1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/bootmem.h>
95 #include <linux/pfn.h>
96 #include <linux/mmzone.h>
97 #include <linux/slab.h>
98 #include <linux/thread_info.h>
99 #include <linux/err.h>
100 #include <linux/uaccess.h>
101 #include <linux/string.h>
102 #include <linux/nodemask.h>
103 #include <linux/mm.h>
104 #include <linux/workqueue.h>
105 #include <linux/crc32.h>
106 
107 #include <asm/sections.h>
108 #include <asm/processor.h>
109 #include <linux/atomic.h>
110 
111 #include <linux/kasan.h>
112 #include <linux/kmemleak.h>
113 #include <linux/memory_hotplug.h>
114 
115 /*
116  * Kmemleak configuration and common defines.
117  */
118 #define MAX_TRACE		16	/* stack trace length */
119 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
120 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
121 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
122 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
123 
124 #define BYTES_PER_POINTER	sizeof(void *)
125 
126 /* GFP bitmask for kmemleak internal allocations */
127 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 				 __GFP_NOWARN | __GFP_NOFAIL)
130 
131 /* scanning area inside a memory block */
132 struct kmemleak_scan_area {
133 	struct hlist_node node;
134 	unsigned long start;
135 	size_t size;
136 };
137 
138 #define KMEMLEAK_GREY	0
139 #define KMEMLEAK_BLACK	-1
140 
141 /*
142  * Structure holding the metadata for each allocated memory block.
143  * Modifications to such objects should be made while holding the
144  * object->lock. Insertions or deletions from object_list, gray_list or
145  * rb_node are already protected by the corresponding locks or mutex (see
146  * the notes on locking above). These objects are reference-counted
147  * (use_count) and freed using the RCU mechanism.
148  */
149 struct kmemleak_object {
150 	spinlock_t lock;
151 	unsigned int flags;		/* object status flags */
152 	struct list_head object_list;
153 	struct list_head gray_list;
154 	struct rb_node rb_node;
155 	struct rcu_head rcu;		/* object_list lockless traversal */
156 	/* object usage count; object freed when use_count == 0 */
157 	atomic_t use_count;
158 	unsigned long pointer;
159 	size_t size;
160 	/* pass surplus references to this pointer */
161 	unsigned long excess_ref;
162 	/* minimum number of a pointers found before it is considered leak */
163 	int min_count;
164 	/* the total number of pointers found pointing to this object */
165 	int count;
166 	/* checksum for detecting modified objects */
167 	u32 checksum;
168 	/* memory ranges to be scanned inside an object (empty for all) */
169 	struct hlist_head area_list;
170 	unsigned long trace[MAX_TRACE];
171 	unsigned int trace_len;
172 	unsigned long jiffies;		/* creation timestamp */
173 	pid_t pid;			/* pid of the current task */
174 	char comm[TASK_COMM_LEN];	/* executable name */
175 };
176 
177 /* flag representing the memory block allocation status */
178 #define OBJECT_ALLOCATED	(1 << 0)
179 /* flag set after the first reporting of an unreference object */
180 #define OBJECT_REPORTED		(1 << 1)
181 /* flag set to not scan the object */
182 #define OBJECT_NO_SCAN		(1 << 2)
183 
184 /* number of bytes to print per line; must be 16 or 32 */
185 #define HEX_ROW_SIZE		16
186 /* number of bytes to print at a time (1, 2, 4, 8) */
187 #define HEX_GROUP_SIZE		1
188 /* include ASCII after the hex output */
189 #define HEX_ASCII		1
190 /* max number of lines to be printed */
191 #define HEX_MAX_LINES		2
192 
193 /* the list of all allocated objects */
194 static LIST_HEAD(object_list);
195 /* the list of gray-colored objects (see color_gray comment below) */
196 static LIST_HEAD(gray_list);
197 /* search tree for object boundaries */
198 static struct rb_root object_tree_root = RB_ROOT;
199 /* rw_lock protecting the access to object_list and object_tree_root */
200 static DEFINE_RWLOCK(kmemleak_lock);
201 
202 /* allocation caches for kmemleak internal data */
203 static struct kmem_cache *object_cache;
204 static struct kmem_cache *scan_area_cache;
205 
206 /* set if tracing memory operations is enabled */
207 static int kmemleak_enabled;
208 /* same as above but only for the kmemleak_free() callback */
209 static int kmemleak_free_enabled;
210 /* set in the late_initcall if there were no errors */
211 static int kmemleak_initialized;
212 /* enables or disables early logging of the memory operations */
213 static int kmemleak_early_log = 1;
214 /* set if a kmemleak warning was issued */
215 static int kmemleak_warning;
216 /* set if a fatal kmemleak error has occurred */
217 static int kmemleak_error;
218 
219 /* minimum and maximum address that may be valid pointers */
220 static unsigned long min_addr = ULONG_MAX;
221 static unsigned long max_addr;
222 
223 static struct task_struct *scan_thread;
224 /* used to avoid reporting of recently allocated objects */
225 static unsigned long jiffies_min_age;
226 static unsigned long jiffies_last_scan;
227 /* delay between automatic memory scannings */
228 static signed long jiffies_scan_wait;
229 /* enables or disables the task stacks scanning */
230 static int kmemleak_stack_scan = 1;
231 /* protects the memory scanning, parameters and debug/kmemleak file access */
232 static DEFINE_MUTEX(scan_mutex);
233 /* setting kmemleak=on, will set this var, skipping the disable */
234 static int kmemleak_skip_disable;
235 /* If there are leaks that can be reported */
236 static bool kmemleak_found_leaks;
237 
238 /*
239  * Early object allocation/freeing logging. Kmemleak is initialized after the
240  * kernel allocator. However, both the kernel allocator and kmemleak may
241  * allocate memory blocks which need to be tracked. Kmemleak defines an
242  * arbitrary buffer to hold the allocation/freeing information before it is
243  * fully initialized.
244  */
245 
246 /* kmemleak operation type for early logging */
247 enum {
248 	KMEMLEAK_ALLOC,
249 	KMEMLEAK_ALLOC_PERCPU,
250 	KMEMLEAK_FREE,
251 	KMEMLEAK_FREE_PART,
252 	KMEMLEAK_FREE_PERCPU,
253 	KMEMLEAK_NOT_LEAK,
254 	KMEMLEAK_IGNORE,
255 	KMEMLEAK_SCAN_AREA,
256 	KMEMLEAK_NO_SCAN,
257 	KMEMLEAK_SET_EXCESS_REF
258 };
259 
260 /*
261  * Structure holding the information passed to kmemleak callbacks during the
262  * early logging.
263  */
264 struct early_log {
265 	int op_type;			/* kmemleak operation type */
266 	int min_count;			/* minimum reference count */
267 	const void *ptr;		/* allocated/freed memory block */
268 	union {
269 		size_t size;		/* memory block size */
270 		unsigned long excess_ref; /* surplus reference passing */
271 	};
272 	unsigned long trace[MAX_TRACE];	/* stack trace */
273 	unsigned int trace_len;		/* stack trace length */
274 };
275 
276 /* early logging buffer and current position */
277 static struct early_log
278 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
279 static int crt_early_log __initdata;
280 
281 static void kmemleak_disable(void);
282 
283 /*
284  * Print a warning and dump the stack trace.
285  */
286 #define kmemleak_warn(x...)	do {		\
287 	pr_warn(x);				\
288 	dump_stack();				\
289 	kmemleak_warning = 1;			\
290 } while (0)
291 
292 /*
293  * Macro invoked when a serious kmemleak condition occurred and cannot be
294  * recovered from. Kmemleak will be disabled and further allocation/freeing
295  * tracing no longer available.
296  */
297 #define kmemleak_stop(x...)	do {	\
298 	kmemleak_warn(x);		\
299 	kmemleak_disable();		\
300 } while (0)
301 
302 /*
303  * Printing of the objects hex dump to the seq file. The number of lines to be
304  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
305  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
306  * with the object->lock held.
307  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)308 static void hex_dump_object(struct seq_file *seq,
309 			    struct kmemleak_object *object)
310 {
311 	const u8 *ptr = (const u8 *)object->pointer;
312 	size_t len;
313 
314 	/* limit the number of lines to HEX_MAX_LINES */
315 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
316 
317 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
318 	kasan_disable_current();
319 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
320 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
321 	kasan_enable_current();
322 }
323 
324 /*
325  * Object colors, encoded with count and min_count:
326  * - white - orphan object, not enough references to it (count < min_count)
327  * - gray  - not orphan, not marked as false positive (min_count == 0) or
328  *		sufficient references to it (count >= min_count)
329  * - black - ignore, it doesn't contain references (e.g. text section)
330  *		(min_count == -1). No function defined for this color.
331  * Newly created objects don't have any color assigned (object->count == -1)
332  * before the next memory scan when they become white.
333  */
color_white(const struct kmemleak_object * object)334 static bool color_white(const struct kmemleak_object *object)
335 {
336 	return object->count != KMEMLEAK_BLACK &&
337 		object->count < object->min_count;
338 }
339 
color_gray(const struct kmemleak_object * object)340 static bool color_gray(const struct kmemleak_object *object)
341 {
342 	return object->min_count != KMEMLEAK_BLACK &&
343 		object->count >= object->min_count;
344 }
345 
346 /*
347  * Objects are considered unreferenced only if their color is white, they have
348  * not be deleted and have a minimum age to avoid false positives caused by
349  * pointers temporarily stored in CPU registers.
350  */
unreferenced_object(struct kmemleak_object * object)351 static bool unreferenced_object(struct kmemleak_object *object)
352 {
353 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
354 		time_before_eq(object->jiffies + jiffies_min_age,
355 			       jiffies_last_scan);
356 }
357 
358 /*
359  * Printing of the unreferenced objects information to the seq file. The
360  * print_unreferenced function must be called with the object->lock held.
361  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)362 static void print_unreferenced(struct seq_file *seq,
363 			       struct kmemleak_object *object)
364 {
365 	int i;
366 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
367 
368 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
369 		   object->pointer, object->size);
370 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
371 		   object->comm, object->pid, object->jiffies,
372 		   msecs_age / 1000, msecs_age % 1000);
373 	hex_dump_object(seq, object);
374 	seq_printf(seq, "  backtrace:\n");
375 
376 	for (i = 0; i < object->trace_len; i++) {
377 		void *ptr = (void *)object->trace[i];
378 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
379 	}
380 }
381 
382 /*
383  * Print the kmemleak_object information. This function is used mainly for
384  * debugging special cases when kmemleak operations. It must be called with
385  * the object->lock held.
386  */
dump_object_info(struct kmemleak_object * object)387 static void dump_object_info(struct kmemleak_object *object)
388 {
389 	struct stack_trace trace;
390 
391 	trace.nr_entries = object->trace_len;
392 	trace.entries = object->trace;
393 
394 	pr_notice("Object 0x%08lx (size %zu):\n",
395 		  object->pointer, object->size);
396 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
397 		  object->comm, object->pid, object->jiffies);
398 	pr_notice("  min_count = %d\n", object->min_count);
399 	pr_notice("  count = %d\n", object->count);
400 	pr_notice("  flags = 0x%x\n", object->flags);
401 	pr_notice("  checksum = %u\n", object->checksum);
402 	pr_notice("  backtrace:\n");
403 	print_stack_trace(&trace, 4);
404 }
405 
406 /*
407  * Look-up a memory block metadata (kmemleak_object) in the object search
408  * tree based on a pointer value. If alias is 0, only values pointing to the
409  * beginning of the memory block are allowed. The kmemleak_lock must be held
410  * when calling this function.
411  */
lookup_object(unsigned long ptr,int alias)412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
413 {
414 	struct rb_node *rb = object_tree_root.rb_node;
415 
416 	while (rb) {
417 		struct kmemleak_object *object =
418 			rb_entry(rb, struct kmemleak_object, rb_node);
419 		if (ptr < object->pointer)
420 			rb = object->rb_node.rb_left;
421 		else if (object->pointer + object->size <= ptr)
422 			rb = object->rb_node.rb_right;
423 		else if (object->pointer == ptr || alias)
424 			return object;
425 		else {
426 			kmemleak_warn("Found object by alias at 0x%08lx\n",
427 				      ptr);
428 			dump_object_info(object);
429 			break;
430 		}
431 	}
432 	return NULL;
433 }
434 
435 /*
436  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
437  * that once an object's use_count reached 0, the RCU freeing was already
438  * registered and the object should no longer be used. This function must be
439  * called under the protection of rcu_read_lock().
440  */
get_object(struct kmemleak_object * object)441 static int get_object(struct kmemleak_object *object)
442 {
443 	return atomic_inc_not_zero(&object->use_count);
444 }
445 
446 /*
447  * RCU callback to free a kmemleak_object.
448  */
free_object_rcu(struct rcu_head * rcu)449 static void free_object_rcu(struct rcu_head *rcu)
450 {
451 	struct hlist_node *tmp;
452 	struct kmemleak_scan_area *area;
453 	struct kmemleak_object *object =
454 		container_of(rcu, struct kmemleak_object, rcu);
455 
456 	/*
457 	 * Once use_count is 0 (guaranteed by put_object), there is no other
458 	 * code accessing this object, hence no need for locking.
459 	 */
460 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
461 		hlist_del(&area->node);
462 		kmem_cache_free(scan_area_cache, area);
463 	}
464 	kmem_cache_free(object_cache, object);
465 }
466 
467 /*
468  * Decrement the object use_count. Once the count is 0, free the object using
469  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
470  * delete_object() path, the delayed RCU freeing ensures that there is no
471  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
472  * is also possible.
473  */
put_object(struct kmemleak_object * object)474 static void put_object(struct kmemleak_object *object)
475 {
476 	if (!atomic_dec_and_test(&object->use_count))
477 		return;
478 
479 	/* should only get here after delete_object was called */
480 	WARN_ON(object->flags & OBJECT_ALLOCATED);
481 
482 	call_rcu(&object->rcu, free_object_rcu);
483 }
484 
485 /*
486  * Look up an object in the object search tree and increase its use_count.
487  */
find_and_get_object(unsigned long ptr,int alias)488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
489 {
490 	unsigned long flags;
491 	struct kmemleak_object *object;
492 
493 	rcu_read_lock();
494 	read_lock_irqsave(&kmemleak_lock, flags);
495 	object = lookup_object(ptr, alias);
496 	read_unlock_irqrestore(&kmemleak_lock, flags);
497 
498 	/* check whether the object is still available */
499 	if (object && !get_object(object))
500 		object = NULL;
501 	rcu_read_unlock();
502 
503 	return object;
504 }
505 
506 /*
507  * Look up an object in the object search tree and remove it from both
508  * object_tree_root and object_list. The returned object's use_count should be
509  * at least 1, as initially set by create_object().
510  */
find_and_remove_object(unsigned long ptr,int alias)511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
512 {
513 	unsigned long flags;
514 	struct kmemleak_object *object;
515 
516 	write_lock_irqsave(&kmemleak_lock, flags);
517 	object = lookup_object(ptr, alias);
518 	if (object) {
519 		rb_erase(&object->rb_node, &object_tree_root);
520 		list_del_rcu(&object->object_list);
521 	}
522 	write_unlock_irqrestore(&kmemleak_lock, flags);
523 
524 	return object;
525 }
526 
527 /*
528  * Save stack trace to the given array of MAX_TRACE size.
529  */
__save_stack_trace(unsigned long * trace)530 static int __save_stack_trace(unsigned long *trace)
531 {
532 	struct stack_trace stack_trace;
533 
534 	stack_trace.max_entries = MAX_TRACE;
535 	stack_trace.nr_entries = 0;
536 	stack_trace.entries = trace;
537 	stack_trace.skip = 2;
538 	save_stack_trace(&stack_trace);
539 
540 	return stack_trace.nr_entries;
541 }
542 
543 /*
544  * Create the metadata (struct kmemleak_object) corresponding to an allocated
545  * memory block and add it to the object_list and object_tree_root.
546  */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548 					     int min_count, gfp_t gfp)
549 {
550 	unsigned long flags;
551 	struct kmemleak_object *object, *parent;
552 	struct rb_node **link, *rb_parent;
553 
554 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
555 	if (!object) {
556 		pr_warn("Cannot allocate a kmemleak_object structure\n");
557 		kmemleak_disable();
558 		return NULL;
559 	}
560 
561 	INIT_LIST_HEAD(&object->object_list);
562 	INIT_LIST_HEAD(&object->gray_list);
563 	INIT_HLIST_HEAD(&object->area_list);
564 	spin_lock_init(&object->lock);
565 	atomic_set(&object->use_count, 1);
566 	object->flags = OBJECT_ALLOCATED;
567 	object->pointer = ptr;
568 	object->size = size;
569 	object->excess_ref = 0;
570 	object->min_count = min_count;
571 	object->count = 0;			/* white color initially */
572 	object->jiffies = jiffies;
573 	object->checksum = 0;
574 
575 	/* task information */
576 	if (in_irq()) {
577 		object->pid = 0;
578 		strncpy(object->comm, "hardirq", sizeof(object->comm));
579 	} else if (in_softirq()) {
580 		object->pid = 0;
581 		strncpy(object->comm, "softirq", sizeof(object->comm));
582 	} else {
583 		object->pid = current->pid;
584 		/*
585 		 * There is a small chance of a race with set_task_comm(),
586 		 * however using get_task_comm() here may cause locking
587 		 * dependency issues with current->alloc_lock. In the worst
588 		 * case, the command line is not correct.
589 		 */
590 		strncpy(object->comm, current->comm, sizeof(object->comm));
591 	}
592 
593 	/* kernel backtrace */
594 	object->trace_len = __save_stack_trace(object->trace);
595 
596 	write_lock_irqsave(&kmemleak_lock, flags);
597 
598 	min_addr = min(min_addr, ptr);
599 	max_addr = max(max_addr, ptr + size);
600 	link = &object_tree_root.rb_node;
601 	rb_parent = NULL;
602 	while (*link) {
603 		rb_parent = *link;
604 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605 		if (ptr + size <= parent->pointer)
606 			link = &parent->rb_node.rb_left;
607 		else if (parent->pointer + parent->size <= ptr)
608 			link = &parent->rb_node.rb_right;
609 		else {
610 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611 				      ptr);
612 			/*
613 			 * No need for parent->lock here since "parent" cannot
614 			 * be freed while the kmemleak_lock is held.
615 			 */
616 			dump_object_info(parent);
617 			kmem_cache_free(object_cache, object);
618 			object = NULL;
619 			goto out;
620 		}
621 	}
622 	rb_link_node(&object->rb_node, rb_parent, link);
623 	rb_insert_color(&object->rb_node, &object_tree_root);
624 
625 	list_add_tail_rcu(&object->object_list, &object_list);
626 out:
627 	write_unlock_irqrestore(&kmemleak_lock, flags);
628 	return object;
629 }
630 
631 /*
632  * Mark the object as not allocated and schedule RCU freeing via put_object().
633  */
__delete_object(struct kmemleak_object * object)634 static void __delete_object(struct kmemleak_object *object)
635 {
636 	unsigned long flags;
637 
638 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 	WARN_ON(atomic_read(&object->use_count) < 1);
640 
641 	/*
642 	 * Locking here also ensures that the corresponding memory block
643 	 * cannot be freed when it is being scanned.
644 	 */
645 	spin_lock_irqsave(&object->lock, flags);
646 	object->flags &= ~OBJECT_ALLOCATED;
647 	spin_unlock_irqrestore(&object->lock, flags);
648 	put_object(object);
649 }
650 
651 /*
652  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653  * delete it.
654  */
delete_object_full(unsigned long ptr)655 static void delete_object_full(unsigned long ptr)
656 {
657 	struct kmemleak_object *object;
658 
659 	object = find_and_remove_object(ptr, 0);
660 	if (!object) {
661 #ifdef DEBUG
662 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 			      ptr);
664 #endif
665 		return;
666 	}
667 	__delete_object(object);
668 }
669 
670 /*
671  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672  * delete it. If the memory block is partially freed, the function may create
673  * additional metadata for the remaining parts of the block.
674  */
delete_object_part(unsigned long ptr,size_t size)675 static void delete_object_part(unsigned long ptr, size_t size)
676 {
677 	struct kmemleak_object *object;
678 	unsigned long start, end;
679 
680 	object = find_and_remove_object(ptr, 1);
681 	if (!object) {
682 #ifdef DEBUG
683 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684 			      ptr, size);
685 #endif
686 		return;
687 	}
688 
689 	/*
690 	 * Create one or two objects that may result from the memory block
691 	 * split. Note that partial freeing is only done by free_bootmem() and
692 	 * this happens before kmemleak_init() is called. The path below is
693 	 * only executed during early log recording in kmemleak_init(), so
694 	 * GFP_KERNEL is enough.
695 	 */
696 	start = object->pointer;
697 	end = object->pointer + object->size;
698 	if (ptr > start)
699 		create_object(start, ptr - start, object->min_count,
700 			      GFP_KERNEL);
701 	if (ptr + size < end)
702 		create_object(ptr + size, end - ptr - size, object->min_count,
703 			      GFP_KERNEL);
704 
705 	__delete_object(object);
706 }
707 
__paint_it(struct kmemleak_object * object,int color)708 static void __paint_it(struct kmemleak_object *object, int color)
709 {
710 	object->min_count = color;
711 	if (color == KMEMLEAK_BLACK)
712 		object->flags |= OBJECT_NO_SCAN;
713 }
714 
paint_it(struct kmemleak_object * object,int color)715 static void paint_it(struct kmemleak_object *object, int color)
716 {
717 	unsigned long flags;
718 
719 	spin_lock_irqsave(&object->lock, flags);
720 	__paint_it(object, color);
721 	spin_unlock_irqrestore(&object->lock, flags);
722 }
723 
paint_ptr(unsigned long ptr,int color)724 static void paint_ptr(unsigned long ptr, int color)
725 {
726 	struct kmemleak_object *object;
727 
728 	object = find_and_get_object(ptr, 0);
729 	if (!object) {
730 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731 			      ptr,
732 			      (color == KMEMLEAK_GREY) ? "Grey" :
733 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 		return;
735 	}
736 	paint_it(object, color);
737 	put_object(object);
738 }
739 
740 /*
741  * Mark an object permanently as gray-colored so that it can no longer be
742  * reported as a leak. This is used in general to mark a false positive.
743  */
make_gray_object(unsigned long ptr)744 static void make_gray_object(unsigned long ptr)
745 {
746 	paint_ptr(ptr, KMEMLEAK_GREY);
747 }
748 
749 /*
750  * Mark the object as black-colored so that it is ignored from scans and
751  * reporting.
752  */
make_black_object(unsigned long ptr)753 static void make_black_object(unsigned long ptr)
754 {
755 	paint_ptr(ptr, KMEMLEAK_BLACK);
756 }
757 
758 /*
759  * Add a scanning area to the object. If at least one such area is added,
760  * kmemleak will only scan these ranges rather than the whole memory block.
761  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763 {
764 	unsigned long flags;
765 	struct kmemleak_object *object;
766 	struct kmemleak_scan_area *area;
767 
768 	object = find_and_get_object(ptr, 1);
769 	if (!object) {
770 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 			      ptr);
772 		return;
773 	}
774 
775 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 	if (!area) {
777 		pr_warn("Cannot allocate a scan area\n");
778 		goto out;
779 	}
780 
781 	spin_lock_irqsave(&object->lock, flags);
782 	if (size == SIZE_MAX) {
783 		size = object->pointer + object->size - ptr;
784 	} else if (ptr + size > object->pointer + object->size) {
785 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 		dump_object_info(object);
787 		kmem_cache_free(scan_area_cache, area);
788 		goto out_unlock;
789 	}
790 
791 	INIT_HLIST_NODE(&area->node);
792 	area->start = ptr;
793 	area->size = size;
794 
795 	hlist_add_head(&area->node, &object->area_list);
796 out_unlock:
797 	spin_unlock_irqrestore(&object->lock, flags);
798 out:
799 	put_object(object);
800 }
801 
802 /*
803  * Any surplus references (object already gray) to 'ptr' are passed to
804  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805  * vm_struct may be used as an alternative reference to the vmalloc'ed object
806  * (see free_thread_stack()).
807  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
809 {
810 	unsigned long flags;
811 	struct kmemleak_object *object;
812 
813 	object = find_and_get_object(ptr, 0);
814 	if (!object) {
815 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816 			      ptr);
817 		return;
818 	}
819 
820 	spin_lock_irqsave(&object->lock, flags);
821 	object->excess_ref = excess_ref;
822 	spin_unlock_irqrestore(&object->lock, flags);
823 	put_object(object);
824 }
825 
826 /*
827  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828  * pointer. Such object will not be scanned by kmemleak but references to it
829  * are searched.
830  */
object_no_scan(unsigned long ptr)831 static void object_no_scan(unsigned long ptr)
832 {
833 	unsigned long flags;
834 	struct kmemleak_object *object;
835 
836 	object = find_and_get_object(ptr, 0);
837 	if (!object) {
838 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839 		return;
840 	}
841 
842 	spin_lock_irqsave(&object->lock, flags);
843 	object->flags |= OBJECT_NO_SCAN;
844 	spin_unlock_irqrestore(&object->lock, flags);
845 	put_object(object);
846 }
847 
848 /*
849  * Log an early kmemleak_* call to the early_log buffer. These calls will be
850  * processed later once kmemleak is fully initialized.
851  */
log_early(int op_type,const void * ptr,size_t size,int min_count)852 static void __init log_early(int op_type, const void *ptr, size_t size,
853 			     int min_count)
854 {
855 	unsigned long flags;
856 	struct early_log *log;
857 
858 	if (kmemleak_error) {
859 		/* kmemleak stopped recording, just count the requests */
860 		crt_early_log++;
861 		return;
862 	}
863 
864 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
865 		crt_early_log++;
866 		kmemleak_disable();
867 		return;
868 	}
869 
870 	/*
871 	 * There is no need for locking since the kernel is still in UP mode
872 	 * at this stage. Disabling the IRQs is enough.
873 	 */
874 	local_irq_save(flags);
875 	log = &early_log[crt_early_log];
876 	log->op_type = op_type;
877 	log->ptr = ptr;
878 	log->size = size;
879 	log->min_count = min_count;
880 	log->trace_len = __save_stack_trace(log->trace);
881 	crt_early_log++;
882 	local_irq_restore(flags);
883 }
884 
885 /*
886  * Log an early allocated block and populate the stack trace.
887  */
early_alloc(struct early_log * log)888 static void early_alloc(struct early_log *log)
889 {
890 	struct kmemleak_object *object;
891 	unsigned long flags;
892 	int i;
893 
894 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895 		return;
896 
897 	/*
898 	 * RCU locking needed to ensure object is not freed via put_object().
899 	 */
900 	rcu_read_lock();
901 	object = create_object((unsigned long)log->ptr, log->size,
902 			       log->min_count, GFP_ATOMIC);
903 	if (!object)
904 		goto out;
905 	spin_lock_irqsave(&object->lock, flags);
906 	for (i = 0; i < log->trace_len; i++)
907 		object->trace[i] = log->trace[i];
908 	object->trace_len = log->trace_len;
909 	spin_unlock_irqrestore(&object->lock, flags);
910 out:
911 	rcu_read_unlock();
912 }
913 
914 /*
915  * Log an early allocated block and populate the stack trace.
916  */
early_alloc_percpu(struct early_log * log)917 static void early_alloc_percpu(struct early_log *log)
918 {
919 	unsigned int cpu;
920 	const void __percpu *ptr = log->ptr;
921 
922 	for_each_possible_cpu(cpu) {
923 		log->ptr = per_cpu_ptr(ptr, cpu);
924 		early_alloc(log);
925 	}
926 }
927 
928 /**
929  * kmemleak_alloc - register a newly allocated object
930  * @ptr:	pointer to beginning of the object
931  * @size:	size of the object
932  * @min_count:	minimum number of references to this object. If during memory
933  *		scanning a number of references less than @min_count is found,
934  *		the object is reported as a memory leak. If @min_count is 0,
935  *		the object is never reported as a leak. If @min_count is -1,
936  *		the object is ignored (not scanned and not reported as a leak)
937  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
938  *
939  * This function is called from the kernel allocators when a new object
940  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
941  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943 			  gfp_t gfp)
944 {
945 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
946 
947 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948 		create_object((unsigned long)ptr, size, min_count, gfp);
949 	else if (kmemleak_early_log)
950 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_alloc);
953 
954 /**
955  * kmemleak_alloc_percpu - register a newly allocated __percpu object
956  * @ptr:	__percpu pointer to beginning of the object
957  * @size:	size of the object
958  * @gfp:	flags used for kmemleak internal memory allocations
959  *
960  * This function is called from the kernel percpu allocator when a new object
961  * (memory block) is allocated (alloc_percpu).
962  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964 				 gfp_t gfp)
965 {
966 	unsigned int cpu;
967 
968 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
969 
970 	/*
971 	 * Percpu allocations are only scanned and not reported as leaks
972 	 * (min_count is set to 0).
973 	 */
974 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975 		for_each_possible_cpu(cpu)
976 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977 				      size, 0, gfp);
978 	else if (kmemleak_early_log)
979 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
980 }
981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
982 
983 /**
984  * kmemleak_vmalloc - register a newly vmalloc'ed object
985  * @area:	pointer to vm_struct
986  * @size:	size of the object
987  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
988  *
989  * This function is called from the vmalloc() kernel allocator when a new
990  * object (memory block) is allocated.
991  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
993 {
994 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
995 
996 	/*
997 	 * A min_count = 2 is needed because vm_struct contains a reference to
998 	 * the virtual address of the vmalloc'ed block.
999 	 */
1000 	if (kmemleak_enabled) {
1001 		create_object((unsigned long)area->addr, size, 2, gfp);
1002 		object_set_excess_ref((unsigned long)area,
1003 				      (unsigned long)area->addr);
1004 	} else if (kmemleak_early_log) {
1005 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006 		/* reusing early_log.size for storing area->addr */
1007 		log_early(KMEMLEAK_SET_EXCESS_REF,
1008 			  area, (unsigned long)area->addr, 0);
1009 	}
1010 }
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012 
1013 /**
1014  * kmemleak_free - unregister a previously registered object
1015  * @ptr:	pointer to beginning of the object
1016  *
1017  * This function is called from the kernel allocators when an object (memory
1018  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019  */
kmemleak_free(const void * ptr)1020 void __ref kmemleak_free(const void *ptr)
1021 {
1022 	pr_debug("%s(0x%p)\n", __func__, ptr);
1023 
1024 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 		delete_object_full((unsigned long)ptr);
1026 	else if (kmemleak_early_log)
1027 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
1028 }
1029 EXPORT_SYMBOL_GPL(kmemleak_free);
1030 
1031 /**
1032  * kmemleak_free_part - partially unregister a previously registered object
1033  * @ptr:	pointer to the beginning or inside the object. This also
1034  *		represents the start of the range to be freed
1035  * @size:	size to be unregistered
1036  *
1037  * This function is called when only a part of a memory block is freed
1038  * (usually from the bootmem allocator).
1039  */
kmemleak_free_part(const void * ptr,size_t size)1040 void __ref kmemleak_free_part(const void *ptr, size_t size)
1041 {
1042 	pr_debug("%s(0x%p)\n", __func__, ptr);
1043 
1044 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045 		delete_object_part((unsigned long)ptr, size);
1046 	else if (kmemleak_early_log)
1047 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1048 }
1049 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1050 
1051 /**
1052  * kmemleak_free_percpu - unregister a previously registered __percpu object
1053  * @ptr:	__percpu pointer to beginning of the object
1054  *
1055  * This function is called from the kernel percpu allocator when an object
1056  * (memory block) is freed (free_percpu).
1057  */
kmemleak_free_percpu(const void __percpu * ptr)1058 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1059 {
1060 	unsigned int cpu;
1061 
1062 	pr_debug("%s(0x%p)\n", __func__, ptr);
1063 
1064 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065 		for_each_possible_cpu(cpu)
1066 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067 								      cpu));
1068 	else if (kmemleak_early_log)
1069 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1070 }
1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1072 
1073 /**
1074  * kmemleak_update_trace - update object allocation stack trace
1075  * @ptr:	pointer to beginning of the object
1076  *
1077  * Override the object allocation stack trace for cases where the actual
1078  * allocation place is not always useful.
1079  */
kmemleak_update_trace(const void * ptr)1080 void __ref kmemleak_update_trace(const void *ptr)
1081 {
1082 	struct kmemleak_object *object;
1083 	unsigned long flags;
1084 
1085 	pr_debug("%s(0x%p)\n", __func__, ptr);
1086 
1087 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088 		return;
1089 
1090 	object = find_and_get_object((unsigned long)ptr, 1);
1091 	if (!object) {
1092 #ifdef DEBUG
1093 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094 			      ptr);
1095 #endif
1096 		return;
1097 	}
1098 
1099 	spin_lock_irqsave(&object->lock, flags);
1100 	object->trace_len = __save_stack_trace(object->trace);
1101 	spin_unlock_irqrestore(&object->lock, flags);
1102 
1103 	put_object(object);
1104 }
1105 EXPORT_SYMBOL(kmemleak_update_trace);
1106 
1107 /**
1108  * kmemleak_not_leak - mark an allocated object as false positive
1109  * @ptr:	pointer to beginning of the object
1110  *
1111  * Calling this function on an object will cause the memory block to no longer
1112  * be reported as leak and always be scanned.
1113  */
kmemleak_not_leak(const void * ptr)1114 void __ref kmemleak_not_leak(const void *ptr)
1115 {
1116 	pr_debug("%s(0x%p)\n", __func__, ptr);
1117 
1118 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 		make_gray_object((unsigned long)ptr);
1120 	else if (kmemleak_early_log)
1121 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1122 }
1123 EXPORT_SYMBOL(kmemleak_not_leak);
1124 
1125 /**
1126  * kmemleak_ignore - ignore an allocated object
1127  * @ptr:	pointer to beginning of the object
1128  *
1129  * Calling this function on an object will cause the memory block to be
1130  * ignored (not scanned and not reported as a leak). This is usually done when
1131  * it is known that the corresponding block is not a leak and does not contain
1132  * any references to other allocated memory blocks.
1133  */
kmemleak_ignore(const void * ptr)1134 void __ref kmemleak_ignore(const void *ptr)
1135 {
1136 	pr_debug("%s(0x%p)\n", __func__, ptr);
1137 
1138 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139 		make_black_object((unsigned long)ptr);
1140 	else if (kmemleak_early_log)
1141 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1142 }
1143 EXPORT_SYMBOL(kmemleak_ignore);
1144 
1145 /**
1146  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147  * @ptr:	pointer to beginning or inside the object. This also
1148  *		represents the start of the scan area
1149  * @size:	size of the scan area
1150  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1151  *
1152  * This function is used when it is known that only certain parts of an object
1153  * contain references to other objects. Kmemleak will only scan these areas
1154  * reducing the number false negatives.
1155  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157 {
1158 	pr_debug("%s(0x%p)\n", __func__, ptr);
1159 
1160 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161 		add_scan_area((unsigned long)ptr, size, gfp);
1162 	else if (kmemleak_early_log)
1163 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1164 }
1165 EXPORT_SYMBOL(kmemleak_scan_area);
1166 
1167 /**
1168  * kmemleak_no_scan - do not scan an allocated object
1169  * @ptr:	pointer to beginning of the object
1170  *
1171  * This function notifies kmemleak not to scan the given memory block. Useful
1172  * in situations where it is known that the given object does not contain any
1173  * references to other objects. Kmemleak will not scan such objects reducing
1174  * the number of false negatives.
1175  */
kmemleak_no_scan(const void * ptr)1176 void __ref kmemleak_no_scan(const void *ptr)
1177 {
1178 	pr_debug("%s(0x%p)\n", __func__, ptr);
1179 
1180 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181 		object_no_scan((unsigned long)ptr);
1182 	else if (kmemleak_early_log)
1183 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1184 }
1185 EXPORT_SYMBOL(kmemleak_no_scan);
1186 
1187 /**
1188  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189  *			 address argument
1190  * @phys:	physical address of the object
1191  * @size:	size of the object
1192  * @min_count:	minimum number of references to this object.
1193  *              See kmemleak_alloc()
1194  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1195  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1196 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1197 			       gfp_t gfp)
1198 {
1199 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1200 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1201 }
1202 EXPORT_SYMBOL(kmemleak_alloc_phys);
1203 
1204 /**
1205  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1206  *			     physical address argument
1207  * @phys:	physical address if the beginning or inside an object. This
1208  *		also represents the start of the range to be freed
1209  * @size:	size to be unregistered
1210  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1211 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1212 {
1213 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1214 		kmemleak_free_part(__va(phys), size);
1215 }
1216 EXPORT_SYMBOL(kmemleak_free_part_phys);
1217 
1218 /**
1219  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1220  *			    address argument
1221  * @phys:	physical address of the object
1222  */
kmemleak_not_leak_phys(phys_addr_t phys)1223 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1224 {
1225 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 		kmemleak_not_leak(__va(phys));
1227 }
1228 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1229 
1230 /**
1231  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1232  *			  address argument
1233  * @phys:	physical address of the object
1234  */
kmemleak_ignore_phys(phys_addr_t phys)1235 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1236 {
1237 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 		kmemleak_ignore(__va(phys));
1239 }
1240 EXPORT_SYMBOL(kmemleak_ignore_phys);
1241 
1242 /*
1243  * Update an object's checksum and return true if it was modified.
1244  */
update_checksum(struct kmemleak_object * object)1245 static bool update_checksum(struct kmemleak_object *object)
1246 {
1247 	u32 old_csum = object->checksum;
1248 
1249 	kasan_disable_current();
1250 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1251 	kasan_enable_current();
1252 
1253 	return object->checksum != old_csum;
1254 }
1255 
1256 /*
1257  * Update an object's references. object->lock must be held by the caller.
1258  */
update_refs(struct kmemleak_object * object)1259 static void update_refs(struct kmemleak_object *object)
1260 {
1261 	if (!color_white(object)) {
1262 		/* non-orphan, ignored or new */
1263 		return;
1264 	}
1265 
1266 	/*
1267 	 * Increase the object's reference count (number of pointers to the
1268 	 * memory block). If this count reaches the required minimum, the
1269 	 * object's color will become gray and it will be added to the
1270 	 * gray_list.
1271 	 */
1272 	object->count++;
1273 	if (color_gray(object)) {
1274 		/* put_object() called when removing from gray_list */
1275 		WARN_ON(!get_object(object));
1276 		list_add_tail(&object->gray_list, &gray_list);
1277 	}
1278 }
1279 
1280 /*
1281  * Memory scanning is a long process and it needs to be interruptable. This
1282  * function checks whether such interrupt condition occurred.
1283  */
scan_should_stop(void)1284 static int scan_should_stop(void)
1285 {
1286 	if (!kmemleak_enabled)
1287 		return 1;
1288 
1289 	/*
1290 	 * This function may be called from either process or kthread context,
1291 	 * hence the need to check for both stop conditions.
1292 	 */
1293 	if (current->mm)
1294 		return signal_pending(current);
1295 	else
1296 		return kthread_should_stop();
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Scan a memory block (exclusive range) for valid pointers and add those
1303  * found to the gray list.
1304  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1305 static void scan_block(void *_start, void *_end,
1306 		       struct kmemleak_object *scanned)
1307 {
1308 	unsigned long *ptr;
1309 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1310 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1311 	unsigned long flags;
1312 
1313 	read_lock_irqsave(&kmemleak_lock, flags);
1314 	for (ptr = start; ptr < end; ptr++) {
1315 		struct kmemleak_object *object;
1316 		unsigned long pointer;
1317 		unsigned long excess_ref;
1318 
1319 		if (scan_should_stop())
1320 			break;
1321 
1322 		kasan_disable_current();
1323 		pointer = *ptr;
1324 		kasan_enable_current();
1325 
1326 		if (pointer < min_addr || pointer >= max_addr)
1327 			continue;
1328 
1329 		/*
1330 		 * No need for get_object() here since we hold kmemleak_lock.
1331 		 * object->use_count cannot be dropped to 0 while the object
1332 		 * is still present in object_tree_root and object_list
1333 		 * (with updates protected by kmemleak_lock).
1334 		 */
1335 		object = lookup_object(pointer, 1);
1336 		if (!object)
1337 			continue;
1338 		if (object == scanned)
1339 			/* self referenced, ignore */
1340 			continue;
1341 
1342 		/*
1343 		 * Avoid the lockdep recursive warning on object->lock being
1344 		 * previously acquired in scan_object(). These locks are
1345 		 * enclosed by scan_mutex.
1346 		 */
1347 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1348 		/* only pass surplus references (object already gray) */
1349 		if (color_gray(object)) {
1350 			excess_ref = object->excess_ref;
1351 			/* no need for update_refs() if object already gray */
1352 		} else {
1353 			excess_ref = 0;
1354 			update_refs(object);
1355 		}
1356 		spin_unlock(&object->lock);
1357 
1358 		if (excess_ref) {
1359 			object = lookup_object(excess_ref, 0);
1360 			if (!object)
1361 				continue;
1362 			if (object == scanned)
1363 				/* circular reference, ignore */
1364 				continue;
1365 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1366 			update_refs(object);
1367 			spin_unlock(&object->lock);
1368 		}
1369 	}
1370 	read_unlock_irqrestore(&kmemleak_lock, flags);
1371 }
1372 
1373 /*
1374  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1375  */
scan_large_block(void * start,void * end)1376 static void scan_large_block(void *start, void *end)
1377 {
1378 	void *next;
1379 
1380 	while (start < end) {
1381 		next = min(start + MAX_SCAN_SIZE, end);
1382 		scan_block(start, next, NULL);
1383 		start = next;
1384 		cond_resched();
1385 	}
1386 }
1387 
1388 /*
1389  * Scan a memory block corresponding to a kmemleak_object. A condition is
1390  * that object->use_count >= 1.
1391  */
scan_object(struct kmemleak_object * object)1392 static void scan_object(struct kmemleak_object *object)
1393 {
1394 	struct kmemleak_scan_area *area;
1395 	unsigned long flags;
1396 
1397 	/*
1398 	 * Once the object->lock is acquired, the corresponding memory block
1399 	 * cannot be freed (the same lock is acquired in delete_object).
1400 	 */
1401 	spin_lock_irqsave(&object->lock, flags);
1402 	if (object->flags & OBJECT_NO_SCAN)
1403 		goto out;
1404 	if (!(object->flags & OBJECT_ALLOCATED))
1405 		/* already freed object */
1406 		goto out;
1407 	if (hlist_empty(&object->area_list)) {
1408 		void *start = (void *)object->pointer;
1409 		void *end = (void *)(object->pointer + object->size);
1410 		void *next;
1411 
1412 		do {
1413 			next = min(start + MAX_SCAN_SIZE, end);
1414 			scan_block(start, next, object);
1415 
1416 			start = next;
1417 			if (start >= end)
1418 				break;
1419 
1420 			spin_unlock_irqrestore(&object->lock, flags);
1421 			cond_resched();
1422 			spin_lock_irqsave(&object->lock, flags);
1423 		} while (object->flags & OBJECT_ALLOCATED);
1424 	} else
1425 		hlist_for_each_entry(area, &object->area_list, node)
1426 			scan_block((void *)area->start,
1427 				   (void *)(area->start + area->size),
1428 				   object);
1429 out:
1430 	spin_unlock_irqrestore(&object->lock, flags);
1431 }
1432 
1433 /*
1434  * Scan the objects already referenced (gray objects). More objects will be
1435  * referenced and, if there are no memory leaks, all the objects are scanned.
1436  */
scan_gray_list(void)1437 static void scan_gray_list(void)
1438 {
1439 	struct kmemleak_object *object, *tmp;
1440 
1441 	/*
1442 	 * The list traversal is safe for both tail additions and removals
1443 	 * from inside the loop. The kmemleak objects cannot be freed from
1444 	 * outside the loop because their use_count was incremented.
1445 	 */
1446 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 	while (&object->gray_list != &gray_list) {
1448 		cond_resched();
1449 
1450 		/* may add new objects to the list */
1451 		if (!scan_should_stop())
1452 			scan_object(object);
1453 
1454 		tmp = list_entry(object->gray_list.next, typeof(*object),
1455 				 gray_list);
1456 
1457 		/* remove the object from the list and release it */
1458 		list_del(&object->gray_list);
1459 		put_object(object);
1460 
1461 		object = tmp;
1462 	}
1463 	WARN_ON(!list_empty(&gray_list));
1464 }
1465 
1466 /*
1467  * Scan data sections and all the referenced memory blocks allocated via the
1468  * kernel's standard allocators. This function must be called with the
1469  * scan_mutex held.
1470  */
kmemleak_scan(void)1471 static void kmemleak_scan(void)
1472 {
1473 	unsigned long flags;
1474 	struct kmemleak_object *object;
1475 	int i;
1476 	int new_leaks = 0;
1477 
1478 	jiffies_last_scan = jiffies;
1479 
1480 	/* prepare the kmemleak_object's */
1481 	rcu_read_lock();
1482 	list_for_each_entry_rcu(object, &object_list, object_list) {
1483 		spin_lock_irqsave(&object->lock, flags);
1484 #ifdef DEBUG
1485 		/*
1486 		 * With a few exceptions there should be a maximum of
1487 		 * 1 reference to any object at this point.
1488 		 */
1489 		if (atomic_read(&object->use_count) > 1) {
1490 			pr_debug("object->use_count = %d\n",
1491 				 atomic_read(&object->use_count));
1492 			dump_object_info(object);
1493 		}
1494 #endif
1495 		/* reset the reference count (whiten the object) */
1496 		object->count = 0;
1497 		if (color_gray(object) && get_object(object))
1498 			list_add_tail(&object->gray_list, &gray_list);
1499 
1500 		spin_unlock_irqrestore(&object->lock, flags);
1501 	}
1502 	rcu_read_unlock();
1503 
1504 	/* data/bss scanning */
1505 	scan_large_block(_sdata, _edata);
1506 	scan_large_block(__bss_start, __bss_stop);
1507 	scan_large_block(__start_ro_after_init, __end_ro_after_init);
1508 
1509 #ifdef CONFIG_SMP
1510 	/* per-cpu sections scanning */
1511 	for_each_possible_cpu(i)
1512 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1513 				 __per_cpu_end + per_cpu_offset(i));
1514 #endif
1515 
1516 	/*
1517 	 * Struct page scanning for each node.
1518 	 */
1519 	get_online_mems();
1520 	for_each_online_node(i) {
1521 		unsigned long start_pfn = node_start_pfn(i);
1522 		unsigned long end_pfn = node_end_pfn(i);
1523 		unsigned long pfn;
1524 
1525 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 			struct page *page;
1527 
1528 			if (!pfn_valid(pfn))
1529 				continue;
1530 			page = pfn_to_page(pfn);
1531 			/* only scan if page is in use */
1532 			if (page_count(page) == 0)
1533 				continue;
1534 			scan_block(page, page + 1, NULL);
1535 			if (!(pfn & 63))
1536 				cond_resched();
1537 		}
1538 	}
1539 	put_online_mems();
1540 
1541 	/*
1542 	 * Scanning the task stacks (may introduce false negatives).
1543 	 */
1544 	if (kmemleak_stack_scan) {
1545 		struct task_struct *p, *g;
1546 
1547 		read_lock(&tasklist_lock);
1548 		do_each_thread(g, p) {
1549 			void *stack = try_get_task_stack(p);
1550 			if (stack) {
1551 				scan_block(stack, stack + THREAD_SIZE, NULL);
1552 				put_task_stack(p);
1553 			}
1554 		} while_each_thread(g, p);
1555 		read_unlock(&tasklist_lock);
1556 	}
1557 
1558 	/*
1559 	 * Scan the objects already referenced from the sections scanned
1560 	 * above.
1561 	 */
1562 	scan_gray_list();
1563 
1564 	/*
1565 	 * Check for new or unreferenced objects modified since the previous
1566 	 * scan and color them gray until the next scan.
1567 	 */
1568 	rcu_read_lock();
1569 	list_for_each_entry_rcu(object, &object_list, object_list) {
1570 		spin_lock_irqsave(&object->lock, flags);
1571 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1572 		    && update_checksum(object) && get_object(object)) {
1573 			/* color it gray temporarily */
1574 			object->count = object->min_count;
1575 			list_add_tail(&object->gray_list, &gray_list);
1576 		}
1577 		spin_unlock_irqrestore(&object->lock, flags);
1578 	}
1579 	rcu_read_unlock();
1580 
1581 	/*
1582 	 * Re-scan the gray list for modified unreferenced objects.
1583 	 */
1584 	scan_gray_list();
1585 
1586 	/*
1587 	 * If scanning was stopped do not report any new unreferenced objects.
1588 	 */
1589 	if (scan_should_stop())
1590 		return;
1591 
1592 	/*
1593 	 * Scanning result reporting.
1594 	 */
1595 	rcu_read_lock();
1596 	list_for_each_entry_rcu(object, &object_list, object_list) {
1597 		spin_lock_irqsave(&object->lock, flags);
1598 		if (unreferenced_object(object) &&
1599 		    !(object->flags & OBJECT_REPORTED)) {
1600 			object->flags |= OBJECT_REPORTED;
1601 			new_leaks++;
1602 		}
1603 		spin_unlock_irqrestore(&object->lock, flags);
1604 	}
1605 	rcu_read_unlock();
1606 
1607 	if (new_leaks) {
1608 		kmemleak_found_leaks = true;
1609 
1610 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1611 			new_leaks);
1612 	}
1613 
1614 }
1615 
1616 /*
1617  * Thread function performing automatic memory scanning. Unreferenced objects
1618  * at the end of a memory scan are reported but only the first time.
1619  */
kmemleak_scan_thread(void * arg)1620 static int kmemleak_scan_thread(void *arg)
1621 {
1622 	static int first_run = 1;
1623 
1624 	pr_info("Automatic memory scanning thread started\n");
1625 	set_user_nice(current, 10);
1626 
1627 	/*
1628 	 * Wait before the first scan to allow the system to fully initialize.
1629 	 */
1630 	if (first_run) {
1631 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1632 		first_run = 0;
1633 		while (timeout && !kthread_should_stop())
1634 			timeout = schedule_timeout_interruptible(timeout);
1635 	}
1636 
1637 	while (!kthread_should_stop()) {
1638 		signed long timeout = jiffies_scan_wait;
1639 
1640 		mutex_lock(&scan_mutex);
1641 		kmemleak_scan();
1642 		mutex_unlock(&scan_mutex);
1643 
1644 		/* wait before the next scan */
1645 		while (timeout && !kthread_should_stop())
1646 			timeout = schedule_timeout_interruptible(timeout);
1647 	}
1648 
1649 	pr_info("Automatic memory scanning thread ended\n");
1650 
1651 	return 0;
1652 }
1653 
1654 /*
1655  * Start the automatic memory scanning thread. This function must be called
1656  * with the scan_mutex held.
1657  */
start_scan_thread(void)1658 static void start_scan_thread(void)
1659 {
1660 	if (scan_thread)
1661 		return;
1662 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1663 	if (IS_ERR(scan_thread)) {
1664 		pr_warn("Failed to create the scan thread\n");
1665 		scan_thread = NULL;
1666 	}
1667 }
1668 
1669 /*
1670  * Stop the automatic memory scanning thread.
1671  */
stop_scan_thread(void)1672 static void stop_scan_thread(void)
1673 {
1674 	if (scan_thread) {
1675 		kthread_stop(scan_thread);
1676 		scan_thread = NULL;
1677 	}
1678 }
1679 
1680 /*
1681  * Iterate over the object_list and return the first valid object at or after
1682  * the required position with its use_count incremented. The function triggers
1683  * a memory scanning when the pos argument points to the first position.
1684  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1685 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1686 {
1687 	struct kmemleak_object *object;
1688 	loff_t n = *pos;
1689 	int err;
1690 
1691 	err = mutex_lock_interruptible(&scan_mutex);
1692 	if (err < 0)
1693 		return ERR_PTR(err);
1694 
1695 	rcu_read_lock();
1696 	list_for_each_entry_rcu(object, &object_list, object_list) {
1697 		if (n-- > 0)
1698 			continue;
1699 		if (get_object(object))
1700 			goto out;
1701 	}
1702 	object = NULL;
1703 out:
1704 	return object;
1705 }
1706 
1707 /*
1708  * Return the next object in the object_list. The function decrements the
1709  * use_count of the previous object and increases that of the next one.
1710  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1711 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1712 {
1713 	struct kmemleak_object *prev_obj = v;
1714 	struct kmemleak_object *next_obj = NULL;
1715 	struct kmemleak_object *obj = prev_obj;
1716 
1717 	++(*pos);
1718 
1719 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1720 		if (get_object(obj)) {
1721 			next_obj = obj;
1722 			break;
1723 		}
1724 	}
1725 
1726 	put_object(prev_obj);
1727 	return next_obj;
1728 }
1729 
1730 /*
1731  * Decrement the use_count of the last object required, if any.
1732  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1733 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1734 {
1735 	if (!IS_ERR(v)) {
1736 		/*
1737 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1738 		 * waiting was interrupted, so only release it if !IS_ERR.
1739 		 */
1740 		rcu_read_unlock();
1741 		mutex_unlock(&scan_mutex);
1742 		if (v)
1743 			put_object(v);
1744 	}
1745 }
1746 
1747 /*
1748  * Print the information for an unreferenced object to the seq file.
1749  */
kmemleak_seq_show(struct seq_file * seq,void * v)1750 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1751 {
1752 	struct kmemleak_object *object = v;
1753 	unsigned long flags;
1754 
1755 	spin_lock_irqsave(&object->lock, flags);
1756 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1757 		print_unreferenced(seq, object);
1758 	spin_unlock_irqrestore(&object->lock, flags);
1759 	return 0;
1760 }
1761 
1762 static const struct seq_operations kmemleak_seq_ops = {
1763 	.start = kmemleak_seq_start,
1764 	.next  = kmemleak_seq_next,
1765 	.stop  = kmemleak_seq_stop,
1766 	.show  = kmemleak_seq_show,
1767 };
1768 
kmemleak_open(struct inode * inode,struct file * file)1769 static int kmemleak_open(struct inode *inode, struct file *file)
1770 {
1771 	return seq_open(file, &kmemleak_seq_ops);
1772 }
1773 
dump_str_object_info(const char * str)1774 static int dump_str_object_info(const char *str)
1775 {
1776 	unsigned long flags;
1777 	struct kmemleak_object *object;
1778 	unsigned long addr;
1779 
1780 	if (kstrtoul(str, 0, &addr))
1781 		return -EINVAL;
1782 	object = find_and_get_object(addr, 0);
1783 	if (!object) {
1784 		pr_info("Unknown object at 0x%08lx\n", addr);
1785 		return -EINVAL;
1786 	}
1787 
1788 	spin_lock_irqsave(&object->lock, flags);
1789 	dump_object_info(object);
1790 	spin_unlock_irqrestore(&object->lock, flags);
1791 
1792 	put_object(object);
1793 	return 0;
1794 }
1795 
1796 /*
1797  * We use grey instead of black to ensure we can do future scans on the same
1798  * objects. If we did not do future scans these black objects could
1799  * potentially contain references to newly allocated objects in the future and
1800  * we'd end up with false positives.
1801  */
kmemleak_clear(void)1802 static void kmemleak_clear(void)
1803 {
1804 	struct kmemleak_object *object;
1805 	unsigned long flags;
1806 
1807 	rcu_read_lock();
1808 	list_for_each_entry_rcu(object, &object_list, object_list) {
1809 		spin_lock_irqsave(&object->lock, flags);
1810 		if ((object->flags & OBJECT_REPORTED) &&
1811 		    unreferenced_object(object))
1812 			__paint_it(object, KMEMLEAK_GREY);
1813 		spin_unlock_irqrestore(&object->lock, flags);
1814 	}
1815 	rcu_read_unlock();
1816 
1817 	kmemleak_found_leaks = false;
1818 }
1819 
1820 static void __kmemleak_do_cleanup(void);
1821 
1822 /*
1823  * File write operation to configure kmemleak at run-time. The following
1824  * commands can be written to the /sys/kernel/debug/kmemleak file:
1825  *   off	- disable kmemleak (irreversible)
1826  *   stack=on	- enable the task stacks scanning
1827  *   stack=off	- disable the tasks stacks scanning
1828  *   scan=on	- start the automatic memory scanning thread
1829  *   scan=off	- stop the automatic memory scanning thread
1830  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1831  *		  disable it)
1832  *   scan	- trigger a memory scan
1833  *   clear	- mark all current reported unreferenced kmemleak objects as
1834  *		  grey to ignore printing them, or free all kmemleak objects
1835  *		  if kmemleak has been disabled.
1836  *   dump=...	- dump information about the object found at the given address
1837  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1838 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1839 			      size_t size, loff_t *ppos)
1840 {
1841 	char buf[64];
1842 	int buf_size;
1843 	int ret;
1844 
1845 	buf_size = min(size, (sizeof(buf) - 1));
1846 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1847 		return -EFAULT;
1848 	buf[buf_size] = 0;
1849 
1850 	ret = mutex_lock_interruptible(&scan_mutex);
1851 	if (ret < 0)
1852 		return ret;
1853 
1854 	if (strncmp(buf, "clear", 5) == 0) {
1855 		if (kmemleak_enabled)
1856 			kmemleak_clear();
1857 		else
1858 			__kmemleak_do_cleanup();
1859 		goto out;
1860 	}
1861 
1862 	if (!kmemleak_enabled) {
1863 		ret = -EBUSY;
1864 		goto out;
1865 	}
1866 
1867 	if (strncmp(buf, "off", 3) == 0)
1868 		kmemleak_disable();
1869 	else if (strncmp(buf, "stack=on", 8) == 0)
1870 		kmemleak_stack_scan = 1;
1871 	else if (strncmp(buf, "stack=off", 9) == 0)
1872 		kmemleak_stack_scan = 0;
1873 	else if (strncmp(buf, "scan=on", 7) == 0)
1874 		start_scan_thread();
1875 	else if (strncmp(buf, "scan=off", 8) == 0)
1876 		stop_scan_thread();
1877 	else if (strncmp(buf, "scan=", 5) == 0) {
1878 		unsigned long secs;
1879 
1880 		ret = kstrtoul(buf + 5, 0, &secs);
1881 		if (ret < 0)
1882 			goto out;
1883 		stop_scan_thread();
1884 		if (secs) {
1885 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1886 			start_scan_thread();
1887 		}
1888 	} else if (strncmp(buf, "scan", 4) == 0)
1889 		kmemleak_scan();
1890 	else if (strncmp(buf, "dump=", 5) == 0)
1891 		ret = dump_str_object_info(buf + 5);
1892 	else
1893 		ret = -EINVAL;
1894 
1895 out:
1896 	mutex_unlock(&scan_mutex);
1897 	if (ret < 0)
1898 		return ret;
1899 
1900 	/* ignore the rest of the buffer, only one command at a time */
1901 	*ppos += size;
1902 	return size;
1903 }
1904 
1905 static const struct file_operations kmemleak_fops = {
1906 	.owner		= THIS_MODULE,
1907 	.open		= kmemleak_open,
1908 	.read		= seq_read,
1909 	.write		= kmemleak_write,
1910 	.llseek		= seq_lseek,
1911 	.release	= seq_release,
1912 };
1913 
__kmemleak_do_cleanup(void)1914 static void __kmemleak_do_cleanup(void)
1915 {
1916 	struct kmemleak_object *object;
1917 
1918 	rcu_read_lock();
1919 	list_for_each_entry_rcu(object, &object_list, object_list)
1920 		delete_object_full(object->pointer);
1921 	rcu_read_unlock();
1922 }
1923 
1924 /*
1925  * Stop the memory scanning thread and free the kmemleak internal objects if
1926  * no previous scan thread (otherwise, kmemleak may still have some useful
1927  * information on memory leaks).
1928  */
kmemleak_do_cleanup(struct work_struct * work)1929 static void kmemleak_do_cleanup(struct work_struct *work)
1930 {
1931 	stop_scan_thread();
1932 
1933 	mutex_lock(&scan_mutex);
1934 	/*
1935 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1936 	 * longer track object freeing. Ordering of the scan thread stopping and
1937 	 * the memory accesses below is guaranteed by the kthread_stop()
1938 	 * function.
1939 	 */
1940 	kmemleak_free_enabled = 0;
1941 	mutex_unlock(&scan_mutex);
1942 
1943 	if (!kmemleak_found_leaks)
1944 		__kmemleak_do_cleanup();
1945 	else
1946 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1947 }
1948 
1949 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1950 
1951 /*
1952  * Disable kmemleak. No memory allocation/freeing will be traced once this
1953  * function is called. Disabling kmemleak is an irreversible operation.
1954  */
kmemleak_disable(void)1955 static void kmemleak_disable(void)
1956 {
1957 	/* atomically check whether it was already invoked */
1958 	if (cmpxchg(&kmemleak_error, 0, 1))
1959 		return;
1960 
1961 	/* stop any memory operation tracing */
1962 	kmemleak_enabled = 0;
1963 
1964 	/* check whether it is too early for a kernel thread */
1965 	if (kmemleak_initialized)
1966 		schedule_work(&cleanup_work);
1967 	else
1968 		kmemleak_free_enabled = 0;
1969 
1970 	pr_info("Kernel memory leak detector disabled\n");
1971 }
1972 
1973 /*
1974  * Allow boot-time kmemleak disabling (enabled by default).
1975  */
kmemleak_boot_config(char * str)1976 static int __init kmemleak_boot_config(char *str)
1977 {
1978 	if (!str)
1979 		return -EINVAL;
1980 	if (strcmp(str, "off") == 0)
1981 		kmemleak_disable();
1982 	else if (strcmp(str, "on") == 0)
1983 		kmemleak_skip_disable = 1;
1984 	else
1985 		return -EINVAL;
1986 	return 0;
1987 }
1988 early_param("kmemleak", kmemleak_boot_config);
1989 
print_log_trace(struct early_log * log)1990 static void __init print_log_trace(struct early_log *log)
1991 {
1992 	struct stack_trace trace;
1993 
1994 	trace.nr_entries = log->trace_len;
1995 	trace.entries = log->trace;
1996 
1997 	pr_notice("Early log backtrace:\n");
1998 	print_stack_trace(&trace, 2);
1999 }
2000 
2001 /*
2002  * Kmemleak initialization.
2003  */
kmemleak_init(void)2004 void __init kmemleak_init(void)
2005 {
2006 	int i;
2007 	unsigned long flags;
2008 
2009 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2010 	if (!kmemleak_skip_disable) {
2011 		kmemleak_early_log = 0;
2012 		kmemleak_disable();
2013 		return;
2014 	}
2015 #endif
2016 
2017 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2018 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2019 
2020 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2021 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2022 
2023 	if (crt_early_log > ARRAY_SIZE(early_log))
2024 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2025 			crt_early_log);
2026 
2027 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
2028 	local_irq_save(flags);
2029 	kmemleak_early_log = 0;
2030 	if (kmemleak_error) {
2031 		local_irq_restore(flags);
2032 		return;
2033 	} else {
2034 		kmemleak_enabled = 1;
2035 		kmemleak_free_enabled = 1;
2036 	}
2037 	local_irq_restore(flags);
2038 
2039 	/*
2040 	 * This is the point where tracking allocations is safe. Automatic
2041 	 * scanning is started during the late initcall. Add the early logged
2042 	 * callbacks to the kmemleak infrastructure.
2043 	 */
2044 	for (i = 0; i < crt_early_log; i++) {
2045 		struct early_log *log = &early_log[i];
2046 
2047 		switch (log->op_type) {
2048 		case KMEMLEAK_ALLOC:
2049 			early_alloc(log);
2050 			break;
2051 		case KMEMLEAK_ALLOC_PERCPU:
2052 			early_alloc_percpu(log);
2053 			break;
2054 		case KMEMLEAK_FREE:
2055 			kmemleak_free(log->ptr);
2056 			break;
2057 		case KMEMLEAK_FREE_PART:
2058 			kmemleak_free_part(log->ptr, log->size);
2059 			break;
2060 		case KMEMLEAK_FREE_PERCPU:
2061 			kmemleak_free_percpu(log->ptr);
2062 			break;
2063 		case KMEMLEAK_NOT_LEAK:
2064 			kmemleak_not_leak(log->ptr);
2065 			break;
2066 		case KMEMLEAK_IGNORE:
2067 			kmemleak_ignore(log->ptr);
2068 			break;
2069 		case KMEMLEAK_SCAN_AREA:
2070 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2071 			break;
2072 		case KMEMLEAK_NO_SCAN:
2073 			kmemleak_no_scan(log->ptr);
2074 			break;
2075 		case KMEMLEAK_SET_EXCESS_REF:
2076 			object_set_excess_ref((unsigned long)log->ptr,
2077 					      log->excess_ref);
2078 			break;
2079 		default:
2080 			kmemleak_warn("Unknown early log operation: %d\n",
2081 				      log->op_type);
2082 		}
2083 
2084 		if (kmemleak_warning) {
2085 			print_log_trace(log);
2086 			kmemleak_warning = 0;
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * Late initialization function.
2093  */
kmemleak_late_init(void)2094 static int __init kmemleak_late_init(void)
2095 {
2096 	struct dentry *dentry;
2097 
2098 	kmemleak_initialized = 1;
2099 
2100 	dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2101 				     &kmemleak_fops);
2102 	if (!dentry)
2103 		pr_warn("Failed to create the debugfs kmemleak file\n");
2104 
2105 	if (kmemleak_error) {
2106 		/*
2107 		 * Some error occurred and kmemleak was disabled. There is a
2108 		 * small chance that kmemleak_disable() was called immediately
2109 		 * after setting kmemleak_initialized and we may end up with
2110 		 * two clean-up threads but serialized by scan_mutex.
2111 		 */
2112 		schedule_work(&cleanup_work);
2113 		return -ENOMEM;
2114 	}
2115 
2116 	mutex_lock(&scan_mutex);
2117 	start_scan_thread();
2118 	mutex_unlock(&scan_mutex);
2119 
2120 	pr_info("Kernel memory leak detector initialized\n");
2121 
2122 	return 0;
2123 }
2124 late_initcall(kmemleak_late_init);
2125