
1686 LIST_HEAD(pagelist);
1687
1688 /*
1689 * This double-check of PageHWPoison is to avoid the race with
1690 * memory_failure(). See also comment in __soft_offline_page().
1691 */
1692 lock_page(hpage);
1693 if (PageHWPoison(hpage)) {
1694 unlock_page(hpage);
1695 put_hwpoison_page(hpage);
1696 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1697 return -EBUSY;
1698 }
1699 unlock_page(hpage);
1700
1701 ret = isolate_huge_page(hpage, &pagelist);
1702 /*
1703 * get_any_page() and isolate_huge_page() takes a refcount each,
1704 * so need to drop one here.
1705 */
1706 put_hwpoison_page(hpage);
1707 if (!ret) {
1708 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1709 return -EBUSY;
1710 }
1711
1712 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1713 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1714 if (ret) {
1715 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1716 pfn, ret, page->flags, &page->flags);
1717 if (!list_empty(&pagelist))
1718 putback_movable_pages(&pagelist);
1719 if (ret > 0)
1720 ret = -EIO;
1721 } else {
1722 /*
1723 * We set PG_hwpoison only when the migration source hugepage
1724 * was successfully dissolved, because otherwise hwpoisoned
1725 * hugepage remains on free hugepage list, then userspace will
1726 * find it as SIGBUS by allocation failure. That's not expected
1727 * in soft-offlining.
1728 */
1729 ret = dissolve_free_huge_page(page);
1730 if (!ret) {
1731 if (set_hwpoison_free_buddy_page(page))
1732 num_poisoned_pages_inc();
1733 }
1734 }
1735 return ret;
1736 }
1737
__soft_offline_page(struct page * page,int flags)1738 static int __soft_offline_page(struct page *page, int flags)
1739 {
1740 int ret;
1741 unsigned long pfn = page_to_pfn(page);
1742
1743 /*
1744 * Check PageHWPoison again inside page lock because PageHWPoison
1745 * is set by memory_failure() outside page lock. Note that
1746 * memory_failure() also double-checks PageHWPoison inside page lock,
1747 * so there's no race between soft_offline_page() and memory_failure().
1748 */
1749 lock_page(page);
1750 wait_on_page_writeback(page);
1751 if (PageHWPoison(page)) {
1752 unlock_page(page);
1753 put_hwpoison_page(page);
1754 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755 return -EBUSY;
1756 }
1757 /*
1758 * Try to invalidate first. This should work for
1759 * non dirty unmapped page cache pages.
1760 */
1761 ret = invalidate_inode_page(page);
1762 unlock_page(page);
1763 /*
1764 * RED-PEN would be better to keep it isolated here, but we
1765 * would need to fix isolation locking first.
1766 */
1767 if (ret == 1) {
1768 put_hwpoison_page(page);
1769 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1770 SetPageHWPoison(page);
1771 num_poisoned_pages_inc();
1772 return 0;
1773 }
1774
1775 /*
1776 * Simple invalidation didn't work.
1777 * Try to migrate to a new page instead. migrate.c
1778 * handles a large number of cases for us.
1779 */
1780 if (PageLRU(page))
1781 ret = isolate_lru_page(page);
1782 else
1783 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1784 /*
1785 * Drop page reference which is came from get_any_page()
1786 * successful isolate_lru_page() already took another one.
1787 */
1788 put_hwpoison_page(page);
1789 if (!ret) {
1790 LIST_HEAD(pagelist);
1791 /*
1792 * After isolated lru page, the PageLRU will be cleared,
1793 * so use !__PageMovable instead for LRU page's mapping
1794 * cannot have PAGE_MAPPING_MOVABLE.
1795 */
1796 if (!__PageMovable(page))
1797 inc_node_page_state(page, NR_ISOLATED_ANON +
1798 page_is_file_cache(page));
1799 list_add(&page->lru, &pagelist);
1800 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1801 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1802 if (ret) {
1803 if (!list_empty(&pagelist))
1804 putback_movable_pages(&pagelist);
1805
1806 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1807 pfn, ret, page->flags, &page->flags);
1808 if (ret > 0)
1809 ret = -EIO;
1810 }
1811 } else {
1812 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1813 pfn, ret, page_count(page), page->flags, &page->flags);
1814 }
1815 return ret;
1816 }
1817
soft_offline_in_use_page(struct page * page,int flags)1818 static int soft_offline_in_use_page(struct page *page, int flags)
1819 {
1820 int ret;
1821 int mt;
1822 struct page *hpage = compound_head(page);
1823
1824 if (!PageHuge(page) && PageTransHuge(hpage)) {
1825 lock_page(hpage);
1826 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1827 unlock_page(hpage);
1828 if (!PageAnon(hpage))
1829 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1830 else
1831 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1832 put_hwpoison_page(hpage);
1833 return -EBUSY;
1834 }
1835 unlock_page(hpage);
1836 get_hwpoison_page(page);
1837 put_hwpoison_page(hpage);
1838 }
1839
1840 /*
1841 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1842 * to free list immediately (not via pcplist) when released after
1843 * successful page migration. Otherwise we can't guarantee that the
1844 * page is really free after put_page() returns, so
1845 * set_hwpoison_free_buddy_page() highly likely fails.
1846 */
1847 mt = get_pageblock_migratetype(page);
1848 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1849 if (PageHuge(page))
1850 ret = soft_offline_huge_page(page, flags);
1851 else
1852 ret = __soft_offline_page(page, flags);
1853 set_pageblock_migratetype(page, mt);
1854 return ret;
1855 }
1856
soft_offline_free_page(struct page * page)1857 static int soft_offline_free_page(struct page *page)
1858 {
1859 int rc = 0;
1860 struct page *head = compound_head(page);
1861
1862 if (PageHuge(head))
1863 rc = dissolve_free_huge_page(page);
1864 if (!rc) {
1865 if (set_hwpoison_free_buddy_page(page))
1866 num_poisoned_pages_inc();
1867 else
1868 rc = -EBUSY;
1869 }
1870 return rc;
1871 }
1872
1873 /**
1874 * soft_offline_page - Soft offline a page.
1875 * @page: page to offline
1876 * @flags: flags. Same as memory_failure().
1877 *
1878 * Returns 0 on success, otherwise negated errno.
1879 *
1880 * Soft offline a page, by migration or invalidation,
1881 * without killing anything. This is for the case when
1882 * a page is not corrupted yet (so it's still valid to access),
1883 * but has had a number of corrected errors and is better taken
1884 * out.
1885 *
1886 * The actual policy on when to do that is maintained by
1887 * user space.
1888 *
1889 * This should never impact any application or cause data loss,
1890 * however it might take some time.
1891 *
1892 * This is not a 100% solution for all memory, but tries to be
1893 * ``good enough'' for the majority of memory.
1894 */
soft_offline_page(struct page * page,int flags)1895 int soft_offline_page(struct page *page, int flags)
1896 {
1897 int ret;
1898 unsigned long pfn = page_to_pfn(page);
1899
1900 if (is_zone_device_page(page)) {
1901 pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1902 pfn);
1903 if (flags & MF_COUNT_INCREASED)
1904 put_page(page);
1905 return -EIO;
1906 }
1907
1908 if (PageHWPoison(page)) {
1909 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1910 if (flags & MF_COUNT_INCREASED)
1911 put_hwpoison_page(page);
1912 return -EBUSY;
1913 }
1914
1915 get_online_mems();
1916 ret = get_any_page(page, pfn, flags);
1917 put_online_mems();
1918
1919 if (ret > 0)
1920 ret = soft_offline_in_use_page(page, flags);
1921 else if (ret == 0)
1922 ret = soft_offline_free_page(page);
1923
1924 return ret;
1925 }
1926