1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16
17 /*
18 * Managed DMA API
19 */
20 struct dma_devres {
21 size_t size;
22 void *vaddr;
23 dma_addr_t dma_handle;
24 unsigned long attrs;
25 };
26
dmam_release(struct device * dev,void * res)27 static void dmam_release(struct device *dev, void *res)
28 {
29 struct dma_devres *this = res;
30
31 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
32 this->attrs);
33 }
34
dmam_match(struct device * dev,void * res,void * match_data)35 static int dmam_match(struct device *dev, void *res, void *match_data)
36 {
37 struct dma_devres *this = res, *match = match_data;
38
39 if (this->vaddr == match->vaddr) {
40 WARN_ON(this->size != match->size ||
41 this->dma_handle != match->dma_handle);
42 return 1;
43 }
44 return 0;
45 }
46
47 /**
48 * dmam_alloc_coherent - Managed dma_alloc_coherent()
49 * @dev: Device to allocate coherent memory for
50 * @size: Size of allocation
51 * @dma_handle: Out argument for allocated DMA handle
52 * @gfp: Allocation flags
53 *
54 * Managed dma_alloc_coherent(). Memory allocated using this function
55 * will be automatically released on driver detach.
56 *
57 * RETURNS:
58 * Pointer to allocated memory on success, NULL on failure.
59 */
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)60 void *dmam_alloc_coherent(struct device *dev, size_t size,
61 dma_addr_t *dma_handle, gfp_t gfp)
62 {
63 struct dma_devres *dr;
64 void *vaddr;
65
66 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
67 if (!dr)
68 return NULL;
69
70 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
71 if (!vaddr) {
72 devres_free(dr);
73 return NULL;
74 }
75
76 dr->vaddr = vaddr;
77 dr->dma_handle = *dma_handle;
78 dr->size = size;
79
80 devres_add(dev, dr);
81
82 return vaddr;
83 }
84 EXPORT_SYMBOL(dmam_alloc_coherent);
85
86 /**
87 * dmam_free_coherent - Managed dma_free_coherent()
88 * @dev: Device to free coherent memory for
89 * @size: Size of allocation
90 * @vaddr: Virtual address of the memory to free
91 * @dma_handle: DMA handle of the memory to free
92 *
93 * Managed dma_free_coherent().
94 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)95 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
96 dma_addr_t dma_handle)
97 {
98 struct dma_devres match_data = { size, vaddr, dma_handle };
99
100 dma_free_coherent(dev, size, vaddr, dma_handle);
101 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
102 }
103 EXPORT_SYMBOL(dmam_free_coherent);
104
105 /**
106 * dmam_alloc_attrs - Managed dma_alloc_attrs()
107 * @dev: Device to allocate non_coherent memory for
108 * @size: Size of allocation
109 * @dma_handle: Out argument for allocated DMA handle
110 * @gfp: Allocation flags
111 * @attrs: Flags in the DMA_ATTR_* namespace.
112 *
113 * Managed dma_alloc_attrs(). Memory allocated using this function will be
114 * automatically released on driver detach.
115 *
116 * RETURNS:
117 * Pointer to allocated memory on success, NULL on failure.
118 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)119 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
120 gfp_t gfp, unsigned long attrs)
121 {
122 struct dma_devres *dr;
123 void *vaddr;
124
125 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
126 if (!dr)
127 return NULL;
128
129 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
130 if (!vaddr) {
131 devres_free(dr);
132 return NULL;
133 }
134
135 dr->vaddr = vaddr;
136 dr->dma_handle = *dma_handle;
137 dr->size = size;
138 dr->attrs = attrs;
139
140 devres_add(dev, dr);
141
142 return vaddr;
143 }
144 EXPORT_SYMBOL(dmam_alloc_attrs);
145
146 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
147
dmam_coherent_decl_release(struct device * dev,void * res)148 static void dmam_coherent_decl_release(struct device *dev, void *res)
149 {
150 dma_release_declared_memory(dev);
151 }
152
153 /**
154 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
155 * @dev: Device to declare coherent memory for
156 * @phys_addr: Physical address of coherent memory to be declared
157 * @device_addr: Device address of coherent memory to be declared
158 * @size: Size of coherent memory to be declared
159 * @flags: Flags
160 *
161 * Managed dma_declare_coherent_memory().
162 *
163 * RETURNS:
164 * 0 on success, -errno on failure.
165 */
dmam_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,int flags)166 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
167 dma_addr_t device_addr, size_t size, int flags)
168 {
169 void *res;
170 int rc;
171
172 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
173 if (!res)
174 return -ENOMEM;
175
176 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
177 flags);
178 if (!rc)
179 devres_add(dev, res);
180 else
181 devres_free(res);
182
183 return rc;
184 }
185 EXPORT_SYMBOL(dmam_declare_coherent_memory);
186
187 /**
188 * dmam_release_declared_memory - Managed dma_release_declared_memory().
189 * @dev: Device to release declared coherent memory for
190 *
191 * Managed dmam_release_declared_memory().
192 */
dmam_release_declared_memory(struct device * dev)193 void dmam_release_declared_memory(struct device *dev)
194 {
195 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
196 }
197 EXPORT_SYMBOL(dmam_release_declared_memory);
198
199 #endif
200
201 /*
202 * Create scatter-list for the already allocated DMA buffer.
203 */
dma_common_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size)204 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
205 void *cpu_addr, dma_addr_t handle, size_t size)
206 {
207 struct page *page = virt_to_page(cpu_addr);
208 int ret;
209
210 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
211 if (unlikely(ret))
212 return ret;
213
214 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
215 return 0;
216 }
217 EXPORT_SYMBOL(dma_common_get_sgtable);
218
219 /*
220 * Create userspace mapping for the DMA-coherent memory.
221 */
dma_common_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)222 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
223 void *cpu_addr, dma_addr_t dma_addr, size_t size)
224 {
225 int ret = -ENXIO;
226 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
227 unsigned long user_count = vma_pages(vma);
228 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
229 unsigned long off = vma->vm_pgoff;
230
231 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
232
233 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
234 return ret;
235
236 if (off < count && user_count <= (count - off))
237 ret = remap_pfn_range(vma, vma->vm_start,
238 page_to_pfn(virt_to_page(cpu_addr)) + off,
239 user_count << PAGE_SHIFT,
240 vma->vm_page_prot);
241 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
242
243 return ret;
244 }
245 EXPORT_SYMBOL(dma_common_mmap);
246
247 #ifdef CONFIG_MMU
__dma_common_pages_remap(struct page ** pages,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)248 static struct vm_struct *__dma_common_pages_remap(struct page **pages,
249 size_t size, unsigned long vm_flags, pgprot_t prot,
250 const void *caller)
251 {
252 struct vm_struct *area;
253
254 area = get_vm_area_caller(size, vm_flags, caller);
255 if (!area)
256 return NULL;
257
258 if (map_vm_area(area, prot, pages)) {
259 vunmap(area->addr);
260 return NULL;
261 }
262
263 return area;
264 }
265
266 /*
267 * remaps an array of PAGE_SIZE pages into another vm_area
268 * Cannot be used in non-sleeping contexts
269 */
dma_common_pages_remap(struct page ** pages,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)270 void *dma_common_pages_remap(struct page **pages, size_t size,
271 unsigned long vm_flags, pgprot_t prot,
272 const void *caller)
273 {
274 struct vm_struct *area;
275
276 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
277 if (!area)
278 return NULL;
279
280 area->pages = pages;
281
282 return area->addr;
283 }
284
285 /*
286 * remaps an allocated contiguous region into another vm_area.
287 * Cannot be used in non-sleeping contexts
288 */
289
dma_common_contiguous_remap(struct page * page,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)290 void *dma_common_contiguous_remap(struct page *page, size_t size,
291 unsigned long vm_flags,
292 pgprot_t prot, const void *caller)
293 {
294 int i;
295 struct page **pages;
296 struct vm_struct *area;
297
298 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
299 if (!pages)
300 return NULL;
301
302 for (i = 0; i < (size >> PAGE_SHIFT); i++)
303 pages[i] = nth_page(page, i);
304
305 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
306
307 kfree(pages);
308
309 if (!area)
310 return NULL;
311 return area->addr;
312 }
313
314 /*
315 * unmaps a range previously mapped by dma_common_*_remap
316 */
dma_common_free_remap(void * cpu_addr,size_t size,unsigned long vm_flags)317 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
318 {
319 struct vm_struct *area = find_vm_area(cpu_addr);
320
321 if (!area || (area->flags & vm_flags) != vm_flags) {
322 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
323 return;
324 }
325
326 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
327 vunmap(cpu_addr);
328 }
329 #endif
330
331 /*
332 * enables DMA API use for a device
333 */
dma_configure(struct device * dev)334 int dma_configure(struct device *dev)
335 {
336 if (dev->bus->dma_configure)
337 return dev->bus->dma_configure(dev);
338 return 0;
339 }
340
dma_deconfigure(struct device * dev)341 void dma_deconfigure(struct device *dev)
342 {
343 of_dma_deconfigure(dev);
344 acpi_dma_deconfigure(dev);
345 }
346