1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124 };
125
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136 };
137
138 /*
139 * cgroup_event represents events which userspace want to receive.
140 */
141 struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176 };
177
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181 /* Stuffs for move charges at task migration. */
182 /*
183 * Types of charges to be moved.
184 */
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205
206 /*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219 };
220
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228 };
229
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
235
236 /*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
251 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257 }
258
vmpressure_to_css(struct vmpressure * vmpr)259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 {
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 }
263
264 #ifdef CONFIG_MEMCG_KMEM
265 /*
266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
272 *
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
275 */
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
278
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
281
memcg_get_cache_ids(void)282 void memcg_get_cache_ids(void)
283 {
284 down_read(&memcg_cache_ids_sem);
285 }
286
memcg_put_cache_ids(void)287 void memcg_put_cache_ids(void)
288 {
289 up_read(&memcg_cache_ids_sem);
290 }
291
292 /*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 * increase ours as well if it increases.
303 */
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306
307 /*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
315
316 struct workqueue_struct *memcg_kmem_cache_wq;
317
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
memcg_free_shrinker_map_rcu(struct rcu_head * head)321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322 {
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324 }
325
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328 {
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354 }
355
memcg_free_shrinker_maps(struct mem_cgroup * memcg)356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357 {
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372 }
373
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375 {
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396 }
397
memcg_expand_shrinker_maps(int new_id)398 int memcg_expand_shrinker_maps(int new_id)
399 {
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419 unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424 }
425
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427 {
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438 }
439
440 #else /* CONFIG_MEMCG_KMEM */
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442 {
443 return 0;
444 }
memcg_free_shrinker_maps(struct mem_cgroup * memcg)445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
447
448 /**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
458 */
mem_cgroup_css_from_page(struct page * page)459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460 {
461 struct mem_cgroup *memcg;
462
463 memcg = page->mem_cgroup;
464
465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 memcg = root_mem_cgroup;
467
468 return &memcg->css;
469 }
470
471 /**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
page_cgroup_ino(struct page * page)484 ino_t page_cgroup_ino(struct page *page)
485 {
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497 }
498
499 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501 {
502 int nid = page_to_nid(page);
503
504 return memcg->nodeinfo[nid];
505 }
506
507 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)508 soft_limit_tree_node(int nid)
509 {
510 return soft_limit_tree.rb_tree_per_node[nid];
511 }
512
513 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)514 soft_limit_tree_from_page(struct page *page)
515 {
516 int nid = page_to_nid(page);
517
518 return soft_limit_tree.rb_tree_per_node[nid];
519 }
520
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
523 unsigned long new_usage_in_excess)
524 {
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
527 struct mem_cgroup_per_node *mz_node;
528 bool rightmost = true;
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 p = &(*p)->rb_left;
542 rightmost = false;
543 }
544
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559 }
560
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
563 {
564 if (!mz->on_tree)
565 return;
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572 }
573
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
576 {
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 spin_unlock_irqrestore(&mctz->lock, flags);
582 }
583
soft_limit_excess(struct mem_cgroup * memcg)584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585 {
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594 }
595
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597 {
598 unsigned long excess;
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
601
602 mctz = soft_limit_tree_from_page(page);
603 if (!mctz)
604 return;
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 mz = mem_cgroup_page_nodeinfo(memcg, page);
611 excess = soft_limit_excess(memcg);
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
620 /* if on-tree, remove it */
621 if (mz->on_tree)
622 __mem_cgroup_remove_exceeded(mz, mctz);
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
628 spin_unlock_irqrestore(&mctz->lock, flags);
629 }
630 }
631 }
632
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634 {
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
638
639 for_each_node(nid) {
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
644 }
645 }
646
647 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649 {
650 struct mem_cgroup_per_node *mz;
651
652 retry:
653 mz = NULL;
654 if (!mctz->rb_rightmost)
655 goto done; /* Nothing to reclaim from */
656
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 if (!soft_limit_excess(mz->memcg) ||
666 !css_tryget_online(&mz->memcg->css))
667 goto retry;
668 done:
669 return mz;
670 }
671
672 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674 {
675 struct mem_cgroup_per_node *mz;
676
677 spin_lock_irq(&mctz->lock);
678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 spin_unlock_irq(&mctz->lock);
680 return mz;
681 }
682
memcg_sum_events(struct mem_cgroup * memcg,int event)683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684 int event)
685 {
686 return atomic_long_read(&memcg->events[event]);
687 }
688
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,bool compound,int nr_pages)689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690 struct page *page,
691 bool compound, int nr_pages)
692 {
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
697 if (PageAnon(page))
698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699 else {
700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 if (PageSwapBacked(page))
702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
703 }
704
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
708 }
709
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
712 __count_memcg_events(memcg, PGPGIN, 1);
713 else {
714 __count_memcg_events(memcg, PGPGOUT, 1);
715 nr_pages = -nr_pages; /* for event */
716 }
717
718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
719 }
720
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
723 {
724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 unsigned long nr = 0;
726 enum lru_list lru;
727
728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
729
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
733 nr += mem_cgroup_get_lru_size(lruvec, lru);
734 }
735 return nr;
736 }
737
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 unsigned int lru_mask)
740 {
741 unsigned long nr = 0;
742 int nid;
743
744 for_each_node_state(nid, N_MEMORY)
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
747 }
748
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
751 {
752 unsigned long val, next;
753
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 /* from time_after() in jiffies.h */
757 if ((long)(next - val) < 0) {
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
772 return true;
773 }
774 return false;
775 }
776
777 /*
778 * Check events in order.
779 *
780 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
782 {
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
786 bool do_softlimit;
787 bool do_numainfo __maybe_unused;
788
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
791 #if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794 #endif
795 mem_cgroup_threshold(memcg);
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
798 #if MAX_NUMNODES > 1
799 if (unlikely(do_numainfo))
800 atomic_inc(&memcg->numainfo_events);
801 #endif
802 }
803 }
804
mem_cgroup_from_task(struct task_struct * p)805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
806 {
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
816 }
817 EXPORT_SYMBOL(mem_cgroup_from_task);
818
819 /**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
get_mem_cgroup_from_mm(struct mm_struct * mm)827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
828 {
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
833
834 rcu_read_lock();
835 do {
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
842 memcg = root_mem_cgroup;
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
848 } while (!css_tryget_online(&memcg->css));
849 rcu_read_unlock();
850 return memcg;
851 }
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
854 /**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
get_mem_cgroup_from_page(struct page * page)861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862 {
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873 }
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
876 /**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
get_mem_cgroup_from_current(void)879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880 {
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(¤t->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891 }
892
893 /**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
906 * Reclaimers can specify a node and a priority level in @reclaim to
907 * divide up the memcgs in the hierarchy among all concurrent
908 * reclaimers operating on the same node and priority.
909 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 struct mem_cgroup *prev,
912 struct mem_cgroup_reclaim_cookie *reclaim)
913 {
914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 struct cgroup_subsys_state *css = NULL;
916 struct mem_cgroup *memcg = NULL;
917 struct mem_cgroup *pos = NULL;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 if (!root)
923 root = root_mem_cgroup;
924
925 if (prev && !reclaim)
926 pos = prev;
927
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
930 goto out;
931 return root;
932 }
933
934 rcu_read_lock();
935
936 if (reclaim) {
937 struct mem_cgroup_per_node *mz;
938
939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
945 while (1) {
946 pos = READ_ONCE(iter->position);
947 if (!pos || css_tryget(&pos->css))
948 break;
949 /*
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
956 */
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
976 }
977
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
984
985 if (css == &root->css)
986 break;
987
988 if (css_tryget(css))
989 break;
990
991 memcg = NULL;
992 }
993
994 if (reclaim) {
995 /*
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
999 */
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
1009 }
1010
1011 out_unlock:
1012 rcu_read_unlock();
1013 out:
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
1017 return memcg;
1018 }
1019
1020 /**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
1027 {
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032 }
1033
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035 {
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
1040 int i;
1041
1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 for_each_node(nid) {
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
1049 }
1050 }
1051 }
1052 }
1053
1054 /**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069 {
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
1079 css_task_iter_start(&iter->css, 0, &it);
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089 }
1090
1091 /**
1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093 * @page: the page
1094 * @pgdat: pgdat of the page
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
1099 */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1101 {
1102 struct mem_cgroup_per_node *mz;
1103 struct mem_cgroup *memcg;
1104 struct lruvec *lruvec;
1105
1106 if (mem_cgroup_disabled()) {
1107 lruvec = &pgdat->lruvec;
1108 goto out;
1109 }
1110
1111 memcg = page->mem_cgroup;
1112 /*
1113 * Swapcache readahead pages are added to the LRU - and
1114 * possibly migrated - before they are charged.
1115 */
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
1118
1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 lruvec = &mz->lruvec;
1121 out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
1129 return lruvec;
1130 }
1131
1132 /**
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
1136 * @zid: zone id of the accounted pages
1137 * @nr_pages: positive when adding or negative when removing
1138 *
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 int zid, int nr_pages)
1145 {
1146 struct mem_cgroup_per_node *mz;
1147 unsigned long *lru_size;
1148 long size;
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 lru_size = &mz->lru_zone_size[zid][lru];
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
1169 }
1170
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172 {
1173 struct mem_cgroup *task_memcg;
1174 struct task_struct *p;
1175 bool ret;
1176
1177 p = find_lock_task_mm(task);
1178 if (p) {
1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
1187 rcu_read_lock();
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
1190 rcu_read_unlock();
1191 }
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
1194 return ret;
1195 }
1196
1197 /**
1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199 * @memcg: the memory cgroup
1200 *
1201 * Returns the maximum amount of memory @mem can be charged with, in
1202 * pages.
1203 */
mem_cgroup_margin(struct mem_cgroup * memcg)1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205 {
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
1209
1210 count = page_counter_read(&memcg->memory);
1211 limit = READ_ONCE(memcg->memory.max);
1212 if (count < limit)
1213 margin = limit - count;
1214
1215 if (do_memsw_account()) {
1216 count = page_counter_read(&memcg->memsw);
1217 limit = READ_ONCE(memcg->memsw.max);
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
1220 else
1221 margin = 0;
1222 }
1223
1224 return margin;
1225 }
1226
1227 /*
1228 * A routine for checking "mem" is under move_account() or not.
1229 *
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
1233 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235 {
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
1238 bool ret = false;
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
1248
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
1251 unlock:
1252 spin_unlock(&mc.lock);
1253 return ret;
1254 }
1255
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257 {
1258 if (mc.moving_task && current != mc.moving_task) {
1259 if (mem_cgroup_under_move(memcg)) {
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270 }
1271
1272 static const unsigned int memcg1_stats[] = {
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281 };
1282
1283 static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292 };
1293
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1295 /**
1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304 {
1305 struct mem_cgroup *iter;
1306 unsigned int i;
1307
1308 rcu_read_lock();
1309
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1316 }
1317
1318 pr_cont_cgroup_path(memcg->css.cgroup);
1319 pr_cont("\n");
1320
1321 rcu_read_unlock();
1322
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332
1333 for_each_mem_cgroup_tree(iter, memcg) {
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
1336 pr_cont(":");
1337
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340 continue;
1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 K(memcg_page_state(iter, memcg1_stats[i])));
1343 }
1344
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349 pr_cont("\n");
1350 }
1351 }
1352
1353 /*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1357 {
1358 unsigned long max;
1359
1360 max = memcg->memory.max;
1361 if (mem_cgroup_swappiness(memcg)) {
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
1364
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
1369 }
1370 return max;
1371 }
1372
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374 int order)
1375 {
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
1379 .memcg = memcg,
1380 .gfp_mask = gfp_mask,
1381 .order = order,
1382 };
1383 bool ret;
1384
1385 mutex_lock(&oom_lock);
1386 ret = out_of_memory(&oc);
1387 mutex_unlock(&oom_lock);
1388 return ret;
1389 }
1390
1391 #if MAX_NUMNODES > 1
1392
1393 /**
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1405 {
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 return true;
1412 return false;
1413
1414 }
1415
1416 /*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 int nid;
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
1429 if (!atomic_read(&memcg->numainfo_events))
1430 return;
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 return;
1433
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1436
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1438
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1441 }
1442
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446
1447 /*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 int node;
1462
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1465
1466 node = next_node_in(node, memcg->scan_nodes);
1467 /*
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
1471 */
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1474
1475 memcg->last_scanned_node = node;
1476 return node;
1477 }
1478 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480 {
1481 return 0;
1482 }
1483 #endif
1484
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486 pg_data_t *pgdat,
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1489 {
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
1496 .pgdat = pgdat,
1497 .priority = 0,
1498 };
1499
1500 excess = soft_limit_excess(root_memcg);
1501
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1507 /*
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1511 */
1512 if (!total)
1513 break;
1514 /*
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1519 */
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1523 }
1524 continue;
1525 }
1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 pgdat, &nr_scanned);
1528 *total_scanned += nr_scanned;
1529 if (!soft_limit_excess(root_memcg))
1530 break;
1531 }
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
1534 }
1535
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1539 };
1540 #endif
1541
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1543
1544 /*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1549 {
1550 struct mem_cgroup *iter, *failed = NULL;
1551
1552 spin_lock(&memcg_oom_lock);
1553
1554 for_each_mem_cgroup_tree(iter, memcg) {
1555 if (iter->oom_lock) {
1556 /*
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1559 */
1560 failed = iter;
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
1563 } else
1564 iter->oom_lock = true;
1565 }
1566
1567 if (failed) {
1568 /*
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1571 */
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1576 }
1577 iter->oom_lock = false;
1578 }
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581
1582 spin_unlock(&memcg_oom_lock);
1583
1584 return !failed;
1585 }
1586
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588 {
1589 struct mem_cgroup *iter;
1590
1591 spin_lock(&memcg_oom_lock);
1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 for_each_mem_cgroup_tree(iter, memcg)
1594 iter->oom_lock = false;
1595 spin_unlock(&memcg_oom_lock);
1596 }
1597
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599 {
1600 struct mem_cgroup *iter;
1601
1602 spin_lock(&memcg_oom_lock);
1603 for_each_mem_cgroup_tree(iter, memcg)
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
1606 }
1607
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609 {
1610 struct mem_cgroup *iter;
1611
1612 /*
1613 * When a new child is created while the hierarchy is under oom,
1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1615 */
1616 spin_lock(&memcg_oom_lock);
1617 for_each_mem_cgroup_tree(iter, memcg)
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
1621 }
1622
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
1625 struct oom_wait_info {
1626 struct mem_cgroup *memcg;
1627 wait_queue_entry_t wait;
1628 };
1629
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 unsigned mode, int sync, void *arg)
1632 {
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
1635 struct oom_wait_info *oom_wait_info;
1636
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 oom_wait_memcg = oom_wait_info->memcg;
1639
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1642 return 0;
1643 return autoremove_wake_function(wait, mode, sync, arg);
1644 }
1645
memcg_oom_recover(struct mem_cgroup * memcg)1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1647 {
1648 /*
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1655 */
1656 if (memcg && memcg->under_oom)
1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658 }
1659
1660 enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1665 };
1666
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668 {
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1671
1672 /*
1673 * We are in the middle of the charge context here, so we
1674 * don't want to block when potentially sitting on a callstack
1675 * that holds all kinds of filesystem and mm locks.
1676 *
1677 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 * handling until the charge can succeed; remember the context and put
1679 * the task to sleep at the end of the page fault when all locks are
1680 * released.
1681 *
1682 * On the other hand, in-kernel OOM killer allows for an async victim
1683 * memory reclaim (oom_reaper) and that means that we are not solely
1684 * relying on the oom victim to make a forward progress and we can
1685 * invoke the oom killer here.
1686 *
1687 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 * victim and then we have to bail out from the charge path.
1689 */
1690 if (memcg->oom_kill_disable) {
1691 if (!current->in_user_fault)
1692 return OOM_SKIPPED;
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1697
1698 return OOM_ASYNC;
1699 }
1700
1701 if (mem_cgroup_out_of_memory(memcg, mask, order))
1702 return OOM_SUCCESS;
1703
1704 return OOM_FAILED;
1705 }
1706
1707 /**
1708 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1709 * @handle: actually kill/wait or just clean up the OOM state
1710 *
1711 * This has to be called at the end of a page fault if the memcg OOM
1712 * handler was enabled.
1713 *
1714 * Memcg supports userspace OOM handling where failed allocations must
1715 * sleep on a waitqueue until the userspace task resolves the
1716 * situation. Sleeping directly in the charge context with all kinds
1717 * of locks held is not a good idea, instead we remember an OOM state
1718 * in the task and mem_cgroup_oom_synchronize() has to be called at
1719 * the end of the page fault to complete the OOM handling.
1720 *
1721 * Returns %true if an ongoing memcg OOM situation was detected and
1722 * completed, %false otherwise.
1723 */
mem_cgroup_oom_synchronize(bool handle)1724 bool mem_cgroup_oom_synchronize(bool handle)
1725 {
1726 struct mem_cgroup *memcg = current->memcg_in_oom;
1727 struct oom_wait_info owait;
1728 bool locked;
1729
1730 /* OOM is global, do not handle */
1731 if (!memcg)
1732 return false;
1733
1734 if (!handle)
1735 goto cleanup;
1736
1737 owait.memcg = memcg;
1738 owait.wait.flags = 0;
1739 owait.wait.func = memcg_oom_wake_function;
1740 owait.wait.private = current;
1741 INIT_LIST_HEAD(&owait.wait.entry);
1742
1743 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1744 mem_cgroup_mark_under_oom(memcg);
1745
1746 locked = mem_cgroup_oom_trylock(memcg);
1747
1748 if (locked)
1749 mem_cgroup_oom_notify(memcg);
1750
1751 if (locked && !memcg->oom_kill_disable) {
1752 mem_cgroup_unmark_under_oom(memcg);
1753 finish_wait(&memcg_oom_waitq, &owait.wait);
1754 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1755 current->memcg_oom_order);
1756 } else {
1757 schedule();
1758 mem_cgroup_unmark_under_oom(memcg);
1759 finish_wait(&memcg_oom_waitq, &owait.wait);
1760 }
1761
1762 if (locked) {
1763 mem_cgroup_oom_unlock(memcg);
1764 /*
1765 * There is no guarantee that an OOM-lock contender
1766 * sees the wakeups triggered by the OOM kill
1767 * uncharges. Wake any sleepers explicitely.
1768 */
1769 memcg_oom_recover(memcg);
1770 }
1771 cleanup:
1772 current->memcg_in_oom = NULL;
1773 css_put(&memcg->css);
1774 return true;
1775 }
1776
1777 /**
1778 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1779 * @victim: task to be killed by the OOM killer
1780 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1781 *
1782 * Returns a pointer to a memory cgroup, which has to be cleaned up
1783 * by killing all belonging OOM-killable tasks.
1784 *
1785 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1786 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1787 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1788 struct mem_cgroup *oom_domain)
1789 {
1790 struct mem_cgroup *oom_group = NULL;
1791 struct mem_cgroup *memcg;
1792
1793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1794 return NULL;
1795
1796 if (!oom_domain)
1797 oom_domain = root_mem_cgroup;
1798
1799 rcu_read_lock();
1800
1801 memcg = mem_cgroup_from_task(victim);
1802 if (memcg == root_mem_cgroup)
1803 goto out;
1804
1805 /*
1806 * Traverse the memory cgroup hierarchy from the victim task's
1807 * cgroup up to the OOMing cgroup (or root) to find the
1808 * highest-level memory cgroup with oom.group set.
1809 */
1810 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1811 if (memcg->oom_group)
1812 oom_group = memcg;
1813
1814 if (memcg == oom_domain)
1815 break;
1816 }
1817
1818 if (oom_group)
1819 css_get(&oom_group->css);
1820 out:
1821 rcu_read_unlock();
1822
1823 return oom_group;
1824 }
1825
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1826 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1827 {
1828 pr_info("Tasks in ");
1829 pr_cont_cgroup_path(memcg->css.cgroup);
1830 pr_cont(" are going to be killed due to memory.oom.group set\n");
1831 }
1832
1833 /**
1834 * lock_page_memcg - lock a page->mem_cgroup binding
1835 * @page: the page
1836 *
1837 * This function protects unlocked LRU pages from being moved to
1838 * another cgroup.
1839 *
1840 * It ensures lifetime of the returned memcg. Caller is responsible
1841 * for the lifetime of the page; __unlock_page_memcg() is available
1842 * when @page might get freed inside the locked section.
1843 */
lock_page_memcg(struct page * page)1844 struct mem_cgroup *lock_page_memcg(struct page *page)
1845 {
1846 struct mem_cgroup *memcg;
1847 unsigned long flags;
1848
1849 /*
1850 * The RCU lock is held throughout the transaction. The fast
1851 * path can get away without acquiring the memcg->move_lock
1852 * because page moving starts with an RCU grace period.
1853 *
1854 * The RCU lock also protects the memcg from being freed when
1855 * the page state that is going to change is the only thing
1856 * preventing the page itself from being freed. E.g. writeback
1857 * doesn't hold a page reference and relies on PG_writeback to
1858 * keep off truncation, migration and so forth.
1859 */
1860 rcu_read_lock();
1861
1862 if (mem_cgroup_disabled())
1863 return NULL;
1864 again:
1865 memcg = page->mem_cgroup;
1866 if (unlikely(!memcg))
1867 return NULL;
1868
1869 if (atomic_read(&memcg->moving_account) <= 0)
1870 return memcg;
1871
1872 spin_lock_irqsave(&memcg->move_lock, flags);
1873 if (memcg != page->mem_cgroup) {
1874 spin_unlock_irqrestore(&memcg->move_lock, flags);
1875 goto again;
1876 }
1877
1878 /*
1879 * When charge migration first begins, we can have locked and
1880 * unlocked page stat updates happening concurrently. Track
1881 * the task who has the lock for unlock_page_memcg().
1882 */
1883 memcg->move_lock_task = current;
1884 memcg->move_lock_flags = flags;
1885
1886 return memcg;
1887 }
1888 EXPORT_SYMBOL(lock_page_memcg);
1889
1890 /**
1891 * __unlock_page_memcg - unlock and unpin a memcg
1892 * @memcg: the memcg
1893 *
1894 * Unlock and unpin a memcg returned by lock_page_memcg().
1895 */
__unlock_page_memcg(struct mem_cgroup * memcg)1896 void __unlock_page_memcg(struct mem_cgroup *memcg)
1897 {
1898 if (memcg && memcg->move_lock_task == current) {
1899 unsigned long flags = memcg->move_lock_flags;
1900
1901 memcg->move_lock_task = NULL;
1902 memcg->move_lock_flags = 0;
1903
1904 spin_unlock_irqrestore(&memcg->move_lock, flags);
1905 }
1906
1907 rcu_read_unlock();
1908 }
1909
1910 /**
1911 * unlock_page_memcg - unlock a page->mem_cgroup binding
1912 * @page: the page
1913 */
unlock_page_memcg(struct page * page)1914 void unlock_page_memcg(struct page *page)
1915 {
1916 __unlock_page_memcg(page->mem_cgroup);
1917 }
1918 EXPORT_SYMBOL(unlock_page_memcg);
1919
1920 struct memcg_stock_pcp {
1921 struct mem_cgroup *cached; /* this never be root cgroup */
1922 unsigned int nr_pages;
1923 struct work_struct work;
1924 unsigned long flags;
1925 #define FLUSHING_CACHED_CHARGE 0
1926 };
1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928 static DEFINE_MUTEX(percpu_charge_mutex);
1929
1930 /**
1931 * consume_stock: Try to consume stocked charge on this cpu.
1932 * @memcg: memcg to consume from.
1933 * @nr_pages: how many pages to charge.
1934 *
1935 * The charges will only happen if @memcg matches the current cpu's memcg
1936 * stock, and at least @nr_pages are available in that stock. Failure to
1937 * service an allocation will refill the stock.
1938 *
1939 * returns true if successful, false otherwise.
1940 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1941 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1942 {
1943 struct memcg_stock_pcp *stock;
1944 unsigned long flags;
1945 bool ret = false;
1946
1947 if (nr_pages > MEMCG_CHARGE_BATCH)
1948 return ret;
1949
1950 local_irq_save(flags);
1951
1952 stock = this_cpu_ptr(&memcg_stock);
1953 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1954 stock->nr_pages -= nr_pages;
1955 ret = true;
1956 }
1957
1958 local_irq_restore(flags);
1959
1960 return ret;
1961 }
1962
1963 /*
1964 * Returns stocks cached in percpu and reset cached information.
1965 */
drain_stock(struct memcg_stock_pcp * stock)1966 static void drain_stock(struct memcg_stock_pcp *stock)
1967 {
1968 struct mem_cgroup *old = stock->cached;
1969
1970 if (stock->nr_pages) {
1971 page_counter_uncharge(&old->memory, stock->nr_pages);
1972 if (do_memsw_account())
1973 page_counter_uncharge(&old->memsw, stock->nr_pages);
1974 css_put_many(&old->css, stock->nr_pages);
1975 stock->nr_pages = 0;
1976 }
1977 stock->cached = NULL;
1978 }
1979
drain_local_stock(struct work_struct * dummy)1980 static void drain_local_stock(struct work_struct *dummy)
1981 {
1982 struct memcg_stock_pcp *stock;
1983 unsigned long flags;
1984
1985 /*
1986 * The only protection from memory hotplug vs. drain_stock races is
1987 * that we always operate on local CPU stock here with IRQ disabled
1988 */
1989 local_irq_save(flags);
1990
1991 stock = this_cpu_ptr(&memcg_stock);
1992 drain_stock(stock);
1993 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1994
1995 local_irq_restore(flags);
1996 }
1997
1998 /*
1999 * Cache charges(val) to local per_cpu area.
2000 * This will be consumed by consume_stock() function, later.
2001 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2002 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2003 {
2004 struct memcg_stock_pcp *stock;
2005 unsigned long flags;
2006
2007 local_irq_save(flags);
2008
2009 stock = this_cpu_ptr(&memcg_stock);
2010 if (stock->cached != memcg) { /* reset if necessary */
2011 drain_stock(stock);
2012 stock->cached = memcg;
2013 }
2014 stock->nr_pages += nr_pages;
2015
2016 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2017 drain_stock(stock);
2018
2019 local_irq_restore(flags);
2020 }
2021
2022 /*
2023 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2024 * of the hierarchy under it.
2025 */
drain_all_stock(struct mem_cgroup * root_memcg)2026 static void drain_all_stock(struct mem_cgroup *root_memcg)
2027 {
2028 int cpu, curcpu;
2029
2030 /* If someone's already draining, avoid adding running more workers. */
2031 if (!mutex_trylock(&percpu_charge_mutex))
2032 return;
2033 /*
2034 * Notify other cpus that system-wide "drain" is running
2035 * We do not care about races with the cpu hotplug because cpu down
2036 * as well as workers from this path always operate on the local
2037 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2038 */
2039 curcpu = get_cpu();
2040 for_each_online_cpu(cpu) {
2041 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2042 struct mem_cgroup *memcg;
2043
2044 memcg = stock->cached;
2045 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2046 continue;
2047 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2048 css_put(&memcg->css);
2049 continue;
2050 }
2051 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2052 if (cpu == curcpu)
2053 drain_local_stock(&stock->work);
2054 else
2055 schedule_work_on(cpu, &stock->work);
2056 }
2057 css_put(&memcg->css);
2058 }
2059 put_cpu();
2060 mutex_unlock(&percpu_charge_mutex);
2061 }
2062
memcg_hotplug_cpu_dead(unsigned int cpu)2063 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2064 {
2065 struct memcg_stock_pcp *stock;
2066 struct mem_cgroup *memcg;
2067
2068 stock = &per_cpu(memcg_stock, cpu);
2069 drain_stock(stock);
2070
2071 for_each_mem_cgroup(memcg) {
2072 int i;
2073
2074 for (i = 0; i < MEMCG_NR_STAT; i++) {
2075 int nid;
2076 long x;
2077
2078 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2079 if (x)
2080 atomic_long_add(x, &memcg->stat[i]);
2081
2082 if (i >= NR_VM_NODE_STAT_ITEMS)
2083 continue;
2084
2085 for_each_node(nid) {
2086 struct mem_cgroup_per_node *pn;
2087
2088 pn = mem_cgroup_nodeinfo(memcg, nid);
2089 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2090 if (x)
2091 atomic_long_add(x, &pn->lruvec_stat[i]);
2092 }
2093 }
2094
2095 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2096 long x;
2097
2098 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2099 if (x)
2100 atomic_long_add(x, &memcg->events[i]);
2101 }
2102 }
2103
2104 return 0;
2105 }
2106
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2107 static void reclaim_high(struct mem_cgroup *memcg,
2108 unsigned int nr_pages,
2109 gfp_t gfp_mask)
2110 {
2111 do {
2112 if (page_counter_read(&memcg->memory) <= memcg->high)
2113 continue;
2114 memcg_memory_event(memcg, MEMCG_HIGH);
2115 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2116 } while ((memcg = parent_mem_cgroup(memcg)));
2117 }
2118
high_work_func(struct work_struct * work)2119 static void high_work_func(struct work_struct *work)
2120 {
2121 struct mem_cgroup *memcg;
2122
2123 memcg = container_of(work, struct mem_cgroup, high_work);
2124 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2125 }
2126
2127 /*
2128 * Scheduled by try_charge() to be executed from the userland return path
2129 * and reclaims memory over the high limit.
2130 */
mem_cgroup_handle_over_high(void)2131 void mem_cgroup_handle_over_high(void)
2132 {
2133 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2134 struct mem_cgroup *memcg;
2135
2136 if (likely(!nr_pages))
2137 return;
2138
2139 memcg = get_mem_cgroup_from_mm(current->mm);
2140 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2141 css_put(&memcg->css);
2142 current->memcg_nr_pages_over_high = 0;
2143 }
2144
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2145 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2146 unsigned int nr_pages)
2147 {
2148 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2149 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2150 struct mem_cgroup *mem_over_limit;
2151 struct page_counter *counter;
2152 unsigned long nr_reclaimed;
2153 bool may_swap = true;
2154 bool drained = false;
2155 bool oomed = false;
2156 enum oom_status oom_status;
2157
2158 if (mem_cgroup_is_root(memcg))
2159 return 0;
2160 retry:
2161 if (consume_stock(memcg, nr_pages))
2162 return 0;
2163
2164 if (!do_memsw_account() ||
2165 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2166 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2167 goto done_restock;
2168 if (do_memsw_account())
2169 page_counter_uncharge(&memcg->memsw, batch);
2170 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2171 } else {
2172 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2173 may_swap = false;
2174 }
2175
2176 if (batch > nr_pages) {
2177 batch = nr_pages;
2178 goto retry;
2179 }
2180
2181 /*
2182 * Unlike in global OOM situations, memcg is not in a physical
2183 * memory shortage. Allow dying and OOM-killed tasks to
2184 * bypass the last charges so that they can exit quickly and
2185 * free their memory.
2186 */
2187 if (unlikely(tsk_is_oom_victim(current) ||
2188 fatal_signal_pending(current) ||
2189 current->flags & PF_EXITING))
2190 goto force;
2191
2192 /*
2193 * Prevent unbounded recursion when reclaim operations need to
2194 * allocate memory. This might exceed the limits temporarily,
2195 * but we prefer facilitating memory reclaim and getting back
2196 * under the limit over triggering OOM kills in these cases.
2197 */
2198 if (unlikely(current->flags & PF_MEMALLOC))
2199 goto force;
2200
2201 if (unlikely(task_in_memcg_oom(current)))
2202 goto nomem;
2203
2204 if (!gfpflags_allow_blocking(gfp_mask))
2205 goto nomem;
2206
2207 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2208
2209 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2210 gfp_mask, may_swap);
2211
2212 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2213 goto retry;
2214
2215 if (!drained) {
2216 drain_all_stock(mem_over_limit);
2217 drained = true;
2218 goto retry;
2219 }
2220
2221 if (gfp_mask & __GFP_NORETRY)
2222 goto nomem;
2223 /*
2224 * Even though the limit is exceeded at this point, reclaim
2225 * may have been able to free some pages. Retry the charge
2226 * before killing the task.
2227 *
2228 * Only for regular pages, though: huge pages are rather
2229 * unlikely to succeed so close to the limit, and we fall back
2230 * to regular pages anyway in case of failure.
2231 */
2232 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2233 goto retry;
2234 /*
2235 * At task move, charge accounts can be doubly counted. So, it's
2236 * better to wait until the end of task_move if something is going on.
2237 */
2238 if (mem_cgroup_wait_acct_move(mem_over_limit))
2239 goto retry;
2240
2241 if (nr_retries--)
2242 goto retry;
2243
2244 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2245 goto nomem;
2246
2247 if (gfp_mask & __GFP_NOFAIL)
2248 goto force;
2249
2250 if (fatal_signal_pending(current))
2251 goto force;
2252
2253 memcg_memory_event(mem_over_limit, MEMCG_OOM);
2254
2255 /*
2256 * keep retrying as long as the memcg oom killer is able to make
2257 * a forward progress or bypass the charge if the oom killer
2258 * couldn't make any progress.
2259 */
2260 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261 get_order(nr_pages * PAGE_SIZE));
2262 switch (oom_status) {
2263 case OOM_SUCCESS:
2264 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2265 oomed = true;
2266 goto retry;
2267 case OOM_FAILED:
2268 goto force;
2269 default:
2270 goto nomem;
2271 }
2272 nomem:
2273 if (!(gfp_mask & __GFP_NOFAIL))
2274 return -ENOMEM;
2275 force:
2276 /*
2277 * The allocation either can't fail or will lead to more memory
2278 * being freed very soon. Allow memory usage go over the limit
2279 * temporarily by force charging it.
2280 */
2281 page_counter_charge(&memcg->memory, nr_pages);
2282 if (do_memsw_account())
2283 page_counter_charge(&memcg->memsw, nr_pages);
2284 css_get_many(&memcg->css, nr_pages);
2285
2286 return 0;
2287
2288 done_restock:
2289 css_get_many(&memcg->css, batch);
2290 if (batch > nr_pages)
2291 refill_stock(memcg, batch - nr_pages);
2292
2293 /*
2294 * If the hierarchy is above the normal consumption range, schedule
2295 * reclaim on returning to userland. We can perform reclaim here
2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2298 * not recorded as it most likely matches current's and won't
2299 * change in the meantime. As high limit is checked again before
2300 * reclaim, the cost of mismatch is negligible.
2301 */
2302 do {
2303 if (page_counter_read(&memcg->memory) > memcg->high) {
2304 /* Don't bother a random interrupted task */
2305 if (in_interrupt()) {
2306 schedule_work(&memcg->high_work);
2307 break;
2308 }
2309 current->memcg_nr_pages_over_high += batch;
2310 set_notify_resume(current);
2311 break;
2312 }
2313 } while ((memcg = parent_mem_cgroup(memcg)));
2314
2315 return 0;
2316 }
2317
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2319 {
2320 if (mem_cgroup_is_root(memcg))
2321 return;
2322
2323 page_counter_uncharge(&memcg->memory, nr_pages);
2324 if (do_memsw_account())
2325 page_counter_uncharge(&memcg->memsw, nr_pages);
2326
2327 css_put_many(&memcg->css, nr_pages);
2328 }
2329
lock_page_lru(struct page * page,int * isolated)2330 static void lock_page_lru(struct page *page, int *isolated)
2331 {
2332 struct zone *zone = page_zone(page);
2333
2334 spin_lock_irq(zone_lru_lock(zone));
2335 if (PageLRU(page)) {
2336 struct lruvec *lruvec;
2337
2338 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2339 ClearPageLRU(page);
2340 del_page_from_lru_list(page, lruvec, page_lru(page));
2341 *isolated = 1;
2342 } else
2343 *isolated = 0;
2344 }
2345
unlock_page_lru(struct page * page,int isolated)2346 static void unlock_page_lru(struct page *page, int isolated)
2347 {
2348 struct zone *zone = page_zone(page);
2349
2350 if (isolated) {
2351 struct lruvec *lruvec;
2352
2353 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354 VM_BUG_ON_PAGE(PageLRU(page), page);
2355 SetPageLRU(page);
2356 add_page_to_lru_list(page, lruvec, page_lru(page));
2357 }
2358 spin_unlock_irq(zone_lru_lock(zone));
2359 }
2360
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2362 bool lrucare)
2363 {
2364 int isolated;
2365
2366 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2367
2368 /*
2369 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370 * may already be on some other mem_cgroup's LRU. Take care of it.
2371 */
2372 if (lrucare)
2373 lock_page_lru(page, &isolated);
2374
2375 /*
2376 * Nobody should be changing or seriously looking at
2377 * page->mem_cgroup at this point:
2378 *
2379 * - the page is uncharged
2380 *
2381 * - the page is off-LRU
2382 *
2383 * - an anonymous fault has exclusive page access, except for
2384 * a locked page table
2385 *
2386 * - a page cache insertion, a swapin fault, or a migration
2387 * have the page locked
2388 */
2389 page->mem_cgroup = memcg;
2390
2391 if (lrucare)
2392 unlock_page_lru(page, isolated);
2393 }
2394
2395 #ifdef CONFIG_MEMCG_KMEM
memcg_alloc_cache_id(void)2396 static int memcg_alloc_cache_id(void)
2397 {
2398 int id, size;
2399 int err;
2400
2401 id = ida_simple_get(&memcg_cache_ida,
2402 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2403 if (id < 0)
2404 return id;
2405
2406 if (id < memcg_nr_cache_ids)
2407 return id;
2408
2409 /*
2410 * There's no space for the new id in memcg_caches arrays,
2411 * so we have to grow them.
2412 */
2413 down_write(&memcg_cache_ids_sem);
2414
2415 size = 2 * (id + 1);
2416 if (size < MEMCG_CACHES_MIN_SIZE)
2417 size = MEMCG_CACHES_MIN_SIZE;
2418 else if (size > MEMCG_CACHES_MAX_SIZE)
2419 size = MEMCG_CACHES_MAX_SIZE;
2420
2421 err = memcg_update_all_caches(size);
2422 if (!err)
2423 err = memcg_update_all_list_lrus(size);
2424 if (!err)
2425 memcg_nr_cache_ids = size;
2426
2427 up_write(&memcg_cache_ids_sem);
2428
2429 if (err) {
2430 ida_simple_remove(&memcg_cache_ida, id);
2431 return err;
2432 }
2433 return id;
2434 }
2435
memcg_free_cache_id(int id)2436 static void memcg_free_cache_id(int id)
2437 {
2438 ida_simple_remove(&memcg_cache_ida, id);
2439 }
2440
2441 struct memcg_kmem_cache_create_work {
2442 struct mem_cgroup *memcg;
2443 struct kmem_cache *cachep;
2444 struct work_struct work;
2445 };
2446
memcg_kmem_cache_create_func(struct work_struct * w)2447 static void memcg_kmem_cache_create_func(struct work_struct *w)
2448 {
2449 struct memcg_kmem_cache_create_work *cw =
2450 container_of(w, struct memcg_kmem_cache_create_work, work);
2451 struct mem_cgroup *memcg = cw->memcg;
2452 struct kmem_cache *cachep = cw->cachep;
2453
2454 memcg_create_kmem_cache(memcg, cachep);
2455
2456 css_put(&memcg->css);
2457 kfree(cw);
2458 }
2459
2460 /*
2461 * Enqueue the creation of a per-memcg kmem_cache.
2462 */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2463 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2464 struct kmem_cache *cachep)
2465 {
2466 struct memcg_kmem_cache_create_work *cw;
2467
2468 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2469 if (!cw)
2470 return;
2471
2472 css_get(&memcg->css);
2473
2474 cw->memcg = memcg;
2475 cw->cachep = cachep;
2476 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2477
2478 queue_work(memcg_kmem_cache_wq, &cw->work);
2479 }
2480
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2481 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2482 struct kmem_cache *cachep)
2483 {
2484 /*
2485 * We need to stop accounting when we kmalloc, because if the
2486 * corresponding kmalloc cache is not yet created, the first allocation
2487 * in __memcg_schedule_kmem_cache_create will recurse.
2488 *
2489 * However, it is better to enclose the whole function. Depending on
2490 * the debugging options enabled, INIT_WORK(), for instance, can
2491 * trigger an allocation. This too, will make us recurse. Because at
2492 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2493 * the safest choice is to do it like this, wrapping the whole function.
2494 */
2495 current->memcg_kmem_skip_account = 1;
2496 __memcg_schedule_kmem_cache_create(memcg, cachep);
2497 current->memcg_kmem_skip_account = 0;
2498 }
2499
memcg_kmem_bypass(void)2500 static inline bool memcg_kmem_bypass(void)
2501 {
2502 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2503 return true;
2504 return false;
2505 }
2506
2507 /**
2508 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2509 * @cachep: the original global kmem cache
2510 *
2511 * Return the kmem_cache we're supposed to use for a slab allocation.
2512 * We try to use the current memcg's version of the cache.
2513 *
2514 * If the cache does not exist yet, if we are the first user of it, we
2515 * create it asynchronously in a workqueue and let the current allocation
2516 * go through with the original cache.
2517 *
2518 * This function takes a reference to the cache it returns to assure it
2519 * won't get destroyed while we are working with it. Once the caller is
2520 * done with it, memcg_kmem_put_cache() must be called to release the
2521 * reference.
2522 */
memcg_kmem_get_cache(struct kmem_cache * cachep)2523 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2524 {
2525 struct mem_cgroup *memcg;
2526 struct kmem_cache *memcg_cachep;
2527 int kmemcg_id;
2528
2529 VM_BUG_ON(!is_root_cache(cachep));
2530
2531 if (memcg_kmem_bypass())
2532 return cachep;
2533
2534 if (current->memcg_kmem_skip_account)
2535 return cachep;
2536
2537 memcg = get_mem_cgroup_from_current();
2538 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2539 if (kmemcg_id < 0)
2540 goto out;
2541
2542 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2543 if (likely(memcg_cachep))
2544 return memcg_cachep;
2545
2546 /*
2547 * If we are in a safe context (can wait, and not in interrupt
2548 * context), we could be be predictable and return right away.
2549 * This would guarantee that the allocation being performed
2550 * already belongs in the new cache.
2551 *
2552 * However, there are some clashes that can arrive from locking.
2553 * For instance, because we acquire the slab_mutex while doing
2554 * memcg_create_kmem_cache, this means no further allocation
2555 * could happen with the slab_mutex held. So it's better to
2556 * defer everything.
2557 */
2558 memcg_schedule_kmem_cache_create(memcg, cachep);
2559 out:
2560 css_put(&memcg->css);
2561 return cachep;
2562 }
2563
2564 /**
2565 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2566 * @cachep: the cache returned by memcg_kmem_get_cache
2567 */
memcg_kmem_put_cache(struct kmem_cache * cachep)2568 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2569 {
2570 if (!is_root_cache(cachep))
2571 css_put(&cachep->memcg_params.memcg->css);
2572 }
2573
2574 /**
2575 * memcg_kmem_charge_memcg: charge a kmem page
2576 * @page: page to charge
2577 * @gfp: reclaim mode
2578 * @order: allocation order
2579 * @memcg: memory cgroup to charge
2580 *
2581 * Returns 0 on success, an error code on failure.
2582 */
memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2583 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2584 struct mem_cgroup *memcg)
2585 {
2586 unsigned int nr_pages = 1 << order;
2587 struct page_counter *counter;
2588 int ret;
2589
2590 ret = try_charge(memcg, gfp, nr_pages);
2591 if (ret)
2592 return ret;
2593
2594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2595 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2596 cancel_charge(memcg, nr_pages);
2597 return -ENOMEM;
2598 }
2599
2600 page->mem_cgroup = memcg;
2601
2602 return 0;
2603 }
2604
2605 /**
2606 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2607 * @page: page to charge
2608 * @gfp: reclaim mode
2609 * @order: allocation order
2610 *
2611 * Returns 0 on success, an error code on failure.
2612 */
memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2613 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2614 {
2615 struct mem_cgroup *memcg;
2616 int ret = 0;
2617
2618 if (memcg_kmem_bypass())
2619 return 0;
2620
2621 memcg = get_mem_cgroup_from_current();
2622 if (!mem_cgroup_is_root(memcg)) {
2623 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2624 if (!ret)
2625 __SetPageKmemcg(page);
2626 }
2627 css_put(&memcg->css);
2628 return ret;
2629 }
2630 /**
2631 * memcg_kmem_uncharge: uncharge a kmem page
2632 * @page: page to uncharge
2633 * @order: allocation order
2634 */
memcg_kmem_uncharge(struct page * page,int order)2635 void memcg_kmem_uncharge(struct page *page, int order)
2636 {
2637 struct mem_cgroup *memcg = page->mem_cgroup;
2638 unsigned int nr_pages = 1 << order;
2639
2640 if (!memcg)
2641 return;
2642
2643 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2644
2645 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2646 page_counter_uncharge(&memcg->kmem, nr_pages);
2647
2648 page_counter_uncharge(&memcg->memory, nr_pages);
2649 if (do_memsw_account())
2650 page_counter_uncharge(&memcg->memsw, nr_pages);
2651
2652 page->mem_cgroup = NULL;
2653
2654 /* slab pages do not have PageKmemcg flag set */
2655 if (PageKmemcg(page))
2656 __ClearPageKmemcg(page);
2657
2658 css_put_many(&memcg->css, nr_pages);
2659 }
2660 #endif /* CONFIG_MEMCG_KMEM */
2661
2662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2663
2664 /*
2665 * Because tail pages are not marked as "used", set it. We're under
2666 * zone_lru_lock and migration entries setup in all page mappings.
2667 */
mem_cgroup_split_huge_fixup(struct page * head)2668 void mem_cgroup_split_huge_fixup(struct page *head)
2669 {
2670 int i;
2671
2672 if (mem_cgroup_disabled())
2673 return;
2674
2675 for (i = 1; i < HPAGE_PMD_NR; i++)
2676 head[i].mem_cgroup = head->mem_cgroup;
2677
2678 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2679 }
2680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2681
2682 #ifdef CONFIG_MEMCG_SWAP
2683 /**
2684 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2685 * @entry: swap entry to be moved
2686 * @from: mem_cgroup which the entry is moved from
2687 * @to: mem_cgroup which the entry is moved to
2688 *
2689 * It succeeds only when the swap_cgroup's record for this entry is the same
2690 * as the mem_cgroup's id of @from.
2691 *
2692 * Returns 0 on success, -EINVAL on failure.
2693 *
2694 * The caller must have charged to @to, IOW, called page_counter_charge() about
2695 * both res and memsw, and called css_get().
2696 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2697 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2698 struct mem_cgroup *from, struct mem_cgroup *to)
2699 {
2700 unsigned short old_id, new_id;
2701
2702 old_id = mem_cgroup_id(from);
2703 new_id = mem_cgroup_id(to);
2704
2705 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2706 mod_memcg_state(from, MEMCG_SWAP, -1);
2707 mod_memcg_state(to, MEMCG_SWAP, 1);
2708 return 0;
2709 }
2710 return -EINVAL;
2711 }
2712 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2713 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2714 struct mem_cgroup *from, struct mem_cgroup *to)
2715 {
2716 return -EINVAL;
2717 }
2718 #endif
2719
2720 static DEFINE_MUTEX(memcg_max_mutex);
2721
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)2722 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2723 unsigned long max, bool memsw)
2724 {
2725 bool enlarge = false;
2726 bool drained = false;
2727 int ret;
2728 bool limits_invariant;
2729 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2730
2731 do {
2732 if (signal_pending(current)) {
2733 ret = -EINTR;
2734 break;
2735 }
2736
2737 mutex_lock(&memcg_max_mutex);
2738 /*
2739 * Make sure that the new limit (memsw or memory limit) doesn't
2740 * break our basic invariant rule memory.max <= memsw.max.
2741 */
2742 limits_invariant = memsw ? max >= memcg->memory.max :
2743 max <= memcg->memsw.max;
2744 if (!limits_invariant) {
2745 mutex_unlock(&memcg_max_mutex);
2746 ret = -EINVAL;
2747 break;
2748 }
2749 if (max > counter->max)
2750 enlarge = true;
2751 ret = page_counter_set_max(counter, max);
2752 mutex_unlock(&memcg_max_mutex);
2753
2754 if (!ret)
2755 break;
2756
2757 if (!drained) {
2758 drain_all_stock(memcg);
2759 drained = true;
2760 continue;
2761 }
2762
2763 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2764 GFP_KERNEL, !memsw)) {
2765 ret = -EBUSY;
2766 break;
2767 }
2768 } while (true);
2769
2770 if (!ret && enlarge)
2771 memcg_oom_recover(memcg);
2772
2773 return ret;
2774 }
2775
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)2776 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2777 gfp_t gfp_mask,
2778 unsigned long *total_scanned)
2779 {
2780 unsigned long nr_reclaimed = 0;
2781 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2782 unsigned long reclaimed;
2783 int loop = 0;
2784 struct mem_cgroup_tree_per_node *mctz;
2785 unsigned long excess;
2786 unsigned long nr_scanned;
2787
2788 if (order > 0)
2789 return 0;
2790
2791 mctz = soft_limit_tree_node(pgdat->node_id);
2792
2793 /*
2794 * Do not even bother to check the largest node if the root
2795 * is empty. Do it lockless to prevent lock bouncing. Races
2796 * are acceptable as soft limit is best effort anyway.
2797 */
2798 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2799 return 0;
2800
2801 /*
2802 * This loop can run a while, specially if mem_cgroup's continuously
2803 * keep exceeding their soft limit and putting the system under
2804 * pressure
2805 */
2806 do {
2807 if (next_mz)
2808 mz = next_mz;
2809 else
2810 mz = mem_cgroup_largest_soft_limit_node(mctz);
2811 if (!mz)
2812 break;
2813
2814 nr_scanned = 0;
2815 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2816 gfp_mask, &nr_scanned);
2817 nr_reclaimed += reclaimed;
2818 *total_scanned += nr_scanned;
2819 spin_lock_irq(&mctz->lock);
2820 __mem_cgroup_remove_exceeded(mz, mctz);
2821
2822 /*
2823 * If we failed to reclaim anything from this memory cgroup
2824 * it is time to move on to the next cgroup
2825 */
2826 next_mz = NULL;
2827 if (!reclaimed)
2828 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2829
2830 excess = soft_limit_excess(mz->memcg);
2831 /*
2832 * One school of thought says that we should not add
2833 * back the node to the tree if reclaim returns 0.
2834 * But our reclaim could return 0, simply because due
2835 * to priority we are exposing a smaller subset of
2836 * memory to reclaim from. Consider this as a longer
2837 * term TODO.
2838 */
2839 /* If excess == 0, no tree ops */
2840 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2841 spin_unlock_irq(&mctz->lock);
2842 css_put(&mz->memcg->css);
2843 loop++;
2844 /*
2845 * Could not reclaim anything and there are no more
2846 * mem cgroups to try or we seem to be looping without
2847 * reclaiming anything.
2848 */
2849 if (!nr_reclaimed &&
2850 (next_mz == NULL ||
2851 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2852 break;
2853 } while (!nr_reclaimed);
2854 if (next_mz)
2855 css_put(&next_mz->memcg->css);
2856 return nr_reclaimed;
2857 }
2858
2859 /*
2860 * Test whether @memcg has children, dead or alive. Note that this
2861 * function doesn't care whether @memcg has use_hierarchy enabled and
2862 * returns %true if there are child csses according to the cgroup
2863 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2864 */
memcg_has_children(struct mem_cgroup * memcg)2865 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2866 {
2867 bool ret;
2868
2869 rcu_read_lock();
2870 ret = css_next_child(NULL, &memcg->css);
2871 rcu_read_unlock();
2872 return ret;
2873 }
2874
2875 /*
2876 * Reclaims as many pages from the given memcg as possible.
2877 *
2878 * Caller is responsible for holding css reference for memcg.
2879 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2880 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2881 {
2882 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2883
2884 /* we call try-to-free pages for make this cgroup empty */
2885 lru_add_drain_all();
2886
2887 drain_all_stock(memcg);
2888
2889 /* try to free all pages in this cgroup */
2890 while (nr_retries && page_counter_read(&memcg->memory)) {
2891 int progress;
2892
2893 if (signal_pending(current))
2894 return -EINTR;
2895
2896 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2897 GFP_KERNEL, true);
2898 if (!progress) {
2899 nr_retries--;
2900 /* maybe some writeback is necessary */
2901 congestion_wait(BLK_RW_ASYNC, HZ/10);
2902 }
2903
2904 }
2905
2906 return 0;
2907 }
2908
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2909 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2910 char *buf, size_t nbytes,
2911 loff_t off)
2912 {
2913 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2914
2915 if (mem_cgroup_is_root(memcg))
2916 return -EINVAL;
2917 return mem_cgroup_force_empty(memcg) ?: nbytes;
2918 }
2919
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2920 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2921 struct cftype *cft)
2922 {
2923 return mem_cgroup_from_css(css)->use_hierarchy;
2924 }
2925
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2926 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2927 struct cftype *cft, u64 val)
2928 {
2929 int retval = 0;
2930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2931 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2932
2933 if (memcg->use_hierarchy == val)
2934 return 0;
2935
2936 /*
2937 * If parent's use_hierarchy is set, we can't make any modifications
2938 * in the child subtrees. If it is unset, then the change can
2939 * occur, provided the current cgroup has no children.
2940 *
2941 * For the root cgroup, parent_mem is NULL, we allow value to be
2942 * set if there are no children.
2943 */
2944 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2945 (val == 1 || val == 0)) {
2946 if (!memcg_has_children(memcg))
2947 memcg->use_hierarchy = val;
2948 else
2949 retval = -EBUSY;
2950 } else
2951 retval = -EINVAL;
2952
2953 return retval;
2954 }
2955
2956 struct accumulated_stats {
2957 unsigned long stat[MEMCG_NR_STAT];
2958 unsigned long events[NR_VM_EVENT_ITEMS];
2959 unsigned long lru_pages[NR_LRU_LISTS];
2960 const unsigned int *stats_array;
2961 const unsigned int *events_array;
2962 int stats_size;
2963 int events_size;
2964 };
2965
accumulate_memcg_tree(struct mem_cgroup * memcg,struct accumulated_stats * acc)2966 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2967 struct accumulated_stats *acc)
2968 {
2969 struct mem_cgroup *mi;
2970 int i;
2971
2972 for_each_mem_cgroup_tree(mi, memcg) {
2973 for (i = 0; i < acc->stats_size; i++)
2974 acc->stat[i] += memcg_page_state(mi,
2975 acc->stats_array ? acc->stats_array[i] : i);
2976
2977 for (i = 0; i < acc->events_size; i++)
2978 acc->events[i] += memcg_sum_events(mi,
2979 acc->events_array ? acc->events_array[i] : i);
2980
2981 for (i = 0; i < NR_LRU_LISTS; i++)
2982 acc->lru_pages[i] +=
2983 mem_cgroup_nr_lru_pages(mi, BIT(i));
2984 }
2985 }
2986
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)2987 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2988 {
2989 unsigned long val = 0;
2990
2991 if (mem_cgroup_is_root(memcg)) {
2992 struct mem_cgroup *iter;
2993
2994 for_each_mem_cgroup_tree(iter, memcg) {
2995 val += memcg_page_state(iter, MEMCG_CACHE);
2996 val += memcg_page_state(iter, MEMCG_RSS);
2997 if (swap)
2998 val += memcg_page_state(iter, MEMCG_SWAP);
2999 }
3000 } else {
3001 if (!swap)
3002 val = page_counter_read(&memcg->memory);
3003 else
3004 val = page_counter_read(&memcg->memsw);
3005 }
3006 return val;
3007 }
3008
3009 enum {
3010 RES_USAGE,
3011 RES_LIMIT,
3012 RES_MAX_USAGE,
3013 RES_FAILCNT,
3014 RES_SOFT_LIMIT,
3015 };
3016
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3017 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3018 struct cftype *cft)
3019 {
3020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021 struct page_counter *counter;
3022
3023 switch (MEMFILE_TYPE(cft->private)) {
3024 case _MEM:
3025 counter = &memcg->memory;
3026 break;
3027 case _MEMSWAP:
3028 counter = &memcg->memsw;
3029 break;
3030 case _KMEM:
3031 counter = &memcg->kmem;
3032 break;
3033 case _TCP:
3034 counter = &memcg->tcpmem;
3035 break;
3036 default:
3037 BUG();
3038 }
3039
3040 switch (MEMFILE_ATTR(cft->private)) {
3041 case RES_USAGE:
3042 if (counter == &memcg->memory)
3043 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3044 if (counter == &memcg->memsw)
3045 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3046 return (u64)page_counter_read(counter) * PAGE_SIZE;
3047 case RES_LIMIT:
3048 return (u64)counter->max * PAGE_SIZE;
3049 case RES_MAX_USAGE:
3050 return (u64)counter->watermark * PAGE_SIZE;
3051 case RES_FAILCNT:
3052 return counter->failcnt;
3053 case RES_SOFT_LIMIT:
3054 return (u64)memcg->soft_limit * PAGE_SIZE;
3055 default:
3056 BUG();
3057 }
3058 }
3059
3060 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3061 static int memcg_online_kmem(struct mem_cgroup *memcg)
3062 {
3063 int memcg_id;
3064
3065 if (cgroup_memory_nokmem)
3066 return 0;
3067
3068 BUG_ON(memcg->kmemcg_id >= 0);
3069 BUG_ON(memcg->kmem_state);
3070
3071 memcg_id = memcg_alloc_cache_id();
3072 if (memcg_id < 0)
3073 return memcg_id;
3074
3075 static_branch_inc(&memcg_kmem_enabled_key);
3076 /*
3077 * A memory cgroup is considered kmem-online as soon as it gets
3078 * kmemcg_id. Setting the id after enabling static branching will
3079 * guarantee no one starts accounting before all call sites are
3080 * patched.
3081 */
3082 memcg->kmemcg_id = memcg_id;
3083 memcg->kmem_state = KMEM_ONLINE;
3084 INIT_LIST_HEAD(&memcg->kmem_caches);
3085
3086 return 0;
3087 }
3088
memcg_offline_kmem(struct mem_cgroup * memcg)3089 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3090 {
3091 struct cgroup_subsys_state *css;
3092 struct mem_cgroup *parent, *child;
3093 int kmemcg_id;
3094
3095 if (memcg->kmem_state != KMEM_ONLINE)
3096 return;
3097 /*
3098 * Clear the online state before clearing memcg_caches array
3099 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3100 * guarantees that no cache will be created for this cgroup
3101 * after we are done (see memcg_create_kmem_cache()).
3102 */
3103 memcg->kmem_state = KMEM_ALLOCATED;
3104
3105 memcg_deactivate_kmem_caches(memcg);
3106
3107 kmemcg_id = memcg->kmemcg_id;
3108 BUG_ON(kmemcg_id < 0);
3109
3110 parent = parent_mem_cgroup(memcg);
3111 if (!parent)
3112 parent = root_mem_cgroup;
3113
3114 /*
3115 * Change kmemcg_id of this cgroup and all its descendants to the
3116 * parent's id, and then move all entries from this cgroup's list_lrus
3117 * to ones of the parent. After we have finished, all list_lrus
3118 * corresponding to this cgroup are guaranteed to remain empty. The
3119 * ordering is imposed by list_lru_node->lock taken by
3120 * memcg_drain_all_list_lrus().
3121 */
3122 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3123 css_for_each_descendant_pre(css, &memcg->css) {
3124 child = mem_cgroup_from_css(css);
3125 BUG_ON(child->kmemcg_id != kmemcg_id);
3126 child->kmemcg_id = parent->kmemcg_id;
3127 if (!memcg->use_hierarchy)
3128 break;
3129 }
3130 rcu_read_unlock();
3131
3132 memcg_drain_all_list_lrus(kmemcg_id, parent);
3133
3134 memcg_free_cache_id(kmemcg_id);
3135 }
3136
memcg_free_kmem(struct mem_cgroup * memcg)3137 static void memcg_free_kmem(struct mem_cgroup *memcg)
3138 {
3139 /* css_alloc() failed, offlining didn't happen */
3140 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3141 memcg_offline_kmem(memcg);
3142
3143 if (memcg->kmem_state == KMEM_ALLOCATED) {
3144 memcg_destroy_kmem_caches(memcg);
3145 static_branch_dec(&memcg_kmem_enabled_key);
3146 WARN_ON(page_counter_read(&memcg->kmem));
3147 }
3148 }
3149 #else
memcg_online_kmem(struct mem_cgroup * memcg)3150 static int memcg_online_kmem(struct mem_cgroup *memcg)
3151 {
3152 return 0;
3153 }
memcg_offline_kmem(struct mem_cgroup * memcg)3154 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3155 {
3156 }
memcg_free_kmem(struct mem_cgroup * memcg)3157 static void memcg_free_kmem(struct mem_cgroup *memcg)
3158 {
3159 }
3160 #endif /* CONFIG_MEMCG_KMEM */
3161
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3162 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3163 unsigned long max)
3164 {
3165 int ret;
3166
3167 mutex_lock(&memcg_max_mutex);
3168 ret = page_counter_set_max(&memcg->kmem, max);
3169 mutex_unlock(&memcg_max_mutex);
3170 return ret;
3171 }
3172
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3173 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3174 {
3175 int ret;
3176
3177 mutex_lock(&memcg_max_mutex);
3178
3179 ret = page_counter_set_max(&memcg->tcpmem, max);
3180 if (ret)
3181 goto out;
3182
3183 if (!memcg->tcpmem_active) {
3184 /*
3185 * The active flag needs to be written after the static_key
3186 * update. This is what guarantees that the socket activation
3187 * function is the last one to run. See mem_cgroup_sk_alloc()
3188 * for details, and note that we don't mark any socket as
3189 * belonging to this memcg until that flag is up.
3190 *
3191 * We need to do this, because static_keys will span multiple
3192 * sites, but we can't control their order. If we mark a socket
3193 * as accounted, but the accounting functions are not patched in
3194 * yet, we'll lose accounting.
3195 *
3196 * We never race with the readers in mem_cgroup_sk_alloc(),
3197 * because when this value change, the code to process it is not
3198 * patched in yet.
3199 */
3200 static_branch_inc(&memcg_sockets_enabled_key);
3201 memcg->tcpmem_active = true;
3202 }
3203 out:
3204 mutex_unlock(&memcg_max_mutex);
3205 return ret;
3206 }
3207
3208 /*
3209 * The user of this function is...
3210 * RES_LIMIT.
3211 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3212 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3213 char *buf, size_t nbytes, loff_t off)
3214 {
3215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3216 unsigned long nr_pages;
3217 int ret;
3218
3219 buf = strstrip(buf);
3220 ret = page_counter_memparse(buf, "-1", &nr_pages);
3221 if (ret)
3222 return ret;
3223
3224 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3225 case RES_LIMIT:
3226 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3227 ret = -EINVAL;
3228 break;
3229 }
3230 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3231 case _MEM:
3232 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3233 break;
3234 case _MEMSWAP:
3235 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3236 break;
3237 case _KMEM:
3238 ret = memcg_update_kmem_max(memcg, nr_pages);
3239 break;
3240 case _TCP:
3241 ret = memcg_update_tcp_max(memcg, nr_pages);
3242 break;
3243 }
3244 break;
3245 case RES_SOFT_LIMIT:
3246 memcg->soft_limit = nr_pages;
3247 ret = 0;
3248 break;
3249 }
3250 return ret ?: nbytes;
3251 }
3252
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3253 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3254 size_t nbytes, loff_t off)
3255 {
3256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3257 struct page_counter *counter;
3258
3259 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3260 case _MEM:
3261 counter = &memcg->memory;
3262 break;
3263 case _MEMSWAP:
3264 counter = &memcg->memsw;
3265 break;
3266 case _KMEM:
3267 counter = &memcg->kmem;
3268 break;
3269 case _TCP:
3270 counter = &memcg->tcpmem;
3271 break;
3272 default:
3273 BUG();
3274 }
3275
3276 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3277 case RES_MAX_USAGE:
3278 page_counter_reset_watermark(counter);
3279 break;
3280 case RES_FAILCNT:
3281 counter->failcnt = 0;
3282 break;
3283 default:
3284 BUG();
3285 }
3286
3287 return nbytes;
3288 }
3289
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3290 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3291 struct cftype *cft)
3292 {
3293 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3294 }
3295
3296 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3297 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3298 struct cftype *cft, u64 val)
3299 {
3300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3301
3302 if (val & ~MOVE_MASK)
3303 return -EINVAL;
3304
3305 /*
3306 * No kind of locking is needed in here, because ->can_attach() will
3307 * check this value once in the beginning of the process, and then carry
3308 * on with stale data. This means that changes to this value will only
3309 * affect task migrations starting after the change.
3310 */
3311 memcg->move_charge_at_immigrate = val;
3312 return 0;
3313 }
3314 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3315 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316 struct cftype *cft, u64 val)
3317 {
3318 return -ENOSYS;
3319 }
3320 #endif
3321
3322 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3323 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3324 {
3325 struct numa_stat {
3326 const char *name;
3327 unsigned int lru_mask;
3328 };
3329
3330 static const struct numa_stat stats[] = {
3331 { "total", LRU_ALL },
3332 { "file", LRU_ALL_FILE },
3333 { "anon", LRU_ALL_ANON },
3334 { "unevictable", BIT(LRU_UNEVICTABLE) },
3335 };
3336 const struct numa_stat *stat;
3337 int nid;
3338 unsigned long nr;
3339 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3340
3341 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3342 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3343 seq_printf(m, "%s=%lu", stat->name, nr);
3344 for_each_node_state(nid, N_MEMORY) {
3345 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3346 stat->lru_mask);
3347 seq_printf(m, " N%d=%lu", nid, nr);
3348 }
3349 seq_putc(m, '\n');
3350 }
3351
3352 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3353 struct mem_cgroup *iter;
3354
3355 nr = 0;
3356 for_each_mem_cgroup_tree(iter, memcg)
3357 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3358 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3359 for_each_node_state(nid, N_MEMORY) {
3360 nr = 0;
3361 for_each_mem_cgroup_tree(iter, memcg)
3362 nr += mem_cgroup_node_nr_lru_pages(
3363 iter, nid, stat->lru_mask);
3364 seq_printf(m, " N%d=%lu", nid, nr);
3365 }
3366 seq_putc(m, '\n');
3367 }
3368
3369 return 0;
3370 }
3371 #endif /* CONFIG_NUMA */
3372
3373 /* Universal VM events cgroup1 shows, original sort order */
3374 static const unsigned int memcg1_events[] = {
3375 PGPGIN,
3376 PGPGOUT,
3377 PGFAULT,
3378 PGMAJFAULT,
3379 };
3380
3381 static const char *const memcg1_event_names[] = {
3382 "pgpgin",
3383 "pgpgout",
3384 "pgfault",
3385 "pgmajfault",
3386 };
3387
memcg_stat_show(struct seq_file * m,void * v)3388 static int memcg_stat_show(struct seq_file *m, void *v)
3389 {
3390 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3391 unsigned long memory, memsw;
3392 struct mem_cgroup *mi;
3393 unsigned int i;
3394 struct accumulated_stats acc;
3395
3396 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3397 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3398
3399 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3400 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3401 continue;
3402 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3403 memcg_page_state(memcg, memcg1_stats[i]) *
3404 PAGE_SIZE);
3405 }
3406
3407 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3408 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3409 memcg_sum_events(memcg, memcg1_events[i]));
3410
3411 for (i = 0; i < NR_LRU_LISTS; i++)
3412 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3413 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3414
3415 /* Hierarchical information */
3416 memory = memsw = PAGE_COUNTER_MAX;
3417 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3418 memory = min(memory, mi->memory.max);
3419 memsw = min(memsw, mi->memsw.max);
3420 }
3421 seq_printf(m, "hierarchical_memory_limit %llu\n",
3422 (u64)memory * PAGE_SIZE);
3423 if (do_memsw_account())
3424 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3425 (u64)memsw * PAGE_SIZE);
3426
3427 memset(&acc, 0, sizeof(acc));
3428 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3429 acc.stats_array = memcg1_stats;
3430 acc.events_size = ARRAY_SIZE(memcg1_events);
3431 acc.events_array = memcg1_events;
3432 accumulate_memcg_tree(memcg, &acc);
3433
3434 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3435 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3436 continue;
3437 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3438 (u64)acc.stat[i] * PAGE_SIZE);
3439 }
3440
3441 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3442 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3443 (u64)acc.events[i]);
3444
3445 for (i = 0; i < NR_LRU_LISTS; i++)
3446 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3447 (u64)acc.lru_pages[i] * PAGE_SIZE);
3448
3449 #ifdef CONFIG_DEBUG_VM
3450 {
3451 pg_data_t *pgdat;
3452 struct mem_cgroup_per_node *mz;
3453 struct zone_reclaim_stat *rstat;
3454 unsigned long recent_rotated[2] = {0, 0};
3455 unsigned long recent_scanned[2] = {0, 0};
3456
3457 for_each_online_pgdat(pgdat) {
3458 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3459 rstat = &mz->lruvec.reclaim_stat;
3460
3461 recent_rotated[0] += rstat->recent_rotated[0];
3462 recent_rotated[1] += rstat->recent_rotated[1];
3463 recent_scanned[0] += rstat->recent_scanned[0];
3464 recent_scanned[1] += rstat->recent_scanned[1];
3465 }
3466 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3467 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3468 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3469 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3470 }
3471 #endif
3472
3473 return 0;
3474 }
3475
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3476 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3477 struct cftype *cft)
3478 {
3479 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3480
3481 return mem_cgroup_swappiness(memcg);
3482 }
3483
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3484 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3485 struct cftype *cft, u64 val)
3486 {
3487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3488
3489 if (val > 100)
3490 return -EINVAL;
3491
3492 if (css->parent)
3493 memcg->swappiness = val;
3494 else
3495 vm_swappiness = val;
3496
3497 return 0;
3498 }
3499
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3500 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3501 {
3502 struct mem_cgroup_threshold_ary *t;
3503 unsigned long usage;
3504 int i;
3505
3506 rcu_read_lock();
3507 if (!swap)
3508 t = rcu_dereference(memcg->thresholds.primary);
3509 else
3510 t = rcu_dereference(memcg->memsw_thresholds.primary);
3511
3512 if (!t)
3513 goto unlock;
3514
3515 usage = mem_cgroup_usage(memcg, swap);
3516
3517 /*
3518 * current_threshold points to threshold just below or equal to usage.
3519 * If it's not true, a threshold was crossed after last
3520 * call of __mem_cgroup_threshold().
3521 */
3522 i = t->current_threshold;
3523
3524 /*
3525 * Iterate backward over array of thresholds starting from
3526 * current_threshold and check if a threshold is crossed.
3527 * If none of thresholds below usage is crossed, we read
3528 * only one element of the array here.
3529 */
3530 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3531 eventfd_signal(t->entries[i].eventfd, 1);
3532
3533 /* i = current_threshold + 1 */
3534 i++;
3535
3536 /*
3537 * Iterate forward over array of thresholds starting from
3538 * current_threshold+1 and check if a threshold is crossed.
3539 * If none of thresholds above usage is crossed, we read
3540 * only one element of the array here.
3541 */
3542 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3543 eventfd_signal(t->entries[i].eventfd, 1);
3544
3545 /* Update current_threshold */
3546 t->current_threshold = i - 1;
3547 unlock:
3548 rcu_read_unlock();
3549 }
3550
mem_cgroup_threshold(struct mem_cgroup * memcg)3551 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3552 {
3553 while (memcg) {
3554 __mem_cgroup_threshold(memcg, false);
3555 if (do_memsw_account())
3556 __mem_cgroup_threshold(memcg, true);
3557
3558 memcg = parent_mem_cgroup(memcg);
3559 }
3560 }
3561
compare_thresholds(const void * a,const void * b)3562 static int compare_thresholds(const void *a, const void *b)
3563 {
3564 const struct mem_cgroup_threshold *_a = a;
3565 const struct mem_cgroup_threshold *_b = b;
3566
3567 if (_a->threshold > _b->threshold)
3568 return 1;
3569
3570 if (_a->threshold < _b->threshold)
3571 return -1;
3572
3573 return 0;
3574 }
3575
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3576 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3577 {
3578 struct mem_cgroup_eventfd_list *ev;
3579
3580 spin_lock(&memcg_oom_lock);
3581
3582 list_for_each_entry(ev, &memcg->oom_notify, list)
3583 eventfd_signal(ev->eventfd, 1);
3584
3585 spin_unlock(&memcg_oom_lock);
3586 return 0;
3587 }
3588
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3589 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3590 {
3591 struct mem_cgroup *iter;
3592
3593 for_each_mem_cgroup_tree(iter, memcg)
3594 mem_cgroup_oom_notify_cb(iter);
3595 }
3596
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3597 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3598 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3599 {
3600 struct mem_cgroup_thresholds *thresholds;
3601 struct mem_cgroup_threshold_ary *new;
3602 unsigned long threshold;
3603 unsigned long usage;
3604 int i, size, ret;
3605
3606 ret = page_counter_memparse(args, "-1", &threshold);
3607 if (ret)
3608 return ret;
3609
3610 mutex_lock(&memcg->thresholds_lock);
3611
3612 if (type == _MEM) {
3613 thresholds = &memcg->thresholds;
3614 usage = mem_cgroup_usage(memcg, false);
3615 } else if (type == _MEMSWAP) {
3616 thresholds = &memcg->memsw_thresholds;
3617 usage = mem_cgroup_usage(memcg, true);
3618 } else
3619 BUG();
3620
3621 /* Check if a threshold crossed before adding a new one */
3622 if (thresholds->primary)
3623 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3624
3625 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3626
3627 /* Allocate memory for new array of thresholds */
3628 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3629 GFP_KERNEL);
3630 if (!new) {
3631 ret = -ENOMEM;
3632 goto unlock;
3633 }
3634 new->size = size;
3635
3636 /* Copy thresholds (if any) to new array */
3637 if (thresholds->primary) {
3638 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3639 sizeof(struct mem_cgroup_threshold));
3640 }
3641
3642 /* Add new threshold */
3643 new->entries[size - 1].eventfd = eventfd;
3644 new->entries[size - 1].threshold = threshold;
3645
3646 /* Sort thresholds. Registering of new threshold isn't time-critical */
3647 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3648 compare_thresholds, NULL);
3649
3650 /* Find current threshold */
3651 new->current_threshold = -1;
3652 for (i = 0; i < size; i++) {
3653 if (new->entries[i].threshold <= usage) {
3654 /*
3655 * new->current_threshold will not be used until
3656 * rcu_assign_pointer(), so it's safe to increment
3657 * it here.
3658 */
3659 ++new->current_threshold;
3660 } else
3661 break;
3662 }
3663
3664 /* Free old spare buffer and save old primary buffer as spare */
3665 kfree(thresholds->spare);
3666 thresholds->spare = thresholds->primary;
3667
3668 rcu_assign_pointer(thresholds->primary, new);
3669
3670 /* To be sure that nobody uses thresholds */
3671 synchronize_rcu();
3672
3673 unlock:
3674 mutex_unlock(&memcg->thresholds_lock);
3675
3676 return ret;
3677 }
3678
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3679 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3680 struct eventfd_ctx *eventfd, const char *args)
3681 {
3682 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3683 }
3684
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3685 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3686 struct eventfd_ctx *eventfd, const char *args)
3687 {
3688 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3689 }
3690
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3691 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3692 struct eventfd_ctx *eventfd, enum res_type type)
3693 {
3694 struct mem_cgroup_thresholds *thresholds;
3695 struct mem_cgroup_threshold_ary *new;
3696 unsigned long usage;
3697 int i, j, size;
3698
3699 mutex_lock(&memcg->thresholds_lock);
3700
3701 if (type == _MEM) {
3702 thresholds = &memcg->thresholds;
3703 usage = mem_cgroup_usage(memcg, false);
3704 } else if (type == _MEMSWAP) {
3705 thresholds = &memcg->memsw_thresholds;
3706 usage = mem_cgroup_usage(memcg, true);
3707 } else
3708 BUG();
3709
3710 if (!thresholds->primary)
3711 goto unlock;
3712
3713 /* Check if a threshold crossed before removing */
3714 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3715
3716 /* Calculate new number of threshold */
3717 size = 0;
3718 for (i = 0; i < thresholds->primary->size; i++) {
3719 if (thresholds->primary->entries[i].eventfd != eventfd)
3720 size++;
3721 }
3722
3723 new = thresholds->spare;
3724
3725 /* Set thresholds array to NULL if we don't have thresholds */
3726 if (!size) {
3727 kfree(new);
3728 new = NULL;
3729 goto swap_buffers;
3730 }
3731
3732 new->size = size;
3733
3734 /* Copy thresholds and find current threshold */
3735 new->current_threshold = -1;
3736 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3737 if (thresholds->primary->entries[i].eventfd == eventfd)
3738 continue;
3739
3740 new->entries[j] = thresholds->primary->entries[i];
3741 if (new->entries[j].threshold <= usage) {
3742 /*
3743 * new->current_threshold will not be used
3744 * until rcu_assign_pointer(), so it's safe to increment
3745 * it here.
3746 */
3747 ++new->current_threshold;
3748 }
3749 j++;
3750 }
3751
3752 swap_buffers:
3753 /* Swap primary and spare array */
3754 thresholds->spare = thresholds->primary;
3755
3756 rcu_assign_pointer(thresholds->primary, new);
3757
3758 /* To be sure that nobody uses thresholds */
3759 synchronize_rcu();
3760
3761 /* If all events are unregistered, free the spare array */
3762 if (!new) {
3763 kfree(thresholds->spare);
3764 thresholds->spare = NULL;
3765 }
3766 unlock:
3767 mutex_unlock(&memcg->thresholds_lock);
3768 }
3769
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3770 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3771 struct eventfd_ctx *eventfd)
3772 {
3773 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3774 }
3775
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3776 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3777 struct eventfd_ctx *eventfd)
3778 {
3779 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3780 }
3781
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3782 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3783 struct eventfd_ctx *eventfd, const char *args)
3784 {
3785 struct mem_cgroup_eventfd_list *event;
3786
3787 event = kmalloc(sizeof(*event), GFP_KERNEL);
3788 if (!event)
3789 return -ENOMEM;
3790
3791 spin_lock(&memcg_oom_lock);
3792
3793 event->eventfd = eventfd;
3794 list_add(&event->list, &memcg->oom_notify);
3795
3796 /* already in OOM ? */
3797 if (memcg->under_oom)
3798 eventfd_signal(eventfd, 1);
3799 spin_unlock(&memcg_oom_lock);
3800
3801 return 0;
3802 }
3803
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3804 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3805 struct eventfd_ctx *eventfd)
3806 {
3807 struct mem_cgroup_eventfd_list *ev, *tmp;
3808
3809 spin_lock(&memcg_oom_lock);
3810
3811 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3812 if (ev->eventfd == eventfd) {
3813 list_del(&ev->list);
3814 kfree(ev);
3815 }
3816 }
3817
3818 spin_unlock(&memcg_oom_lock);
3819 }
3820
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3821 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3822 {
3823 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3824
3825 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3826 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3827 seq_printf(sf, "oom_kill %lu\n",
3828 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3829 return 0;
3830 }
3831
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3832 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3833 struct cftype *cft, u64 val)
3834 {
3835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3836
3837 /* cannot set to root cgroup and only 0 and 1 are allowed */
3838 if (!css->parent || !((val == 0) || (val == 1)))
3839 return -EINVAL;
3840
3841 memcg->oom_kill_disable = val;
3842 if (!val)
3843 memcg_oom_recover(memcg);
3844
3845 return 0;
3846 }
3847
3848 #ifdef CONFIG_CGROUP_WRITEBACK
3849
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3850 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3851 {
3852 return wb_domain_init(&memcg->cgwb_domain, gfp);
3853 }
3854
memcg_wb_domain_exit(struct mem_cgroup * memcg)3855 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3856 {
3857 wb_domain_exit(&memcg->cgwb_domain);
3858 }
3859
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3860 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3861 {
3862 wb_domain_size_changed(&memcg->cgwb_domain);
3863 }
3864
mem_cgroup_wb_domain(struct bdi_writeback * wb)3865 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3866 {
3867 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3868
3869 if (!memcg->css.parent)
3870 return NULL;
3871
3872 return &memcg->cgwb_domain;
3873 }
3874
3875 /**
3876 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3877 * @wb: bdi_writeback in question
3878 * @pfilepages: out parameter for number of file pages
3879 * @pheadroom: out parameter for number of allocatable pages according to memcg
3880 * @pdirty: out parameter for number of dirty pages
3881 * @pwriteback: out parameter for number of pages under writeback
3882 *
3883 * Determine the numbers of file, headroom, dirty, and writeback pages in
3884 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3885 * is a bit more involved.
3886 *
3887 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3888 * headroom is calculated as the lowest headroom of itself and the
3889 * ancestors. Note that this doesn't consider the actual amount of
3890 * available memory in the system. The caller should further cap
3891 * *@pheadroom accordingly.
3892 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3893 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3894 unsigned long *pheadroom, unsigned long *pdirty,
3895 unsigned long *pwriteback)
3896 {
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3898 struct mem_cgroup *parent;
3899
3900 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3901
3902 /* this should eventually include NR_UNSTABLE_NFS */
3903 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3904 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3905 (1 << LRU_ACTIVE_FILE));
3906 *pheadroom = PAGE_COUNTER_MAX;
3907
3908 while ((parent = parent_mem_cgroup(memcg))) {
3909 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3910 unsigned long used = page_counter_read(&memcg->memory);
3911
3912 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3913 memcg = parent;
3914 }
3915 }
3916
3917 #else /* CONFIG_CGROUP_WRITEBACK */
3918
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3919 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3920 {
3921 return 0;
3922 }
3923
memcg_wb_domain_exit(struct mem_cgroup * memcg)3924 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3925 {
3926 }
3927
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3928 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3929 {
3930 }
3931
3932 #endif /* CONFIG_CGROUP_WRITEBACK */
3933
3934 /*
3935 * DO NOT USE IN NEW FILES.
3936 *
3937 * "cgroup.event_control" implementation.
3938 *
3939 * This is way over-engineered. It tries to support fully configurable
3940 * events for each user. Such level of flexibility is completely
3941 * unnecessary especially in the light of the planned unified hierarchy.
3942 *
3943 * Please deprecate this and replace with something simpler if at all
3944 * possible.
3945 */
3946
3947 /*
3948 * Unregister event and free resources.
3949 *
3950 * Gets called from workqueue.
3951 */
memcg_event_remove(struct work_struct * work)3952 static void memcg_event_remove(struct work_struct *work)
3953 {
3954 struct mem_cgroup_event *event =
3955 container_of(work, struct mem_cgroup_event, remove);
3956 struct mem_cgroup *memcg = event->memcg;
3957
3958 remove_wait_queue(event->wqh, &event->wait);
3959
3960 event->unregister_event(memcg, event->eventfd);
3961
3962 /* Notify userspace the event is going away. */
3963 eventfd_signal(event->eventfd, 1);
3964
3965 eventfd_ctx_put(event->eventfd);
3966 kfree(event);
3967 css_put(&memcg->css);
3968 }
3969
3970 /*
3971 * Gets called on EPOLLHUP on eventfd when user closes it.
3972 *
3973 * Called with wqh->lock held and interrupts disabled.
3974 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3975 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3976 int sync, void *key)
3977 {
3978 struct mem_cgroup_event *event =
3979 container_of(wait, struct mem_cgroup_event, wait);
3980 struct mem_cgroup *memcg = event->memcg;
3981 __poll_t flags = key_to_poll(key);
3982
3983 if (flags & EPOLLHUP) {
3984 /*
3985 * If the event has been detached at cgroup removal, we
3986 * can simply return knowing the other side will cleanup
3987 * for us.
3988 *
3989 * We can't race against event freeing since the other
3990 * side will require wqh->lock via remove_wait_queue(),
3991 * which we hold.
3992 */
3993 spin_lock(&memcg->event_list_lock);
3994 if (!list_empty(&event->list)) {
3995 list_del_init(&event->list);
3996 /*
3997 * We are in atomic context, but cgroup_event_remove()
3998 * may sleep, so we have to call it in workqueue.
3999 */
4000 schedule_work(&event->remove);
4001 }
4002 spin_unlock(&memcg->event_list_lock);
4003 }
4004
4005 return 0;
4006 }
4007
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4008 static void memcg_event_ptable_queue_proc(struct file *file,
4009 wait_queue_head_t *wqh, poll_table *pt)
4010 {
4011 struct mem_cgroup_event *event =
4012 container_of(pt, struct mem_cgroup_event, pt);
4013
4014 event->wqh = wqh;
4015 add_wait_queue(wqh, &event->wait);
4016 }
4017
4018 /*
4019 * DO NOT USE IN NEW FILES.
4020 *
4021 * Parse input and register new cgroup event handler.
4022 *
4023 * Input must be in format '<event_fd> <control_fd> <args>'.
4024 * Interpretation of args is defined by control file implementation.
4025 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4026 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4027 char *buf, size_t nbytes, loff_t off)
4028 {
4029 struct cgroup_subsys_state *css = of_css(of);
4030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4031 struct mem_cgroup_event *event;
4032 struct cgroup_subsys_state *cfile_css;
4033 unsigned int efd, cfd;
4034 struct fd efile;
4035 struct fd cfile;
4036 const char *name;
4037 char *endp;
4038 int ret;
4039
4040 buf = strstrip(buf);
4041
4042 efd = simple_strtoul(buf, &endp, 10);
4043 if (*endp != ' ')
4044 return -EINVAL;
4045 buf = endp + 1;
4046
4047 cfd = simple_strtoul(buf, &endp, 10);
4048 if ((*endp != ' ') && (*endp != '\0'))
4049 return -EINVAL;
4050 buf = endp + 1;
4051
4052 event = kzalloc(sizeof(*event), GFP_KERNEL);
4053 if (!event)
4054 return -ENOMEM;
4055
4056 event->memcg = memcg;
4057 INIT_LIST_HEAD(&event->list);
4058 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4059 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4060 INIT_WORK(&event->remove, memcg_event_remove);
4061
4062 efile = fdget(efd);
4063 if (!efile.file) {
4064 ret = -EBADF;
4065 goto out_kfree;
4066 }
4067
4068 event->eventfd = eventfd_ctx_fileget(efile.file);
4069 if (IS_ERR(event->eventfd)) {
4070 ret = PTR_ERR(event->eventfd);
4071 goto out_put_efile;
4072 }
4073
4074 cfile = fdget(cfd);
4075 if (!cfile.file) {
4076 ret = -EBADF;
4077 goto out_put_eventfd;
4078 }
4079
4080 /* the process need read permission on control file */
4081 /* AV: shouldn't we check that it's been opened for read instead? */
4082 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4083 if (ret < 0)
4084 goto out_put_cfile;
4085
4086 /*
4087 * Determine the event callbacks and set them in @event. This used
4088 * to be done via struct cftype but cgroup core no longer knows
4089 * about these events. The following is crude but the whole thing
4090 * is for compatibility anyway.
4091 *
4092 * DO NOT ADD NEW FILES.
4093 */
4094 name = cfile.file->f_path.dentry->d_name.name;
4095
4096 if (!strcmp(name, "memory.usage_in_bytes")) {
4097 event->register_event = mem_cgroup_usage_register_event;
4098 event->unregister_event = mem_cgroup_usage_unregister_event;
4099 } else if (!strcmp(name, "memory.oom_control")) {
4100 event->register_event = mem_cgroup_oom_register_event;
4101 event->unregister_event = mem_cgroup_oom_unregister_event;
4102 } else if (!strcmp(name, "memory.pressure_level")) {
4103 event->register_event = vmpressure_register_event;
4104 event->unregister_event = vmpressure_unregister_event;
4105 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4106 event->register_event = memsw_cgroup_usage_register_event;
4107 event->unregister_event = memsw_cgroup_usage_unregister_event;
4108 } else {
4109 ret = -EINVAL;
4110 goto out_put_cfile;
4111 }
4112
4113 /*
4114 * Verify @cfile should belong to @css. Also, remaining events are
4115 * automatically removed on cgroup destruction but the removal is
4116 * asynchronous, so take an extra ref on @css.
4117 */
4118 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4119 &memory_cgrp_subsys);
4120 ret = -EINVAL;
4121 if (IS_ERR(cfile_css))
4122 goto out_put_cfile;
4123 if (cfile_css != css) {
4124 css_put(cfile_css);
4125 goto out_put_cfile;
4126 }
4127
4128 ret = event->register_event(memcg, event->eventfd, buf);
4129 if (ret)
4130 goto out_put_css;
4131
4132 vfs_poll(efile.file, &event->pt);
4133
4134 spin_lock(&memcg->event_list_lock);
4135 list_add(&event->list, &memcg->event_list);
4136 spin_unlock(&memcg->event_list_lock);
4137
4138 fdput(cfile);
4139 fdput(efile);
4140
4141 return nbytes;
4142
4143 out_put_css:
4144 css_put(css);
4145 out_put_cfile:
4146 fdput(cfile);
4147 out_put_eventfd:
4148 eventfd_ctx_put(event->eventfd);
4149 out_put_efile:
4150 fdput(efile);
4151 out_kfree:
4152 kfree(event);
4153
4154 return ret;
4155 }
4156
4157 static struct cftype mem_cgroup_legacy_files[] = {
4158 {
4159 .name = "usage_in_bytes",
4160 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4161 .read_u64 = mem_cgroup_read_u64,
4162 },
4163 {
4164 .name = "max_usage_in_bytes",
4165 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4166 .write = mem_cgroup_reset,
4167 .read_u64 = mem_cgroup_read_u64,
4168 },
4169 {
4170 .name = "limit_in_bytes",
4171 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4172 .write = mem_cgroup_write,
4173 .read_u64 = mem_cgroup_read_u64,
4174 },
4175 {
4176 .name = "soft_limit_in_bytes",
4177 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4178 .write = mem_cgroup_write,
4179 .read_u64 = mem_cgroup_read_u64,
4180 },
4181 {
4182 .name = "failcnt",
4183 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4184 .write = mem_cgroup_reset,
4185 .read_u64 = mem_cgroup_read_u64,
4186 },
4187 {
4188 .name = "stat",
4189 .seq_show = memcg_stat_show,
4190 },
4191 {
4192 .name = "force_empty",
4193 .write = mem_cgroup_force_empty_write,
4194 },
4195 {
4196 .name = "use_hierarchy",
4197 .write_u64 = mem_cgroup_hierarchy_write,
4198 .read_u64 = mem_cgroup_hierarchy_read,
4199 },
4200 {
4201 .name = "cgroup.event_control", /* XXX: for compat */
4202 .write = memcg_write_event_control,
4203 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4204 },
4205 {
4206 .name = "swappiness",
4207 .read_u64 = mem_cgroup_swappiness_read,
4208 .write_u64 = mem_cgroup_swappiness_write,
4209 },
4210 {
4211 .name = "move_charge_at_immigrate",
4212 .read_u64 = mem_cgroup_move_charge_read,
4213 .write_u64 = mem_cgroup_move_charge_write,
4214 },
4215 {
4216 .name = "oom_control",
4217 .seq_show = mem_cgroup_oom_control_read,
4218 .write_u64 = mem_cgroup_oom_control_write,
4219 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4220 },
4221 {
4222 .name = "pressure_level",
4223 },
4224 #ifdef CONFIG_NUMA
4225 {
4226 .name = "numa_stat",
4227 .seq_show = memcg_numa_stat_show,
4228 },
4229 #endif
4230 {
4231 .name = "kmem.limit_in_bytes",
4232 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4233 .write = mem_cgroup_write,
4234 .read_u64 = mem_cgroup_read_u64,
4235 },
4236 {
4237 .name = "kmem.usage_in_bytes",
4238 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4239 .read_u64 = mem_cgroup_read_u64,
4240 },
4241 {
4242 .name = "kmem.failcnt",
4243 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4244 .write = mem_cgroup_reset,
4245 .read_u64 = mem_cgroup_read_u64,
4246 },
4247 {
4248 .name = "kmem.max_usage_in_bytes",
4249 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4250 .write = mem_cgroup_reset,
4251 .read_u64 = mem_cgroup_read_u64,
4252 },
4253 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4254 {
4255 .name = "kmem.slabinfo",
4256 .seq_start = memcg_slab_start,
4257 .seq_next = memcg_slab_next,
4258 .seq_stop = memcg_slab_stop,
4259 .seq_show = memcg_slab_show,
4260 },
4261 #endif
4262 {
4263 .name = "kmem.tcp.limit_in_bytes",
4264 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4265 .write = mem_cgroup_write,
4266 .read_u64 = mem_cgroup_read_u64,
4267 },
4268 {
4269 .name = "kmem.tcp.usage_in_bytes",
4270 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4271 .read_u64 = mem_cgroup_read_u64,
4272 },
4273 {
4274 .name = "kmem.tcp.failcnt",
4275 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4276 .write = mem_cgroup_reset,
4277 .read_u64 = mem_cgroup_read_u64,
4278 },
4279 {
4280 .name = "kmem.tcp.max_usage_in_bytes",
4281 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4282 .write = mem_cgroup_reset,
4283 .read_u64 = mem_cgroup_read_u64,
4284 },
4285 { }, /* terminate */
4286 };
4287
4288 /*
4289 * Private memory cgroup IDR
4290 *
4291 * Swap-out records and page cache shadow entries need to store memcg
4292 * references in constrained space, so we maintain an ID space that is
4293 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4294 * memory-controlled cgroups to 64k.
4295 *
4296 * However, there usually are many references to the oflline CSS after
4297 * the cgroup has been destroyed, such as page cache or reclaimable
4298 * slab objects, that don't need to hang on to the ID. We want to keep
4299 * those dead CSS from occupying IDs, or we might quickly exhaust the
4300 * relatively small ID space and prevent the creation of new cgroups
4301 * even when there are much fewer than 64k cgroups - possibly none.
4302 *
4303 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4304 * be freed and recycled when it's no longer needed, which is usually
4305 * when the CSS is offlined.
4306 *
4307 * The only exception to that are records of swapped out tmpfs/shmem
4308 * pages that need to be attributed to live ancestors on swapin. But
4309 * those references are manageable from userspace.
4310 */
4311
4312 static DEFINE_IDR(mem_cgroup_idr);
4313
mem_cgroup_id_remove(struct mem_cgroup * memcg)4314 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4315 {
4316 if (memcg->id.id > 0) {
4317 idr_remove(&mem_cgroup_idr, memcg->id.id);
4318 memcg->id.id = 0;
4319 }
4320 }
4321
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)4322 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4323 {
4324 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4325 atomic_add(n, &memcg->id.ref);
4326 }
4327
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)4328 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4329 {
4330 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4331 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4332 mem_cgroup_id_remove(memcg);
4333
4334 /* Memcg ID pins CSS */
4335 css_put(&memcg->css);
4336 }
4337 }
4338
mem_cgroup_id_get(struct mem_cgroup * memcg)4339 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4340 {
4341 mem_cgroup_id_get_many(memcg, 1);
4342 }
4343
mem_cgroup_id_put(struct mem_cgroup * memcg)4344 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4345 {
4346 mem_cgroup_id_put_many(memcg, 1);
4347 }
4348
4349 /**
4350 * mem_cgroup_from_id - look up a memcg from a memcg id
4351 * @id: the memcg id to look up
4352 *
4353 * Caller must hold rcu_read_lock().
4354 */
mem_cgroup_from_id(unsigned short id)4355 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4356 {
4357 WARN_ON_ONCE(!rcu_read_lock_held());
4358 return idr_find(&mem_cgroup_idr, id);
4359 }
4360
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)4361 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4362 {
4363 struct mem_cgroup_per_node *pn;
4364 int tmp = node;
4365 /*
4366 * This routine is called against possible nodes.
4367 * But it's BUG to call kmalloc() against offline node.
4368 *
4369 * TODO: this routine can waste much memory for nodes which will
4370 * never be onlined. It's better to use memory hotplug callback
4371 * function.
4372 */
4373 if (!node_state(node, N_NORMAL_MEMORY))
4374 tmp = -1;
4375 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4376 if (!pn)
4377 return 1;
4378
4379 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4380 if (!pn->lruvec_stat_cpu) {
4381 kfree(pn);
4382 return 1;
4383 }
4384
4385 lruvec_init(&pn->lruvec);
4386 pn->usage_in_excess = 0;
4387 pn->on_tree = false;
4388 pn->memcg = memcg;
4389
4390 memcg->nodeinfo[node] = pn;
4391 return 0;
4392 }
4393
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)4394 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4395 {
4396 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4397
4398 if (!pn)
4399 return;
4400
4401 free_percpu(pn->lruvec_stat_cpu);
4402 kfree(pn);
4403 }
4404
__mem_cgroup_free(struct mem_cgroup * memcg)4405 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4406 {
4407 int node;
4408
4409 for_each_node(node)
4410 free_mem_cgroup_per_node_info(memcg, node);
4411 free_percpu(memcg->stat_cpu);
4412 kfree(memcg);
4413 }
4414
mem_cgroup_free(struct mem_cgroup * memcg)4415 static void mem_cgroup_free(struct mem_cgroup *memcg)
4416 {
4417 memcg_wb_domain_exit(memcg);
4418 __mem_cgroup_free(memcg);
4419 }
4420
mem_cgroup_alloc(void)4421 static struct mem_cgroup *mem_cgroup_alloc(void)
4422 {
4423 struct mem_cgroup *memcg;
4424 size_t size;
4425 int node;
4426
4427 size = sizeof(struct mem_cgroup);
4428 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4429
4430 memcg = kzalloc(size, GFP_KERNEL);
4431 if (!memcg)
4432 return NULL;
4433
4434 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4435 1, MEM_CGROUP_ID_MAX,
4436 GFP_KERNEL);
4437 if (memcg->id.id < 0)
4438 goto fail;
4439
4440 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4441 if (!memcg->stat_cpu)
4442 goto fail;
4443
4444 for_each_node(node)
4445 if (alloc_mem_cgroup_per_node_info(memcg, node))
4446 goto fail;
4447
4448 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4449 goto fail;
4450
4451 INIT_WORK(&memcg->high_work, high_work_func);
4452 memcg->last_scanned_node = MAX_NUMNODES;
4453 INIT_LIST_HEAD(&memcg->oom_notify);
4454 mutex_init(&memcg->thresholds_lock);
4455 spin_lock_init(&memcg->move_lock);
4456 vmpressure_init(&memcg->vmpressure);
4457 INIT_LIST_HEAD(&memcg->event_list);
4458 spin_lock_init(&memcg->event_list_lock);
4459 memcg->socket_pressure = jiffies;
4460 #ifdef CONFIG_MEMCG_KMEM
4461 memcg->kmemcg_id = -1;
4462 #endif
4463 #ifdef CONFIG_CGROUP_WRITEBACK
4464 INIT_LIST_HEAD(&memcg->cgwb_list);
4465 #endif
4466 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4467 return memcg;
4468 fail:
4469 mem_cgroup_id_remove(memcg);
4470 __mem_cgroup_free(memcg);
4471 return NULL;
4472 }
4473
4474 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4475 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4476 {
4477 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4478 struct mem_cgroup *memcg;
4479 long error = -ENOMEM;
4480
4481 memcg = mem_cgroup_alloc();
4482 if (!memcg)
4483 return ERR_PTR(error);
4484
4485 memcg->high = PAGE_COUNTER_MAX;
4486 memcg->soft_limit = PAGE_COUNTER_MAX;
4487 if (parent) {
4488 memcg->swappiness = mem_cgroup_swappiness(parent);
4489 memcg->oom_kill_disable = parent->oom_kill_disable;
4490 }
4491 if (parent && parent->use_hierarchy) {
4492 memcg->use_hierarchy = true;
4493 page_counter_init(&memcg->memory, &parent->memory);
4494 page_counter_init(&memcg->swap, &parent->swap);
4495 page_counter_init(&memcg->memsw, &parent->memsw);
4496 page_counter_init(&memcg->kmem, &parent->kmem);
4497 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4498 } else {
4499 page_counter_init(&memcg->memory, NULL);
4500 page_counter_init(&memcg->swap, NULL);
4501 page_counter_init(&memcg->memsw, NULL);
4502 page_counter_init(&memcg->kmem, NULL);
4503 page_counter_init(&memcg->tcpmem, NULL);
4504 /*
4505 * Deeper hierachy with use_hierarchy == false doesn't make
4506 * much sense so let cgroup subsystem know about this
4507 * unfortunate state in our controller.
4508 */
4509 if (parent != root_mem_cgroup)
4510 memory_cgrp_subsys.broken_hierarchy = true;
4511 }
4512
4513 /* The following stuff does not apply to the root */
4514 if (!parent) {
4515 root_mem_cgroup = memcg;
4516 return &memcg->css;
4517 }
4518
4519 error = memcg_online_kmem(memcg);
4520 if (error)
4521 goto fail;
4522
4523 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4524 static_branch_inc(&memcg_sockets_enabled_key);
4525
4526 return &memcg->css;
4527 fail:
4528 mem_cgroup_id_remove(memcg);
4529 mem_cgroup_free(memcg);
4530 return ERR_PTR(-ENOMEM);
4531 }
4532
mem_cgroup_css_online(struct cgroup_subsys_state * css)4533 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4534 {
4535 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4536
4537 /*
4538 * A memcg must be visible for memcg_expand_shrinker_maps()
4539 * by the time the maps are allocated. So, we allocate maps
4540 * here, when for_each_mem_cgroup() can't skip it.
4541 */
4542 if (memcg_alloc_shrinker_maps(memcg)) {
4543 mem_cgroup_id_remove(memcg);
4544 return -ENOMEM;
4545 }
4546
4547 /* Online state pins memcg ID, memcg ID pins CSS */
4548 atomic_set(&memcg->id.ref, 1);
4549 css_get(css);
4550 return 0;
4551 }
4552
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4553 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4554 {
4555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4556 struct mem_cgroup_event *event, *tmp;
4557
4558 /*
4559 * Unregister events and notify userspace.
4560 * Notify userspace about cgroup removing only after rmdir of cgroup
4561 * directory to avoid race between userspace and kernelspace.
4562 */
4563 spin_lock(&memcg->event_list_lock);
4564 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4565 list_del_init(&event->list);
4566 schedule_work(&event->remove);
4567 }
4568 spin_unlock(&memcg->event_list_lock);
4569
4570 page_counter_set_min(&memcg->memory, 0);
4571 page_counter_set_low(&memcg->memory, 0);
4572
4573 memcg_offline_kmem(memcg);
4574 wb_memcg_offline(memcg);
4575
4576 mem_cgroup_id_put(memcg);
4577 }
4578
mem_cgroup_css_released(struct cgroup_subsys_state * css)4579 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4580 {
4581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4582
4583 invalidate_reclaim_iterators(memcg);
4584 }
4585
mem_cgroup_css_free(struct cgroup_subsys_state * css)4586 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4587 {
4588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4589
4590 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4591 static_branch_dec(&memcg_sockets_enabled_key);
4592
4593 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4594 static_branch_dec(&memcg_sockets_enabled_key);
4595
4596 vmpressure_cleanup(&memcg->vmpressure);
4597 cancel_work_sync(&memcg->high_work);
4598 mem_cgroup_remove_from_trees(memcg);
4599 memcg_free_shrinker_maps(memcg);
4600 memcg_free_kmem(memcg);
4601 mem_cgroup_free(memcg);
4602 }
4603
4604 /**
4605 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4606 * @css: the target css
4607 *
4608 * Reset the states of the mem_cgroup associated with @css. This is
4609 * invoked when the userland requests disabling on the default hierarchy
4610 * but the memcg is pinned through dependency. The memcg should stop
4611 * applying policies and should revert to the vanilla state as it may be
4612 * made visible again.
4613 *
4614 * The current implementation only resets the essential configurations.
4615 * This needs to be expanded to cover all the visible parts.
4616 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4617 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4618 {
4619 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4620
4621 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4622 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4623 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4624 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4625 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4626 page_counter_set_min(&memcg->memory, 0);
4627 page_counter_set_low(&memcg->memory, 0);
4628 memcg->high = PAGE_COUNTER_MAX;
4629 memcg->soft_limit = PAGE_COUNTER_MAX;
4630 memcg_wb_domain_size_changed(memcg);
4631 }
4632
4633 #ifdef CONFIG_MMU
4634 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4635 static int mem_cgroup_do_precharge(unsigned long count)
4636 {
4637 int ret;
4638
4639 /* Try a single bulk charge without reclaim first, kswapd may wake */
4640 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4641 if (!ret) {
4642 mc.precharge += count;
4643 return ret;
4644 }
4645
4646 /* Try charges one by one with reclaim, but do not retry */
4647 while (count--) {
4648 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4649 if (ret)
4650 return ret;
4651 mc.precharge++;
4652 cond_resched();
4653 }
4654 return 0;
4655 }
4656
4657 union mc_target {
4658 struct page *page;
4659 swp_entry_t ent;
4660 };
4661
4662 enum mc_target_type {
4663 MC_TARGET_NONE = 0,
4664 MC_TARGET_PAGE,
4665 MC_TARGET_SWAP,
4666 MC_TARGET_DEVICE,
4667 };
4668
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4669 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4670 unsigned long addr, pte_t ptent)
4671 {
4672 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4673
4674 if (!page || !page_mapped(page))
4675 return NULL;
4676 if (PageAnon(page)) {
4677 if (!(mc.flags & MOVE_ANON))
4678 return NULL;
4679 } else {
4680 if (!(mc.flags & MOVE_FILE))
4681 return NULL;
4682 }
4683 if (!get_page_unless_zero(page))
4684 return NULL;
4685
4686 return page;
4687 }
4688
4689 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)4690 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4691 pte_t ptent, swp_entry_t *entry)
4692 {
4693 struct page *page = NULL;
4694 swp_entry_t ent = pte_to_swp_entry(ptent);
4695
4696 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4697 return NULL;
4698
4699 /*
4700 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4701 * a device and because they are not accessible by CPU they are store
4702 * as special swap entry in the CPU page table.
4703 */
4704 if (is_device_private_entry(ent)) {
4705 page = device_private_entry_to_page(ent);
4706 /*
4707 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4708 * a refcount of 1 when free (unlike normal page)
4709 */
4710 if (!page_ref_add_unless(page, 1, 1))
4711 return NULL;
4712 return page;
4713 }
4714
4715 /*
4716 * Because lookup_swap_cache() updates some statistics counter,
4717 * we call find_get_page() with swapper_space directly.
4718 */
4719 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4720 if (do_memsw_account())
4721 entry->val = ent.val;
4722
4723 return page;
4724 }
4725 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)4726 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4727 pte_t ptent, swp_entry_t *entry)
4728 {
4729 return NULL;
4730 }
4731 #endif
4732
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4733 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4734 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4735 {
4736 struct page *page = NULL;
4737 struct address_space *mapping;
4738 pgoff_t pgoff;
4739
4740 if (!vma->vm_file) /* anonymous vma */
4741 return NULL;
4742 if (!(mc.flags & MOVE_FILE))
4743 return NULL;
4744
4745 mapping = vma->vm_file->f_mapping;
4746 pgoff = linear_page_index(vma, addr);
4747
4748 /* page is moved even if it's not RSS of this task(page-faulted). */
4749 #ifdef CONFIG_SWAP
4750 /* shmem/tmpfs may report page out on swap: account for that too. */
4751 if (shmem_mapping(mapping)) {
4752 page = find_get_entry(mapping, pgoff);
4753 if (radix_tree_exceptional_entry(page)) {
4754 swp_entry_t swp = radix_to_swp_entry(page);
4755 if (do_memsw_account())
4756 *entry = swp;
4757 page = find_get_page(swap_address_space(swp),
4758 swp_offset(swp));
4759 }
4760 } else
4761 page = find_get_page(mapping, pgoff);
4762 #else
4763 page = find_get_page(mapping, pgoff);
4764 #endif
4765 return page;
4766 }
4767
4768 /**
4769 * mem_cgroup_move_account - move account of the page
4770 * @page: the page
4771 * @compound: charge the page as compound or small page
4772 * @from: mem_cgroup which the page is moved from.
4773 * @to: mem_cgroup which the page is moved to. @from != @to.
4774 *
4775 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4776 *
4777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4778 * from old cgroup.
4779 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)4780 static int mem_cgroup_move_account(struct page *page,
4781 bool compound,
4782 struct mem_cgroup *from,
4783 struct mem_cgroup *to)
4784 {
4785 unsigned long flags;
4786 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4787 int ret;
4788 bool anon;
4789
4790 VM_BUG_ON(from == to);
4791 VM_BUG_ON_PAGE(PageLRU(page), page);
4792 VM_BUG_ON(compound && !PageTransHuge(page));
4793
4794 /*
4795 * Prevent mem_cgroup_migrate() from looking at
4796 * page->mem_cgroup of its source page while we change it.
4797 */
4798 ret = -EBUSY;
4799 if (!trylock_page(page))
4800 goto out;
4801
4802 ret = -EINVAL;
4803 if (page->mem_cgroup != from)
4804 goto out_unlock;
4805
4806 anon = PageAnon(page);
4807
4808 spin_lock_irqsave(&from->move_lock, flags);
4809
4810 if (!anon && page_mapped(page)) {
4811 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4812 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4813 }
4814
4815 /*
4816 * move_lock grabbed above and caller set from->moving_account, so
4817 * mod_memcg_page_state will serialize updates to PageDirty.
4818 * So mapping should be stable for dirty pages.
4819 */
4820 if (!anon && PageDirty(page)) {
4821 struct address_space *mapping = page_mapping(page);
4822
4823 if (mapping_cap_account_dirty(mapping)) {
4824 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4825 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4826 }
4827 }
4828
4829 if (PageWriteback(page)) {
4830 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4831 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4832 }
4833
4834 /*
4835 * It is safe to change page->mem_cgroup here because the page
4836 * is referenced, charged, and isolated - we can't race with
4837 * uncharging, charging, migration, or LRU putback.
4838 */
4839
4840 /* caller should have done css_get */
4841 page->mem_cgroup = to;
4842 spin_unlock_irqrestore(&from->move_lock, flags);
4843
4844 ret = 0;
4845
4846 local_irq_disable();
4847 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4848 memcg_check_events(to, page);
4849 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4850 memcg_check_events(from, page);
4851 local_irq_enable();
4852 out_unlock:
4853 unlock_page(page);
4854 out:
4855 return ret;
4856 }
4857
4858 /**
4859 * get_mctgt_type - get target type of moving charge
4860 * @vma: the vma the pte to be checked belongs
4861 * @addr: the address corresponding to the pte to be checked
4862 * @ptent: the pte to be checked
4863 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4864 *
4865 * Returns
4866 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4867 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4868 * move charge. if @target is not NULL, the page is stored in target->page
4869 * with extra refcnt got(Callers should handle it).
4870 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4871 * target for charge migration. if @target is not NULL, the entry is stored
4872 * in target->ent.
4873 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4874 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4875 * For now we such page is charge like a regular page would be as for all
4876 * intent and purposes it is just special memory taking the place of a
4877 * regular page.
4878 *
4879 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4880 *
4881 * Called with pte lock held.
4882 */
4883
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4884 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4885 unsigned long addr, pte_t ptent, union mc_target *target)
4886 {
4887 struct page *page = NULL;
4888 enum mc_target_type ret = MC_TARGET_NONE;
4889 swp_entry_t ent = { .val = 0 };
4890
4891 if (pte_present(ptent))
4892 page = mc_handle_present_pte(vma, addr, ptent);
4893 else if (is_swap_pte(ptent))
4894 page = mc_handle_swap_pte(vma, ptent, &ent);
4895 else if (pte_none(ptent))
4896 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4897
4898 if (!page && !ent.val)
4899 return ret;
4900 if (page) {
4901 /*
4902 * Do only loose check w/o serialization.
4903 * mem_cgroup_move_account() checks the page is valid or
4904 * not under LRU exclusion.
4905 */
4906 if (page->mem_cgroup == mc.from) {
4907 ret = MC_TARGET_PAGE;
4908 if (is_device_private_page(page) ||
4909 is_device_public_page(page))
4910 ret = MC_TARGET_DEVICE;
4911 if (target)
4912 target->page = page;
4913 }
4914 if (!ret || !target)
4915 put_page(page);
4916 }
4917 /*
4918 * There is a swap entry and a page doesn't exist or isn't charged.
4919 * But we cannot move a tail-page in a THP.
4920 */
4921 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4922 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4923 ret = MC_TARGET_SWAP;
4924 if (target)
4925 target->ent = ent;
4926 }
4927 return ret;
4928 }
4929
4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 /*
4932 * We don't consider PMD mapped swapping or file mapped pages because THP does
4933 * not support them for now.
4934 * Caller should make sure that pmd_trans_huge(pmd) is true.
4935 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4936 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4937 unsigned long addr, pmd_t pmd, union mc_target *target)
4938 {
4939 struct page *page = NULL;
4940 enum mc_target_type ret = MC_TARGET_NONE;
4941
4942 if (unlikely(is_swap_pmd(pmd))) {
4943 VM_BUG_ON(thp_migration_supported() &&
4944 !is_pmd_migration_entry(pmd));
4945 return ret;
4946 }
4947 page = pmd_page(pmd);
4948 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4949 if (!(mc.flags & MOVE_ANON))
4950 return ret;
4951 if (page->mem_cgroup == mc.from) {
4952 ret = MC_TARGET_PAGE;
4953 if (target) {
4954 get_page(page);
4955 target->page = page;
4956 }
4957 }
4958 return ret;
4959 }
4960 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4961 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4962 unsigned long addr, pmd_t pmd, union mc_target *target)
4963 {
4964 return MC_TARGET_NONE;
4965 }
4966 #endif
4967
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4968 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4969 unsigned long addr, unsigned long end,
4970 struct mm_walk *walk)
4971 {
4972 struct vm_area_struct *vma = walk->vma;
4973 pte_t *pte;
4974 spinlock_t *ptl;
4975
4976 ptl = pmd_trans_huge_lock(pmd, vma);
4977 if (ptl) {
4978 /*
4979 * Note their can not be MC_TARGET_DEVICE for now as we do not
4980 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4981 * MEMORY_DEVICE_PRIVATE but this might change.
4982 */
4983 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4984 mc.precharge += HPAGE_PMD_NR;
4985 spin_unlock(ptl);
4986 return 0;
4987 }
4988
4989 if (pmd_trans_unstable(pmd))
4990 return 0;
4991 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4992 for (; addr != end; pte++, addr += PAGE_SIZE)
4993 if (get_mctgt_type(vma, addr, *pte, NULL))
4994 mc.precharge++; /* increment precharge temporarily */
4995 pte_unmap_unlock(pte - 1, ptl);
4996 cond_resched();
4997
4998 return 0;
4999 }
5000
mem_cgroup_count_precharge(struct mm_struct * mm)5001 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5002 {
5003 unsigned long precharge;
5004
5005 struct mm_walk mem_cgroup_count_precharge_walk = {
5006 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5007 .mm = mm,
5008 };
5009 down_read(&mm->mmap_sem);
5010 walk_page_range(0, mm->highest_vm_end,
5011 &mem_cgroup_count_precharge_walk);
5012 up_read(&mm->mmap_sem);
5013
5014 precharge = mc.precharge;
5015 mc.precharge = 0;
5016
5017 return precharge;
5018 }
5019
mem_cgroup_precharge_mc(struct mm_struct * mm)5020 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5021 {
5022 unsigned long precharge = mem_cgroup_count_precharge(mm);
5023
5024 VM_BUG_ON(mc.moving_task);
5025 mc.moving_task = current;
5026 return mem_cgroup_do_precharge(precharge);
5027 }
5028
5029 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5030 static void __mem_cgroup_clear_mc(void)
5031 {
5032 struct mem_cgroup *from = mc.from;
5033 struct mem_cgroup *to = mc.to;
5034
5035 /* we must uncharge all the leftover precharges from mc.to */
5036 if (mc.precharge) {
5037 cancel_charge(mc.to, mc.precharge);
5038 mc.precharge = 0;
5039 }
5040 /*
5041 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5042 * we must uncharge here.
5043 */
5044 if (mc.moved_charge) {
5045 cancel_charge(mc.from, mc.moved_charge);
5046 mc.moved_charge = 0;
5047 }
5048 /* we must fixup refcnts and charges */
5049 if (mc.moved_swap) {
5050 /* uncharge swap account from the old cgroup */
5051 if (!mem_cgroup_is_root(mc.from))
5052 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5053
5054 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5055
5056 /*
5057 * we charged both to->memory and to->memsw, so we
5058 * should uncharge to->memory.
5059 */
5060 if (!mem_cgroup_is_root(mc.to))
5061 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5062
5063 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5064 css_put_many(&mc.to->css, mc.moved_swap);
5065
5066 mc.moved_swap = 0;
5067 }
5068 memcg_oom_recover(from);
5069 memcg_oom_recover(to);
5070 wake_up_all(&mc.waitq);
5071 }
5072
mem_cgroup_clear_mc(void)5073 static void mem_cgroup_clear_mc(void)
5074 {
5075 struct mm_struct *mm = mc.mm;
5076
5077 /*
5078 * we must clear moving_task before waking up waiters at the end of
5079 * task migration.
5080 */
5081 mc.moving_task = NULL;
5082 __mem_cgroup_clear_mc();
5083 spin_lock(&mc.lock);
5084 mc.from = NULL;
5085 mc.to = NULL;
5086 mc.mm = NULL;
5087 spin_unlock(&mc.lock);
5088
5089 mmput(mm);
5090 }
5091
mem_cgroup_can_attach(struct cgroup_taskset * tset)5092 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5093 {
5094 struct cgroup_subsys_state *css;
5095 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5096 struct mem_cgroup *from;
5097 struct task_struct *leader, *p;
5098 struct mm_struct *mm;
5099 unsigned long move_flags;
5100 int ret = 0;
5101
5102 /* charge immigration isn't supported on the default hierarchy */
5103 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5104 return 0;
5105
5106 /*
5107 * Multi-process migrations only happen on the default hierarchy
5108 * where charge immigration is not used. Perform charge
5109 * immigration if @tset contains a leader and whine if there are
5110 * multiple.
5111 */
5112 p = NULL;
5113 cgroup_taskset_for_each_leader(leader, css, tset) {
5114 WARN_ON_ONCE(p);
5115 p = leader;
5116 memcg = mem_cgroup_from_css(css);
5117 }
5118 if (!p)
5119 return 0;
5120
5121 /*
5122 * We are now commited to this value whatever it is. Changes in this
5123 * tunable will only affect upcoming migrations, not the current one.
5124 * So we need to save it, and keep it going.
5125 */
5126 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5127 if (!move_flags)
5128 return 0;
5129
5130 from = mem_cgroup_from_task(p);
5131
5132 VM_BUG_ON(from == memcg);
5133
5134 mm = get_task_mm(p);
5135 if (!mm)
5136 return 0;
5137 /* We move charges only when we move a owner of the mm */
5138 if (mm->owner == p) {
5139 VM_BUG_ON(mc.from);
5140 VM_BUG_ON(mc.to);
5141 VM_BUG_ON(mc.precharge);
5142 VM_BUG_ON(mc.moved_charge);
5143 VM_BUG_ON(mc.moved_swap);
5144
5145 spin_lock(&mc.lock);
5146 mc.mm = mm;
5147 mc.from = from;
5148 mc.to = memcg;
5149 mc.flags = move_flags;
5150 spin_unlock(&mc.lock);
5151 /* We set mc.moving_task later */
5152
5153 ret = mem_cgroup_precharge_mc(mm);
5154 if (ret)
5155 mem_cgroup_clear_mc();
5156 } else {
5157 mmput(mm);
5158 }
5159 return ret;
5160 }
5161
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5162 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5163 {
5164 if (mc.to)
5165 mem_cgroup_clear_mc();
5166 }
5167
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5168 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5169 unsigned long addr, unsigned long end,
5170 struct mm_walk *walk)
5171 {
5172 int ret = 0;
5173 struct vm_area_struct *vma = walk->vma;
5174 pte_t *pte;
5175 spinlock_t *ptl;
5176 enum mc_target_type target_type;
5177 union mc_target target;
5178 struct page *page;
5179
5180 ptl = pmd_trans_huge_lock(pmd, vma);
5181 if (ptl) {
5182 if (mc.precharge < HPAGE_PMD_NR) {
5183 spin_unlock(ptl);
5184 return 0;
5185 }
5186 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5187 if (target_type == MC_TARGET_PAGE) {
5188 page = target.page;
5189 if (!isolate_lru_page(page)) {
5190 if (!mem_cgroup_move_account(page, true,
5191 mc.from, mc.to)) {
5192 mc.precharge -= HPAGE_PMD_NR;
5193 mc.moved_charge += HPAGE_PMD_NR;
5194 }
5195 putback_lru_page(page);
5196 }
5197 put_page(page);
5198 } else if (target_type == MC_TARGET_DEVICE) {
5199 page = target.page;
5200 if (!mem_cgroup_move_account(page, true,
5201 mc.from, mc.to)) {
5202 mc.precharge -= HPAGE_PMD_NR;
5203 mc.moved_charge += HPAGE_PMD_NR;
5204 }
5205 put_page(page);
5206 }
5207 spin_unlock(ptl);
5208 return 0;
5209 }
5210
5211 if (pmd_trans_unstable(pmd))
5212 return 0;
5213 retry:
5214 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5215 for (; addr != end; addr += PAGE_SIZE) {
5216 pte_t ptent = *(pte++);
5217 bool device = false;
5218 swp_entry_t ent;
5219
5220 if (!mc.precharge)
5221 break;
5222
5223 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5224 case MC_TARGET_DEVICE:
5225 device = true;
5226 /* fall through */
5227 case MC_TARGET_PAGE:
5228 page = target.page;
5229 /*
5230 * We can have a part of the split pmd here. Moving it
5231 * can be done but it would be too convoluted so simply
5232 * ignore such a partial THP and keep it in original
5233 * memcg. There should be somebody mapping the head.
5234 */
5235 if (PageTransCompound(page))
5236 goto put;
5237 if (!device && isolate_lru_page(page))
5238 goto put;
5239 if (!mem_cgroup_move_account(page, false,
5240 mc.from, mc.to)) {
5241 mc.precharge--;
5242 /* we uncharge from mc.from later. */
5243 mc.moved_charge++;
5244 }
5245 if (!device)
5246 putback_lru_page(page);
5247 put: /* get_mctgt_type() gets the page */
5248 put_page(page);
5249 break;
5250 case MC_TARGET_SWAP:
5251 ent = target.ent;
5252 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5253 mc.precharge--;
5254 /* we fixup refcnts and charges later. */
5255 mc.moved_swap++;
5256 }
5257 break;
5258 default:
5259 break;
5260 }
5261 }
5262 pte_unmap_unlock(pte - 1, ptl);
5263 cond_resched();
5264
5265 if (addr != end) {
5266 /*
5267 * We have consumed all precharges we got in can_attach().
5268 * We try charge one by one, but don't do any additional
5269 * charges to mc.to if we have failed in charge once in attach()
5270 * phase.
5271 */
5272 ret = mem_cgroup_do_precharge(1);
5273 if (!ret)
5274 goto retry;
5275 }
5276
5277 return ret;
5278 }
5279
mem_cgroup_move_charge(void)5280 static void mem_cgroup_move_charge(void)
5281 {
5282 struct mm_walk mem_cgroup_move_charge_walk = {
5283 .pmd_entry = mem_cgroup_move_charge_pte_range,
5284 .mm = mc.mm,
5285 };
5286
5287 lru_add_drain_all();
5288 /*
5289 * Signal lock_page_memcg() to take the memcg's move_lock
5290 * while we're moving its pages to another memcg. Then wait
5291 * for already started RCU-only updates to finish.
5292 */
5293 atomic_inc(&mc.from->moving_account);
5294 synchronize_rcu();
5295 retry:
5296 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5297 /*
5298 * Someone who are holding the mmap_sem might be waiting in
5299 * waitq. So we cancel all extra charges, wake up all waiters,
5300 * and retry. Because we cancel precharges, we might not be able
5301 * to move enough charges, but moving charge is a best-effort
5302 * feature anyway, so it wouldn't be a big problem.
5303 */
5304 __mem_cgroup_clear_mc();
5305 cond_resched();
5306 goto retry;
5307 }
5308 /*
5309 * When we have consumed all precharges and failed in doing
5310 * additional charge, the page walk just aborts.
5311 */
5312 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5313
5314 up_read(&mc.mm->mmap_sem);
5315 atomic_dec(&mc.from->moving_account);
5316 }
5317
mem_cgroup_move_task(void)5318 static void mem_cgroup_move_task(void)
5319 {
5320 if (mc.to) {
5321 mem_cgroup_move_charge();
5322 mem_cgroup_clear_mc();
5323 }
5324 }
5325 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5326 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5327 {
5328 return 0;
5329 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5330 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5331 {
5332 }
mem_cgroup_move_task(void)5333 static void mem_cgroup_move_task(void)
5334 {
5335 }
5336 #endif
5337
5338 /*
5339 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5340 * to verify whether we're attached to the default hierarchy on each mount
5341 * attempt.
5342 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5343 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5344 {
5345 /*
5346 * use_hierarchy is forced on the default hierarchy. cgroup core
5347 * guarantees that @root doesn't have any children, so turning it
5348 * on for the root memcg is enough.
5349 */
5350 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5351 root_mem_cgroup->use_hierarchy = true;
5352 else
5353 root_mem_cgroup->use_hierarchy = false;
5354 }
5355
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5356 static u64 memory_current_read(struct cgroup_subsys_state *css,
5357 struct cftype *cft)
5358 {
5359 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5360
5361 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5362 }
5363
memory_min_show(struct seq_file * m,void * v)5364 static int memory_min_show(struct seq_file *m, void *v)
5365 {
5366 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5367 unsigned long min = READ_ONCE(memcg->memory.min);
5368
5369 if (min == PAGE_COUNTER_MAX)
5370 seq_puts(m, "max\n");
5371 else
5372 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5373
5374 return 0;
5375 }
5376
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5377 static ssize_t memory_min_write(struct kernfs_open_file *of,
5378 char *buf, size_t nbytes, loff_t off)
5379 {
5380 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5381 unsigned long min;
5382 int err;
5383
5384 buf = strstrip(buf);
5385 err = page_counter_memparse(buf, "max", &min);
5386 if (err)
5387 return err;
5388
5389 page_counter_set_min(&memcg->memory, min);
5390
5391 return nbytes;
5392 }
5393
memory_low_show(struct seq_file * m,void * v)5394 static int memory_low_show(struct seq_file *m, void *v)
5395 {
5396 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5397 unsigned long low = READ_ONCE(memcg->memory.low);
5398
5399 if (low == PAGE_COUNTER_MAX)
5400 seq_puts(m, "max\n");
5401 else
5402 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5403
5404 return 0;
5405 }
5406
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5407 static ssize_t memory_low_write(struct kernfs_open_file *of,
5408 char *buf, size_t nbytes, loff_t off)
5409 {
5410 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5411 unsigned long low;
5412 int err;
5413
5414 buf = strstrip(buf);
5415 err = page_counter_memparse(buf, "max", &low);
5416 if (err)
5417 return err;
5418
5419 page_counter_set_low(&memcg->memory, low);
5420
5421 return nbytes;
5422 }
5423
memory_high_show(struct seq_file * m,void * v)5424 static int memory_high_show(struct seq_file *m, void *v)
5425 {
5426 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5427 unsigned long high = READ_ONCE(memcg->high);
5428
5429 if (high == PAGE_COUNTER_MAX)
5430 seq_puts(m, "max\n");
5431 else
5432 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5433
5434 return 0;
5435 }
5436
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5437 static ssize_t memory_high_write(struct kernfs_open_file *of,
5438 char *buf, size_t nbytes, loff_t off)
5439 {
5440 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5441 unsigned long nr_pages;
5442 unsigned long high;
5443 int err;
5444
5445 buf = strstrip(buf);
5446 err = page_counter_memparse(buf, "max", &high);
5447 if (err)
5448 return err;
5449
5450 memcg->high = high;
5451
5452 nr_pages = page_counter_read(&memcg->memory);
5453 if (nr_pages > high)
5454 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5455 GFP_KERNEL, true);
5456
5457 memcg_wb_domain_size_changed(memcg);
5458 return nbytes;
5459 }
5460
memory_max_show(struct seq_file * m,void * v)5461 static int memory_max_show(struct seq_file *m, void *v)
5462 {
5463 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5464 unsigned long max = READ_ONCE(memcg->memory.max);
5465
5466 if (max == PAGE_COUNTER_MAX)
5467 seq_puts(m, "max\n");
5468 else
5469 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5470
5471 return 0;
5472 }
5473
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5474 static ssize_t memory_max_write(struct kernfs_open_file *of,
5475 char *buf, size_t nbytes, loff_t off)
5476 {
5477 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5478 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5479 bool drained = false;
5480 unsigned long max;
5481 int err;
5482
5483 buf = strstrip(buf);
5484 err = page_counter_memparse(buf, "max", &max);
5485 if (err)
5486 return err;
5487
5488 xchg(&memcg->memory.max, max);
5489
5490 for (;;) {
5491 unsigned long nr_pages = page_counter_read(&memcg->memory);
5492
5493 if (nr_pages <= max)
5494 break;
5495
5496 if (signal_pending(current)) {
5497 err = -EINTR;
5498 break;
5499 }
5500
5501 if (!drained) {
5502 drain_all_stock(memcg);
5503 drained = true;
5504 continue;
5505 }
5506
5507 if (nr_reclaims) {
5508 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5509 GFP_KERNEL, true))
5510 nr_reclaims--;
5511 continue;
5512 }
5513
5514 memcg_memory_event(memcg, MEMCG_OOM);
5515 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5516 break;
5517 }
5518
5519 memcg_wb_domain_size_changed(memcg);
5520 return nbytes;
5521 }
5522
memory_events_show(struct seq_file * m,void * v)5523 static int memory_events_show(struct seq_file *m, void *v)
5524 {
5525 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5526
5527 seq_printf(m, "low %lu\n",
5528 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5529 seq_printf(m, "high %lu\n",
5530 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5531 seq_printf(m, "max %lu\n",
5532 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5533 seq_printf(m, "oom %lu\n",
5534 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5535 seq_printf(m, "oom_kill %lu\n",
5536 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5537
5538 return 0;
5539 }
5540
memory_stat_show(struct seq_file * m,void * v)5541 static int memory_stat_show(struct seq_file *m, void *v)
5542 {
5543 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5544 struct accumulated_stats acc;
5545 int i;
5546
5547 /*
5548 * Provide statistics on the state of the memory subsystem as
5549 * well as cumulative event counters that show past behavior.
5550 *
5551 * This list is ordered following a combination of these gradients:
5552 * 1) generic big picture -> specifics and details
5553 * 2) reflecting userspace activity -> reflecting kernel heuristics
5554 *
5555 * Current memory state:
5556 */
5557
5558 memset(&acc, 0, sizeof(acc));
5559 acc.stats_size = MEMCG_NR_STAT;
5560 acc.events_size = NR_VM_EVENT_ITEMS;
5561 accumulate_memcg_tree(memcg, &acc);
5562
5563 seq_printf(m, "anon %llu\n",
5564 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5565 seq_printf(m, "file %llu\n",
5566 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5567 seq_printf(m, "kernel_stack %llu\n",
5568 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5569 seq_printf(m, "slab %llu\n",
5570 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5571 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5572 seq_printf(m, "sock %llu\n",
5573 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5574
5575 seq_printf(m, "shmem %llu\n",
5576 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5577 seq_printf(m, "file_mapped %llu\n",
5578 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5579 seq_printf(m, "file_dirty %llu\n",
5580 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5581 seq_printf(m, "file_writeback %llu\n",
5582 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5583
5584 for (i = 0; i < NR_LRU_LISTS; i++)
5585 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5586 (u64)acc.lru_pages[i] * PAGE_SIZE);
5587
5588 seq_printf(m, "slab_reclaimable %llu\n",
5589 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5590 seq_printf(m, "slab_unreclaimable %llu\n",
5591 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5592
5593 /* Accumulated memory events */
5594
5595 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5596 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5597
5598 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5599 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5600 acc.events[PGSCAN_DIRECT]);
5601 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5602 acc.events[PGSTEAL_DIRECT]);
5603 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5604 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5605 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5606 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5607
5608 seq_printf(m, "workingset_refault %lu\n",
5609 acc.stat[WORKINGSET_REFAULT]);
5610 seq_printf(m, "workingset_activate %lu\n",
5611 acc.stat[WORKINGSET_ACTIVATE]);
5612 seq_printf(m, "workingset_nodereclaim %lu\n",
5613 acc.stat[WORKINGSET_NODERECLAIM]);
5614
5615 return 0;
5616 }
5617
memory_oom_group_show(struct seq_file * m,void * v)5618 static int memory_oom_group_show(struct seq_file *m, void *v)
5619 {
5620 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5621
5622 seq_printf(m, "%d\n", memcg->oom_group);
5623
5624 return 0;
5625 }
5626
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5627 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5628 char *buf, size_t nbytes, loff_t off)
5629 {
5630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5631 int ret, oom_group;
5632
5633 buf = strstrip(buf);
5634 if (!buf)
5635 return -EINVAL;
5636
5637 ret = kstrtoint(buf, 0, &oom_group);
5638 if (ret)
5639 return ret;
5640
5641 if (oom_group != 0 && oom_group != 1)
5642 return -EINVAL;
5643
5644 memcg->oom_group = oom_group;
5645
5646 return nbytes;
5647 }
5648
5649 static struct cftype memory_files[] = {
5650 {
5651 .name = "current",
5652 .flags = CFTYPE_NOT_ON_ROOT,
5653 .read_u64 = memory_current_read,
5654 },
5655 {
5656 .name = "min",
5657 .flags = CFTYPE_NOT_ON_ROOT,
5658 .seq_show = memory_min_show,
5659 .write = memory_min_write,
5660 },
5661 {
5662 .name = "low",
5663 .flags = CFTYPE_NOT_ON_ROOT,
5664 .seq_show = memory_low_show,
5665 .write = memory_low_write,
5666 },
5667 {
5668 .name = "high",
5669 .flags = CFTYPE_NOT_ON_ROOT,
5670 .seq_show = memory_high_show,
5671 .write = memory_high_write,
5672 },
5673 {
5674 .name = "max",
5675 .flags = CFTYPE_NOT_ON_ROOT,
5676 .seq_show = memory_max_show,
5677 .write = memory_max_write,
5678 },
5679 {
5680 .name = "events",
5681 .flags = CFTYPE_NOT_ON_ROOT,
5682 .file_offset = offsetof(struct mem_cgroup, events_file),
5683 .seq_show = memory_events_show,
5684 },
5685 {
5686 .name = "stat",
5687 .flags = CFTYPE_NOT_ON_ROOT,
5688 .seq_show = memory_stat_show,
5689 },
5690 {
5691 .name = "oom.group",
5692 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5693 .seq_show = memory_oom_group_show,
5694 .write = memory_oom_group_write,
5695 },
5696 { } /* terminate */
5697 };
5698
5699 struct cgroup_subsys memory_cgrp_subsys = {
5700 .css_alloc = mem_cgroup_css_alloc,
5701 .css_online = mem_cgroup_css_online,
5702 .css_offline = mem_cgroup_css_offline,
5703 .css_released = mem_cgroup_css_released,
5704 .css_free = mem_cgroup_css_free,
5705 .css_reset = mem_cgroup_css_reset,
5706 .can_attach = mem_cgroup_can_attach,
5707 .cancel_attach = mem_cgroup_cancel_attach,
5708 .post_attach = mem_cgroup_move_task,
5709 .bind = mem_cgroup_bind,
5710 .dfl_cftypes = memory_files,
5711 .legacy_cftypes = mem_cgroup_legacy_files,
5712 .early_init = 0,
5713 };
5714
5715 /**
5716 * mem_cgroup_protected - check if memory consumption is in the normal range
5717 * @root: the top ancestor of the sub-tree being checked
5718 * @memcg: the memory cgroup to check
5719 *
5720 * WARNING: This function is not stateless! It can only be used as part
5721 * of a top-down tree iteration, not for isolated queries.
5722 *
5723 * Returns one of the following:
5724 * MEMCG_PROT_NONE: cgroup memory is not protected
5725 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5726 * an unprotected supply of reclaimable memory from other cgroups.
5727 * MEMCG_PROT_MIN: cgroup memory is protected
5728 *
5729 * @root is exclusive; it is never protected when looked at directly
5730 *
5731 * To provide a proper hierarchical behavior, effective memory.min/low values
5732 * are used. Below is the description of how effective memory.low is calculated.
5733 * Effective memory.min values is calculated in the same way.
5734 *
5735 * Effective memory.low is always equal or less than the original memory.low.
5736 * If there is no memory.low overcommittment (which is always true for
5737 * top-level memory cgroups), these two values are equal.
5738 * Otherwise, it's a part of parent's effective memory.low,
5739 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5740 * memory.low usages, where memory.low usage is the size of actually
5741 * protected memory.
5742 *
5743 * low_usage
5744 * elow = min( memory.low, parent->elow * ------------------ ),
5745 * siblings_low_usage
5746 *
5747 * | memory.current, if memory.current < memory.low
5748 * low_usage = |
5749 | 0, otherwise.
5750 *
5751 *
5752 * Such definition of the effective memory.low provides the expected
5753 * hierarchical behavior: parent's memory.low value is limiting
5754 * children, unprotected memory is reclaimed first and cgroups,
5755 * which are not using their guarantee do not affect actual memory
5756 * distribution.
5757 *
5758 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5759 *
5760 * A A/memory.low = 2G, A/memory.current = 6G
5761 * //\\
5762 * BC DE B/memory.low = 3G B/memory.current = 2G
5763 * C/memory.low = 1G C/memory.current = 2G
5764 * D/memory.low = 0 D/memory.current = 2G
5765 * E/memory.low = 10G E/memory.current = 0
5766 *
5767 * and the memory pressure is applied, the following memory distribution
5768 * is expected (approximately):
5769 *
5770 * A/memory.current = 2G
5771 *
5772 * B/memory.current = 1.3G
5773 * C/memory.current = 0.6G
5774 * D/memory.current = 0
5775 * E/memory.current = 0
5776 *
5777 * These calculations require constant tracking of the actual low usages
5778 * (see propagate_protected_usage()), as well as recursive calculation of
5779 * effective memory.low values. But as we do call mem_cgroup_protected()
5780 * path for each memory cgroup top-down from the reclaim,
5781 * it's possible to optimize this part, and save calculated elow
5782 * for next usage. This part is intentionally racy, but it's ok,
5783 * as memory.low is a best-effort mechanism.
5784 */
mem_cgroup_protected(struct mem_cgroup * root,struct mem_cgroup * memcg)5785 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5786 struct mem_cgroup *memcg)
5787 {
5788 struct mem_cgroup *parent;
5789 unsigned long emin, parent_emin;
5790 unsigned long elow, parent_elow;
5791 unsigned long usage;
5792
5793 if (mem_cgroup_disabled())
5794 return MEMCG_PROT_NONE;
5795
5796 if (!root)
5797 root = root_mem_cgroup;
5798 if (memcg == root)
5799 return MEMCG_PROT_NONE;
5800
5801 usage = page_counter_read(&memcg->memory);
5802 if (!usage)
5803 return MEMCG_PROT_NONE;
5804
5805 emin = memcg->memory.min;
5806 elow = memcg->memory.low;
5807
5808 parent = parent_mem_cgroup(memcg);
5809 /* No parent means a non-hierarchical mode on v1 memcg */
5810 if (!parent)
5811 return MEMCG_PROT_NONE;
5812
5813 if (parent == root)
5814 goto exit;
5815
5816 parent_emin = READ_ONCE(parent->memory.emin);
5817 emin = min(emin, parent_emin);
5818 if (emin && parent_emin) {
5819 unsigned long min_usage, siblings_min_usage;
5820
5821 min_usage = min(usage, memcg->memory.min);
5822 siblings_min_usage = atomic_long_read(
5823 &parent->memory.children_min_usage);
5824
5825 if (min_usage && siblings_min_usage)
5826 emin = min(emin, parent_emin * min_usage /
5827 siblings_min_usage);
5828 }
5829
5830 parent_elow = READ_ONCE(parent->memory.elow);
5831 elow = min(elow, parent_elow);
5832 if (elow && parent_elow) {
5833 unsigned long low_usage, siblings_low_usage;
5834
5835 low_usage = min(usage, memcg->memory.low);
5836 siblings_low_usage = atomic_long_read(
5837 &parent->memory.children_low_usage);
5838
5839 if (low_usage && siblings_low_usage)
5840 elow = min(elow, parent_elow * low_usage /
5841 siblings_low_usage);
5842 }
5843
5844 exit:
5845 memcg->memory.emin = emin;
5846 memcg->memory.elow = elow;
5847
5848 if (usage <= emin)
5849 return MEMCG_PROT_MIN;
5850 else if (usage <= elow)
5851 return MEMCG_PROT_LOW;
5852 else
5853 return MEMCG_PROT_NONE;
5854 }
5855
5856 /**
5857 * mem_cgroup_try_charge - try charging a page
5858 * @page: page to charge
5859 * @mm: mm context of the victim
5860 * @gfp_mask: reclaim mode
5861 * @memcgp: charged memcg return
5862 * @compound: charge the page as compound or small page
5863 *
5864 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5865 * pages according to @gfp_mask if necessary.
5866 *
5867 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5868 * Otherwise, an error code is returned.
5869 *
5870 * After page->mapping has been set up, the caller must finalize the
5871 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5872 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5873 */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)5874 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5875 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5876 bool compound)
5877 {
5878 struct mem_cgroup *memcg = NULL;
5879 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5880 int ret = 0;
5881
5882 if (mem_cgroup_disabled())
5883 goto out;
5884
5885 if (PageSwapCache(page)) {
5886 /*
5887 * Every swap fault against a single page tries to charge the
5888 * page, bail as early as possible. shmem_unuse() encounters
5889 * already charged pages, too. The USED bit is protected by
5890 * the page lock, which serializes swap cache removal, which
5891 * in turn serializes uncharging.
5892 */
5893 VM_BUG_ON_PAGE(!PageLocked(page), page);
5894 if (compound_head(page)->mem_cgroup)
5895 goto out;
5896
5897 if (do_swap_account) {
5898 swp_entry_t ent = { .val = page_private(page), };
5899 unsigned short id = lookup_swap_cgroup_id(ent);
5900
5901 rcu_read_lock();
5902 memcg = mem_cgroup_from_id(id);
5903 if (memcg && !css_tryget_online(&memcg->css))
5904 memcg = NULL;
5905 rcu_read_unlock();
5906 }
5907 }
5908
5909 if (!memcg)
5910 memcg = get_mem_cgroup_from_mm(mm);
5911
5912 ret = try_charge(memcg, gfp_mask, nr_pages);
5913
5914 css_put(&memcg->css);
5915 out:
5916 *memcgp = memcg;
5917 return ret;
5918 }
5919
mem_cgroup_try_charge_delay(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)5920 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5921 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5922 bool compound)
5923 {
5924 struct mem_cgroup *memcg;
5925 int ret;
5926
5927 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5928 memcg = *memcgp;
5929 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5930 return ret;
5931 }
5932
5933 /**
5934 * mem_cgroup_commit_charge - commit a page charge
5935 * @page: page to charge
5936 * @memcg: memcg to charge the page to
5937 * @lrucare: page might be on LRU already
5938 * @compound: charge the page as compound or small page
5939 *
5940 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5941 * after page->mapping has been set up. This must happen atomically
5942 * as part of the page instantiation, i.e. under the page table lock
5943 * for anonymous pages, under the page lock for page and swap cache.
5944 *
5945 * In addition, the page must not be on the LRU during the commit, to
5946 * prevent racing with task migration. If it might be, use @lrucare.
5947 *
5948 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5949 */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)5950 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5951 bool lrucare, bool compound)
5952 {
5953 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5954
5955 VM_BUG_ON_PAGE(!page->mapping, page);
5956 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5957
5958 if (mem_cgroup_disabled())
5959 return;
5960 /*
5961 * Swap faults will attempt to charge the same page multiple
5962 * times. But reuse_swap_page() might have removed the page
5963 * from swapcache already, so we can't check PageSwapCache().
5964 */
5965 if (!memcg)
5966 return;
5967
5968 commit_charge(page, memcg, lrucare);
5969
5970 local_irq_disable();
5971 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5972 memcg_check_events(memcg, page);
5973 local_irq_enable();
5974
5975 if (do_memsw_account() && PageSwapCache(page)) {
5976 swp_entry_t entry = { .val = page_private(page) };
5977 /*
5978 * The swap entry might not get freed for a long time,
5979 * let's not wait for it. The page already received a
5980 * memory+swap charge, drop the swap entry duplicate.
5981 */
5982 mem_cgroup_uncharge_swap(entry, nr_pages);
5983 }
5984 }
5985
5986 /**
5987 * mem_cgroup_cancel_charge - cancel a page charge
5988 * @page: page to charge
5989 * @memcg: memcg to charge the page to
5990 * @compound: charge the page as compound or small page
5991 *
5992 * Cancel a charge transaction started by mem_cgroup_try_charge().
5993 */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)5994 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5995 bool compound)
5996 {
5997 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5998
5999 if (mem_cgroup_disabled())
6000 return;
6001 /*
6002 * Swap faults will attempt to charge the same page multiple
6003 * times. But reuse_swap_page() might have removed the page
6004 * from swapcache already, so we can't check PageSwapCache().
6005 */
6006 if (!memcg)
6007 return;
6008
6009 cancel_charge(memcg, nr_pages);
6010 }
6011
6012 struct uncharge_gather {
6013 struct mem_cgroup *memcg;
6014 unsigned long pgpgout;
6015 unsigned long nr_anon;
6016 unsigned long nr_file;
6017 unsigned long nr_kmem;
6018 unsigned long nr_huge;
6019 unsigned long nr_shmem;
6020 struct page *dummy_page;
6021 };
6022
uncharge_gather_clear(struct uncharge_gather * ug)6023 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6024 {
6025 memset(ug, 0, sizeof(*ug));
6026 }
6027
uncharge_batch(const struct uncharge_gather * ug)6028 static void uncharge_batch(const struct uncharge_gather *ug)
6029 {
6030 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6031 unsigned long flags;
6032
6033 if (!mem_cgroup_is_root(ug->memcg)) {
6034 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6035 if (do_memsw_account())
6036 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6038 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6039 memcg_oom_recover(ug->memcg);
6040 }
6041
6042 local_irq_save(flags);
6043 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6044 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6045 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6046 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6047 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6048 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6049 memcg_check_events(ug->memcg, ug->dummy_page);
6050 local_irq_restore(flags);
6051
6052 if (!mem_cgroup_is_root(ug->memcg))
6053 css_put_many(&ug->memcg->css, nr_pages);
6054 }
6055
uncharge_page(struct page * page,struct uncharge_gather * ug)6056 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6057 {
6058 VM_BUG_ON_PAGE(PageLRU(page), page);
6059 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6060 !PageHWPoison(page) , page);
6061
6062 if (!page->mem_cgroup)
6063 return;
6064
6065 /*
6066 * Nobody should be changing or seriously looking at
6067 * page->mem_cgroup at this point, we have fully
6068 * exclusive access to the page.
6069 */
6070
6071 if (ug->memcg != page->mem_cgroup) {
6072 if (ug->memcg) {
6073 uncharge_batch(ug);
6074 uncharge_gather_clear(ug);
6075 }
6076 ug->memcg = page->mem_cgroup;
6077 }
6078
6079 if (!PageKmemcg(page)) {
6080 unsigned int nr_pages = 1;
6081
6082 if (PageTransHuge(page)) {
6083 nr_pages <<= compound_order(page);
6084 ug->nr_huge += nr_pages;
6085 }
6086 if (PageAnon(page))
6087 ug->nr_anon += nr_pages;
6088 else {
6089 ug->nr_file += nr_pages;
6090 if (PageSwapBacked(page))
6091 ug->nr_shmem += nr_pages;
6092 }
6093 ug->pgpgout++;
6094 } else {
6095 ug->nr_kmem += 1 << compound_order(page);
6096 __ClearPageKmemcg(page);
6097 }
6098
6099 ug->dummy_page = page;
6100 page->mem_cgroup = NULL;
6101 }
6102
uncharge_list(struct list_head * page_list)6103 static void uncharge_list(struct list_head *page_list)
6104 {
6105 struct uncharge_gather ug;
6106 struct list_head *next;
6107
6108 uncharge_gather_clear(&ug);
6109
6110 /*
6111 * Note that the list can be a single page->lru; hence the
6112 * do-while loop instead of a simple list_for_each_entry().
6113 */
6114 next = page_list->next;
6115 do {
6116 struct page *page;
6117
6118 page = list_entry(next, struct page, lru);
6119 next = page->lru.next;
6120
6121 uncharge_page(page, &ug);
6122 } while (next != page_list);
6123
6124 if (ug.memcg)
6125 uncharge_batch(&ug);
6126 }
6127
6128 /**
6129 * mem_cgroup_uncharge - uncharge a page
6130 * @page: page to uncharge
6131 *
6132 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6133 * mem_cgroup_commit_charge().
6134 */
mem_cgroup_uncharge(struct page * page)6135 void mem_cgroup_uncharge(struct page *page)
6136 {
6137 struct uncharge_gather ug;
6138
6139 if (mem_cgroup_disabled())
6140 return;
6141
6142 /* Don't touch page->lru of any random page, pre-check: */
6143 if (!page->mem_cgroup)
6144 return;
6145
6146 uncharge_gather_clear(&ug);
6147 uncharge_page(page, &ug);
6148 uncharge_batch(&ug);
6149 }
6150
6151 /**
6152 * mem_cgroup_uncharge_list - uncharge a list of page
6153 * @page_list: list of pages to uncharge
6154 *
6155 * Uncharge a list of pages previously charged with
6156 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6157 */
mem_cgroup_uncharge_list(struct list_head * page_list)6158 void mem_cgroup_uncharge_list(struct list_head *page_list)
6159 {
6160 if (mem_cgroup_disabled())
6161 return;
6162
6163 if (!list_empty(page_list))
6164 uncharge_list(page_list);
6165 }
6166
6167 /**
6168 * mem_cgroup_migrate - charge a page's replacement
6169 * @oldpage: currently circulating page
6170 * @newpage: replacement page
6171 *
6172 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6173 * be uncharged upon free.
6174 *
6175 * Both pages must be locked, @newpage->mapping must be set up.
6176 */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)6177 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6178 {
6179 struct mem_cgroup *memcg;
6180 unsigned int nr_pages;
6181 bool compound;
6182 unsigned long flags;
6183
6184 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6185 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6186 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6187 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6188 newpage);
6189
6190 if (mem_cgroup_disabled())
6191 return;
6192
6193 /* Page cache replacement: new page already charged? */
6194 if (newpage->mem_cgroup)
6195 return;
6196
6197 /* Swapcache readahead pages can get replaced before being charged */
6198 memcg = oldpage->mem_cgroup;
6199 if (!memcg)
6200 return;
6201
6202 /* Force-charge the new page. The old one will be freed soon */
6203 compound = PageTransHuge(newpage);
6204 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6205
6206 page_counter_charge(&memcg->memory, nr_pages);
6207 if (do_memsw_account())
6208 page_counter_charge(&memcg->memsw, nr_pages);
6209 css_get_many(&memcg->css, nr_pages);
6210
6211 commit_charge(newpage, memcg, false);
6212
6213 local_irq_save(flags);
6214 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6215 memcg_check_events(memcg, newpage);
6216 local_irq_restore(flags);
6217 }
6218
6219 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6220 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6221
mem_cgroup_sk_alloc(struct sock * sk)6222 void mem_cgroup_sk_alloc(struct sock *sk)
6223 {
6224 struct mem_cgroup *memcg;
6225
6226 if (!mem_cgroup_sockets_enabled)
6227 return;
6228
6229 /*
6230 * Socket cloning can throw us here with sk_memcg already
6231 * filled. It won't however, necessarily happen from
6232 * process context. So the test for root memcg given
6233 * the current task's memcg won't help us in this case.
6234 *
6235 * Respecting the original socket's memcg is a better
6236 * decision in this case.
6237 */
6238 if (sk->sk_memcg) {
6239 css_get(&sk->sk_memcg->css);
6240 return;
6241 }
6242
6243 rcu_read_lock();
6244 memcg = mem_cgroup_from_task(current);
6245 if (memcg == root_mem_cgroup)
6246 goto out;
6247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6248 goto out;
6249 if (css_tryget_online(&memcg->css))
6250 sk->sk_memcg = memcg;
6251 out:
6252 rcu_read_unlock();
6253 }
6254
mem_cgroup_sk_free(struct sock * sk)6255 void mem_cgroup_sk_free(struct sock *sk)
6256 {
6257 if (sk->sk_memcg)
6258 css_put(&sk->sk_memcg->css);
6259 }
6260
6261 /**
6262 * mem_cgroup_charge_skmem - charge socket memory
6263 * @memcg: memcg to charge
6264 * @nr_pages: number of pages to charge
6265 *
6266 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6267 * @memcg's configured limit, %false if the charge had to be forced.
6268 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)6269 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6270 {
6271 gfp_t gfp_mask = GFP_KERNEL;
6272
6273 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6274 struct page_counter *fail;
6275
6276 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6277 memcg->tcpmem_pressure = 0;
6278 return true;
6279 }
6280 page_counter_charge(&memcg->tcpmem, nr_pages);
6281 memcg->tcpmem_pressure = 1;
6282 return false;
6283 }
6284
6285 /* Don't block in the packet receive path */
6286 if (in_softirq())
6287 gfp_mask = GFP_NOWAIT;
6288
6289 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6290
6291 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6292 return true;
6293
6294 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6295 return false;
6296 }
6297
6298 /**
6299 * mem_cgroup_uncharge_skmem - uncharge socket memory
6300 * @memcg: memcg to uncharge
6301 * @nr_pages: number of pages to uncharge
6302 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)6303 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6304 {
6305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6306 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6307 return;
6308 }
6309
6310 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6311
6312 refill_stock(memcg, nr_pages);
6313 }
6314
cgroup_memory(char * s)6315 static int __init cgroup_memory(char *s)
6316 {
6317 char *token;
6318
6319 while ((token = strsep(&s, ",")) != NULL) {
6320 if (!*token)
6321 continue;
6322 if (!strcmp(token, "nosocket"))
6323 cgroup_memory_nosocket = true;
6324 if (!strcmp(token, "nokmem"))
6325 cgroup_memory_nokmem = true;
6326 }
6327 return 0;
6328 }
6329 __setup("cgroup.memory=", cgroup_memory);
6330
6331 /*
6332 * subsys_initcall() for memory controller.
6333 *
6334 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6335 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6336 * basically everything that doesn't depend on a specific mem_cgroup structure
6337 * should be initialized from here.
6338 */
mem_cgroup_init(void)6339 static int __init mem_cgroup_init(void)
6340 {
6341 int cpu, node;
6342
6343 #ifdef CONFIG_MEMCG_KMEM
6344 /*
6345 * Kmem cache creation is mostly done with the slab_mutex held,
6346 * so use a workqueue with limited concurrency to avoid stalling
6347 * all worker threads in case lots of cgroups are created and
6348 * destroyed simultaneously.
6349 */
6350 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6351 BUG_ON(!memcg_kmem_cache_wq);
6352 #endif
6353
6354 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6355 memcg_hotplug_cpu_dead);
6356
6357 for_each_possible_cpu(cpu)
6358 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6359 drain_local_stock);
6360
6361 for_each_node(node) {
6362 struct mem_cgroup_tree_per_node *rtpn;
6363
6364 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6365 node_online(node) ? node : NUMA_NO_NODE);
6366
6367 rtpn->rb_root = RB_ROOT;
6368 rtpn->rb_rightmost = NULL;
6369 spin_lock_init(&rtpn->lock);
6370 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6371 }
6372
6373 return 0;
6374 }
6375 subsys_initcall(mem_cgroup_init);
6376
6377 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)6378 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6379 {
6380 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6381 /*
6382 * The root cgroup cannot be destroyed, so it's refcount must
6383 * always be >= 1.
6384 */
6385 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6386 VM_BUG_ON(1);
6387 break;
6388 }
6389 memcg = parent_mem_cgroup(memcg);
6390 if (!memcg)
6391 memcg = root_mem_cgroup;
6392 }
6393 return memcg;
6394 }
6395
6396 /**
6397 * mem_cgroup_swapout - transfer a memsw charge to swap
6398 * @page: page whose memsw charge to transfer
6399 * @entry: swap entry to move the charge to
6400 *
6401 * Transfer the memsw charge of @page to @entry.
6402 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)6403 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6404 {
6405 struct mem_cgroup *memcg, *swap_memcg;
6406 unsigned int nr_entries;
6407 unsigned short oldid;
6408
6409 VM_BUG_ON_PAGE(PageLRU(page), page);
6410 VM_BUG_ON_PAGE(page_count(page), page);
6411
6412 if (!do_memsw_account())
6413 return;
6414
6415 memcg = page->mem_cgroup;
6416
6417 /* Readahead page, never charged */
6418 if (!memcg)
6419 return;
6420
6421 /*
6422 * In case the memcg owning these pages has been offlined and doesn't
6423 * have an ID allocated to it anymore, charge the closest online
6424 * ancestor for the swap instead and transfer the memory+swap charge.
6425 */
6426 swap_memcg = mem_cgroup_id_get_online(memcg);
6427 nr_entries = hpage_nr_pages(page);
6428 /* Get references for the tail pages, too */
6429 if (nr_entries > 1)
6430 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6431 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6432 nr_entries);
6433 VM_BUG_ON_PAGE(oldid, page);
6434 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6435
6436 page->mem_cgroup = NULL;
6437
6438 if (!mem_cgroup_is_root(memcg))
6439 page_counter_uncharge(&memcg->memory, nr_entries);
6440
6441 if (memcg != swap_memcg) {
6442 if (!mem_cgroup_is_root(swap_memcg))
6443 page_counter_charge(&swap_memcg->memsw, nr_entries);
6444 page_counter_uncharge(&memcg->memsw, nr_entries);
6445 }
6446
6447 /*
6448 * Interrupts should be disabled here because the caller holds the
6449 * i_pages lock which is taken with interrupts-off. It is
6450 * important here to have the interrupts disabled because it is the
6451 * only synchronisation we have for updating the per-CPU variables.
6452 */
6453 VM_BUG_ON(!irqs_disabled());
6454 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6455 -nr_entries);
6456 memcg_check_events(memcg, page);
6457
6458 if (!mem_cgroup_is_root(memcg))
6459 css_put_many(&memcg->css, nr_entries);
6460 }
6461
6462 /**
6463 * mem_cgroup_try_charge_swap - try charging swap space for a page
6464 * @page: page being added to swap
6465 * @entry: swap entry to charge
6466 *
6467 * Try to charge @page's memcg for the swap space at @entry.
6468 *
6469 * Returns 0 on success, -ENOMEM on failure.
6470 */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)6471 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6472 {
6473 unsigned int nr_pages = hpage_nr_pages(page);
6474 struct page_counter *counter;
6475 struct mem_cgroup *memcg;
6476 unsigned short oldid;
6477
6478 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6479 return 0;
6480
6481 memcg = page->mem_cgroup;
6482
6483 /* Readahead page, never charged */
6484 if (!memcg)
6485 return 0;
6486
6487 if (!entry.val) {
6488 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6489 return 0;
6490 }
6491
6492 memcg = mem_cgroup_id_get_online(memcg);
6493
6494 if (!mem_cgroup_is_root(memcg) &&
6495 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6496 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6497 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6498 mem_cgroup_id_put(memcg);
6499 return -ENOMEM;
6500 }
6501
6502 /* Get references for the tail pages, too */
6503 if (nr_pages > 1)
6504 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6505 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6506 VM_BUG_ON_PAGE(oldid, page);
6507 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6508
6509 return 0;
6510 }
6511
6512 /**
6513 * mem_cgroup_uncharge_swap - uncharge swap space
6514 * @entry: swap entry to uncharge
6515 * @nr_pages: the amount of swap space to uncharge
6516 */
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)6517 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6518 {
6519 struct mem_cgroup *memcg;
6520 unsigned short id;
6521
6522 if (!do_swap_account)
6523 return;
6524
6525 id = swap_cgroup_record(entry, 0, nr_pages);
6526 rcu_read_lock();
6527 memcg = mem_cgroup_from_id(id);
6528 if (memcg) {
6529 if (!mem_cgroup_is_root(memcg)) {
6530 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6531 page_counter_uncharge(&memcg->swap, nr_pages);
6532 else
6533 page_counter_uncharge(&memcg->memsw, nr_pages);
6534 }
6535 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6536 mem_cgroup_id_put_many(memcg, nr_pages);
6537 }
6538 rcu_read_unlock();
6539 }
6540
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)6541 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6542 {
6543 long nr_swap_pages = get_nr_swap_pages();
6544
6545 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6546 return nr_swap_pages;
6547 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6548 nr_swap_pages = min_t(long, nr_swap_pages,
6549 READ_ONCE(memcg->swap.max) -
6550 page_counter_read(&memcg->swap));
6551 return nr_swap_pages;
6552 }
6553
mem_cgroup_swap_full(struct page * page)6554 bool mem_cgroup_swap_full(struct page *page)
6555 {
6556 struct mem_cgroup *memcg;
6557
6558 VM_BUG_ON_PAGE(!PageLocked(page), page);
6559
6560 if (vm_swap_full())
6561 return true;
6562 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6563 return false;
6564
6565 memcg = page->mem_cgroup;
6566 if (!memcg)
6567 return false;
6568
6569 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6570 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6571 return true;
6572
6573 return false;
6574 }
6575
6576 /* for remember boot option*/
6577 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6578 static int really_do_swap_account __initdata = 1;
6579 #else
6580 static int really_do_swap_account __initdata;
6581 #endif
6582
enable_swap_account(char * s)6583 static int __init enable_swap_account(char *s)
6584 {
6585 if (!strcmp(s, "1"))
6586 really_do_swap_account = 1;
6587 else if (!strcmp(s, "0"))
6588 really_do_swap_account = 0;
6589 return 1;
6590 }
6591 __setup("swapaccount=", enable_swap_account);
6592
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6593 static u64 swap_current_read(struct cgroup_subsys_state *css,
6594 struct cftype *cft)
6595 {
6596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597
6598 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6599 }
6600
swap_max_show(struct seq_file * m,void * v)6601 static int swap_max_show(struct seq_file *m, void *v)
6602 {
6603 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6604 unsigned long max = READ_ONCE(memcg->swap.max);
6605
6606 if (max == PAGE_COUNTER_MAX)
6607 seq_puts(m, "max\n");
6608 else
6609 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6610
6611 return 0;
6612 }
6613
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6614 static ssize_t swap_max_write(struct kernfs_open_file *of,
6615 char *buf, size_t nbytes, loff_t off)
6616 {
6617 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6618 unsigned long max;
6619 int err;
6620
6621 buf = strstrip(buf);
6622 err = page_counter_memparse(buf, "max", &max);
6623 if (err)
6624 return err;
6625
6626 xchg(&memcg->swap.max, max);
6627
6628 return nbytes;
6629 }
6630
swap_events_show(struct seq_file * m,void * v)6631 static int swap_events_show(struct seq_file *m, void *v)
6632 {
6633 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6634
6635 seq_printf(m, "max %lu\n",
6636 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6637 seq_printf(m, "fail %lu\n",
6638 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6639
6640 return 0;
6641 }
6642
6643 static struct cftype swap_files[] = {
6644 {
6645 .name = "swap.current",
6646 .flags = CFTYPE_NOT_ON_ROOT,
6647 .read_u64 = swap_current_read,
6648 },
6649 {
6650 .name = "swap.max",
6651 .flags = CFTYPE_NOT_ON_ROOT,
6652 .seq_show = swap_max_show,
6653 .write = swap_max_write,
6654 },
6655 {
6656 .name = "swap.events",
6657 .flags = CFTYPE_NOT_ON_ROOT,
6658 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6659 .seq_show = swap_events_show,
6660 },
6661 { } /* terminate */
6662 };
6663
6664 static struct cftype memsw_cgroup_files[] = {
6665 {
6666 .name = "memsw.usage_in_bytes",
6667 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6668 .read_u64 = mem_cgroup_read_u64,
6669 },
6670 {
6671 .name = "memsw.max_usage_in_bytes",
6672 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6673 .write = mem_cgroup_reset,
6674 .read_u64 = mem_cgroup_read_u64,
6675 },
6676 {
6677 .name = "memsw.limit_in_bytes",
6678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6679 .write = mem_cgroup_write,
6680 .read_u64 = mem_cgroup_read_u64,
6681 },
6682 {
6683 .name = "memsw.failcnt",
6684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6685 .write = mem_cgroup_reset,
6686 .read_u64 = mem_cgroup_read_u64,
6687 },
6688 { }, /* terminate */
6689 };
6690
mem_cgroup_swap_init(void)6691 static int __init mem_cgroup_swap_init(void)
6692 {
6693 if (!mem_cgroup_disabled() && really_do_swap_account) {
6694 do_swap_account = 1;
6695 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6696 swap_files));
6697 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6698 memsw_cgroup_files));
6699 }
6700 return 0;
6701 }
6702 subsys_initcall(mem_cgroup_swap_init);
6703
6704 #endif /* CONFIG_MEMCG_SWAP */
6705