1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5  *  cpuset interface
6  *
7  *  Copyright (C) 2003 BULL SA
8  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
9  *
10  */
11 
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/jump_label.h>
19 
20 #ifdef CONFIG_CPUSETS
21 
22 /*
23  * Static branch rewrites can happen in an arbitrary order for a given
24  * key. In code paths where we need to loop with read_mems_allowed_begin() and
25  * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
26  * to ensure that begin() always gets rewritten before retry() in the
27  * disabled -> enabled transition. If not, then if local irqs are disabled
28  * around the loop, we can deadlock since retry() would always be
29  * comparing the latest value of the mems_allowed seqcount against 0 as
30  * begin() still would see cpusets_enabled() as false. The enabled -> disabled
31  * transition should happen in reverse order for the same reasons (want to stop
32  * looking at real value of mems_allowed.sequence in retry() first).
33  */
34 extern struct static_key_false cpusets_pre_enable_key;
35 extern struct static_key_false cpusets_enabled_key;
cpusets_enabled(void)36 static inline bool cpusets_enabled(void)
37 {
38 	return static_branch_unlikely(&cpusets_enabled_key);
39 }
40 
cpuset_inc(void)41 static inline void cpuset_inc(void)
42 {
43 	static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
44 	static_branch_inc_cpuslocked(&cpusets_enabled_key);
45 }
46 
cpuset_dec(void)47 static inline void cpuset_dec(void)
48 {
49 	static_branch_dec_cpuslocked(&cpusets_enabled_key);
50 	static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
51 }
52 
53 extern int cpuset_init(void);
54 extern void cpuset_init_smp(void);
55 extern void cpuset_force_rebuild(void);
56 extern void cpuset_update_active_cpus(void);
57 extern void cpuset_wait_for_hotplug(void);
58 extern void cpuset_read_lock(void);
59 extern void cpuset_read_unlock(void);
60 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
61 extern void cpuset_cpus_allowed_fallback(struct task_struct *p);
62 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
63 #define cpuset_current_mems_allowed (current->mems_allowed)
64 void cpuset_init_current_mems_allowed(void);
65 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
66 
67 extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
68 
cpuset_node_allowed(int node,gfp_t gfp_mask)69 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
70 {
71 	if (cpusets_enabled())
72 		return __cpuset_node_allowed(node, gfp_mask);
73 	return true;
74 }
75 
__cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)76 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
77 {
78 	return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
79 }
80 
cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)81 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
82 {
83 	if (cpusets_enabled())
84 		return __cpuset_zone_allowed(z, gfp_mask);
85 	return true;
86 }
87 
88 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
89 					  const struct task_struct *tsk2);
90 
91 #define cpuset_memory_pressure_bump() 				\
92 	do {							\
93 		if (cpuset_memory_pressure_enabled)		\
94 			__cpuset_memory_pressure_bump();	\
95 	} while (0)
96 extern int cpuset_memory_pressure_enabled;
97 extern void __cpuset_memory_pressure_bump(void);
98 
99 extern void cpuset_task_status_allowed(struct seq_file *m,
100 					struct task_struct *task);
101 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
102 			    struct pid *pid, struct task_struct *tsk);
103 
104 extern int cpuset_mem_spread_node(void);
105 extern int cpuset_slab_spread_node(void);
106 
cpuset_do_page_mem_spread(void)107 static inline int cpuset_do_page_mem_spread(void)
108 {
109 	return task_spread_page(current);
110 }
111 
cpuset_do_slab_mem_spread(void)112 static inline int cpuset_do_slab_mem_spread(void)
113 {
114 	return task_spread_slab(current);
115 }
116 
117 extern bool current_cpuset_is_being_rebound(void);
118 
119 extern void rebuild_sched_domains(void);
120 
121 extern void cpuset_print_current_mems_allowed(void);
122 
123 /*
124  * read_mems_allowed_begin is required when making decisions involving
125  * mems_allowed such as during page allocation. mems_allowed can be updated in
126  * parallel and depending on the new value an operation can fail potentially
127  * causing process failure. A retry loop with read_mems_allowed_begin and
128  * read_mems_allowed_retry prevents these artificial failures.
129  */
read_mems_allowed_begin(void)130 static inline unsigned int read_mems_allowed_begin(void)
131 {
132 	if (!static_branch_unlikely(&cpusets_pre_enable_key))
133 		return 0;
134 
135 	return read_seqcount_begin(&current->mems_allowed_seq);
136 }
137 
138 /*
139  * If this returns true, the operation that took place after
140  * read_mems_allowed_begin may have failed artificially due to a concurrent
141  * update of mems_allowed. It is up to the caller to retry the operation if
142  * appropriate.
143  */
read_mems_allowed_retry(unsigned int seq)144 static inline bool read_mems_allowed_retry(unsigned int seq)
145 {
146 	if (!static_branch_unlikely(&cpusets_enabled_key))
147 		return false;
148 
149 	return read_seqcount_retry(&current->mems_allowed_seq, seq);
150 }
151 
set_mems_allowed(nodemask_t nodemask)152 static inline void set_mems_allowed(nodemask_t nodemask)
153 {
154 	unsigned long flags;
155 
156 	task_lock(current);
157 	local_irq_save(flags);
158 	write_seqcount_begin(&current->mems_allowed_seq);
159 	current->mems_allowed = nodemask;
160 	write_seqcount_end(&current->mems_allowed_seq);
161 	local_irq_restore(flags);
162 	task_unlock(current);
163 }
164 
165 #else /* !CONFIG_CPUSETS */
166 
cpusets_enabled(void)167 static inline bool cpusets_enabled(void) { return false; }
168 
cpuset_init(void)169 static inline int cpuset_init(void) { return 0; }
cpuset_init_smp(void)170 static inline void cpuset_init_smp(void) {}
171 
cpuset_force_rebuild(void)172 static inline void cpuset_force_rebuild(void) { }
173 
cpuset_update_active_cpus(void)174 static inline void cpuset_update_active_cpus(void)
175 {
176 	partition_sched_domains(1, NULL, NULL);
177 }
178 
cpuset_wait_for_hotplug(void)179 static inline void cpuset_wait_for_hotplug(void) { }
180 
cpuset_read_lock(void)181 static inline void cpuset_read_lock(void) { }
cpuset_read_unlock(void)182 static inline void cpuset_read_unlock(void) { }
183 
cpuset_cpus_allowed(struct task_struct * p,struct cpumask * mask)184 static inline void cpuset_cpus_allowed(struct task_struct *p,
185 				       struct cpumask *mask)
186 {
187 	cpumask_copy(mask, cpu_possible_mask);
188 }
189 
cpuset_cpus_allowed_fallback(struct task_struct * p)190 static inline void cpuset_cpus_allowed_fallback(struct task_struct *p)
191 {
192 }
193 
cpuset_mems_allowed(struct task_struct * p)194 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
195 {
196 	return node_possible_map;
197 }
198 
199 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
cpuset_init_current_mems_allowed(void)200 static inline void cpuset_init_current_mems_allowed(void) {}
201 
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)202 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
203 {
204 	return 1;
205 }
206 
cpuset_node_allowed(int node,gfp_t gfp_mask)207 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
208 {
209 	return true;
210 }
211 
__cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)212 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
213 {
214 	return true;
215 }
216 
cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)217 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
218 {
219 	return true;
220 }
221 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)222 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
223 						 const struct task_struct *tsk2)
224 {
225 	return 1;
226 }
227 
cpuset_memory_pressure_bump(void)228 static inline void cpuset_memory_pressure_bump(void) {}
229 
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)230 static inline void cpuset_task_status_allowed(struct seq_file *m,
231 						struct task_struct *task)
232 {
233 }
234 
cpuset_mem_spread_node(void)235 static inline int cpuset_mem_spread_node(void)
236 {
237 	return 0;
238 }
239 
cpuset_slab_spread_node(void)240 static inline int cpuset_slab_spread_node(void)
241 {
242 	return 0;
243 }
244 
cpuset_do_page_mem_spread(void)245 static inline int cpuset_do_page_mem_spread(void)
246 {
247 	return 0;
248 }
249 
cpuset_do_slab_mem_spread(void)250 static inline int cpuset_do_slab_mem_spread(void)
251 {
252 	return 0;
253 }
254 
current_cpuset_is_being_rebound(void)255 static inline bool current_cpuset_is_being_rebound(void)
256 {
257 	return false;
258 }
259 
rebuild_sched_domains(void)260 static inline void rebuild_sched_domains(void)
261 {
262 	partition_sched_domains(1, NULL, NULL);
263 }
264 
cpuset_print_current_mems_allowed(void)265 static inline void cpuset_print_current_mems_allowed(void)
266 {
267 }
268 
set_mems_allowed(nodemask_t nodemask)269 static inline void set_mems_allowed(nodemask_t nodemask)
270 {
271 }
272 
read_mems_allowed_begin(void)273 static inline unsigned int read_mems_allowed_begin(void)
274 {
275 	return 0;
276 }
277 
read_mems_allowed_retry(unsigned int seq)278 static inline bool read_mems_allowed_retry(unsigned int seq)
279 {
280 	return false;
281 }
282 
283 #endif /* !CONFIG_CPUSETS */
284 
285 #endif /* _LINUX_CPUSET_H */
286