1 /*
2  * Frontswap frontend
3  *
4  * This code provides the generic "frontend" layer to call a matching
5  * "backend" driver implementation of frontswap.  See
6  * Documentation/vm/frontswap.rst for more information.
7  *
8  * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
9  * Author: Dan Magenheimer
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2.
12  */
13 
14 #include <linux/mman.h>
15 #include <linux/swap.h>
16 #include <linux/swapops.h>
17 #include <linux/security.h>
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/frontswap.h>
21 #include <linux/swapfile.h>
22 
23 DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
24 
25 /*
26  * frontswap_ops are added by frontswap_register_ops, and provide the
27  * frontswap "backend" implementation functions.  Multiple implementations
28  * may be registered, but implementations can never deregister.  This
29  * is a simple singly-linked list of all registered implementations.
30  */
31 static struct frontswap_ops *frontswap_ops __read_mostly;
32 
33 #define for_each_frontswap_ops(ops)		\
34 	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
35 
36 /*
37  * If enabled, frontswap_store will return failure even on success.  As
38  * a result, the swap subsystem will always write the page to swap, in
39  * effect converting frontswap into a writethrough cache.  In this mode,
40  * there is no direct reduction in swap writes, but a frontswap backend
41  * can unilaterally "reclaim" any pages in use with no data loss, thus
42  * providing increases control over maximum memory usage due to frontswap.
43  */
44 static bool frontswap_writethrough_enabled __read_mostly;
45 
46 /*
47  * If enabled, the underlying tmem implementation is capable of doing
48  * exclusive gets, so frontswap_load, on a successful tmem_get must
49  * mark the page as no longer in frontswap AND mark it dirty.
50  */
51 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
52 
53 #ifdef CONFIG_DEBUG_FS
54 /*
55  * Counters available via /sys/kernel/debug/frontswap (if debugfs is
56  * properly configured).  These are for information only so are not protected
57  * against increment races.
58  */
59 static u64 frontswap_loads;
60 static u64 frontswap_succ_stores;
61 static u64 frontswap_failed_stores;
62 static u64 frontswap_invalidates;
63 
inc_frontswap_loads(void)64 static inline void inc_frontswap_loads(void) {
65 	frontswap_loads++;
66 }
inc_frontswap_succ_stores(void)67 static inline void inc_frontswap_succ_stores(void) {
68 	frontswap_succ_stores++;
69 }
inc_frontswap_failed_stores(void)70 static inline void inc_frontswap_failed_stores(void) {
71 	frontswap_failed_stores++;
72 }
inc_frontswap_invalidates(void)73 static inline void inc_frontswap_invalidates(void) {
74 	frontswap_invalidates++;
75 }
76 #else
inc_frontswap_loads(void)77 static inline void inc_frontswap_loads(void) { }
inc_frontswap_succ_stores(void)78 static inline void inc_frontswap_succ_stores(void) { }
inc_frontswap_failed_stores(void)79 static inline void inc_frontswap_failed_stores(void) { }
inc_frontswap_invalidates(void)80 static inline void inc_frontswap_invalidates(void) { }
81 #endif
82 
83 /*
84  * Due to the asynchronous nature of the backends loading potentially
85  * _after_ the swap system has been activated, we have chokepoints
86  * on all frontswap functions to not call the backend until the backend
87  * has registered.
88  *
89  * This would not guards us against the user deciding to call swapoff right as
90  * we are calling the backend to initialize (so swapon is in action).
91  * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
92  * OK. The other scenario where calls to frontswap_store (called via
93  * swap_writepage) is racing with frontswap_invalidate_area (called via
94  * swapoff) is again guarded by the swap subsystem.
95  *
96  * While no backend is registered all calls to frontswap_[store|load|
97  * invalidate_area|invalidate_page] are ignored or fail.
98  *
99  * The time between the backend being registered and the swap file system
100  * calling the backend (via the frontswap_* functions) is indeterminate as
101  * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
102  * That is OK as we are comfortable missing some of these calls to the newly
103  * registered backend.
104  *
105  * Obviously the opposite (unloading the backend) must be done after all
106  * the frontswap_[store|load|invalidate_area|invalidate_page] start
107  * ignoring or failing the requests.  However, there is currently no way
108  * to unload a backend once it is registered.
109  */
110 
111 /*
112  * Register operations for frontswap
113  */
frontswap_register_ops(struct frontswap_ops * ops)114 void frontswap_register_ops(struct frontswap_ops *ops)
115 {
116 	DECLARE_BITMAP(a, MAX_SWAPFILES);
117 	DECLARE_BITMAP(b, MAX_SWAPFILES);
118 	struct swap_info_struct *si;
119 	unsigned int i;
120 
121 	bitmap_zero(a, MAX_SWAPFILES);
122 	bitmap_zero(b, MAX_SWAPFILES);
123 
124 	spin_lock(&swap_lock);
125 	plist_for_each_entry(si, &swap_active_head, list) {
126 		if (!WARN_ON(!si->frontswap_map))
127 			set_bit(si->type, a);
128 	}
129 	spin_unlock(&swap_lock);
130 
131 	/* the new ops needs to know the currently active swap devices */
132 	for_each_set_bit(i, a, MAX_SWAPFILES)
133 		ops->init(i);
134 
135 	/*
136 	 * Setting frontswap_ops must happen after the ops->init() calls
137 	 * above; cmpxchg implies smp_mb() which will ensure the init is
138 	 * complete at this point.
139 	 */
140 	do {
141 		ops->next = frontswap_ops;
142 	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
143 
144 	static_branch_inc(&frontswap_enabled_key);
145 
146 	spin_lock(&swap_lock);
147 	plist_for_each_entry(si, &swap_active_head, list) {
148 		if (si->frontswap_map)
149 			set_bit(si->type, b);
150 	}
151 	spin_unlock(&swap_lock);
152 
153 	/*
154 	 * On the very unlikely chance that a swap device was added or
155 	 * removed between setting the "a" list bits and the ops init
156 	 * calls, we re-check and do init or invalidate for any changed
157 	 * bits.
158 	 */
159 	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
160 		for (i = 0; i < MAX_SWAPFILES; i++) {
161 			if (!test_bit(i, a) && test_bit(i, b))
162 				ops->init(i);
163 			else if (test_bit(i, a) && !test_bit(i, b))
164 				ops->invalidate_area(i);
165 		}
166 	}
167 }
168 EXPORT_SYMBOL(frontswap_register_ops);
169 
170 /*
171  * Enable/disable frontswap writethrough (see above).
172  */
frontswap_writethrough(bool enable)173 void frontswap_writethrough(bool enable)
174 {
175 	frontswap_writethrough_enabled = enable;
176 }
177 EXPORT_SYMBOL(frontswap_writethrough);
178 
179 /*
180  * Enable/disable frontswap exclusive gets (see above).
181  */
frontswap_tmem_exclusive_gets(bool enable)182 void frontswap_tmem_exclusive_gets(bool enable)
183 {
184 	frontswap_tmem_exclusive_gets_enabled = enable;
185 }
186 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
187 
188 /*
189  * Called when a swap device is swapon'd.
190  */
__frontswap_init(unsigned type,unsigned long * map)191 void __frontswap_init(unsigned type, unsigned long *map)
192 {
193 	struct swap_info_struct *sis = swap_info[type];
194 	struct frontswap_ops *ops;
195 
196 	VM_BUG_ON(sis == NULL);
197 
198 	/*
199 	 * p->frontswap is a bitmap that we MUST have to figure out which page
200 	 * has gone in frontswap. Without it there is no point of continuing.
201 	 */
202 	if (WARN_ON(!map))
203 		return;
204 	/*
205 	 * Irregardless of whether the frontswap backend has been loaded
206 	 * before this function or it will be later, we _MUST_ have the
207 	 * p->frontswap set to something valid to work properly.
208 	 */
209 	frontswap_map_set(sis, map);
210 
211 	for_each_frontswap_ops(ops)
212 		ops->init(type);
213 }
214 EXPORT_SYMBOL(__frontswap_init);
215 
__frontswap_test(struct swap_info_struct * sis,pgoff_t offset)216 bool __frontswap_test(struct swap_info_struct *sis,
217 				pgoff_t offset)
218 {
219 	if (sis->frontswap_map)
220 		return test_bit(offset, sis->frontswap_map);
221 	return false;
222 }
223 EXPORT_SYMBOL(__frontswap_test);
224 
__frontswap_set(struct swap_info_struct * sis,pgoff_t offset)225 static inline void __frontswap_set(struct swap_info_struct *sis,
226 				   pgoff_t offset)
227 {
228 	set_bit(offset, sis->frontswap_map);
229 	atomic_inc(&sis->frontswap_pages);
230 }
231 
__frontswap_clear(struct swap_info_struct * sis,pgoff_t offset)232 static inline void __frontswap_clear(struct swap_info_struct *sis,
233 				     pgoff_t offset)
234 {
235 	clear_bit(offset, sis->frontswap_map);
236 	atomic_dec(&sis->frontswap_pages);
237 }
238 
239 /*
240  * "Store" data from a page to frontswap and associate it with the page's
241  * swaptype and offset.  Page must be locked and in the swap cache.
242  * If frontswap already contains a page with matching swaptype and
243  * offset, the frontswap implementation may either overwrite the data and
244  * return success or invalidate the page from frontswap and return failure.
245  */
__frontswap_store(struct page * page)246 int __frontswap_store(struct page *page)
247 {
248 	int ret = -1;
249 	swp_entry_t entry = { .val = page_private(page), };
250 	int type = swp_type(entry);
251 	struct swap_info_struct *sis = swap_info[type];
252 	pgoff_t offset = swp_offset(entry);
253 	struct frontswap_ops *ops;
254 
255 	VM_BUG_ON(!frontswap_ops);
256 	VM_BUG_ON(!PageLocked(page));
257 	VM_BUG_ON(sis == NULL);
258 
259 	/*
260 	 * If a dup, we must remove the old page first; we can't leave the
261 	 * old page no matter if the store of the new page succeeds or fails,
262 	 * and we can't rely on the new page replacing the old page as we may
263 	 * not store to the same implementation that contains the old page.
264 	 */
265 	if (__frontswap_test(sis, offset)) {
266 		__frontswap_clear(sis, offset);
267 		for_each_frontswap_ops(ops)
268 			ops->invalidate_page(type, offset);
269 	}
270 
271 	/* Try to store in each implementation, until one succeeds. */
272 	for_each_frontswap_ops(ops) {
273 		ret = ops->store(type, offset, page);
274 		if (!ret) /* successful store */
275 			break;
276 	}
277 	if (ret == 0) {
278 		__frontswap_set(sis, offset);
279 		inc_frontswap_succ_stores();
280 	} else {
281 		inc_frontswap_failed_stores();
282 	}
283 	if (frontswap_writethrough_enabled)
284 		/* report failure so swap also writes to swap device */
285 		ret = -1;
286 	return ret;
287 }
288 EXPORT_SYMBOL(__frontswap_store);
289 
290 /*
291  * "Get" data from frontswap associated with swaptype and offset that were
292  * specified when the data was put to frontswap and use it to fill the
293  * specified page with data. Page must be locked and in the swap cache.
294  */
__frontswap_load(struct page * page)295 int __frontswap_load(struct page *page)
296 {
297 	int ret = -1;
298 	swp_entry_t entry = { .val = page_private(page), };
299 	int type = swp_type(entry);
300 	struct swap_info_struct *sis = swap_info[type];
301 	pgoff_t offset = swp_offset(entry);
302 	struct frontswap_ops *ops;
303 
304 	VM_BUG_ON(!frontswap_ops);
305 	VM_BUG_ON(!PageLocked(page));
306 	VM_BUG_ON(sis == NULL);
307 
308 	if (!__frontswap_test(sis, offset))
309 		return -1;
310 
311 	/* Try loading from each implementation, until one succeeds. */
312 	for_each_frontswap_ops(ops) {
313 		ret = ops->load(type, offset, page);
314 		if (!ret) /* successful load */
315 			break;
316 	}
317 	if (ret == 0) {
318 		inc_frontswap_loads();
319 		if (frontswap_tmem_exclusive_gets_enabled) {
320 			SetPageDirty(page);
321 			__frontswap_clear(sis, offset);
322 		}
323 	}
324 	return ret;
325 }
326 EXPORT_SYMBOL(__frontswap_load);
327 
328 /*
329  * Invalidate any data from frontswap associated with the specified swaptype
330  * and offset so that a subsequent "get" will fail.
331  */
__frontswap_invalidate_page(unsigned type,pgoff_t offset)332 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
333 {
334 	struct swap_info_struct *sis = swap_info[type];
335 	struct frontswap_ops *ops;
336 
337 	VM_BUG_ON(!frontswap_ops);
338 	VM_BUG_ON(sis == NULL);
339 
340 	if (!__frontswap_test(sis, offset))
341 		return;
342 
343 	for_each_frontswap_ops(ops)
344 		ops->invalidate_page(type, offset);
345 	__frontswap_clear(sis, offset);
346 	inc_frontswap_invalidates();
347 }
348 EXPORT_SYMBOL(__frontswap_invalidate_page);
349 
350 /*
351  * Invalidate all data from frontswap associated with all offsets for the
352  * specified swaptype.
353  */
__frontswap_invalidate_area(unsigned type)354 void __frontswap_invalidate_area(unsigned type)
355 {
356 	struct swap_info_struct *sis = swap_info[type];
357 	struct frontswap_ops *ops;
358 
359 	VM_BUG_ON(!frontswap_ops);
360 	VM_BUG_ON(sis == NULL);
361 
362 	if (sis->frontswap_map == NULL)
363 		return;
364 
365 	for_each_frontswap_ops(ops)
366 		ops->invalidate_area(type);
367 	atomic_set(&sis->frontswap_pages, 0);
368 	bitmap_zero(sis->frontswap_map, sis->max);
369 }
370 EXPORT_SYMBOL(__frontswap_invalidate_area);
371 
__frontswap_curr_pages(void)372 static unsigned long __frontswap_curr_pages(void)
373 {
374 	unsigned long totalpages = 0;
375 	struct swap_info_struct *si = NULL;
376 
377 	assert_spin_locked(&swap_lock);
378 	plist_for_each_entry(si, &swap_active_head, list)
379 		totalpages += atomic_read(&si->frontswap_pages);
380 	return totalpages;
381 }
382 
__frontswap_unuse_pages(unsigned long total,unsigned long * unused,int * swapid)383 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
384 					int *swapid)
385 {
386 	int ret = -EINVAL;
387 	struct swap_info_struct *si = NULL;
388 	int si_frontswap_pages;
389 	unsigned long total_pages_to_unuse = total;
390 	unsigned long pages = 0, pages_to_unuse = 0;
391 
392 	assert_spin_locked(&swap_lock);
393 	plist_for_each_entry(si, &swap_active_head, list) {
394 		si_frontswap_pages = atomic_read(&si->frontswap_pages);
395 		if (total_pages_to_unuse < si_frontswap_pages) {
396 			pages = pages_to_unuse = total_pages_to_unuse;
397 		} else {
398 			pages = si_frontswap_pages;
399 			pages_to_unuse = 0; /* unuse all */
400 		}
401 		/* ensure there is enough RAM to fetch pages from frontswap */
402 		if (security_vm_enough_memory_mm(current->mm, pages)) {
403 			ret = -ENOMEM;
404 			continue;
405 		}
406 		vm_unacct_memory(pages);
407 		*unused = pages_to_unuse;
408 		*swapid = si->type;
409 		ret = 0;
410 		break;
411 	}
412 
413 	return ret;
414 }
415 
416 /*
417  * Used to check if it's necessory and feasible to unuse pages.
418  * Return 1 when nothing to do, 0 when need to shink pages,
419  * error code when there is an error.
420  */
__frontswap_shrink(unsigned long target_pages,unsigned long * pages_to_unuse,int * type)421 static int __frontswap_shrink(unsigned long target_pages,
422 				unsigned long *pages_to_unuse,
423 				int *type)
424 {
425 	unsigned long total_pages = 0, total_pages_to_unuse;
426 
427 	assert_spin_locked(&swap_lock);
428 
429 	total_pages = __frontswap_curr_pages();
430 	if (total_pages <= target_pages) {
431 		/* Nothing to do */
432 		*pages_to_unuse = 0;
433 		return 1;
434 	}
435 	total_pages_to_unuse = total_pages - target_pages;
436 	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
437 }
438 
439 /*
440  * Frontswap, like a true swap device, may unnecessarily retain pages
441  * under certain circumstances; "shrink" frontswap is essentially a
442  * "partial swapoff" and works by calling try_to_unuse to attempt to
443  * unuse enough frontswap pages to attempt to -- subject to memory
444  * constraints -- reduce the number of pages in frontswap to the
445  * number given in the parameter target_pages.
446  */
frontswap_shrink(unsigned long target_pages)447 void frontswap_shrink(unsigned long target_pages)
448 {
449 	unsigned long pages_to_unuse = 0;
450 	int uninitialized_var(type), ret;
451 
452 	/*
453 	 * we don't want to hold swap_lock while doing a very
454 	 * lengthy try_to_unuse, but swap_list may change
455 	 * so restart scan from swap_active_head each time
456 	 */
457 	spin_lock(&swap_lock);
458 	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
459 	spin_unlock(&swap_lock);
460 	if (ret == 0)
461 		try_to_unuse(type, true, pages_to_unuse);
462 	return;
463 }
464 EXPORT_SYMBOL(frontswap_shrink);
465 
466 /*
467  * Count and return the number of frontswap pages across all
468  * swap devices.  This is exported so that backend drivers can
469  * determine current usage without reading debugfs.
470  */
frontswap_curr_pages(void)471 unsigned long frontswap_curr_pages(void)
472 {
473 	unsigned long totalpages = 0;
474 
475 	spin_lock(&swap_lock);
476 	totalpages = __frontswap_curr_pages();
477 	spin_unlock(&swap_lock);
478 
479 	return totalpages;
480 }
481 EXPORT_SYMBOL(frontswap_curr_pages);
482 
init_frontswap(void)483 static int __init init_frontswap(void)
484 {
485 #ifdef CONFIG_DEBUG_FS
486 	struct dentry *root = debugfs_create_dir("frontswap", NULL);
487 	if (root == NULL)
488 		return -ENXIO;
489 	debugfs_create_u64("loads", 0444, root, &frontswap_loads);
490 	debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
491 	debugfs_create_u64("failed_stores", 0444, root,
492 			   &frontswap_failed_stores);
493 	debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
494 #endif
495 	return 0;
496 }
497 
498 module_init(init_frontswap);
499