1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1996 Paul Mackerras.
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <linux/bitrev.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/dbdma.h>
23 #include <asm/io.h>
24 #include <asm/pgtable.h>
25 #include <asm/macio.h>
26
27 #include "mace.h"
28
29 static int port_aaui = -1;
30
31 #define N_RX_RING 8
32 #define N_TX_RING 6
33 #define MAX_TX_ACTIVE 1
34 #define NCMDS_TX 1 /* dma commands per element in tx ring */
35 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
36 #define TX_TIMEOUT HZ /* 1 second */
37
38 /* Chip rev needs workaround on HW & multicast addr change */
39 #define BROKEN_ADDRCHG_REV 0x0941
40
41 /* Bits in transmit DMA status */
42 #define TX_DMA_ERR 0x80
43
44 struct mace_data {
45 volatile struct mace __iomem *mace;
46 volatile struct dbdma_regs __iomem *tx_dma;
47 int tx_dma_intr;
48 volatile struct dbdma_regs __iomem *rx_dma;
49 int rx_dma_intr;
50 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
51 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
52 struct sk_buff *rx_bufs[N_RX_RING];
53 int rx_fill;
54 int rx_empty;
55 struct sk_buff *tx_bufs[N_TX_RING];
56 int tx_fill;
57 int tx_empty;
58 unsigned char maccc;
59 unsigned char tx_fullup;
60 unsigned char tx_active;
61 unsigned char tx_bad_runt;
62 struct timer_list tx_timeout;
63 int timeout_active;
64 int port_aaui;
65 int chipid;
66 struct macio_dev *mdev;
67 spinlock_t lock;
68 };
69
70 /*
71 * Number of bytes of private data per MACE: allow enough for
72 * the rx and tx dma commands plus a branch dma command each,
73 * and another 16 bytes to allow us to align the dma command
74 * buffers on a 16 byte boundary.
75 */
76 #define PRIV_BYTES (sizeof(struct mace_data) \
77 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
78
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(struct timer_list *t);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
93
94 /*
95 * If we can't get a skbuff when we need it, we use this area for DMA.
96 */
97 static unsigned char *dummy_buf;
98
99 static const struct net_device_ops mace_netdev_ops = {
100 .ndo_open = mace_open,
101 .ndo_stop = mace_close,
102 .ndo_start_xmit = mace_xmit_start,
103 .ndo_set_rx_mode = mace_set_multicast,
104 .ndo_set_mac_address = mace_set_address,
105 .ndo_validate_addr = eth_validate_addr,
106 };
107
mace_probe(struct macio_dev * mdev,const struct of_device_id * match)108 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
109 {
110 struct device_node *mace = macio_get_of_node(mdev);
111 struct net_device *dev;
112 struct mace_data *mp;
113 const unsigned char *addr;
114 int j, rev, rc = -EBUSY;
115
116 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
117 printk(KERN_ERR "can't use MACE %pOF: need 3 addrs and 3 irqs\n",
118 mace);
119 return -ENODEV;
120 }
121
122 addr = of_get_property(mace, "mac-address", NULL);
123 if (addr == NULL) {
124 addr = of_get_property(mace, "local-mac-address", NULL);
125 if (addr == NULL) {
126 printk(KERN_ERR "Can't get mac-address for MACE %pOF\n",
127 mace);
128 return -ENODEV;
129 }
130 }
131
132 /*
133 * lazy allocate the driver-wide dummy buffer. (Note that we
134 * never have more than one MACE in the system anyway)
135 */
136 if (dummy_buf == NULL) {
137 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
138 if (dummy_buf == NULL)
139 return -ENOMEM;
140 }
141
142 if (macio_request_resources(mdev, "mace")) {
143 printk(KERN_ERR "MACE: can't request IO resources !\n");
144 return -EBUSY;
145 }
146
147 dev = alloc_etherdev(PRIV_BYTES);
148 if (!dev) {
149 rc = -ENOMEM;
150 goto err_release;
151 }
152 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
153
154 mp = netdev_priv(dev);
155 mp->mdev = mdev;
156 macio_set_drvdata(mdev, dev);
157
158 dev->base_addr = macio_resource_start(mdev, 0);
159 mp->mace = ioremap(dev->base_addr, 0x1000);
160 if (mp->mace == NULL) {
161 printk(KERN_ERR "MACE: can't map IO resources !\n");
162 rc = -ENOMEM;
163 goto err_free;
164 }
165 dev->irq = macio_irq(mdev, 0);
166
167 rev = addr[0] == 0 && addr[1] == 0xA0;
168 for (j = 0; j < 6; ++j) {
169 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
170 }
171 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
172 in_8(&mp->mace->chipid_lo);
173
174
175 mp = netdev_priv(dev);
176 mp->maccc = ENXMT | ENRCV;
177
178 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
179 if (mp->tx_dma == NULL) {
180 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
181 rc = -ENOMEM;
182 goto err_unmap_io;
183 }
184 mp->tx_dma_intr = macio_irq(mdev, 1);
185
186 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
187 if (mp->rx_dma == NULL) {
188 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
189 rc = -ENOMEM;
190 goto err_unmap_tx_dma;
191 }
192 mp->rx_dma_intr = macio_irq(mdev, 2);
193
194 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
195 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
196
197 memset((char *) mp->tx_cmds, 0,
198 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
199 timer_setup(&mp->tx_timeout, mace_tx_timeout, 0);
200 spin_lock_init(&mp->lock);
201 mp->timeout_active = 0;
202
203 if (port_aaui >= 0)
204 mp->port_aaui = port_aaui;
205 else {
206 /* Apple Network Server uses the AAUI port */
207 if (of_machine_is_compatible("AAPL,ShinerESB"))
208 mp->port_aaui = 1;
209 else {
210 #ifdef CONFIG_MACE_AAUI_PORT
211 mp->port_aaui = 1;
212 #else
213 mp->port_aaui = 0;
214 #endif
215 }
216 }
217
218 dev->netdev_ops = &mace_netdev_ops;
219
220 /*
221 * Most of what is below could be moved to mace_open()
222 */
223 mace_reset(dev);
224
225 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
226 if (rc) {
227 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
228 goto err_unmap_rx_dma;
229 }
230 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
231 if (rc) {
232 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
233 goto err_free_irq;
234 }
235 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
236 if (rc) {
237 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
238 goto err_free_tx_irq;
239 }
240
241 rc = register_netdev(dev);
242 if (rc) {
243 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
244 goto err_free_rx_irq;
245 }
246
247 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
248 dev->name, dev->dev_addr,
249 mp->chipid >> 8, mp->chipid & 0xff);
250
251 return 0;
252
253 err_free_rx_irq:
254 free_irq(macio_irq(mdev, 2), dev);
255 err_free_tx_irq:
256 free_irq(macio_irq(mdev, 1), dev);
257 err_free_irq:
258 free_irq(macio_irq(mdev, 0), dev);
259 err_unmap_rx_dma:
260 iounmap(mp->rx_dma);
261 err_unmap_tx_dma:
262 iounmap(mp->tx_dma);
263 err_unmap_io:
264 iounmap(mp->mace);
265 err_free:
266 free_netdev(dev);
267 err_release:
268 macio_release_resources(mdev);
269
270 return rc;
271 }
272
mace_remove(struct macio_dev * mdev)273 static int mace_remove(struct macio_dev *mdev)
274 {
275 struct net_device *dev = macio_get_drvdata(mdev);
276 struct mace_data *mp;
277
278 BUG_ON(dev == NULL);
279
280 macio_set_drvdata(mdev, NULL);
281
282 mp = netdev_priv(dev);
283
284 unregister_netdev(dev);
285
286 free_irq(dev->irq, dev);
287 free_irq(mp->tx_dma_intr, dev);
288 free_irq(mp->rx_dma_intr, dev);
289
290 iounmap(mp->rx_dma);
291 iounmap(mp->tx_dma);
292 iounmap(mp->mace);
293
294 free_netdev(dev);
295
296 macio_release_resources(mdev);
297
298 return 0;
299 }
300
dbdma_reset(volatile struct dbdma_regs __iomem * dma)301 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
302 {
303 int i;
304
305 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
306
307 /*
308 * Yes this looks peculiar, but apparently it needs to be this
309 * way on some machines.
310 */
311 for (i = 200; i > 0; --i)
312 if (le32_to_cpu(dma->control) & RUN)
313 udelay(1);
314 }
315
mace_reset(struct net_device * dev)316 static void mace_reset(struct net_device *dev)
317 {
318 struct mace_data *mp = netdev_priv(dev);
319 volatile struct mace __iomem *mb = mp->mace;
320 int i;
321
322 /* soft-reset the chip */
323 i = 200;
324 while (--i) {
325 out_8(&mb->biucc, SWRST);
326 if (in_8(&mb->biucc) & SWRST) {
327 udelay(10);
328 continue;
329 }
330 break;
331 }
332 if (!i) {
333 printk(KERN_ERR "mace: cannot reset chip!\n");
334 return;
335 }
336
337 out_8(&mb->imr, 0xff); /* disable all intrs for now */
338 i = in_8(&mb->ir);
339 out_8(&mb->maccc, 0); /* turn off tx, rx */
340
341 out_8(&mb->biucc, XMTSP_64);
342 out_8(&mb->utr, RTRD);
343 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
344 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
345 out_8(&mb->rcvfc, 0);
346
347 /* load up the hardware address */
348 __mace_set_address(dev, dev->dev_addr);
349
350 /* clear the multicast filter */
351 if (mp->chipid == BROKEN_ADDRCHG_REV)
352 out_8(&mb->iac, LOGADDR);
353 else {
354 out_8(&mb->iac, ADDRCHG | LOGADDR);
355 while ((in_8(&mb->iac) & ADDRCHG) != 0)
356 ;
357 }
358 for (i = 0; i < 8; ++i)
359 out_8(&mb->ladrf, 0);
360
361 /* done changing address */
362 if (mp->chipid != BROKEN_ADDRCHG_REV)
363 out_8(&mb->iac, 0);
364
365 if (mp->port_aaui)
366 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
367 else
368 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
369 }
370
__mace_set_address(struct net_device * dev,void * addr)371 static void __mace_set_address(struct net_device *dev, void *addr)
372 {
373 struct mace_data *mp = netdev_priv(dev);
374 volatile struct mace __iomem *mb = mp->mace;
375 unsigned char *p = addr;
376 int i;
377
378 /* load up the hardware address */
379 if (mp->chipid == BROKEN_ADDRCHG_REV)
380 out_8(&mb->iac, PHYADDR);
381 else {
382 out_8(&mb->iac, ADDRCHG | PHYADDR);
383 while ((in_8(&mb->iac) & ADDRCHG) != 0)
384 ;
385 }
386 for (i = 0; i < 6; ++i)
387 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
388 if (mp->chipid != BROKEN_ADDRCHG_REV)
389 out_8(&mb->iac, 0);
390 }
391
mace_set_address(struct net_device * dev,void * addr)392 static int mace_set_address(struct net_device *dev, void *addr)
393 {
394 struct mace_data *mp = netdev_priv(dev);
395 volatile struct mace __iomem *mb = mp->mace;
396 unsigned long flags;
397
398 spin_lock_irqsave(&mp->lock, flags);
399
400 __mace_set_address(dev, addr);
401
402 /* note: setting ADDRCHG clears ENRCV */
403 out_8(&mb->maccc, mp->maccc);
404
405 spin_unlock_irqrestore(&mp->lock, flags);
406 return 0;
407 }
408
mace_clean_rings(struct mace_data * mp)409 static inline void mace_clean_rings(struct mace_data *mp)
410 {
411 int i;
412
413 /* free some skb's */
414 for (i = 0; i < N_RX_RING; ++i) {
415 if (mp->rx_bufs[i] != NULL) {
416 dev_kfree_skb(mp->rx_bufs[i]);
417 mp->rx_bufs[i] = NULL;
418 }
419 }
420 for (i = mp->tx_empty; i != mp->tx_fill; ) {
421 dev_kfree_skb(mp->tx_bufs[i]);
422 if (++i >= N_TX_RING)
423 i = 0;
424 }
425 }
426
mace_open(struct net_device * dev)427 static int mace_open(struct net_device *dev)
428 {
429 struct mace_data *mp = netdev_priv(dev);
430 volatile struct mace __iomem *mb = mp->mace;
431 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
432 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
433 volatile struct dbdma_cmd *cp;
434 int i;
435 struct sk_buff *skb;
436 unsigned char *data;
437
438 /* reset the chip */
439 mace_reset(dev);
440
441 /* initialize list of sk_buffs for receiving and set up recv dma */
442 mace_clean_rings(mp);
443 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
444 cp = mp->rx_cmds;
445 for (i = 0; i < N_RX_RING - 1; ++i) {
446 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
447 if (!skb) {
448 data = dummy_buf;
449 } else {
450 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
451 data = skb->data;
452 }
453 mp->rx_bufs[i] = skb;
454 cp->req_count = cpu_to_le16(RX_BUFLEN);
455 cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS);
456 cp->phy_addr = cpu_to_le32(virt_to_bus(data));
457 cp->xfer_status = 0;
458 ++cp;
459 }
460 mp->rx_bufs[i] = NULL;
461 cp->command = cpu_to_le16(DBDMA_STOP);
462 mp->rx_fill = i;
463 mp->rx_empty = 0;
464
465 /* Put a branch back to the beginning of the receive command list */
466 ++cp;
467 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
468 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds));
469
470 /* start rx dma */
471 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
472 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
473 out_le32(&rd->control, (RUN << 16) | RUN);
474
475 /* put a branch at the end of the tx command list */
476 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
477 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
478 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds));
479
480 /* reset tx dma */
481 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
482 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
483 mp->tx_fill = 0;
484 mp->tx_empty = 0;
485 mp->tx_fullup = 0;
486 mp->tx_active = 0;
487 mp->tx_bad_runt = 0;
488
489 /* turn it on! */
490 out_8(&mb->maccc, mp->maccc);
491 /* enable all interrupts except receive interrupts */
492 out_8(&mb->imr, RCVINT);
493
494 return 0;
495 }
496
mace_close(struct net_device * dev)497 static int mace_close(struct net_device *dev)
498 {
499 struct mace_data *mp = netdev_priv(dev);
500 volatile struct mace __iomem *mb = mp->mace;
501 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
502 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
503
504 /* disable rx and tx */
505 out_8(&mb->maccc, 0);
506 out_8(&mb->imr, 0xff); /* disable all intrs */
507
508 /* disable rx and tx dma */
509 rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
510 td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
511
512 mace_clean_rings(mp);
513
514 return 0;
515 }
516
mace_set_timeout(struct net_device * dev)517 static inline void mace_set_timeout(struct net_device *dev)
518 {
519 struct mace_data *mp = netdev_priv(dev);
520
521 if (mp->timeout_active)
522 del_timer(&mp->tx_timeout);
523 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
524 add_timer(&mp->tx_timeout);
525 mp->timeout_active = 1;
526 }
527
mace_xmit_start(struct sk_buff * skb,struct net_device * dev)528 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
529 {
530 struct mace_data *mp = netdev_priv(dev);
531 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
532 volatile struct dbdma_cmd *cp, *np;
533 unsigned long flags;
534 int fill, next, len;
535
536 /* see if there's a free slot in the tx ring */
537 spin_lock_irqsave(&mp->lock, flags);
538 fill = mp->tx_fill;
539 next = fill + 1;
540 if (next >= N_TX_RING)
541 next = 0;
542 if (next == mp->tx_empty) {
543 netif_stop_queue(dev);
544 mp->tx_fullup = 1;
545 spin_unlock_irqrestore(&mp->lock, flags);
546 return NETDEV_TX_BUSY; /* can't take it at the moment */
547 }
548 spin_unlock_irqrestore(&mp->lock, flags);
549
550 /* partially fill in the dma command block */
551 len = skb->len;
552 if (len > ETH_FRAME_LEN) {
553 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
554 len = ETH_FRAME_LEN;
555 }
556 mp->tx_bufs[fill] = skb;
557 cp = mp->tx_cmds + NCMDS_TX * fill;
558 cp->req_count = cpu_to_le16(len);
559 cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data));
560
561 np = mp->tx_cmds + NCMDS_TX * next;
562 out_le16(&np->command, DBDMA_STOP);
563
564 /* poke the tx dma channel */
565 spin_lock_irqsave(&mp->lock, flags);
566 mp->tx_fill = next;
567 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
568 out_le16(&cp->xfer_status, 0);
569 out_le16(&cp->command, OUTPUT_LAST);
570 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
571 ++mp->tx_active;
572 mace_set_timeout(dev);
573 }
574 if (++next >= N_TX_RING)
575 next = 0;
576 if (next == mp->tx_empty)
577 netif_stop_queue(dev);
578 spin_unlock_irqrestore(&mp->lock, flags);
579
580 return NETDEV_TX_OK;
581 }
582
mace_set_multicast(struct net_device * dev)583 static void mace_set_multicast(struct net_device *dev)
584 {
585 struct mace_data *mp = netdev_priv(dev);
586 volatile struct mace __iomem *mb = mp->mace;
587 int i;
588 u32 crc;
589 unsigned long flags;
590
591 spin_lock_irqsave(&mp->lock, flags);
592 mp->maccc &= ~PROM;
593 if (dev->flags & IFF_PROMISC) {
594 mp->maccc |= PROM;
595 } else {
596 unsigned char multicast_filter[8];
597 struct netdev_hw_addr *ha;
598
599 if (dev->flags & IFF_ALLMULTI) {
600 for (i = 0; i < 8; i++)
601 multicast_filter[i] = 0xff;
602 } else {
603 for (i = 0; i < 8; i++)
604 multicast_filter[i] = 0;
605 netdev_for_each_mc_addr(ha, dev) {
606 crc = ether_crc_le(6, ha->addr);
607 i = crc >> 26; /* bit number in multicast_filter */
608 multicast_filter[i >> 3] |= 1 << (i & 7);
609 }
610 }
611 #if 0
612 printk("Multicast filter :");
613 for (i = 0; i < 8; i++)
614 printk("%02x ", multicast_filter[i]);
615 printk("\n");
616 #endif
617
618 if (mp->chipid == BROKEN_ADDRCHG_REV)
619 out_8(&mb->iac, LOGADDR);
620 else {
621 out_8(&mb->iac, ADDRCHG | LOGADDR);
622 while ((in_8(&mb->iac) & ADDRCHG) != 0)
623 ;
624 }
625 for (i = 0; i < 8; ++i)
626 out_8(&mb->ladrf, multicast_filter[i]);
627 if (mp->chipid != BROKEN_ADDRCHG_REV)
628 out_8(&mb->iac, 0);
629 }
630 /* reset maccc */
631 out_8(&mb->maccc, mp->maccc);
632 spin_unlock_irqrestore(&mp->lock, flags);
633 }
634
mace_handle_misc_intrs(struct mace_data * mp,int intr,struct net_device * dev)635 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
636 {
637 volatile struct mace __iomem *mb = mp->mace;
638 static int mace_babbles, mace_jabbers;
639
640 if (intr & MPCO)
641 dev->stats.rx_missed_errors += 256;
642 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
643 if (intr & RNTPCO)
644 dev->stats.rx_length_errors += 256;
645 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
646 if (intr & CERR)
647 ++dev->stats.tx_heartbeat_errors;
648 if (intr & BABBLE)
649 if (mace_babbles++ < 4)
650 printk(KERN_DEBUG "mace: babbling transmitter\n");
651 if (intr & JABBER)
652 if (mace_jabbers++ < 4)
653 printk(KERN_DEBUG "mace: jabbering transceiver\n");
654 }
655
mace_interrupt(int irq,void * dev_id)656 static irqreturn_t mace_interrupt(int irq, void *dev_id)
657 {
658 struct net_device *dev = (struct net_device *) dev_id;
659 struct mace_data *mp = netdev_priv(dev);
660 volatile struct mace __iomem *mb = mp->mace;
661 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
662 volatile struct dbdma_cmd *cp;
663 int intr, fs, i, stat, x;
664 int xcount, dstat;
665 unsigned long flags;
666 /* static int mace_last_fs, mace_last_xcount; */
667
668 spin_lock_irqsave(&mp->lock, flags);
669 intr = in_8(&mb->ir); /* read interrupt register */
670 in_8(&mb->xmtrc); /* get retries */
671 mace_handle_misc_intrs(mp, intr, dev);
672
673 i = mp->tx_empty;
674 while (in_8(&mb->pr) & XMTSV) {
675 del_timer(&mp->tx_timeout);
676 mp->timeout_active = 0;
677 /*
678 * Clear any interrupt indication associated with this status
679 * word. This appears to unlatch any error indication from
680 * the DMA controller.
681 */
682 intr = in_8(&mb->ir);
683 if (intr != 0)
684 mace_handle_misc_intrs(mp, intr, dev);
685 if (mp->tx_bad_runt) {
686 fs = in_8(&mb->xmtfs);
687 mp->tx_bad_runt = 0;
688 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
689 continue;
690 }
691 dstat = le32_to_cpu(td->status);
692 /* stop DMA controller */
693 out_le32(&td->control, RUN << 16);
694 /*
695 * xcount is the number of complete frames which have been
696 * written to the fifo but for which status has not been read.
697 */
698 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
699 if (xcount == 0 || (dstat & DEAD)) {
700 /*
701 * If a packet was aborted before the DMA controller has
702 * finished transferring it, it seems that there are 2 bytes
703 * which are stuck in some buffer somewhere. These will get
704 * transmitted as soon as we read the frame status (which
705 * reenables the transmit data transfer request). Turning
706 * off the DMA controller and/or resetting the MACE doesn't
707 * help. So we disable auto-padding and FCS transmission
708 * so the two bytes will only be a runt packet which should
709 * be ignored by other stations.
710 */
711 out_8(&mb->xmtfc, DXMTFCS);
712 }
713 fs = in_8(&mb->xmtfs);
714 if ((fs & XMTSV) == 0) {
715 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
716 fs, xcount, dstat);
717 mace_reset(dev);
718 /*
719 * XXX mace likes to hang the machine after a xmtfs error.
720 * This is hard to reproduce, resetting *may* help
721 */
722 }
723 cp = mp->tx_cmds + NCMDS_TX * i;
724 stat = le16_to_cpu(cp->xfer_status);
725 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
726 /*
727 * Check whether there were in fact 2 bytes written to
728 * the transmit FIFO.
729 */
730 udelay(1);
731 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
732 if (x != 0) {
733 /* there were two bytes with an end-of-packet indication */
734 mp->tx_bad_runt = 1;
735 mace_set_timeout(dev);
736 } else {
737 /*
738 * Either there weren't the two bytes buffered up, or they
739 * didn't have an end-of-packet indication.
740 * We flush the transmit FIFO just in case (by setting the
741 * XMTFWU bit with the transmitter disabled).
742 */
743 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
744 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
745 udelay(1);
746 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
747 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
748 }
749 }
750 /* dma should have finished */
751 if (i == mp->tx_fill) {
752 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
753 fs, xcount, dstat);
754 continue;
755 }
756 /* Update stats */
757 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
758 ++dev->stats.tx_errors;
759 if (fs & LCAR)
760 ++dev->stats.tx_carrier_errors;
761 if (fs & (UFLO|LCOL|RTRY))
762 ++dev->stats.tx_aborted_errors;
763 } else {
764 dev->stats.tx_bytes += mp->tx_bufs[i]->len;
765 ++dev->stats.tx_packets;
766 }
767 dev_kfree_skb_irq(mp->tx_bufs[i]);
768 --mp->tx_active;
769 if (++i >= N_TX_RING)
770 i = 0;
771 #if 0
772 mace_last_fs = fs;
773 mace_last_xcount = xcount;
774 #endif
775 }
776
777 if (i != mp->tx_empty) {
778 mp->tx_fullup = 0;
779 netif_wake_queue(dev);
780 }
781 mp->tx_empty = i;
782 i += mp->tx_active;
783 if (i >= N_TX_RING)
784 i -= N_TX_RING;
785 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
786 do {
787 /* set up the next one */
788 cp = mp->tx_cmds + NCMDS_TX * i;
789 out_le16(&cp->xfer_status, 0);
790 out_le16(&cp->command, OUTPUT_LAST);
791 ++mp->tx_active;
792 if (++i >= N_TX_RING)
793 i = 0;
794 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
795 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
796 mace_set_timeout(dev);
797 }
798 spin_unlock_irqrestore(&mp->lock, flags);
799 return IRQ_HANDLED;
800 }
801
mace_tx_timeout(struct timer_list * t)802 static void mace_tx_timeout(struct timer_list *t)
803 {
804 struct mace_data *mp = from_timer(mp, t, tx_timeout);
805 struct net_device *dev = macio_get_drvdata(mp->mdev);
806 volatile struct mace __iomem *mb = mp->mace;
807 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
808 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
809 volatile struct dbdma_cmd *cp;
810 unsigned long flags;
811 int i;
812
813 spin_lock_irqsave(&mp->lock, flags);
814 mp->timeout_active = 0;
815 if (mp->tx_active == 0 && !mp->tx_bad_runt)
816 goto out;
817
818 /* update various counters */
819 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
820
821 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
822
823 /* turn off both tx and rx and reset the chip */
824 out_8(&mb->maccc, 0);
825 printk(KERN_ERR "mace: transmit timeout - resetting\n");
826 dbdma_reset(td);
827 mace_reset(dev);
828
829 /* restart rx dma */
830 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
831 dbdma_reset(rd);
832 out_le16(&cp->xfer_status, 0);
833 out_le32(&rd->cmdptr, virt_to_bus(cp));
834 out_le32(&rd->control, (RUN << 16) | RUN);
835
836 /* fix up the transmit side */
837 i = mp->tx_empty;
838 mp->tx_active = 0;
839 ++dev->stats.tx_errors;
840 if (mp->tx_bad_runt) {
841 mp->tx_bad_runt = 0;
842 } else if (i != mp->tx_fill) {
843 dev_kfree_skb(mp->tx_bufs[i]);
844 if (++i >= N_TX_RING)
845 i = 0;
846 mp->tx_empty = i;
847 }
848 mp->tx_fullup = 0;
849 netif_wake_queue(dev);
850 if (i != mp->tx_fill) {
851 cp = mp->tx_cmds + NCMDS_TX * i;
852 out_le16(&cp->xfer_status, 0);
853 out_le16(&cp->command, OUTPUT_LAST);
854 out_le32(&td->cmdptr, virt_to_bus(cp));
855 out_le32(&td->control, (RUN << 16) | RUN);
856 ++mp->tx_active;
857 mace_set_timeout(dev);
858 }
859
860 /* turn it back on */
861 out_8(&mb->imr, RCVINT);
862 out_8(&mb->maccc, mp->maccc);
863
864 out:
865 spin_unlock_irqrestore(&mp->lock, flags);
866 }
867
mace_txdma_intr(int irq,void * dev_id)868 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
869 {
870 return IRQ_HANDLED;
871 }
872
mace_rxdma_intr(int irq,void * dev_id)873 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
874 {
875 struct net_device *dev = (struct net_device *) dev_id;
876 struct mace_data *mp = netdev_priv(dev);
877 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
878 volatile struct dbdma_cmd *cp, *np;
879 int i, nb, stat, next;
880 struct sk_buff *skb;
881 unsigned frame_status;
882 static int mace_lost_status;
883 unsigned char *data;
884 unsigned long flags;
885
886 spin_lock_irqsave(&mp->lock, flags);
887 for (i = mp->rx_empty; i != mp->rx_fill; ) {
888 cp = mp->rx_cmds + i;
889 stat = le16_to_cpu(cp->xfer_status);
890 if ((stat & ACTIVE) == 0) {
891 next = i + 1;
892 if (next >= N_RX_RING)
893 next = 0;
894 np = mp->rx_cmds + next;
895 if (next != mp->rx_fill &&
896 (le16_to_cpu(np->xfer_status) & ACTIVE) != 0) {
897 printk(KERN_DEBUG "mace: lost a status word\n");
898 ++mace_lost_status;
899 } else
900 break;
901 }
902 nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count);
903 out_le16(&cp->command, DBDMA_STOP);
904 /* got a packet, have a look at it */
905 skb = mp->rx_bufs[i];
906 if (!skb) {
907 ++dev->stats.rx_dropped;
908 } else if (nb > 8) {
909 data = skb->data;
910 frame_status = (data[nb-3] << 8) + data[nb-4];
911 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
912 ++dev->stats.rx_errors;
913 if (frame_status & RS_OFLO)
914 ++dev->stats.rx_over_errors;
915 if (frame_status & RS_FRAMERR)
916 ++dev->stats.rx_frame_errors;
917 if (frame_status & RS_FCSERR)
918 ++dev->stats.rx_crc_errors;
919 } else {
920 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
921 * FCS on frames with 802.3 headers. This means that Ethernet
922 * frames have 8 extra octets at the end, while 802.3 frames
923 * have only 4. We need to correctly account for this. */
924 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
925 nb -= 4;
926 else /* Ethernet header; mace includes FCS */
927 nb -= 8;
928 skb_put(skb, nb);
929 skb->protocol = eth_type_trans(skb, dev);
930 dev->stats.rx_bytes += skb->len;
931 netif_rx(skb);
932 mp->rx_bufs[i] = NULL;
933 ++dev->stats.rx_packets;
934 }
935 } else {
936 ++dev->stats.rx_errors;
937 ++dev->stats.rx_length_errors;
938 }
939
940 /* advance to next */
941 if (++i >= N_RX_RING)
942 i = 0;
943 }
944 mp->rx_empty = i;
945
946 i = mp->rx_fill;
947 for (;;) {
948 next = i + 1;
949 if (next >= N_RX_RING)
950 next = 0;
951 if (next == mp->rx_empty)
952 break;
953 cp = mp->rx_cmds + i;
954 skb = mp->rx_bufs[i];
955 if (!skb) {
956 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
957 if (skb) {
958 skb_reserve(skb, 2);
959 mp->rx_bufs[i] = skb;
960 }
961 }
962 cp->req_count = cpu_to_le16(RX_BUFLEN);
963 data = skb? skb->data: dummy_buf;
964 cp->phy_addr = cpu_to_le32(virt_to_bus(data));
965 out_le16(&cp->xfer_status, 0);
966 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
967 #if 0
968 if ((le32_to_cpu(rd->status) & ACTIVE) != 0) {
969 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
970 while ((in_le32(&rd->status) & ACTIVE) != 0)
971 ;
972 }
973 #endif
974 i = next;
975 }
976 if (i != mp->rx_fill) {
977 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
978 mp->rx_fill = i;
979 }
980 spin_unlock_irqrestore(&mp->lock, flags);
981 return IRQ_HANDLED;
982 }
983
984 static const struct of_device_id mace_match[] =
985 {
986 {
987 .name = "mace",
988 },
989 {},
990 };
991 MODULE_DEVICE_TABLE (of, mace_match);
992
993 static struct macio_driver mace_driver =
994 {
995 .driver = {
996 .name = "mace",
997 .owner = THIS_MODULE,
998 .of_match_table = mace_match,
999 },
1000 .probe = mace_probe,
1001 .remove = mace_remove,
1002 };
1003
1004
mace_init(void)1005 static int __init mace_init(void)
1006 {
1007 return macio_register_driver(&mace_driver);
1008 }
1009
mace_cleanup(void)1010 static void __exit mace_cleanup(void)
1011 {
1012 macio_unregister_driver(&mace_driver);
1013
1014 kfree(dummy_buf);
1015 dummy_buf = NULL;
1016 }
1017
1018 MODULE_AUTHOR("Paul Mackerras");
1019 MODULE_DESCRIPTION("PowerMac MACE driver.");
1020 module_param(port_aaui, int, 0);
1021 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1022 MODULE_LICENSE("GPL");
1023
1024 module_init(mace_init);
1025 module_exit(mace_cleanup);
1026