1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	/* Local (CPU and cgroup) page state & events */
80 	long			state[MEMCG_NR_STAT];
81 	unsigned long		events[NR_VM_EVENT_ITEMS];
82 
83 	/* Delta calculation for lockless upward propagation */
84 	long			state_prev[MEMCG_NR_STAT];
85 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
86 
87 	/* Cgroup1: threshold notifications & softlimit tree updates */
88 	unsigned long		nr_page_events;
89 	unsigned long		targets[MEM_CGROUP_NTARGETS];
90 };
91 
92 struct memcg_vmstats {
93 	/* Aggregated (CPU and subtree) page state & events */
94 	long			state[MEMCG_NR_STAT];
95 	unsigned long		events[NR_VM_EVENT_ITEMS];
96 
97 	/* Pending child counts during tree propagation */
98 	long			state_pending[MEMCG_NR_STAT];
99 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
100 };
101 
102 struct mem_cgroup_reclaim_iter {
103 	struct mem_cgroup *position;
104 	/* scan generation, increased every round-trip */
105 	unsigned int generation;
106 };
107 
108 /*
109  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
110  * shrinkers, which have elements charged to this memcg.
111  */
112 struct shrinker_info {
113 	struct rcu_head rcu;
114 	atomic_long_t *nr_deferred;
115 	unsigned long *map;
116 };
117 
118 struct lruvec_stats_percpu {
119 	/* Local (CPU and cgroup) state */
120 	long state[NR_VM_NODE_STAT_ITEMS];
121 
122 	/* Delta calculation for lockless upward propagation */
123 	long state_prev[NR_VM_NODE_STAT_ITEMS];
124 };
125 
126 struct lruvec_stats {
127 	/* Aggregated (CPU and subtree) state */
128 	long state[NR_VM_NODE_STAT_ITEMS];
129 
130 	/* Pending child counts during tree propagation */
131 	long state_pending[NR_VM_NODE_STAT_ITEMS];
132 };
133 
134 /*
135  * per-node information in memory controller.
136  */
137 struct mem_cgroup_per_node {
138 	struct lruvec		lruvec;
139 
140 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
141 	struct lruvec_stats			lruvec_stats;
142 
143 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
144 
145 	struct mem_cgroup_reclaim_iter	iter;
146 
147 	struct shrinker_info __rcu	*shrinker_info;
148 
149 	struct rb_node		tree_node;	/* RB tree node */
150 	unsigned long		usage_in_excess;/* Set to the value by which */
151 						/* the soft limit is exceeded*/
152 	bool			on_tree;
153 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
154 						/* use container_of	   */
155 };
156 
157 struct mem_cgroup_threshold {
158 	struct eventfd_ctx *eventfd;
159 	unsigned long threshold;
160 };
161 
162 /* For threshold */
163 struct mem_cgroup_threshold_ary {
164 	/* An array index points to threshold just below or equal to usage. */
165 	int current_threshold;
166 	/* Size of entries[] */
167 	unsigned int size;
168 	/* Array of thresholds */
169 	struct mem_cgroup_threshold entries[];
170 };
171 
172 struct mem_cgroup_thresholds {
173 	/* Primary thresholds array */
174 	struct mem_cgroup_threshold_ary *primary;
175 	/*
176 	 * Spare threshold array.
177 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
178 	 * It must be able to store at least primary->size - 1 entries.
179 	 */
180 	struct mem_cgroup_threshold_ary *spare;
181 };
182 
183 enum memcg_kmem_state {
184 	KMEM_NONE,
185 	KMEM_ALLOCATED,
186 	KMEM_ONLINE,
187 };
188 
189 #if defined(CONFIG_SMP)
190 struct memcg_padding {
191 	char x[0];
192 } ____cacheline_internodealigned_in_smp;
193 #define MEMCG_PADDING(name)      struct memcg_padding name
194 #else
195 #define MEMCG_PADDING(name)
196 #endif
197 
198 /*
199  * Remember four most recent foreign writebacks with dirty pages in this
200  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
201  * one in a given round, we're likely to catch it later if it keeps
202  * foreign-dirtying, so a fairly low count should be enough.
203  *
204  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
205  */
206 #define MEMCG_CGWB_FRN_CNT	4
207 
208 struct memcg_cgwb_frn {
209 	u64 bdi_id;			/* bdi->id of the foreign inode */
210 	int memcg_id;			/* memcg->css.id of foreign inode */
211 	u64 at;				/* jiffies_64 at the time of dirtying */
212 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
213 };
214 
215 /*
216  * Bucket for arbitrarily byte-sized objects charged to a memory
217  * cgroup. The bucket can be reparented in one piece when the cgroup
218  * is destroyed, without having to round up the individual references
219  * of all live memory objects in the wild.
220  */
221 struct obj_cgroup {
222 	struct percpu_ref refcnt;
223 	struct mem_cgroup *memcg;
224 	atomic_t nr_charged_bytes;
225 	union {
226 		struct list_head list;
227 		struct rcu_head rcu;
228 	};
229 };
230 
231 /*
232  * The memory controller data structure. The memory controller controls both
233  * page cache and RSS per cgroup. We would eventually like to provide
234  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235  * to help the administrator determine what knobs to tune.
236  */
237 struct mem_cgroup {
238 	struct cgroup_subsys_state css;
239 
240 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
241 	struct mem_cgroup_id id;
242 
243 	/* Accounted resources */
244 	struct page_counter memory;		/* Both v1 & v2 */
245 
246 	union {
247 		struct page_counter swap;	/* v2 only */
248 		struct page_counter memsw;	/* v1 only */
249 	};
250 
251 	/* Legacy consumer-oriented counters */
252 	struct page_counter kmem;		/* v1 only */
253 	struct page_counter tcpmem;		/* v1 only */
254 
255 	/* Range enforcement for interrupt charges */
256 	struct work_struct high_work;
257 
258 	unsigned long soft_limit;
259 
260 	/* vmpressure notifications */
261 	struct vmpressure vmpressure;
262 
263 	/*
264 	 * Should the OOM killer kill all belonging tasks, had it kill one?
265 	 */
266 	bool oom_group;
267 
268 	/* protected by memcg_oom_lock */
269 	bool		oom_lock;
270 	int		under_oom;
271 
272 	int	swappiness;
273 	/* OOM-Killer disable */
274 	int		oom_kill_disable;
275 
276 	/* memory.events and memory.events.local */
277 	struct cgroup_file events_file;
278 	struct cgroup_file events_local_file;
279 
280 	/* handle for "memory.swap.events" */
281 	struct cgroup_file swap_events_file;
282 
283 	/* protect arrays of thresholds */
284 	struct mutex thresholds_lock;
285 
286 	/* thresholds for memory usage. RCU-protected */
287 	struct mem_cgroup_thresholds thresholds;
288 
289 	/* thresholds for mem+swap usage. RCU-protected */
290 	struct mem_cgroup_thresholds memsw_thresholds;
291 
292 	/* For oom notifier event fd */
293 	struct list_head oom_notify;
294 
295 	/*
296 	 * Should we move charges of a task when a task is moved into this
297 	 * mem_cgroup ? And what type of charges should we move ?
298 	 */
299 	unsigned long move_charge_at_immigrate;
300 	/* taken only while moving_account > 0 */
301 	spinlock_t		move_lock;
302 	unsigned long		move_lock_flags;
303 
304 	MEMCG_PADDING(_pad1_);
305 
306 	/* memory.stat */
307 	struct memcg_vmstats	vmstats;
308 
309 	/* memory.events */
310 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
311 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
312 
313 	unsigned long		socket_pressure;
314 
315 	/* Legacy tcp memory accounting */
316 	bool			tcpmem_active;
317 	int			tcpmem_pressure;
318 
319 #ifdef CONFIG_MEMCG_KMEM
320 	int kmemcg_id;
321 	enum memcg_kmem_state kmem_state;
322 	struct obj_cgroup __rcu *objcg;
323 	struct list_head objcg_list; /* list of inherited objcgs */
324 #endif
325 
326 	MEMCG_PADDING(_pad2_);
327 
328 	/*
329 	 * set > 0 if pages under this cgroup are moving to other cgroup.
330 	 */
331 	atomic_t		moving_account;
332 	struct task_struct	*move_lock_task;
333 
334 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
335 
336 #ifdef CONFIG_CGROUP_WRITEBACK
337 	struct list_head cgwb_list;
338 	struct wb_domain cgwb_domain;
339 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
340 #endif
341 
342 	/* List of events which userspace want to receive */
343 	struct list_head event_list;
344 	spinlock_t event_list_lock;
345 
346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 	struct deferred_split deferred_split_queue;
348 #endif
349 
350 	struct mem_cgroup_per_node *nodeinfo[];
351 };
352 
353 /*
354  * size of first charge trial. "32" comes from vmscan.c's magic value.
355  * TODO: maybe necessary to use big numbers in big irons.
356  */
357 #define MEMCG_CHARGE_BATCH 32U
358 
359 extern struct mem_cgroup *root_mem_cgroup;
360 
361 enum page_memcg_data_flags {
362 	/* page->memcg_data is a pointer to an objcgs vector */
363 	MEMCG_DATA_OBJCGS = (1UL << 0),
364 	/* page has been accounted as a non-slab kernel page */
365 	MEMCG_DATA_KMEM = (1UL << 1),
366 	/* the next bit after the last actual flag */
367 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
368 };
369 
370 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
371 
372 static inline bool PageMemcgKmem(struct page *page);
373 
374 /*
375  * After the initialization objcg->memcg is always pointing at
376  * a valid memcg, but can be atomically swapped to the parent memcg.
377  *
378  * The caller must ensure that the returned memcg won't be released:
379  * e.g. acquire the rcu_read_lock or css_set_lock.
380  */
obj_cgroup_memcg(struct obj_cgroup * objcg)381 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
382 {
383 	return READ_ONCE(objcg->memcg);
384 }
385 
386 /*
387  * __page_memcg - get the memory cgroup associated with a non-kmem page
388  * @page: a pointer to the page struct
389  *
390  * Returns a pointer to the memory cgroup associated with the page,
391  * or NULL. This function assumes that the page is known to have a
392  * proper memory cgroup pointer. It's not safe to call this function
393  * against some type of pages, e.g. slab pages or ex-slab pages or
394  * kmem pages.
395  */
__page_memcg(struct page * page)396 static inline struct mem_cgroup *__page_memcg(struct page *page)
397 {
398 	unsigned long memcg_data = page->memcg_data;
399 
400 	VM_BUG_ON_PAGE(PageSlab(page), page);
401 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
402 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
403 
404 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406 
407 /*
408  * __page_objcg - get the object cgroup associated with a kmem page
409  * @page: a pointer to the page struct
410  *
411  * Returns a pointer to the object cgroup associated with the page,
412  * or NULL. This function assumes that the page is known to have a
413  * proper object cgroup pointer. It's not safe to call this function
414  * against some type of pages, e.g. slab pages or ex-slab pages or
415  * LRU pages.
416  */
__page_objcg(struct page * page)417 static inline struct obj_cgroup *__page_objcg(struct page *page)
418 {
419 	unsigned long memcg_data = page->memcg_data;
420 
421 	VM_BUG_ON_PAGE(PageSlab(page), page);
422 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
423 	VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
424 
425 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
426 }
427 
428 /*
429  * page_memcg - get the memory cgroup associated with a page
430  * @page: a pointer to the page struct
431  *
432  * Returns a pointer to the memory cgroup associated with the page,
433  * or NULL. This function assumes that the page is known to have a
434  * proper memory cgroup pointer. It's not safe to call this function
435  * against some type of pages, e.g. slab pages or ex-slab pages.
436  *
437  * For a non-kmem page any of the following ensures page and memcg binding
438  * stability:
439  *
440  * - the page lock
441  * - LRU isolation
442  * - lock_page_memcg()
443  * - exclusive reference
444  *
445  * For a kmem page a caller should hold an rcu read lock to protect memcg
446  * associated with a kmem page from being released.
447  */
page_memcg(struct page * page)448 static inline struct mem_cgroup *page_memcg(struct page *page)
449 {
450 	if (PageMemcgKmem(page))
451 		return obj_cgroup_memcg(__page_objcg(page));
452 	else
453 		return __page_memcg(page);
454 }
455 
456 /*
457  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
458  * @page: a pointer to the page struct
459  *
460  * Returns a pointer to the memory cgroup associated with the page,
461  * or NULL. This function assumes that the page is known to have a
462  * proper memory cgroup pointer. It's not safe to call this function
463  * against some type of pages, e.g. slab pages or ex-slab pages.
464  */
page_memcg_rcu(struct page * page)465 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
466 {
467 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
468 
469 	VM_BUG_ON_PAGE(PageSlab(page), page);
470 	WARN_ON_ONCE(!rcu_read_lock_held());
471 
472 	if (memcg_data & MEMCG_DATA_KMEM) {
473 		struct obj_cgroup *objcg;
474 
475 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
476 		return obj_cgroup_memcg(objcg);
477 	}
478 
479 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
480 }
481 
482 /*
483  * page_memcg_check - get the memory cgroup associated with a page
484  * @page: a pointer to the page struct
485  *
486  * Returns a pointer to the memory cgroup associated with the page,
487  * or NULL. This function unlike page_memcg() can take any page
488  * as an argument. It has to be used in cases when it's not known if a page
489  * has an associated memory cgroup pointer or an object cgroups vector or
490  * an object cgroup.
491  *
492  * For a non-kmem page any of the following ensures page and memcg binding
493  * stability:
494  *
495  * - the page lock
496  * - LRU isolation
497  * - lock_page_memcg()
498  * - exclusive reference
499  *
500  * For a kmem page a caller should hold an rcu read lock to protect memcg
501  * associated with a kmem page from being released.
502  */
page_memcg_check(struct page * page)503 static inline struct mem_cgroup *page_memcg_check(struct page *page)
504 {
505 	/*
506 	 * Because page->memcg_data might be changed asynchronously
507 	 * for slab pages, READ_ONCE() should be used here.
508 	 */
509 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
510 
511 	if (memcg_data & MEMCG_DATA_OBJCGS)
512 		return NULL;
513 
514 	if (memcg_data & MEMCG_DATA_KMEM) {
515 		struct obj_cgroup *objcg;
516 
517 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
518 		return obj_cgroup_memcg(objcg);
519 	}
520 
521 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
522 }
523 
524 #ifdef CONFIG_MEMCG_KMEM
525 /*
526  * PageMemcgKmem - check if the page has MemcgKmem flag set
527  * @page: a pointer to the page struct
528  *
529  * Checks if the page has MemcgKmem flag set. The caller must ensure that
530  * the page has an associated memory cgroup. It's not safe to call this function
531  * against some types of pages, e.g. slab pages.
532  */
PageMemcgKmem(struct page * page)533 static inline bool PageMemcgKmem(struct page *page)
534 {
535 	VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
536 	return page->memcg_data & MEMCG_DATA_KMEM;
537 }
538 
539 /*
540  * page_objcgs - get the object cgroups vector associated with a page
541  * @page: a pointer to the page struct
542  *
543  * Returns a pointer to the object cgroups vector associated with the page,
544  * or NULL. This function assumes that the page is known to have an
545  * associated object cgroups vector. It's not safe to call this function
546  * against pages, which might have an associated memory cgroup: e.g.
547  * kernel stack pages.
548  */
page_objcgs(struct page * page)549 static inline struct obj_cgroup **page_objcgs(struct page *page)
550 {
551 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
552 
553 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
554 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
555 
556 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
557 }
558 
559 /*
560  * page_objcgs_check - get the object cgroups vector associated with a page
561  * @page: a pointer to the page struct
562  *
563  * Returns a pointer to the object cgroups vector associated with the page,
564  * or NULL. This function is safe to use if the page can be directly associated
565  * with a memory cgroup.
566  */
page_objcgs_check(struct page * page)567 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
568 {
569 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
570 
571 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
572 		return NULL;
573 
574 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
575 
576 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
577 }
578 
579 #else
PageMemcgKmem(struct page * page)580 static inline bool PageMemcgKmem(struct page *page)
581 {
582 	return false;
583 }
584 
page_objcgs(struct page * page)585 static inline struct obj_cgroup **page_objcgs(struct page *page)
586 {
587 	return NULL;
588 }
589 
page_objcgs_check(struct page * page)590 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
591 {
592 	return NULL;
593 }
594 #endif
595 
mem_cgroup_is_root(struct mem_cgroup * memcg)596 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
597 {
598 	return (memcg == root_mem_cgroup);
599 }
600 
mem_cgroup_disabled(void)601 static inline bool mem_cgroup_disabled(void)
602 {
603 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
604 }
605 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)606 static inline void mem_cgroup_protection(struct mem_cgroup *root,
607 					 struct mem_cgroup *memcg,
608 					 unsigned long *min,
609 					 unsigned long *low)
610 {
611 	*min = *low = 0;
612 
613 	if (mem_cgroup_disabled())
614 		return;
615 
616 	/*
617 	 * There is no reclaim protection applied to a targeted reclaim.
618 	 * We are special casing this specific case here because
619 	 * mem_cgroup_protected calculation is not robust enough to keep
620 	 * the protection invariant for calculated effective values for
621 	 * parallel reclaimers with different reclaim target. This is
622 	 * especially a problem for tail memcgs (as they have pages on LRU)
623 	 * which would want to have effective values 0 for targeted reclaim
624 	 * but a different value for external reclaim.
625 	 *
626 	 * Example
627 	 * Let's have global and A's reclaim in parallel:
628 	 *  |
629 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
630 	 *  |\
631 	 *  | C (low = 1G, usage = 2.5G)
632 	 *  B (low = 1G, usage = 0.5G)
633 	 *
634 	 * For the global reclaim
635 	 * A.elow = A.low
636 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
637 	 * C.elow = min(C.usage, C.low)
638 	 *
639 	 * With the effective values resetting we have A reclaim
640 	 * A.elow = 0
641 	 * B.elow = B.low
642 	 * C.elow = C.low
643 	 *
644 	 * If the global reclaim races with A's reclaim then
645 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
646 	 * is possible and reclaiming B would be violating the protection.
647 	 *
648 	 */
649 	if (root == memcg)
650 		return;
651 
652 	*min = READ_ONCE(memcg->memory.emin);
653 	*low = READ_ONCE(memcg->memory.elow);
654 }
655 
656 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
657 				     struct mem_cgroup *memcg);
658 
mem_cgroup_supports_protection(struct mem_cgroup * memcg)659 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
660 {
661 	/*
662 	 * The root memcg doesn't account charges, and doesn't support
663 	 * protection.
664 	 */
665 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
666 
667 }
668 
mem_cgroup_below_low(struct mem_cgroup * memcg)669 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
670 {
671 	if (!mem_cgroup_supports_protection(memcg))
672 		return false;
673 
674 	return READ_ONCE(memcg->memory.elow) >=
675 		page_counter_read(&memcg->memory);
676 }
677 
mem_cgroup_below_min(struct mem_cgroup * memcg)678 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
679 {
680 	if (!mem_cgroup_supports_protection(memcg))
681 		return false;
682 
683 	return READ_ONCE(memcg->memory.emin) >=
684 		page_counter_read(&memcg->memory);
685 }
686 
687 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
688 			gfp_t gfp_mask);
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)689 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
690 				    gfp_t gfp_mask)
691 {
692 	if (mem_cgroup_disabled())
693 		return 0;
694 	return __mem_cgroup_charge(page, mm, gfp_mask);
695 }
696 
697 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
698 				  gfp_t gfp, swp_entry_t entry);
699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700 
701 void __mem_cgroup_uncharge(struct page *page);
mem_cgroup_uncharge(struct page * page)702 static inline void mem_cgroup_uncharge(struct page *page)
703 {
704 	if (mem_cgroup_disabled())
705 		return;
706 	__mem_cgroup_uncharge(page);
707 }
708 
709 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)710 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
711 {
712 	if (mem_cgroup_disabled())
713 		return;
714 	__mem_cgroup_uncharge_list(page_list);
715 }
716 
717 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
718 
719 /**
720  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
721  * @memcg: memcg of the wanted lruvec
722  * @pgdat: pglist_data
723  *
724  * Returns the lru list vector holding pages for a given @memcg &
725  * @pgdat combination. This can be the node lruvec, if the memory
726  * controller is disabled.
727  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)728 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
729 					       struct pglist_data *pgdat)
730 {
731 	struct mem_cgroup_per_node *mz;
732 	struct lruvec *lruvec;
733 
734 	if (mem_cgroup_disabled()) {
735 		lruvec = &pgdat->__lruvec;
736 		goto out;
737 	}
738 
739 	if (!memcg)
740 		memcg = root_mem_cgroup;
741 
742 	mz = memcg->nodeinfo[pgdat->node_id];
743 	lruvec = &mz->lruvec;
744 out:
745 	/*
746 	 * Since a node can be onlined after the mem_cgroup was created,
747 	 * we have to be prepared to initialize lruvec->pgdat here;
748 	 * and if offlined then reonlined, we need to reinitialize it.
749 	 */
750 	if (unlikely(lruvec->pgdat != pgdat))
751 		lruvec->pgdat = pgdat;
752 	return lruvec;
753 }
754 
755 /**
756  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
757  * @page: the page
758  *
759  * This function relies on page->mem_cgroup being stable.
760  */
mem_cgroup_page_lruvec(struct page * page)761 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
762 {
763 	pg_data_t *pgdat = page_pgdat(page);
764 	struct mem_cgroup *memcg = page_memcg(page);
765 
766 	VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
767 	return mem_cgroup_lruvec(memcg, pgdat);
768 }
769 
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
771 
772 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
773 
774 struct lruvec *lock_page_lruvec(struct page *page);
775 struct lruvec *lock_page_lruvec_irq(struct page *page);
776 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
777 						unsigned long *flags);
778 
779 #ifdef CONFIG_DEBUG_VM
780 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
781 #else
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)782 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
783 {
784 }
785 #endif
786 
787 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)788 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
789 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
790 }
791 
obj_cgroup_tryget(struct obj_cgroup * objcg)792 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
793 {
794 	return percpu_ref_tryget(&objcg->refcnt);
795 }
796 
obj_cgroup_get(struct obj_cgroup * objcg)797 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
798 {
799 	percpu_ref_get(&objcg->refcnt);
800 }
801 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)802 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
803 				       unsigned long nr)
804 {
805 	percpu_ref_get_many(&objcg->refcnt, nr);
806 }
807 
obj_cgroup_put(struct obj_cgroup * objcg)808 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
809 {
810 	percpu_ref_put(&objcg->refcnt);
811 }
812 
mem_cgroup_put(struct mem_cgroup * memcg)813 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
814 {
815 	if (memcg)
816 		css_put(&memcg->css);
817 }
818 
819 #define mem_cgroup_from_counter(counter, member)	\
820 	container_of(counter, struct mem_cgroup, member)
821 
822 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
823 				   struct mem_cgroup *,
824 				   struct mem_cgroup_reclaim_cookie *);
825 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
826 int mem_cgroup_scan_tasks(struct mem_cgroup *,
827 			  int (*)(struct task_struct *, void *), void *);
828 
mem_cgroup_id(struct mem_cgroup * memcg)829 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
830 {
831 	if (mem_cgroup_disabled())
832 		return 0;
833 
834 	return memcg->id.id;
835 }
836 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
837 
mem_cgroup_from_seq(struct seq_file * m)838 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
839 {
840 	return mem_cgroup_from_css(seq_css(m));
841 }
842 
lruvec_memcg(struct lruvec * lruvec)843 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
844 {
845 	struct mem_cgroup_per_node *mz;
846 
847 	if (mem_cgroup_disabled())
848 		return NULL;
849 
850 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
851 	return mz->memcg;
852 }
853 
854 /**
855  * parent_mem_cgroup - find the accounting parent of a memcg
856  * @memcg: memcg whose parent to find
857  *
858  * Returns the parent memcg, or NULL if this is the root or the memory
859  * controller is in legacy no-hierarchy mode.
860  */
parent_mem_cgroup(struct mem_cgroup * memcg)861 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
862 {
863 	if (!memcg->memory.parent)
864 		return NULL;
865 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
866 }
867 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)868 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
869 			      struct mem_cgroup *root)
870 {
871 	if (root == memcg)
872 		return true;
873 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
874 }
875 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)876 static inline bool mm_match_cgroup(struct mm_struct *mm,
877 				   struct mem_cgroup *memcg)
878 {
879 	struct mem_cgroup *task_memcg;
880 	bool match = false;
881 
882 	rcu_read_lock();
883 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
884 	if (task_memcg)
885 		match = mem_cgroup_is_descendant(task_memcg, memcg);
886 	rcu_read_unlock();
887 	return match;
888 }
889 
890 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
891 ino_t page_cgroup_ino(struct page *page);
892 
mem_cgroup_online(struct mem_cgroup * memcg)893 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
894 {
895 	if (mem_cgroup_disabled())
896 		return true;
897 	return !!(memcg->css.flags & CSS_ONLINE);
898 }
899 
900 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
901 		int zid, int nr_pages);
902 
903 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)904 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
905 		enum lru_list lru, int zone_idx)
906 {
907 	struct mem_cgroup_per_node *mz;
908 
909 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
910 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
911 }
912 
913 void mem_cgroup_handle_over_high(void);
914 
915 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
916 
917 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
918 
919 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
920 				struct task_struct *p);
921 
922 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
923 
mem_cgroup_enter_user_fault(void)924 static inline void mem_cgroup_enter_user_fault(void)
925 {
926 	WARN_ON(current->in_user_fault);
927 	current->in_user_fault = 1;
928 }
929 
mem_cgroup_exit_user_fault(void)930 static inline void mem_cgroup_exit_user_fault(void)
931 {
932 	WARN_ON(!current->in_user_fault);
933 	current->in_user_fault = 0;
934 }
935 
task_in_memcg_oom(struct task_struct * p)936 static inline bool task_in_memcg_oom(struct task_struct *p)
937 {
938 	return p->memcg_in_oom;
939 }
940 
941 bool mem_cgroup_oom_synchronize(bool wait);
942 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
943 					    struct mem_cgroup *oom_domain);
944 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
945 
946 #ifdef CONFIG_MEMCG_SWAP
947 extern bool cgroup_memory_noswap;
948 #endif
949 
950 void lock_page_memcg(struct page *page);
951 void unlock_page_memcg(struct page *page);
952 
953 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
954 
955 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)956 static inline void mod_memcg_state(struct mem_cgroup *memcg,
957 				   int idx, int val)
958 {
959 	unsigned long flags;
960 
961 	local_irq_save(flags);
962 	__mod_memcg_state(memcg, idx, val);
963 	local_irq_restore(flags);
964 }
965 
memcg_page_state(struct mem_cgroup * memcg,int idx)966 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
967 {
968 	return READ_ONCE(memcg->vmstats.state[idx]);
969 }
970 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)971 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
972 					      enum node_stat_item idx)
973 {
974 	struct mem_cgroup_per_node *pn;
975 
976 	if (mem_cgroup_disabled())
977 		return node_page_state(lruvec_pgdat(lruvec), idx);
978 
979 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 	return READ_ONCE(pn->lruvec_stats.state[idx]);
981 }
982 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)983 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
984 						    enum node_stat_item idx)
985 {
986 	struct mem_cgroup_per_node *pn;
987 	long x = 0;
988 	int cpu;
989 
990 	if (mem_cgroup_disabled())
991 		return node_page_state(lruvec_pgdat(lruvec), idx);
992 
993 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
994 	for_each_possible_cpu(cpu)
995 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
996 #ifdef CONFIG_SMP
997 	if (x < 0)
998 		x = 0;
999 #endif
1000 	return x;
1001 }
1002 
1003 void mem_cgroup_flush_stats(void);
1004 
1005 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1006 			      int val);
1007 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1008 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1009 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1010 					 int val)
1011 {
1012 	unsigned long flags;
1013 
1014 	local_irq_save(flags);
1015 	__mod_lruvec_kmem_state(p, idx, val);
1016 	local_irq_restore(flags);
1017 }
1018 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1019 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1020 					  enum node_stat_item idx, int val)
1021 {
1022 	unsigned long flags;
1023 
1024 	local_irq_save(flags);
1025 	__mod_memcg_lruvec_state(lruvec, idx, val);
1026 	local_irq_restore(flags);
1027 }
1028 
1029 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1030 			  unsigned long count);
1031 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1032 static inline void count_memcg_events(struct mem_cgroup *memcg,
1033 				      enum vm_event_item idx,
1034 				      unsigned long count)
1035 {
1036 	unsigned long flags;
1037 
1038 	local_irq_save(flags);
1039 	__count_memcg_events(memcg, idx, count);
1040 	local_irq_restore(flags);
1041 }
1042 
count_memcg_page_event(struct page * page,enum vm_event_item idx)1043 static inline void count_memcg_page_event(struct page *page,
1044 					  enum vm_event_item idx)
1045 {
1046 	struct mem_cgroup *memcg = page_memcg(page);
1047 
1048 	if (memcg)
1049 		count_memcg_events(memcg, idx, 1);
1050 }
1051 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1052 static inline void count_memcg_event_mm(struct mm_struct *mm,
1053 					enum vm_event_item idx)
1054 {
1055 	struct mem_cgroup *memcg;
1056 
1057 	if (mem_cgroup_disabled())
1058 		return;
1059 
1060 	rcu_read_lock();
1061 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1062 	if (likely(memcg))
1063 		count_memcg_events(memcg, idx, 1);
1064 	rcu_read_unlock();
1065 }
1066 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1067 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1068 				      enum memcg_memory_event event)
1069 {
1070 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1071 			  event == MEMCG_SWAP_FAIL;
1072 
1073 	atomic_long_inc(&memcg->memory_events_local[event]);
1074 	if (!swap_event)
1075 		cgroup_file_notify(&memcg->events_local_file);
1076 
1077 	do {
1078 		atomic_long_inc(&memcg->memory_events[event]);
1079 		if (swap_event)
1080 			cgroup_file_notify(&memcg->swap_events_file);
1081 		else
1082 			cgroup_file_notify(&memcg->events_file);
1083 
1084 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1085 			break;
1086 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1087 			break;
1088 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1089 		 !mem_cgroup_is_root(memcg));
1090 }
1091 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1092 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1093 					 enum memcg_memory_event event)
1094 {
1095 	struct mem_cgroup *memcg;
1096 
1097 	if (mem_cgroup_disabled())
1098 		return;
1099 
1100 	rcu_read_lock();
1101 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1102 	if (likely(memcg))
1103 		memcg_memory_event(memcg, event);
1104 	rcu_read_unlock();
1105 }
1106 
1107 void split_page_memcg(struct page *head, unsigned int nr);
1108 
1109 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1110 						gfp_t gfp_mask,
1111 						unsigned long *total_scanned);
1112 
1113 #else /* CONFIG_MEMCG */
1114 
1115 #define MEM_CGROUP_ID_SHIFT	0
1116 #define MEM_CGROUP_ID_MAX	0
1117 
page_memcg(struct page * page)1118 static inline struct mem_cgroup *page_memcg(struct page *page)
1119 {
1120 	return NULL;
1121 }
1122 
page_memcg_rcu(struct page * page)1123 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1124 {
1125 	WARN_ON_ONCE(!rcu_read_lock_held());
1126 	return NULL;
1127 }
1128 
page_memcg_check(struct page * page)1129 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1130 {
1131 	return NULL;
1132 }
1133 
PageMemcgKmem(struct page * page)1134 static inline bool PageMemcgKmem(struct page *page)
1135 {
1136 	return false;
1137 }
1138 
mem_cgroup_is_root(struct mem_cgroup * memcg)1139 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1140 {
1141 	return true;
1142 }
1143 
mem_cgroup_disabled(void)1144 static inline bool mem_cgroup_disabled(void)
1145 {
1146 	return true;
1147 }
1148 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1149 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1150 				      enum memcg_memory_event event)
1151 {
1152 }
1153 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1154 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1155 					 enum memcg_memory_event event)
1156 {
1157 }
1158 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1159 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1160 					 struct mem_cgroup *memcg,
1161 					 unsigned long *min,
1162 					 unsigned long *low)
1163 {
1164 	*min = *low = 0;
1165 }
1166 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1167 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1168 						   struct mem_cgroup *memcg)
1169 {
1170 }
1171 
mem_cgroup_below_low(struct mem_cgroup * memcg)1172 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1173 {
1174 	return false;
1175 }
1176 
mem_cgroup_below_min(struct mem_cgroup * memcg)1177 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1178 {
1179 	return false;
1180 }
1181 
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)1182 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1183 				    gfp_t gfp_mask)
1184 {
1185 	return 0;
1186 }
1187 
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1188 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1189 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1190 {
1191 	return 0;
1192 }
1193 
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1194 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1195 {
1196 }
1197 
mem_cgroup_uncharge(struct page * page)1198 static inline void mem_cgroup_uncharge(struct page *page)
1199 {
1200 }
1201 
mem_cgroup_uncharge_list(struct list_head * page_list)1202 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1203 {
1204 }
1205 
mem_cgroup_migrate(struct page * old,struct page * new)1206 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1207 {
1208 }
1209 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1210 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1211 					       struct pglist_data *pgdat)
1212 {
1213 	return &pgdat->__lruvec;
1214 }
1215 
mem_cgroup_page_lruvec(struct page * page)1216 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
1217 {
1218 	pg_data_t *pgdat = page_pgdat(page);
1219 
1220 	return &pgdat->__lruvec;
1221 }
1222 
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)1223 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1224 {
1225 }
1226 
parent_mem_cgroup(struct mem_cgroup * memcg)1227 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1228 {
1229 	return NULL;
1230 }
1231 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1232 static inline bool mm_match_cgroup(struct mm_struct *mm,
1233 		struct mem_cgroup *memcg)
1234 {
1235 	return true;
1236 }
1237 
get_mem_cgroup_from_mm(struct mm_struct * mm)1238 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1239 {
1240 	return NULL;
1241 }
1242 
1243 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1244 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1245 {
1246 	return NULL;
1247 }
1248 
mem_cgroup_put(struct mem_cgroup * memcg)1249 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1250 {
1251 }
1252 
lock_page_lruvec(struct page * page)1253 static inline struct lruvec *lock_page_lruvec(struct page *page)
1254 {
1255 	struct pglist_data *pgdat = page_pgdat(page);
1256 
1257 	spin_lock(&pgdat->__lruvec.lru_lock);
1258 	return &pgdat->__lruvec;
1259 }
1260 
lock_page_lruvec_irq(struct page * page)1261 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1262 {
1263 	struct pglist_data *pgdat = page_pgdat(page);
1264 
1265 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1266 	return &pgdat->__lruvec;
1267 }
1268 
lock_page_lruvec_irqsave(struct page * page,unsigned long * flagsp)1269 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1270 		unsigned long *flagsp)
1271 {
1272 	struct pglist_data *pgdat = page_pgdat(page);
1273 
1274 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1275 	return &pgdat->__lruvec;
1276 }
1277 
1278 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1279 mem_cgroup_iter(struct mem_cgroup *root,
1280 		struct mem_cgroup *prev,
1281 		struct mem_cgroup_reclaim_cookie *reclaim)
1282 {
1283 	return NULL;
1284 }
1285 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1286 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1287 					 struct mem_cgroup *prev)
1288 {
1289 }
1290 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1291 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1292 		int (*fn)(struct task_struct *, void *), void *arg)
1293 {
1294 	return 0;
1295 }
1296 
mem_cgroup_id(struct mem_cgroup * memcg)1297 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1298 {
1299 	return 0;
1300 }
1301 
mem_cgroup_from_id(unsigned short id)1302 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1303 {
1304 	WARN_ON_ONCE(id);
1305 	/* XXX: This should always return root_mem_cgroup */
1306 	return NULL;
1307 }
1308 
mem_cgroup_from_seq(struct seq_file * m)1309 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1310 {
1311 	return NULL;
1312 }
1313 
lruvec_memcg(struct lruvec * lruvec)1314 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1315 {
1316 	return NULL;
1317 }
1318 
mem_cgroup_online(struct mem_cgroup * memcg)1319 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1320 {
1321 	return true;
1322 }
1323 
1324 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1325 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1326 		enum lru_list lru, int zone_idx)
1327 {
1328 	return 0;
1329 }
1330 
mem_cgroup_get_max(struct mem_cgroup * memcg)1331 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1332 {
1333 	return 0;
1334 }
1335 
mem_cgroup_size(struct mem_cgroup * memcg)1336 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1337 {
1338 	return 0;
1339 }
1340 
1341 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1342 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1343 {
1344 }
1345 
1346 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1347 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1348 {
1349 }
1350 
lock_page_memcg(struct page * page)1351 static inline void lock_page_memcg(struct page *page)
1352 {
1353 }
1354 
unlock_page_memcg(struct page * page)1355 static inline void unlock_page_memcg(struct page *page)
1356 {
1357 }
1358 
mem_cgroup_handle_over_high(void)1359 static inline void mem_cgroup_handle_over_high(void)
1360 {
1361 }
1362 
mem_cgroup_enter_user_fault(void)1363 static inline void mem_cgroup_enter_user_fault(void)
1364 {
1365 }
1366 
mem_cgroup_exit_user_fault(void)1367 static inline void mem_cgroup_exit_user_fault(void)
1368 {
1369 }
1370 
task_in_memcg_oom(struct task_struct * p)1371 static inline bool task_in_memcg_oom(struct task_struct *p)
1372 {
1373 	return false;
1374 }
1375 
mem_cgroup_oom_synchronize(bool wait)1376 static inline bool mem_cgroup_oom_synchronize(bool wait)
1377 {
1378 	return false;
1379 }
1380 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1381 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1382 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1383 {
1384 	return NULL;
1385 }
1386 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1387 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1388 {
1389 }
1390 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1391 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1392 				     int idx,
1393 				     int nr)
1394 {
1395 }
1396 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1397 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1398 				   int idx,
1399 				   int nr)
1400 {
1401 }
1402 
memcg_page_state(struct mem_cgroup * memcg,int idx)1403 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1404 {
1405 	return 0;
1406 }
1407 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1408 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1409 					      enum node_stat_item idx)
1410 {
1411 	return node_page_state(lruvec_pgdat(lruvec), idx);
1412 }
1413 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1414 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1415 						    enum node_stat_item idx)
1416 {
1417 	return node_page_state(lruvec_pgdat(lruvec), idx);
1418 }
1419 
mem_cgroup_flush_stats(void)1420 static inline void mem_cgroup_flush_stats(void)
1421 {
1422 }
1423 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1424 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1425 					    enum node_stat_item idx, int val)
1426 {
1427 }
1428 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1429 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1430 					   int val)
1431 {
1432 	struct page *page = virt_to_head_page(p);
1433 
1434 	__mod_node_page_state(page_pgdat(page), idx, val);
1435 }
1436 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1437 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1438 					 int val)
1439 {
1440 	struct page *page = virt_to_head_page(p);
1441 
1442 	mod_node_page_state(page_pgdat(page), idx, val);
1443 }
1444 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1445 static inline void count_memcg_events(struct mem_cgroup *memcg,
1446 				      enum vm_event_item idx,
1447 				      unsigned long count)
1448 {
1449 }
1450 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1451 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1452 					enum vm_event_item idx,
1453 					unsigned long count)
1454 {
1455 }
1456 
count_memcg_page_event(struct page * page,int idx)1457 static inline void count_memcg_page_event(struct page *page,
1458 					  int idx)
1459 {
1460 }
1461 
1462 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1463 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1464 {
1465 }
1466 
split_page_memcg(struct page * head,unsigned int nr)1467 static inline void split_page_memcg(struct page *head, unsigned int nr)
1468 {
1469 }
1470 
1471 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1472 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1473 					    gfp_t gfp_mask,
1474 					    unsigned long *total_scanned)
1475 {
1476 	return 0;
1477 }
1478 #endif /* CONFIG_MEMCG */
1479 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1480 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1481 {
1482 	__mod_lruvec_kmem_state(p, idx, 1);
1483 }
1484 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1485 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1486 {
1487 	__mod_lruvec_kmem_state(p, idx, -1);
1488 }
1489 
parent_lruvec(struct lruvec * lruvec)1490 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1491 {
1492 	struct mem_cgroup *memcg;
1493 
1494 	memcg = lruvec_memcg(lruvec);
1495 	if (!memcg)
1496 		return NULL;
1497 	memcg = parent_mem_cgroup(memcg);
1498 	if (!memcg)
1499 		return NULL;
1500 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1501 }
1502 
unlock_page_lruvec(struct lruvec * lruvec)1503 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1504 {
1505 	spin_unlock(&lruvec->lru_lock);
1506 }
1507 
unlock_page_lruvec_irq(struct lruvec * lruvec)1508 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1509 {
1510 	spin_unlock_irq(&lruvec->lru_lock);
1511 }
1512 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1513 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1514 		unsigned long flags)
1515 {
1516 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1517 }
1518 
1519 /* Test requires a stable page->memcg binding, see page_memcg() */
page_matches_lruvec(struct page * page,struct lruvec * lruvec)1520 static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec)
1521 {
1522 	return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1523 	       lruvec_memcg(lruvec) == page_memcg(page);
1524 }
1525 
1526 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irq(struct page * page,struct lruvec * locked_lruvec)1527 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1528 		struct lruvec *locked_lruvec)
1529 {
1530 	if (locked_lruvec) {
1531 		if (page_matches_lruvec(page, locked_lruvec))
1532 			return locked_lruvec;
1533 
1534 		unlock_page_lruvec_irq(locked_lruvec);
1535 	}
1536 
1537 	return lock_page_lruvec_irq(page);
1538 }
1539 
1540 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irqsave(struct page * page,struct lruvec * locked_lruvec,unsigned long * flags)1541 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1542 		struct lruvec *locked_lruvec, unsigned long *flags)
1543 {
1544 	if (locked_lruvec) {
1545 		if (page_matches_lruvec(page, locked_lruvec))
1546 			return locked_lruvec;
1547 
1548 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1549 	}
1550 
1551 	return lock_page_lruvec_irqsave(page, flags);
1552 }
1553 
1554 #ifdef CONFIG_CGROUP_WRITEBACK
1555 
1556 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1557 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1558 			 unsigned long *pheadroom, unsigned long *pdirty,
1559 			 unsigned long *pwriteback);
1560 
1561 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1562 					     struct bdi_writeback *wb);
1563 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1564 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1565 						  struct bdi_writeback *wb)
1566 {
1567 	if (mem_cgroup_disabled())
1568 		return;
1569 
1570 	if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1571 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1572 }
1573 
1574 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1575 
1576 #else	/* CONFIG_CGROUP_WRITEBACK */
1577 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1578 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1579 {
1580 	return NULL;
1581 }
1582 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1583 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1584 				       unsigned long *pfilepages,
1585 				       unsigned long *pheadroom,
1586 				       unsigned long *pdirty,
1587 				       unsigned long *pwriteback)
1588 {
1589 }
1590 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1591 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1592 						  struct bdi_writeback *wb)
1593 {
1594 }
1595 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1596 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1597 {
1598 }
1599 
1600 #endif	/* CONFIG_CGROUP_WRITEBACK */
1601 
1602 struct sock;
1603 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1604 			     gfp_t gfp_mask);
1605 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1606 #ifdef CONFIG_MEMCG
1607 extern struct static_key_false memcg_sockets_enabled_key;
1608 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1609 void mem_cgroup_sk_alloc(struct sock *sk);
1610 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1611 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1612 {
1613 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1614 		return true;
1615 	do {
1616 		if (time_before(jiffies, memcg->socket_pressure))
1617 			return true;
1618 	} while ((memcg = parent_mem_cgroup(memcg)));
1619 	return false;
1620 }
1621 
1622 int alloc_shrinker_info(struct mem_cgroup *memcg);
1623 void free_shrinker_info(struct mem_cgroup *memcg);
1624 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1625 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1626 #else
1627 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1628 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1629 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1630 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1631 {
1632 	return false;
1633 }
1634 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1635 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1636 				    int nid, int shrinker_id)
1637 {
1638 }
1639 #endif
1640 
1641 #ifdef CONFIG_MEMCG_KMEM
1642 bool mem_cgroup_kmem_disabled(void);
1643 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1644 void __memcg_kmem_uncharge_page(struct page *page, int order);
1645 
1646 struct obj_cgroup *get_obj_cgroup_from_current(void);
1647 
1648 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1649 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1650 
1651 extern struct static_key_false memcg_kmem_enabled_key;
1652 
1653 extern int memcg_nr_cache_ids;
1654 void memcg_get_cache_ids(void);
1655 void memcg_put_cache_ids(void);
1656 
1657 /*
1658  * Helper macro to loop through all memcg-specific caches. Callers must still
1659  * check if the cache is valid (it is either valid or NULL).
1660  * the slab_mutex must be held when looping through those caches
1661  */
1662 #define for_each_memcg_cache_index(_idx)	\
1663 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1664 
memcg_kmem_enabled(void)1665 static inline bool memcg_kmem_enabled(void)
1666 {
1667 	return static_branch_likely(&memcg_kmem_enabled_key);
1668 }
1669 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1670 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1671 					 int order)
1672 {
1673 	if (memcg_kmem_enabled())
1674 		return __memcg_kmem_charge_page(page, gfp, order);
1675 	return 0;
1676 }
1677 
memcg_kmem_uncharge_page(struct page * page,int order)1678 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1679 {
1680 	if (memcg_kmem_enabled())
1681 		__memcg_kmem_uncharge_page(page, order);
1682 }
1683 
1684 /*
1685  * A helper for accessing memcg's kmem_id, used for getting
1686  * corresponding LRU lists.
1687  */
memcg_cache_id(struct mem_cgroup * memcg)1688 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1689 {
1690 	return memcg ? memcg->kmemcg_id : -1;
1691 }
1692 
1693 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1694 
1695 #else
mem_cgroup_kmem_disabled(void)1696 static inline bool mem_cgroup_kmem_disabled(void)
1697 {
1698 	return true;
1699 }
1700 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1701 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1702 					 int order)
1703 {
1704 	return 0;
1705 }
1706 
memcg_kmem_uncharge_page(struct page * page,int order)1707 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1708 {
1709 }
1710 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1711 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1712 					   int order)
1713 {
1714 	return 0;
1715 }
1716 
__memcg_kmem_uncharge_page(struct page * page,int order)1717 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1718 {
1719 }
1720 
1721 #define for_each_memcg_cache_index(_idx)	\
1722 	for (; NULL; )
1723 
memcg_kmem_enabled(void)1724 static inline bool memcg_kmem_enabled(void)
1725 {
1726 	return false;
1727 }
1728 
memcg_cache_id(struct mem_cgroup * memcg)1729 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1730 {
1731 	return -1;
1732 }
1733 
memcg_get_cache_ids(void)1734 static inline void memcg_get_cache_ids(void)
1735 {
1736 }
1737 
memcg_put_cache_ids(void)1738 static inline void memcg_put_cache_ids(void)
1739 {
1740 }
1741 
mem_cgroup_from_obj(void * p)1742 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1743 {
1744        return NULL;
1745 }
1746 
1747 #endif /* CONFIG_MEMCG_KMEM */
1748 
1749 #endif /* _LINUX_MEMCONTROL_H */
1750